Ruthenium Thioether Chemistry: The Synthesis and Structure of a Host-Guest Complex [Ru([9]aneS $\left.\left.3_{3}\right)_{2}\right]\left[\mathrm{BPh}_{4}\right]_{2} \cdot 2 \mathrm{Me}_{2} \mathrm{SO}$, and of $\left[\mathrm{Ru}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]$ $\left[\mathrm{BPh}_{4}\right]_{2} \cdot 2 \mathrm{MeNO}_{2}$ and $\left[\mathrm{Ru}\left([18] \mathrm{aneS}_{6}\right)\right]\left[\mathrm{BPh}_{4}\right]_{2}$ ([9]aneS ${ }_{3}=1,4,7-$ trithiacyclononane, [18]ane $S_{6}=1,4,7,10,13,16$-hexathiacyclo-octadecane) \dagger

Michael N. Bell, Alexander J. Blake, Alan J. Holder, Timothy I. Hyde, and Martin Schröder* Department of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland

Abstract

Reaction of $\left[\left\{\mathrm{RuCl}_{2} \text { (arene) }\right\}_{2}\right.$] (arene $=\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{C}_{6} \mathrm{Me}_{6}$, or 4- $\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{Pri}^{\text {i }}$) with four molar equivalents of 1,4,7-trithiacyclononane ([9]aneS ${ }_{3}$) in MeOH at 293 K affords a colourless or pale yellow solution. Addition of NaBPh_{4} gives $\left[\mathrm{Ru}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]\left[\mathrm{BPh}_{4}\right]_{2}$ which can be recrystallised from $\mathrm{Me}_{2} \mathrm{SO}, \mathrm{MeNO}_{2}$, or MeCN . The complex $\left[\mathrm{Ru}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]\left[\mathrm{BPh}_{4}\right]_{2} \cdot 2 \mathrm{Me}_{2} \mathrm{SO}$ crystallises in the monoclinic space group $P 2_{1} / c$ with $a=14.134(3), b=11.0963(19), c=19.743(4) \AA$, $\beta=94.497(16)^{\circ}$, and $Z=2$. The single crystal X-ray structure of the complex shows a centrosymmetric cation with homoleptic thioether co-ordination to an octahedral Ru" ion. Each macrocycle is bound facially to the metal centre, Ru-S(1) 2.327 2(14), Ru-S(4) 2.3357 (14), $\mathrm{Ru}-\mathrm{S}(7) 2.3331$ (14) \AA. Two molecules of $\mathrm{Me}_{2} \mathrm{SO}$ are associated with each [Ru([9]aneS $\left.)_{3}\right)_{2}{ }^{2+}$ cation; these interact with the rear cavities of the co-ordinated trithia macrocycles to form a host/guest-type interaction, with the oxygen atoms involved in hydrogen bonding with the methylene protons of [9]ane $\mathrm{S}_{3}, \mathrm{O} \ldots \mathrm{H} 2.201$ (8), 2.419(8), 2.790(8), and 3.291 (8) \AA. The $\mathrm{Me}_{2} \mathrm{SO}$ molecules in $\left[\mathrm{Ru}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]\left[\mathrm{BPh}_{4}\right]_{2} \cdot 2 \mathrm{Me}_{2} \mathrm{SO}$ can be replaced by MeCN or MeNO_{2} by recrystallisation of the complex from these solvents. The complex $\left[\mathrm{Ru}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]\left[\mathrm{BPh}_{4}\right]_{2} \cdot 2 \mathrm{MeNO}_{2}$ crystallises in the monoclinic space group $P 2_{1} / n$ with $a=11.200(5), b=18.247$ (13), $c=14.323(17) \AA, \beta=90.78(4)^{\circ}$, and $Z=2$. The single crystal X-ray structure of this species, however, shows that there is no secondary interaction between the two MeNO_{2} molecules and the complex cation, the closest contact between the methylene protons and the oxygen atoms of MeNO_{2} being over $3.5 \AA$. The complex cation $\left[\mathrm{Ru}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]^{2+}$ shows a quasi-reversible oxidation at platinum electrodes in MeCN at $E_{1}=+1.41 \mathrm{~V}$ vs. ferrocene-ferrocenium indicating that $R u^{\prime \prime}$ is highly stabilised by RuS_{6} co-ordination. Reaction of $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ with one molar equivalent of $1,4,7,10,13,16$-hexathiacyclo-octadecane ($[18]$ ane $_{6}$) in refluxing dimethylformamide (dmf)-methanol affords $\left[\mathrm{Ru}\left([18] \mathrm{aneS}_{6}\right)\right] \mathrm{Cl}_{2}$ as a white precipitate. Dissolution of this product in hot water followed by addition of an excess of NaBPh_{4} yields $\left[\mathrm{Ru}\left([18] \mathrm{aneS}_{6}\right)\right]\left[\mathrm{BPh}_{4}\right]_{2}$ which crystallises in the monoclinic space group $P 2_{1} / c$, with $a=12.801$ (4), $b=10.663(3), c=20.036$ (9) $\AA, \beta=109.09(3)^{\circ}$, and $Z=2$. The single crystal X-ray structure of the complex shows a centrosymmetric cation with hexathia co-ordination of the macrocycle to Ru" in a meso configuration, $\mathrm{Ru}-\mathrm{S}(1) 2.322$ 2(23), $\mathrm{Ru}-\mathrm{S}(4) 2.3326(25), \mathrm{Ru}-\mathrm{S}(7) 2.337$ 2(23) \AA, and confirms that [18]ane S_{6} can readily fully encapsulate a relatively large cation such as $\mathrm{Ru}^{\prime \prime}$. The oxidative chemistry of $\left[\mathrm{Ru}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]^{2+}$ and $\left[\mathrm{Ru}\left([18] \mathrm{aneS}_{6}\right)\right]^{2+}$ is discussed.

The trithia macrocyclic ligand 1,4,7-trithiacyclononane ($[9] \mathrm{aneS}_{3}$) tends to co-ordinate to transition-metal centres in a facial manner as a formal six-electron donor. ${ }^{1}$ Thus, bis(sandwich) complexes of the type $\left[\mathrm{M}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]^{x+}$ have now been reported for a wide range of transition-metal centres. ${ }^{1,2}$ We report herein the synthesis and structure of the homoleptic thioether ruthenium(II) complex $\left[\mathrm{Ru}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]^{2+}$, which shows an unusual host-guest interaction between the coordinated thioether ring and two $\mathrm{Me}_{2} \mathrm{SO}$ solvate molecules. This work has been the subject of a preliminary communication. ${ }^{3,4}$

The related hexathia ligand $1,4,7,10,13,16$-hexathiacyclooctadecane ($[18]$ ane $_{6}$), the thioether analogue of the oxopolyether 18 -crown- 6 , has been found to encapsulate a range of first-row transition-metal centres. ${ }^{5}$ The only second- and third-row complexes of $[18] \mathrm{aneS}_{6}$ of type $\left[\mathrm{M}\left([18] \mathrm{aneS}_{6}\right)\right]^{x+}$
\dagger Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1990, Issue 1, pp. xix—xxii.

[9]aneS 3

[18]aneS ${ }_{6}$
reported thus far are of $\mathrm{Pd}^{11, I I I I}, \mathrm{Pt}^{\mathrm{II}, 111},{ }^{1,6,7} \mathrm{Ag}^{8}{ }^{8}$ and $\mathrm{Au}^{9}{ }^{9} \mathrm{All}$ these complexes, however, show distortions from regular octahedral geometry due to electronic factors; for example, the

Figure 1. Proton n.m.r. spectrum ($360 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$) of $\left[\operatorname{Ru}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]^{2+}$

(c)

Figure 2. Infrared spectra (KBr disc) of $\left[\mathrm{Ru}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]\left[\mathrm{BPh}_{4}\right]_{2}$. 2(solvate); solvate $=(a) \mathrm{MeCN}^{(},(b) \mathrm{MeNO}_{2},(c) \mathrm{Me}_{2} \mathrm{SO}$
$\left[\mathrm{Pd}\left([18] \mathrm{aneS}_{6}\right)\right]^{2+/ 3+}$ cations both show tetragonally elongated stereochemistries consistent with metal d^{8} and d^{7} configurations respectively. ${ }^{6,7}$ The encapsulation of second- and third-row metal ions is inhibited by the kinetic inertness of these metal ions relative to first-row ions. In principle, therefore, the synthesis of macrocyclic complexes of these metal ions may present difficulties. We were interested in ascertaining whether [18] aneS $_{6}$ is capable of fully encapsulating an inert d^{6} metal ion octahedrally. We report herein the facile synthesis of $\left[\mathrm{Ru}\left([18] \mathrm{aneS}_{6}\right)\right]^{2+}$ directly from $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and the crystal structure of its tetraphenylborate salt.

Figure 3. Single crystal X-ray structure of $\left[\mathrm{Ru}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]^{2+} \cdot 2 \mathrm{Me}_{2} \mathrm{SO}$ with atom numbering scheme adopted; 30% probability level used for ellipsoids

Results and Discussion

Reaction of the orange-yellow complexes $\left[\left\{\mathrm{RuCl}_{2} \text { (arene) }\right\}_{2}\right]$ (arene $=\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{C}_{6} \mathrm{Me}_{6}$, or $4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}$) with four molar equivalents of [9]aneS ${ }_{3}$ in MeOH at room temperature affords a colourless or pale yellow solution. The rate of reaction varies as a function of arene used: with $\mathrm{C}_{6} \mathrm{H}_{6}$ the reaction is complete after 10 min , while for $4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}$ and $\mathrm{C}_{6} \mathrm{Me}_{6}$ reaction takes 0.5 and 1.5 h respectively for completion at room temperature. Addition of NaBPh_{4} to the resulting methanolic solution affords a white product which can be recrystallised from polar solvents such as $\mathrm{Me}_{2} \mathrm{SO}$, MeNO_{2}, or MeCN to give an overall yield of up to 70%. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum of the product confirms the absence of co-ordinated arene and shows an ABCD pattern for the protons of co-ordinated [9]aneS 3_{3} (Figure 1) as observed for related sandwich complexes of type $\left[\mathrm{M}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]^{x+} .{ }^{10-12}$ The presence of symmetrically bound [9]aneS ${ }_{3}$ was confirmed from the ${ }^{13} \mathrm{C}$ n.m.r. spectrum which showed only one resonance at 33.34 p.p.m. for the methylene carbon centres of co-ordinated [9]aneS ${ }_{3}$. Fast-atom bombardment (f.a.b.) mass spectroscopy of the product gives molecular-ion peaks corresponding to $\left[\mathrm{Ru}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]\left[\mathrm{BPh}_{4}\right]_{2}$. However, n.m.r. and i.r. spectroscopy (Figure 2) together with elemental analysis indicated the presence of two molecules of solvate $\left(\mathrm{Me}_{2} \mathrm{SO}\right.$, MeNO_{2}, or MeCN) per $\mathrm{Ru}^{\text {II }}$ cation. This solvent of crystallisation was retained after drying the complex in vacuo at room temperature, but could be removed at higher temperatures. In order to confirm homoleptic thioether co-ordination about $\mathrm{Ru}^{\text {II }}$ and to ascertain the interaction of the cation with the solvate molecules in the solid state, crystal structure determinations of two of these products were undertaken.

The single crystal X-ray structure of $\left[\mathrm{Ru}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]$ $\left[\mathrm{BPh}_{4}\right]_{2} \cdot 2 \mathrm{Me}_{2} \mathrm{SO}$ shows a centrosymmetric cation with the Ru atom lying on an inversion centre. Homoleptic thioether coordination to the octahedral $\mathrm{Ru}^{\mathrm{II}}$ ion is confirmed with each macrocycle bound facially to the metal centre, $\mathrm{Ru}-\mathrm{S}(1)$ 2.327 2(14), $\mathrm{Ru}-\mathrm{S}(4) 2.3357(14), \quad \mathrm{Ru}-\mathrm{S}(7) 2.3331(14) \AA$, $\mathrm{S}(1)-\mathrm{Ru} \mathrm{S}(4)$ 87.87(5), $\mathrm{S}(1)-\mathrm{Ru}-\mathrm{S}(7)$ 88.09(5), $\quad \mathrm{S}(4)-\mathrm{R}-\mathrm{S}(7)$ $88.26(5)^{\circ}$ (Figure 3). The complex $\left[\mathrm{Ru}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]^{2+}$ represents the first example of homoleptic hexathia ether co-ordination to ruthenium and is therefore an important compound with which to probe the electronic properties of thioether ligands in general. Two molecules of $\mathrm{Me}_{2} \mathrm{SO}$ are present per $\mathrm{Ru}^{\text {II }}$ cation and are well ordered and fully occupied. Remarkably, the oxygen atoms of the solvate are orientated towards the rear cavity of the coordinated trithia macrocycles producing close $\mathrm{O} \cdots \mathrm{H}$ intermolecular contacts, $\mathrm{O} \cdots \mathrm{H}(3 \mathrm{MA}) 2.201(8), \mathrm{O} \cdots \mathrm{H}(6 \mathrm{MA})$ $2.419(8), \mathrm{O} \cdots \mathrm{H}(9 \mathrm{MA}) 2.790(8), \mathrm{O} \cdots \mathrm{H}(5 \mathrm{MA}) 3.291(8) \AA$. The oxygen donors of the $\mathrm{Me}_{2} \mathrm{SO}$ are markedly closer to $\mathrm{S}(7)$ than to $S(1)$ or $S(4)$. This supplementary interaction is particularly intriguing since it suggests that inclusion of $\mathrm{Me}_{2} \mathrm{SO}$ is occurring into the rear cone/cavity formed by [9]aneS 3_{3} on coordination to the metal centre (Figure 4).

The $\mathrm{Me}_{2} \mathrm{SO}$ molecules in $\left[\mathrm{Ru}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]\left[\mathrm{BPh}_{4}\right]_{2} \cdot 2 \mathrm{Me}_{2} \mathrm{SO}$

Table 1. $\mathrm{M}^{\mathrm{UI}}-\mathrm{M}^{\mathrm{III}}$ redox couples ($E_{\frac{1}{2}}$ vs ferrocene-ferrocenium) for sandwich complexes $\left[\mathrm{M}\left([9] \text { aneS }_{3}\right)_{2}\right]^{2+/ 3+}$ in MeCN at platinum electrodes ${ }^{1}$

$\mathrm{Fe}^{\text {II }}-\mathrm{Fe}^{\text {III }}$	$+0.98^{12.13}$	$\mathrm{Co}^{\text {II }}-\mathrm{Co}^{\text {III }}$	$-0.013^{11.12}$	$\mathrm{Ni}^{\text {II }}-\mathrm{Nj} \mathrm{i}^{\text {III }}$	$+0.97{ }^{12}$
Ru' ${ }^{\text {II }}$ Ru ${ }^{\text {III }}$	$+1.41^{3, a}$	Rh ${ }^{\text {III }}-\mathrm{Rh}^{\text {III }}$	-0.71^{10}	$\mathrm{Pd}^{\text {II }}-\mathrm{Pd}^{\text {III }}$	$+0.605^{16}$
$\mathrm{Os}^{\text {II }}-\mathrm{Os}^{\text {III }}$	$+1.16^{14}$	$\mathrm{Ir}^{\text {III }}$ - $\mathrm{rr}^{\text {III }}$	$-1.38{ }^{15 . b}$	$\mathrm{Pt}^{\text {III }}-\mathrm{Pt}^{\text {III }}$	$+0.39^{17, c}$

${ }^{a}$ This work. ${ }^{b}$ Irreversible. ${ }^{c}$ Overlapping $\mathrm{Pt}^{\mathrm{II}}-\mathrm{Pt}^{\mathrm{III}}$ and $\mathrm{Pt}^{\mathrm{III}}-\mathrm{Pt}^{\text {IV }}$ couples.

Figure 4. Space-filling diagram of $\left[\mathrm{Ru}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]^{2+} \cdot \mathrm{Me}_{2} \mathrm{SO}$
can be replaced by $\mathrm{CH}_{3} \mathrm{CN}$ or MeNO_{2} by recrystallisation of the complex from these solvents. The single-crystal X-ray structure of $\left[\mathrm{Ru}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]\left[\mathrm{BPh}_{4}\right]_{2} \cdot 2 \mathrm{MeNO}_{2}$, however, shows that there are no secondary interactions between the two MeNO_{2} molecules and the complex cation, with the closest contact between the methylene protons and the oxygen atoms of MeNO_{2} being over $3.5 \AA$. The solvate molecules are severely disordered and it was not possible to freely refine their atomic co-ordinates. A rigid MeNO_{2} molecule was introduced in two alternative positions and these were allowed to refine, but maintaining a common central nitrogen position. This lack of close contacts between MeNO_{2} and the cation is consistent with the disorder of the solvate and the tendency for the crystal to decay. A tentative explanation as to why the oxygen atoms of MeNO_{2} do not project into the co-ordinated macrocyclic cone is that MeNO_{2} is planar with two polar oxygen atoms and therefore sterically cannot orientate itself into a suitable position for close interaction. Not surprisingly, the structure of the $\left[\mathrm{Ru}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]^{2+}$ cation in this complex does not differ significantly from that observed in $\left[\mathrm{Ru}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]\left[\mathrm{BPh}_{4}\right]_{2}$. $2 \mathrm{Me}_{2} \mathrm{SO}$.
The complex $\left[\mathrm{Ru}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]_{2}$ is electrochemically inactive between -2.2 and +1.3 V , and shows a quasireversible oxidation at platinum electrodes in $\mathrm{MeCN}(0.1 \mathrm{~mol}$ $\mathrm{dm}^{-3} \quad \mathrm{NBu}^{n} \mathrm{PF}_{6}$) at $E_{\frac{1}{2}}=1.41 \mathrm{~V} v s$. ferrocene-ferrocenium ($\Delta E=95 \mathrm{mV}$, scan rate ${ }^{2}=100 \mathrm{mV} \mathrm{s}^{-1}$). We tentatively assign this oxidation to a $\mathrm{Ru}^{\text {II }}-\mathrm{Ru}^{\text {III }}$ redox couple, although oxidation of the ligand at these potentials cannot be ruled out entirely. An irreversible reduction is also observed at $E_{\mathrm{pc}}=-2.25 \mathrm{~V}$; this leads to the breakdown of the complex, presumably via an unstable Ru^{I} intermediate, with release of free ligand which can be detected on the return scan as an irreversible oxidation at +0.98 V . The high redox stability of $\left[\mathrm{Ru}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]^{2+}$ is remarkable and reflects the stereochemical and electronic features of octahedral, homoleptic thioether co-ordination at d^{6} $\mathrm{Ru}^{\text {II }}$ (Table 1).

Reaction of $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ with one molar equivalent of [18]ane S $_{6}$ in refluxing dimethylformamide (dmf)-methanol affords $\left[\mathrm{Ru}\left([18] \mathrm{aneS}_{6}\right)\right] \mathrm{Cl}_{2}$ as a white precipitate. Dissolution of this product in hot water followed by addition of an excess of $\mathrm{NH}_{4} \mathrm{PF}_{6}$ or NaBPh_{4} yields $\left[\mathrm{Ru}\left([18] \mathrm{aneS}_{6}\right)\right]\left[\mathrm{PF}_{6}\right]_{2}$ or $\left[\mathrm{Ru}\left([18] \mathrm{aneS}_{6}\right)\right]\left[\mathrm{BPh}_{4}\right]_{2}$ respectively. Alternatively, the latter complex can be prepared directly from $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ by treatment with [18]aneS ${ }_{6}$ in the presence of NaBPh_{4} in refluxing dmf $-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ n.m.r. spectra of $\left[\mathrm{Ru}\left([18] \mathrm{aneS}_{6}\right)\right]^{2+}$ confirm symmetric binding of the hexathia
ligand to Ru^{11}. The single crystal X-ray structure of $\left[\mathrm{Ru}\left([18] \mathrm{aneS}_{6}\right)\right]\left[\mathrm{BPh}_{4}\right]_{2}$ shows (Figure 5) a centrosymmetric cation with hexathia co-ordination of the macrocycle to $\mathrm{Ru}^{\mathrm{II}}$ in a meso configuration, $\mathrm{Ru}-\mathrm{S}(1) 2.322$ 2(23), $\mathrm{Ru}-\mathrm{S}(4) 2.3326(25)$, $\mathrm{Ru}-\mathrm{S}(7) 2.337$ 2(23) $\AA, \mathrm{S}(1)-\mathrm{Ru} \mathrm{S}(4) 88.67(8), \mathrm{S}(1)-\mathrm{Ru}-\mathrm{S}(7)$ $91.61(8)$, $\mathrm{S}(4)-\mathrm{Ru}-\mathrm{S}(7) 88.54(8)^{\circ}$. Most importantly, therefore, the bond lengths and angles in $\left[\mathrm{Ru}\left([18] \mathrm{aneS}_{6}\right)\right]^{2+}$ are very similar to those of $\left[\mathrm{Ru}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]^{2+}$ showing that $\mathrm{Ru}^{\mathrm{II}}$ fits [18]ane S_{6} without any apparent distortion of metal co-ordination or ligand geometry. The difficulties in the preparation of second- and third-row complexes of [18]aneS ${ }_{6}$ are therefore related to the kinetic inertness of these metal ions and the insolubility of intermediate products rather than any inherent mis-match between the metal ion and the macrocyclic cavity.

Oxidation of $\left[\mathrm{Ru}\left([18]\right.\right.$ aneS $\left.\left._{6}\right)\right]\left[\mathrm{PF}_{6}\right]_{2}$ with NOBF_{4} in concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ affords a blue-green solution of [$\mathrm{Ru}([18]$ aneS $\left.\left._{6}\right)\right]^{3+}\left[\lambda_{\text {max. }}\left(\varepsilon_{\text {max }}\right)=742\right.$ (sh) (1260), $680(1360), 474$ (207), 419 (187), and 354 nm ($951 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$)], which shows an e.s.r. spectrum (77 K , frozen glass) with $g_{\perp}=2.328$, $g_{\|}=1.942$. These solutions decompose slowly over a number of days at room temperature. Similar data can be obtained for the less stable blue cation, $\left[\mathrm{Ru}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]^{3+}, g_{\perp}=2.293$, $g_{\|}=1.863$, for the green $\left[\mathrm{Fe}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]^{3+1}, 13 \mathrm{I}^{3} g_{\perp}=2.328$, $g_{\|}=1.942$, and the blue $\left[\mathrm{Os}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]^{3+}, g_{\perp}=2.358$, $g_{\|}=1.860 .^{14}$ The oxidised products of [9]aneS S_{3} with $\mathrm{Fe}^{\mathrm{III}}$, $\mathrm{Ru}^{\mathrm{III}}$, and $\mathrm{Os}^{\text {III }}$ are particularly unstable in $\mathrm{CH}_{3} \mathrm{CN}$; thus, electrochemically generated solutions of the $3+$ cations decompose readily at room temperature. The stabilisation of $3+$ cations in highly acidic oxidising media $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right.$ or $\left.\mathrm{HClO}_{4}\right)$ has been described previously and is linked to inhibition of metal-mediated ring-opening reactions to afford vinyl thioether products. ${ }^{18}$ The above data are, however, consistent with the formation of $\mathrm{Ru}^{\text {III }} t_{2 g}{ }^{5}$ metal centres, ${ }^{19}$ although significant oxidation at the ligand sites cannot be discounted. It should be noted that the oxidation potential for $\left[\mathrm{Ru}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]^{2+}$ is more anodic than for the metal-free ligand which shows an irreversible oxidation at $E_{\mathrm{a}}=0.98 \mathrm{~V} v s$. ferrocene-ferrocenium. ${ }^{1}$

Experimental

Infrared spectra were measured as Nujol mulls, KBr , and CsI discs using a Perkin-Elmer 598 spectrometer over the range $200-4000 \mathrm{~cm}^{-1}$. U.v.--visible spectra were measured in quartz cells using Perkin-Elmer Lambda 9 and Pye Unicam SP8-400 spectrophotometers. Microanalyses were performed by the Edinburgh University Chemistry Department microanalytical service. E.s.r. spectra were recorded as solids or as frozen glasses down to 77 K using a Bruker ER200D X-band spectrometer. Electrochemical measurements were performed on a Bruker E310 Universal Modular Polarograph. All readings were taken using a three-electrode potentiostatic system in acetonitrile containing $0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NBu}_{4} \mathrm{PF}_{6}$ or $\mathrm{NBu}^{n}{ }_{4} \mathrm{BF}_{4}$ as supporting electrolyte. Cyclic voltammetric measurements were carried out using a double platinum electrode and an $\mathrm{Ag}-\mathrm{AgCl}$ reference electrode. All potentials are quoted vs. ferroceneferrocenium. Mass spectra were run by electron impact on a Kratos MS 902 and by fast atom bombardment on a Kratos MS 50TC spectrometer. Proton and ${ }^{13} \mathrm{C}$ n.m.r. spectra were

Table 2. Bond lengths (\AA), angles and torsion angles $\left({ }^{\circ}\right)$ with estimated standard deviations (e.s.d.s) for $\left[\mathrm{Ru}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]\left[\mathrm{BPh}_{4}\right]_{2} \cdot 2 \mathrm{Me}_{2} \mathrm{SO}^{*}$

$\mathrm{Ru}-\mathrm{S}(1)$	2.328 5(12)	$\mathrm{C}(5 \mathrm{M})-\mathrm{C}(6 \mathrm{M})$	1.511(8)
Ru-S(4)	2.334 3(13)	$\mathrm{C}(6 \mathrm{M})-\mathrm{S}(7)$	1.837(6)
Ru-S(7)	2.333 5(12)	$\mathrm{S}(7)-\mathrm{C}(8 \mathrm{M})$	1.827(6)
$\mathrm{S}(1)-\mathrm{C}(2 \mathrm{M})$	1.812(6)	$\mathrm{C}(8 \mathrm{M})-\mathrm{C}(9 \mathrm{M})$	1.521(8)
$\mathrm{S}(1)-\mathrm{C}(9 \mathrm{M})$	1.834(6)	S-O	$1.495(5)$
$\mathrm{C}(2 \mathrm{M})-\mathrm{C}(3 \mathrm{M})$	1.506(8)	S-C(1)	1.734(9)
$\mathrm{C}(3 \mathrm{M})-\mathrm{S}(4)$	1.832(6)	S-C(2)	1.728(9)
S(4)-C(5M)	1.820(6)		
$\mathrm{S}(1)-\mathrm{Ru}-\mathrm{S}(4)$	87.82(4)	$\mathrm{S}(4)-\mathrm{C}(5 \mathrm{M})-\mathrm{C}(6 \mathrm{M})$	114.6(4)
S(1)-Ru-S(7)	88.07(4)	$\mathrm{C}(5 \mathrm{M})-\mathrm{C}(6 \mathrm{M})-\mathrm{S}(7)$	112.4(4)
S(4)-Ru-S(7)	88.27(4)	Ru-S(7)-C(6M)	105.42(18)
Ru-S(1)-C(2M)	102.62(19)	$\mathrm{Ru}-\mathrm{S}(7)-\mathrm{C}(8 \mathrm{M})$	102.24(19)
Ru-S(1)-C(9M)	105.87(18)	C(6M)-S(7)-C(8M)	101.3(3)
$\mathrm{C}(2 \mathrm{M})-\mathrm{S}(1)-\mathrm{C}(9 \mathrm{M})$	101.1(3)	$\mathrm{S}(7)-\mathrm{C}(8 \mathrm{M})-\mathrm{C}(9 \mathrm{M})$	113.9(4)
$\mathrm{S}(1)-\mathrm{C}(2 \mathrm{M})-\mathrm{C}(3 \mathrm{M})$	115.1(4)	$\mathrm{S}(1)-\mathrm{C}(9 \mathrm{M})-\mathrm{C}(8 \mathrm{M})$	$111.5(4)$
$\mathrm{C}(2 \mathrm{M})-\mathrm{C}(3 \mathrm{M})-\mathrm{S}(4)$	112.4(4)	$\mathrm{O}-\mathrm{S}-\mathrm{C}(1)$	108.6(4)
Ru-S(4)-C(3M)	105.90(19)	$\mathrm{O}-\mathrm{S}-\mathrm{C}(2)$	106.7(4)
$\mathrm{Ru}-\mathrm{S}(4)-\mathrm{C}(5 \mathrm{M})$	102.31(19)	C(1)-S-C(2)	98.3(4)
$\mathrm{C}(3 \mathrm{M})-\mathrm{S}(4)-\mathrm{C}(5 \mathrm{M})$	102.4(3)		
$\mathrm{C}(9 \mathrm{M})-\mathrm{S}(1)-\mathrm{C}(2 \mathrm{M})-\mathrm{C}(3 \mathrm{M}) \quad$ 67.7(5)			
$\mathrm{C}(2 \mathrm{M})-\mathrm{S}(1)-\mathrm{C}(9 \mathrm{M})-\mathrm{C}(8 \mathrm{M}) \quad-134.7(4)$			
$\mathrm{S}(1)-\mathrm{C}(2 \mathrm{M})-\mathrm{C}(3 \mathrm{M})-\mathrm{S}(4) \quad 44.9(5)$			
$\mathrm{C}(2 \mathrm{M})-\mathrm{C}(3 \mathrm{M})-\mathrm{S}(4)-\mathrm{C}(5 \mathrm{M}) \quad-131.2(4)$			
$\mathrm{C}(3 \mathrm{M})-\mathrm{S}(4)-\mathrm{C}(5 \mathrm{M})-\mathrm{C}(6 \mathrm{M}) \quad 67.8(4)$			
$\mathrm{S}(4)-\mathrm{C}(5 \mathrm{M})-\mathrm{C}(6 \mathrm{M})-\mathrm{S}(7)$			
$\mathrm{C}(5 \mathrm{M})-\mathrm{C}(6 \mathrm{M})-\mathrm{S}(7)-\mathrm{C}(8 \mathrm{M}) \quad-132.5(4)$			
$\mathrm{C}(6 \mathrm{M})-\mathrm{S}(7)-\mathrm{C}(8 \mathrm{M})-\mathrm{C}(9 \mathrm{M}) \quad 65.7(4)$			
$\mathrm{S}(7)-\mathrm{C}(8 \mathrm{M})-\mathrm{C}(9 \mathrm{M})-\mathrm{S}(1) \quad 48.3(5)$			

* \mathbf{M} denotes macrocyclic carbon atoms.

Figure 5. Single crystal X-ray structure of $\left[\operatorname{Ru}\left([18] \text { aneS }_{6}\right)\right]^{2+}$ with atom numbering scheme adopted; 30% probability level used for ellipsoids
recorded at 200.13 and 50.32 MHz respectively on a Bruker WP200 spectrometer. Additionally, ${ }^{1} \mathrm{H}$ n.m.r. spectra were recorded at 360 MHz on a Bruker WH360 spectrometer.

Synthesis of $\left[\mathrm{Ru}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]\left[\mathrm{BPh}_{4}\right]_{2}$.-The compound $\left[\left\{\mathrm{RuCl}_{2}(\text { arene })\right\}_{2}\right]$ (arene $=\mathrm{C}_{6} \mathrm{H}_{6}, 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}$, or $\mathrm{C}_{6} \mathrm{Me}_{6}$) $(0.05 \mathrm{~g})$ was treated with four molar equivalents of [9]aneS 3_{3} in refluxing $\mathrm{MeOH}\left(15 \mathrm{~cm}^{3}\right)$ under N_{2} for 2 h . The red colour of the Ru starting material faded to give colourless or pale yellow

Table 3. Atomic co-ordinates with e.s.d.s for $\left[\mathrm{Ru}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]\left[\mathrm{BPh}_{4}\right]_{2} \cdot 2-$ $\mathrm{Me}_{2} \mathrm{SO}$

Atom	x	y	z
Ru	0.5	0.0	0.5
S(1)	$0.42885(9)$	0.065 77(11)	$0.39618(6)$
C(2M)	0.338 4(4)	0.168 5(5)	0.421 6(3)
C(3M)	0.285 2(4)	0.126 4(5)	0.480 4(3)
S(4)	0.364 22(9)	0.064 20(12)	0.549 71(6)
C(5M)	0.306 5(4)	-0.077 7(5)	0.567 6(3)
C(6M)	0.3080 (4)	-0.170 6(5)	$0.5118(3)$
S(7)	0.425 82(9)	-0.185 74(10)	0.479 41(6)
C(8M)	0.3959 (4)	-0.180 8(5)	0.387 7(3)
C(9M)	0.355 9(4)	-0.060 4(5)	0.3623 (3)
S	0.034 38(11)	-0.124 06(16)	0.389 84(9)
O	0.120 6(3)	-0.065 5(5)	0.424 1(3)
C(1)	$0.0618(6)$	-0.272 3(8)	$0.3715(5)$
C(2)	-0.042 2(5)	-0.151 5(9)	0.452 1(4)
B	0.723 2(4)	0.023 3(5)	0.858 1(3)
C(11)	$0.73097(22)$	-0.0061 (3)	0.942 44(11)
C(12)	0.817 62(22)	-0.042 3(3)	0.974 74(11)
C(13)	0.826 44(22)	-0.059 3(3)	1.044 91(11)
C(14)	0.748 59(22)	-0.040 1(3)	$1.08285(11)$
C(15)	0.661 94(22)	-0.003 8(3)	$1.05055(11)$
C(16)	0.653 12(22)	0.013 2(3)	$0.98037(11)$
C(21)	0.778 23(20)	$0.15670(22)$	0.842 42(15)
C(22)	0.744 13(20)	0.227 90(22)	$0.78761(15)$
C(23)	0.793 63(20)	0.331 05(22)	$0.77078(15)$
C(24)	0.877 25(20)	0.362 99(22)	$0.80876(15)$
C(25)	$0.91135(20)$	$0.29178(22)$	0.863 61(15)
C(26)	$0.86186(20)$	0.188 64(22)	$0.88041(15)$
C(31)	0.777 73(22)	-0.085 76(23)	0.816 79(15)
C(32)	$0.82685(22)$	-0.059 00(23)	0.760 06(15)
C(33)	0.843 67(22)	-0.151 83(23)	0.722 93(15)
C(34)	0.853 37(22)	-0.271 44(23)	$0.74253(15)$
C(35)	0.804 23(22)	-0.298 19(23)	0.799 21(15)
C(36)	0.766 40(22)	$-0.20536(23)$	$0.83636(15)$
C(41)	0.607 24(16)	$0.02745(24)$	0.828 01(15)
C(42)	0.554 80(16)	$0.13311(24)$	$0.83310(15)$
C(43)	0.461 01(16)	0.138 28(24)	$0.80534(15)$
C(44)	0.419 70(16)	0.037 77(24)	0.772 49(15)
C(45)	0.472 15(16)	$-0.06790(24)$	0.76740 (15)
C(46)	$0.56590(16)$	-0.073 05(24)	$0.79516(15)$

solutions. Addition of NaBPh_{4} afforded a white precipitate which was recrystallised from $\mathrm{Me}_{2} \mathrm{SO}$ to give $\left[\mathrm{Ru}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]$ $\left[\mathrm{BPh}_{4}\right]_{2} \cdot 2 \mathrm{Me}_{2} \mathrm{SO}$ in 60% yield \{Found: C, $61.6 ; \mathrm{H}, 6.2$. Calc. for $\left[\mathrm{Ru}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]\left[\mathrm{BPh}_{4}\right]_{2} \cdot 2 \mathrm{Me}_{2} \mathrm{SO} \mathrm{C}, 61.2 ; \mathrm{H}, 6.1 \%$ \}. I.r. spectrum: $1080 \mathrm{~cm}^{-1}[v(\mathrm{~S}=\mathrm{O})]$.

Single-crystal Structure Determination of $\left[\mathrm{Ru}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]$ $\left[\mathrm{BPh}_{4}\right]_{2} \cdot 2 \mathrm{Me}_{2} \mathrm{SO}$. -A colourless plate $(0.54 \times 0.33 \times 0.08$ mm) was obtained by cooling a solution of the complex in $\mathrm{Me}_{2} \mathrm{SO}$.

Crystal data. $\mathrm{C}_{60} \mathrm{H}_{64} \mathrm{~B}_{2} \mathrm{RuS}_{6} \cdot 2 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS} \quad M=1256.2$, monoclinic, space group $P 2_{1} / c, a=14.134(3), b=11.0963(19)$, $c=19.743(4) \AA, \beta=94.497(16)^{\circ}, U=3087 \AA^{3}$ (by leastsquares refinement on diffractometer angles for 12 centred reflections, $\lambda=0.71073 \AA, T=298 \mathrm{~K}$), $Z=2$ (implying that each Ru lies on a crystallographic inversion centre), $D_{\mathrm{c}}=1.352$ $\mathrm{g} \mathrm{cm}^{-3}, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=0.55 \mathrm{~mm}^{-1}, F(000)=1316$.

Data collection and processing. Stoë STADI-4 four-circle diffractometer, $\omega-2 \theta$ mode with ω scan width $(0.8+$ $0.347 \tan \theta)^{\circ}$, graphite monochromated Mo- K_{α} radiation; 4270 reflections measured ($2 \theta_{\text {max }} .45^{\circ}, h-15$ to $15, k 0-11, l 0-21$), giving 2936 with $F \geqslant 6 \sigma(F)$, no absorption correction, no crystal decay.

Structure analysis and refinement. After analysis of intensity statistics showed the Ru to lie on a crystallographic inversion

Table 4. Bond lengths (\AA), angles and torsion angles $\left({ }^{\circ}\right)$ with e.s.d.s for $\left[\mathrm{Ru}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]\left[\mathrm{BPh}_{4}\right]_{2} \cdot 2 \mathrm{MeNO}_{2}{ }^{*}$

Ru-S(1)	2.338 8(17) S(4)	(4)-C(5M)	1.807(8)
Ru -S(4)	2.336 3(16) C(5M)	C(5M)-C(6M)	1.497(11)
Ru-S(7)	$2.3308(17) \quad C(6 \mathrm{M}$	(6M)-S(7)	1.866(8)
$\mathrm{S}(1)-\mathrm{C}(2 \mathrm{M})$	1.831(7) S(7)	(7)-C(8M)	1.811(8)
$\mathrm{C}(2 \mathrm{M})-\mathrm{C}(3 \mathrm{M})$	1.523(10) C(8M)	C(8M)-C(9M)	1.497(11)
$\mathrm{C}(3 \mathrm{M})-\mathrm{S}(4)$	1.833(7) C(9M)	(9M)-S(1)	1.823(8)
$\mathrm{S}(1)-\mathrm{Ru}-\mathrm{S}(4)$	87.74(6) Ru-	$\mathrm{Ru}-\mathrm{S}(4)-\mathrm{C}(5 \mathrm{M})$	102.3(3)
$\mathrm{S}(1)-\mathrm{Ru}$-S(7)	87.65(6) C(3M)	C(3M)-S(4)-C(5M)	102.3(3)
$\mathrm{S}(4)-\mathrm{Ru}-\mathrm{S}(7)$	87.94(6) S(4)	(4)-C(5M)-C(6M)	114.1(5)
$\mathrm{Ru}-\mathrm{S}(1)-\mathrm{C}(2 \mathrm{M})$	101.93(24) C(5M)	C(5M)-C(6M)-S(7)	111.9(5)
$\mathrm{Ru} u \mathrm{~S}(1)-\mathrm{C}(9 \mathrm{M})$	105.4(3) Ru	Ru-S(7)-C(6M)	104.90(25)
$\mathrm{C}(2 \mathrm{M})-\mathrm{S}(1)-\mathrm{C}(9 \mathrm{M})$	101.3(3) Ru	$\mathrm{Ru}-\mathrm{S}(7)-\mathrm{C}(8 \mathrm{M})$	102.8(3)
$\mathrm{S}(1)-\mathrm{C}(2 \mathrm{M})-\mathrm{C}(3 \mathrm{M})$	113.4(5) C(6)	C(6M)-S(7)-C(8M)	101.0(4)
$\mathrm{C}(2 \mathrm{M})-\mathrm{C}(3 \mathrm{M})-\mathrm{S}(4)$	111.1(5) $\mathrm{S}(7)$	(7)-C(8M)-C(9M)	114.7(6)
$\mathrm{Ru}-\mathrm{S}(4)-\mathrm{C}(3 \mathrm{M})$	105.98(23) S(1)	(1)-C(9M)-C(8M)	112.4(6)
$\mathrm{C}(9 \mathrm{M})-\mathrm{S}(1)-\mathrm{C}(2 \mathrm{M})-\mathrm{C}(3 \mathrm{M})$		M) 63.8(6)	
$\mathrm{C}(2 \mathrm{M})-\mathrm{S}(1)-\mathrm{C}(9 \mathrm{M})-\mathrm{C}(8 \mathrm{M})$		M) - 133.6(6)	
$\mathrm{S}(1)-\mathrm{C}(2 \mathrm{M})-\mathrm{C}(3 \mathrm{M})-\mathrm{S}(4)$		49.7(6)	
$\mathrm{C}(2 \mathrm{M})-\mathrm{C}(3 \mathrm{M})-\mathrm{S}(4)-\mathrm{C}(5 \mathrm{M})$		M) $\quad-135.3(5)$	
$\mathrm{C}(3 \mathrm{M})-\mathrm{S}(4)-\mathrm{C}(5 \mathrm{M})-\mathrm{C}(6 \mathrm{M})$		M) $65.0(6)$	
$\mathrm{S}(4)-\mathrm{C}(5 \mathrm{M})-\mathrm{C}(6 \mathrm{M})-\mathrm{S}(7)$		48.2(7)	
$\mathrm{C}(5 \mathrm{M})-\mathrm{C}(6 \mathrm{M})-\mathrm{S}(7)-\mathrm{C}(8 \mathrm{M})$		M) $\quad-132.9(6)$	
$\mathrm{C}(6 \mathrm{M})-\mathrm{S}(7)-\mathrm{C}(8 \mathrm{M})-\mathrm{C}(9 \mathrm{M})$		M) $\quad 67.2(6)$	
$\mathrm{S}(7)-\mathrm{C}(8 \mathrm{M})-\mathrm{C}(9 \mathrm{M})-\mathrm{S}(1)$		46.9(7)	

centre. DIRDIF ${ }^{20}$ located the remaining non-solvent, nonhydrogen atoms. Successive least-squares cycles and difference Fourier syntheses ${ }^{21}$ yielded the positions of the solvent atoms. Full-matrix least-squares with idealised phenyl rings for $\mathrm{BPh}_{4}{ }^{-}$, H -atoms in calculated positions and anisotropic thermal parameters for $\mathrm{Ru}, \mathrm{S}, \mathrm{O}, \mathrm{C}$, and B atoms converged to $R, R^{\prime}=$ $0.0431,0.0590$ for 322 parameters and the final ΔF synthesis showed a maximum peak and minimum trough of +0.65 and $-0.5 \mathrm{e} \AA^{-3}$ respectively. The weighting scheme $w^{-1}=\sigma^{2}(F)+$ $0.000435 F^{2}$ gave satisfactory agreement analysis. Bond lengths, angles, torsion angles, and fractional atomic coordinates are given in Tables 2 and 3 respectively.

Recrystallisation of $\left[\mathrm{Ru}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]\left[\mathrm{BPh}_{4}\right]_{2}$ from MeCN or MeNO_{2} afforded crystals of the corresponding disolvate \{Found: C, 65.1; H, 6.1; N, 2.4. Calc. for $\left[\mathrm{Ru}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]$ $\left[\mathrm{BPh}_{4}\right]_{2} \cdot 2 \mathrm{MeCN}$: C, $65.0 ; \mathrm{H}, 6.0 ; \mathrm{N}, 2.4 \%$). I.r. spectrum (KBr disc) $2243 \mathrm{~cm}^{-1}[\mathrm{v}(\mathrm{CN})]\{$ Found: C, 61.0; H, 5.75; N, 2.30. Calc. for $\left[\mathrm{Ru}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]\left[\mathrm{BPh}_{4}\right]_{2} \cdot 2 \mathrm{MeNO}_{2}: \mathrm{C}, 60.9 ; \mathrm{H}, 5.75$; $\mathrm{N}, 2.30 \%$ \%. I.r. spectrum (KBr disc): $2920\left[\mathrm{v}\left(\mathrm{CH}_{2}\right)\right], 1436$ $\left[\delta\left(\mathrm{CH}_{2}\right)\right], 1554$, and $1373 \mathrm{~cm}^{-1}\left[\mathrm{v}\left(\mathrm{NO}_{2}\right)\right]$; other bands: 3055 , $2985,1578,1478,1444,1429,1405,1265,1171,1129,1062$, $1031,935,905,845,831,752,735,705,658,610,468$, and 330 cm^{-1}. N.m.r. $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 298 \mathrm{~K}\right]:{ }^{1} \mathrm{H}(200.13 \mathrm{MHz}), \delta 6.8-7.2$ (m, $40 \mathrm{H}, \mathrm{BPh}_{4}^{-}$), $4.3\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{NO}_{2}\right), 2.9\left(\mathrm{CH}_{2}, \mathrm{ABCD}\right.$, CH_{2} of [9]ane S_{3}); ${ }^{13} \mathrm{C}(50.32 \mathrm{MHz}), \delta 33.34$ p.p.m. $\left(\mathrm{CH}_{2}\right.$ of [9] aneS $_{3}$).

Single-crystal Structure Determination of $\left[\mathrm{Ru}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]$ $\left[\mathrm{BPh}_{4}\right]_{2} \cdot 2 \mathrm{MeNO}_{2}$.-Colourless columnar crystals were obtained by cooling a MeNO_{2} solution of the complex. Unlike those for $\left[\mathrm{Ru}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]\left[\mathrm{BPh}_{4}\right]_{2} \cdot 2 \mathrm{Me}_{2} \mathrm{SO}$, the faces of these crystals degraded on extended exposure to the atmosphere via loss of solvent. To maintain crystal integrity during data collection, a crystal $(0.31 \times 0.46 \times 1.16 \mathrm{~mm})$ was encapsulated in a capillary tube with a small portion of mother liquor.

Crystal data. $\mathrm{C}_{60} \mathrm{H}_{64} \mathrm{~B}_{2} \mathrm{RuS}_{6} \cdot 2 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{NO}_{2}, \quad M=1252.4$, monoclinic, space group $P 2_{1} / n, a=11.200(5), b=18.247(13)$,

Table 5. Atomic co-ordinates with e.s.d.s for $\left[\mathrm{Ru}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]\left[\mathrm{BPh}_{4}\right]_{2} \cdot 2-$ MeNO_{2}

Atom	x	y	z
Ru	0.5	0.5	0.5
S(1)	0.477 41(14)	0.574 96(10)	0.368 49(11)
C(2M)	0.628 8(6)	0.575 5(4)	$0.3218(5)$
C(3M)	$0.7254(6)$	$0.5867(4)$	0.396 4(4)
S(4)	0.704 74(13)	0.523 85(10)	0.494 73(11)
C(5M)	0.727 4(6)	0.583 3(5)	0.594 3(5)
C(6M)	0.635 2(7)	0.642 2(4)	0.603 3(5)
S(7)	$0.48053(15)$	$0.60512(10)$	0.590 98(12)
C(8M)	0.4150 (7)	0.670 2(4)	0.509 8(6)
C(9M)	0.4656 (7)	0.668 0(4)	$0.4137(6)$
B	-0.047 1(6)	0.272 4(4)	0.412 9(4)
C(11)	0.073 6(3)	0.220 39(21)	0.437 1(3)
C(12)	0.147 5(3)	0.236 39(21)	0.513 6(3)
C(13)	0.2507 (3)	0.195 32(21)	$0.5298(3)$
C(14)	0.2801 (3)	0.138 26(21)	0.469 6(3)
C(15)	0.206 2(3)	0.122 22(21)	0.3931 (3)
C(16)	0.1030 (3)	0.163 29(21)	0.376 8(3)
C(21)	-0.079 2(3)	$0.31941(19)$	$0.51114(21)$
C(22)	-0.037 1(3)	0.390 91(19)	$0.52186(21)$
C(23)	-0.055 6(3)	0.428 48(19)	0.605 25(21)
C(24)	-0.116 2(3)	$0.39454(19)$	0.677 90(21)
C(25)	-0.158 2(3)	0.323 02(19)	0.667 20(21)
C(26)	-0.139 7(3)	$0.28546(19)$	$0.58380(21)$
C(31)	-0.021 5(3)	0.329 40(20)	$0.32315(23)$
C(32)	-0.101 0(3)	0.386 98(20)	0.306 66(23)
C(33)	-0.084 9(3)	0.433 33(20)	$0.23041(23)$
C(34)	$0.0107(3)$	0.422 06(20)	$0.17062(23)$
C(35)	0.0901 (3)	0.364 46(20)	$0.18711(23)$
C(36)	0.074 0(3)	0.318 13(20)	0.263 36(23)
C(41)	-0.164 9(3)	0.217 22(20)	0.382 8(3)
C(42)	-0.248 0(3)	0.238 60(20)	0.314 6(3)
C(43)	-0.349 5(3)	$0.19607(20)$	0.2977 (3)
C(44)	-0.3680(3)	0.132 18(20)	0.349 0(3)
C(45)	-0.284 9(3)	0.110 79(20)	0.4171 (3)
C(46)	-0.183 4(3)	0.153 31(20)	0.4340 (3)
$\mathrm{N}(1)$	0.478 5(8)	0.425 2(5)	0.159 9(5)
$\mathrm{O}(1)$	$0.5697(8)$	0.4403 (5)	0.1170 (5)
$\mathrm{O}(2)$	0.453 4(8)	$0.3607(5)$	0.175 2(5)
C(1)	0.4201 (8)	0.482 4(5)	0.213 8(5)
$\mathrm{N}\left(1^{\prime}\right)$	0.478 5(8)	0.425 2(5)	$0.1599(5)$
$\mathrm{O}\left(1^{\prime}\right)$	0.3771 (8)	0.437 1(5)	0.188 6(5)
$\mathrm{O}\left(2^{\prime}\right)$	0.532 2(8)	0.369 4(5)	0.1843 (5)
$\mathrm{C}\left(1^{\prime}\right)$	0.520 (8)	$0.4657(5)$	0.0786(5)

$c=14.323(17) \AA, \beta=90.78(4)^{\circ}, U=2927 \AA^{3}$ (by leastsquares refinement on diffractometer angles for 20 centred reflections, $\lambda=0.71073 \AA, T=298 \mathrm{~K}$), $Z=2$ (implying that each Ru centre lies on a crystallographic inversion centre), $D_{\mathrm{c}}=1.421 \mathrm{~g} \mathrm{~cm}^{-3}, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=0.516 \mathrm{~mm}^{-1}, F(000)=1312$.

Data collection and processing. Stoë STADI-4 four-circle diffractometer, $\omega-\theta$ mode with ω scan width $(0.875+0.347$ $\tan \theta)^{\circ}$, graphite monochromated Mo- K_{α} radiation; 5551 reflections measured ($2.5 \leqslant \theta \leqslant 22.5^{\circ}, h-13$ to $13, k 0-20$, $l 0-16)$, giving 3759 with $F \geqslant 6 \sigma(F)$, no absorption correction, no crystal decay.

Structure analysis and refinement. Intensity statistics indicated the position of the Ru atom on an inversion centre and from this starting point DIRDIF ${ }^{20}$ located all remaining nonsolvent and non-hydrogen atoms. Successive cycles of leastsquares refinement and difference Fourier synthesis ${ }^{21}$ yielded the positions of the solvent atoms. At isotropic convergence corrections for absorption were applied using DIFABS. ${ }^{22}$ Fullmatrix least-squares with idealised phenyl rings for $\mathrm{BPh}_{4}{ }^{-}$, H -atoms in calculated positions and anisotropic thermal parameters for $\mathrm{Ru}, \mathrm{S}, \mathrm{C}$, and B atoms and idealised nitromethane molecules disordered over two positions. The weighting scheme

Table 6. Bond lengths (\AA), angles and torsion angles $\left({ }^{\circ}\right)$ with e.s.d.s for $\left[\mathrm{Ru}\left([18] \mathrm{aneS}_{6}\right)\right]\left[\mathrm{BPh}_{4}\right]_{2}$

$\mathrm{Ru}-\mathrm{S}(1)$	2.322 2(23) S	$\mathrm{S}(4)-\mathrm{C}(5)$	1.840(11)
$\mathrm{Ru}-\mathrm{S}(4)$	2.332 6(25) C	$\mathrm{C}(5)-\mathrm{C}(6)$	1.509(14)
Ru-S(7)	2.337 2(23)	C(6)-S(7)	1.825(10)
S(1)-C(2)	$1.806(10)$ S	$\mathrm{S}(7)-\mathrm{C}(8)$	1.816(9)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.520(14)	$\mathrm{C}(8)-\mathrm{C}(9)$	1.519(13)
$\mathrm{C}(3)-\mathrm{S}(4)$	1.828(11)	$\mathrm{C}(9)-\mathrm{S}\left(1^{\prime}\right)$	1.826(10)
S(1)-Ru-S(4)	88.67(8)	$\mathrm{Ru}-\mathrm{S}(4)-\mathrm{C}(5)$	105.0(3)
S(1)-Ru-S(7)	91.61(8)	$\mathrm{C}(3)-\mathrm{S}(4)-\mathrm{C}(5)$	104.1(5)
$\mathrm{S}(4)-\mathrm{Ru}-\mathrm{S}(7)$	88.54(6) S	$\mathrm{S}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	115.4(7)
$\mathrm{Ru}-\mathrm{S}(1)-\mathrm{C}(2)$	105.5(3)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{S}(7)$	114.2(7)
$\mathrm{Ru}-\mathrm{S}(1)-\mathrm{C}\left(9^{\prime}\right)$	103.9(3)	$\mathrm{Ru}-\mathrm{S}(7)-\mathrm{C}(6)$	104.1(3)
$\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{C}\left(9^{\prime}\right)$	104.4(5)	$\mathrm{Ru}-\mathrm{S}(7)-\mathrm{C}(8)$	105.4(3)
$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	115.3(7)	$\mathrm{C}(6)-\mathrm{S}(7)-\mathrm{C}(8)$	103.9(4)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{S}(4)$	114.1(7) S	$\mathrm{S}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	114.7(6)
Ru-S(4)-C(3)	103.4(3)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{S}\left(1^{\prime}\right)$	114.2(7)
	$\mathrm{C}\left(9^{\prime}\right)-\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-84.8(8)	
	$\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{C}\left(9^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)$) 73.9(8)	
	$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{S}(4)$	-41.1(10)	
	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{S}(4)-\mathrm{C}(5)$	-74.0(8)	
	$\mathrm{C}(3)-\mathrm{S}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	84.5(8)	
	$\mathrm{S}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{S}(7)$	40.6(9)	
	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{S}(7)-\mathrm{C}(8)$	74.5(8)	
	$\mathrm{C}(6)-\mathrm{S}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	-84.6(7)	
	$\mathrm{S}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{S}\left(1^{\prime}\right)$	-41.7(9)	

$w^{-1}=\sigma^{2}(F)+0.0004381 F^{2}$ gave satisfactory agreement analysis. Final R and R^{\prime} are $0.0691,0.1005$ for 277 parameters and the final ΔF synthesis showed a maximum peak and minimum trough of +1.14 and -1.11 e \AA^{-3} respectively. Bond lengths, angles, torsion angles, and fractional atomic coordinates are given in Tables 4 and 5 respectively.

Synthesis of $\left[\mathrm{Ru}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2} \cdot \mathrm{H}_{2} \mathrm{O}$.-Hydrated ruthenium trichloride, $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{~g}, 0.32 \mathrm{mmol})$, was dissolved in $\mathrm{Me}_{2} \mathrm{SO}\left(15 \mathrm{~cm}^{3}\right)$ at $180^{\circ} \mathrm{C}$. The solution was concentrated to $7 \mathrm{~cm}^{3}$ and cooled to $20^{\circ} \mathrm{C}$, and [9]aneS ${ }_{3}(0.22$ $\mathrm{g}, 1.2 \mathrm{mmol}$) was added. The reaction mixture was heated to $140^{\circ} \mathrm{C}$ for 3 h ; on cooling to room temperature a white solid precipitated. This product was dissolved in water and recrystallised by addition of NaClO_{4} \{Found: C, 22.7; H, 3.9; S, 28.4. Calc. for $\left[\mathrm{Ru}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 21.2 ; \mathrm{H}, 3.9$; S, 28.4%. Electronic spectrum: $\lambda_{\text {max. }}\left(\varepsilon_{\text {max }}\right)=341$ (160), 293 (183), and $220 \mathrm{~nm}\left(20040 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right.$); ${ }^{1} \mathrm{H}$ n.m.r. [80 MHz , $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 293 \mathrm{~K}\right]: \delta 2.90\left(\mathrm{~s}, \mathrm{CH}_{2}\right)$, in $\mathrm{D}_{2} \mathrm{O} \delta 2.78$ (s). The complex $\left[\mathrm{Ru}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]_{2}$ can be prepared by similar routes either from RuCl_{3} or from $\left[\left\{\mathrm{RuCl}_{2} \text { (arene) }\right\}_{2}\right]$ $\left\{\right.$ Found: C, 19.4; H, 3.20. Calc. for $\left[\mathrm{Ru}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]_{2}$: C, 19.2; H, 3.20% \}. F.a.b. mass spectrum (dmf-glycerol): m / z 607 and 461 ; calc. for $\left[\mathrm{Ru}\left([9] \mathrm{aneS}_{3}\right)_{2} \mathrm{PF}_{6}\right]^{+} 607$, $[\mathrm{Ru}([9]-$ $\left.\left.\mathrm{aneS}_{3}\right)_{2}-\mathrm{H}\right]^{+} 461$ with correct isotopic distributions.

Synthesis of $\left[\mathrm{Ru}\left([18] \mathrm{aneS}_{6}\right)\right]\left[\mathrm{PF}_{6}\right]_{2}$.-Reaction of RuCl_{3}. $3 \mathrm{H}_{2} \mathrm{O}(0.12 \mathrm{~g}, 0.46 \mathrm{mmol})$ and [18]aneS $6(0.2 \mathrm{~g}, 0.56 \mathrm{mmol})$ in refluxing dmf- $\mathrm{MeOH}\left(20 \mathrm{~cm}^{3}, 10: 1 \mathrm{v} / \mathrm{v}\right)$ under N_{2} for 2 h afforded $\left[\mathrm{Ru}\left([18] \mathrm{aneS}_{6}\right)\right] \mathrm{Cl}_{2}$ as a white precipitate which was collected from the cooled solution and washed with MeOH , $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and finally $\mathrm{Et}_{2} \mathrm{O}$. The product was dissolved in hot $\mathrm{H}_{2} \mathrm{O}\left(30 \mathrm{~cm}^{3}\right)$. Addition of an excess of $\mathrm{NH}_{4} \mathrm{PF}_{6}$ gave a white precipitate of $\left[\mathrm{Ru}\left([18]\right.\right.$ aneS $\left.\left._{6}\right)\right]\left[\mathrm{PF}_{6}\right]_{2}$ which was recrystallised by vapour diffusion of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ into a solution of the complex in $\mathrm{Me}_{2} \mathrm{SO}$: Yield 63% (Found: C, 19.3; H, 3.30. Calc. for $\left[\operatorname{Ru}\left([18] \mathrm{aneS}_{6}\right)\right]\left[\mathrm{PF}_{6}\right]_{2}: \mathrm{C}, 19.2 ; \mathrm{H}, 3.25 \%$). I.r. spectrum $(\mathrm{KBr}$ disc): $2985,2940,1430,1408,1325,1280,1175,1132,1080$,

Table 7. Atomic co-ordinates with e.s.d.s for $\left[\operatorname{Ru}\left([18] \mathrm{aneS}_{6}\right)\right]\left[\mathrm{BPh}_{4}\right]_{2}$

Atom	x	y	z
Ru	0.0	0.0	0.0
S(1)	0.039 34(19)	-0.006 85(22)	-0.105 16(10)
C(2)	0.1836 (8)	-0.049 4(10)	-0.080 7(5)
C(3)	0.229 4(9)	-0.120 5(10)	-0.0115(5)
S(4)	$0.18164(21)$	-0.061 63(22)	0.059 23(12)
C(5)	0.258 5(9)	0.085 7(9)	$0.0867(5)$
C (6)	0.2081 (8)	0.199 6(9)	0.043 5(5)
S(7)	0.057 95(21)	0.208 67(19)	0.019 22(11)
$\mathrm{C}(8)$	0.035 2(8)	0.253 9(8)	0.100 8(4)
C(9)	0.034 4(8)	0.1457 (9)	0.149 9(5)
B	0.747 2(9)	0.549 1(9)	0.115 1(5)
$\mathrm{C}(11)$	0.7427 (5)	0.4914 (5)	0.035 03(21)
$\mathrm{C}(12)$	0.6418 (5)	0.448 2(5)	-0.010 82(21)
C(13)	0.634 4(5)	0.4042 (5)	-0.077 81(21)
C(14)	0.728 0(5)	0.403 4(5)	-0.098 96(21)
C(15)	0.828 9(5)	$0.4467(5)$	-0.053 12(21)
C(16)	0.8362 (5)	$0.4907(5)$	0.013 87(21)
C (21)	0.6828 (5)	0.449 4(5)	0.155 4(3)
C(22)	0.6418 (5)	0.493 5(5)	0.207 5(3)
C(23)	0.590 9(5)	0.4108 (5)	0.2413 (3)
C(24)	0.5811 (5)	0.284 1(5)	0.223 0(3)
C(25)	0.622 1(5)	0.240 1(5)	0.170 8(3)
C(26)	0.672 9(5)	0.322 7(5)	0.1370 (3)
C(31)	0.683 4(4)	0.688 5(4)	0.1059 9)
C(32)	0.700 5(4)	0.761 2(4)	0.166 4(3)
C(33)	0.640 2(4)	0.871 3(4)	0.163 1(3)
C(34)	0.562 9(4)	0.908 9(4)	0.0992 (3)
C(35)	0.5459 (4)	0.8362 (4)	0.038 6(3)
C(36)	$0.6062(4)$	0.726 0(4)	0.0419 9(3)
C(41)	0.8809 9(4)	0.563 4(5)	0.163 2(3)
C(42)	0.938 5(4)	0.4613 (5)	0.201 4(3)
C(43)	1.0531 (4)	0.467 3(5)	0.2328 (3)
C(44)	1.1101 (4)	0.575 4(5)	0.225 9(3)
C(45)	1.0525 (4)	0.677 5(5)	0.1876 (3)
C(46)	0.937 9(4)	$0.6715(5)$	0.156 2(3)

$1024,950,840,620,556$, and $495 \mathrm{~cm}^{-1}$. F.a.b. mass spectrum [3nitrobenzyl alcohol (noba) matrix]: $m / z 607,461$; calc. for $\left[\mathrm{Ru}\left([18] \mathrm{aneS}_{6}\right) \mathrm{PF}_{6}\right]^{+} 607,\left[\mathrm{Ru}\left([18] \mathrm{aneS}_{6}\right)-\mathrm{H}\right]^{+} 461$ with correct isotopic distributions. Electronic spectrum $\left(\mathrm{Me}_{2} \mathrm{SO}\right)$: $\lambda_{\text {max. }}\left(\varepsilon_{\text {max. }}\right)=352.6(125), 282.4 \mathrm{~nm}\left(293 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$. The complex $\left[\mathrm{Ru}\left([18]\right.\right.$ aneS $\left.\left._{6}\right)\right]\left[\mathrm{PF}_{6}\right]_{2}$ is insoluble in all common organic solvents except $\mathrm{Me}_{2} \mathrm{SO}$.

Synthesis of $\left[\mathrm{Ru}\left([18]\right.\right.$ aneS $\left.\left._{6}\right)\right]\left[\mathrm{BPh}_{4}\right]_{2} \cdot 2 \mathrm{MeNO}_{2} .-$ Hydrated ruthenium trichloride, $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.08 \mathrm{~g}, 0.3 \mathrm{mmol})$, was treated with [18]aneS ${ }_{6}(0.13 \mathrm{~g}, 0.36 \mathrm{mmol})$ in refluxing dmf$\mathrm{MeOH}\left(15 \mathrm{~cm}^{3}, 10: 1 \mathrm{v} / \mathrm{v}\right)$ for 2 h under $\mathrm{N}_{2} ; \mathrm{NaBPh}_{4}(0.4 \mathrm{~g}, 1.17$ mmol) in $\mathrm{H}_{2} \mathrm{O}\left(15 \mathrm{~cm}^{3}\right)$ was added and the reaction mixture refluxed for a further 1 h . Addition of $\mathrm{H}_{2} \mathrm{O}\left(20 \mathrm{~cm}^{3}\right)$ and cooling afforded a white precipitate which was collected and recrystallised from MeNO_{2} to afford $\left[\mathrm{Ru}\left([18] \mathrm{aneS}_{6}\right)\right]\left[\mathrm{BPh}_{4}\right]_{2}$. $2 \mathrm{MeNO}_{2}$ in 22% yield (Found: C, 60.9 ; H, 5.75; N, 2.30. Calc. for $\left.\left[\mathrm{Ru}\left([18] \mathrm{aneS}_{6}\right)\right]\left[\mathrm{BPh}_{4}\right]_{2} \cdot 2 \mathrm{MeNO}_{2}: \mathrm{C}, 60.9 ; \mathrm{H}, 5.75 ; \mathrm{N}, 2.25 \%\right)$. F.a.b. mass spectrum (noba matrix): $m / z 781$ and 461 ; calc. for $\left[\mathrm{Ru}\left([18] \mathrm{aneS}_{6}\right)\left(\mathrm{BPh}_{4}\right)\right]^{+}$781, $\quad\left[\mathrm{Ru}\left([18] \text { aneS }_{6}\right)-\mathrm{H}\right]^{+} 461$. Proton n.m.r. [$\left.360.13 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 333 \mathrm{~K}\right]: \delta 7.22(\mathrm{~m}, 16$ $\mathrm{H}), 6.93(\mathrm{~m}, 16 \mathrm{H}), 6.80(\mathrm{~m}, 8 \mathrm{H})\left(\mathrm{BPh}_{4}{ }^{-}\right), 4.40\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{NO}_{2}, 6\right.$ $\mathrm{H})$, and $2.96\left(\mathrm{CH}_{2}, \mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, 24 \mathrm{H}\right)$; ${ }^{13} \mathrm{C}$ n.m.r. [50.32 MHz , $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 298 \mathrm{~K}\right]: \delta 38.57$ p.p.m. $\left(\mathrm{CH}_{2}\right.$ of co-ordinated [18]aneS ${ }_{6}$).

Single-crystal Structure Determination of $\left[\mathrm{Ru}\left([18] \mathrm{aneS}_{6}\right)\right]$ -$\left[\mathrm{BPh}_{4}\right]_{2}$.-A colourless lath $(0.462 \times 0.173 \times 0.08 \mathrm{~mm})$ was grown by vapour diffusion of MeOH into a solution of the complex in $\mathrm{Me}_{2} \mathrm{SO}$.

Crystal data. $\mathrm{C}_{60} \mathrm{H}_{64} \mathrm{~B}_{2} \mathrm{RuS}_{6}, \quad M=1100.2$, monoclinic, space group $P 2_{1} / c, a=12.801(4), b=10.663(3), c=20.036(9)$ $\AA, \quad \beta=109.09(3)^{\circ}, U=2584 \AA^{3} \quad$ [from 2θ values of 38 reflections measured at $\pm \omega\left(2 \theta=20-25^{\circ}, \lambda=0.71073 \AA\right.$, $T=223 \pm 0.2 \mathrm{~K}$), $Z=2$ (implying that the Ru lies on a crystallographic inversion centre), $D_{\mathrm{c}}=1.414 \mathrm{~g} \mathrm{~cm}^{-3}, \mu=0.569$ $\mathrm{mm}^{-1}, F(000)=1148$.

Data collection and processing. Stoë STADI-4 four-circle diffractometer equipped with Oxford Cryosystems low-temperature device, ${ }^{23}$ graphite monochromated Mo- $K_{\alpha} X$-radiation, $T=223 \mathrm{~K}, \omega-2 \theta$ scans using the learnt-profile method, ${ }^{24}$ 3693 data measured ($2 \theta_{\text {max. }} 45^{\circ} ; \pm h,+k,+l$), 3196 unique ($R_{\text {int }}=0.032$), yielding 1915 with $F \geqslant 6 \sigma(F)$ for use in all calculations. Slight isotropic crystal decay (ca. 10%) corrected for during data reduction.

Structure solution and refinement. From the Ru position suggested by cell contents and intensity statistics, successive cycles of least-squares refinement and difference Fourier synthesis located all non-H atoms: these were then refined (by least-squares on F^{21}) with anisotropic thermal parameters. Hydrogen atoms were included at fixed, calculated positions. At final convergence $R, R^{\prime}=0.0521,0.0638$ respectively, $S=$ 1.058 for 265 refined parameters and in the final ΔF synthesis no peak was above $0.69 \mathrm{e} \AA^{-3}$. The weighting scheme $w^{-1}=$ $\sigma^{2}(F)+0.000775 F^{2}$ gave satisfactory agreement analysis and in the final cycle $(\Delta / \sigma)_{\max }$. was 0.023 . Bond lengths, angles, torsion angles, and fractional co-ordinates are given in Tables 6 and 7 respectively.

Atomic scattering factors were inlaid, ${ }^{21}$ or taken from ref. 25. Molecular geometry calculations utilised CALC ${ }^{26}$ and the Figures were produced by ORTEPII. ${ }^{27}$
Additional material available from the Cambridge Crystallographic Data Centre comprises H -atom co-ordinates, thermal parameters, and remaining bond lengths and angles.

Acknowledgements

We thank the University of Edinburgh (to M.N.B.) and the S.E.R.C. for support. We are grateful to Johnson-Matthey for generous loans of platinum metals, and thank Professor Karl Wieghardt and Dr. Heinz Küppers for helpful discussions.

References

1 A. J. Blake and M. Schröder, Adv. Inorg. Chem., 1990, 35, 1; M. Schröder, Pure Appl. Chem., 1988, 60, 517; M. N. Bell, A. J. Blake, R. O. Gould, A. J. Holder, T. I. Hyde, A. J. Lavery, G. Reid, and M. Schröder, J. Inclusion Phenom., 1987, 5, 169.
2 W. N. Setzer, C. A. Ogle, G. S. Wilson, and R. S. Glass, Inorg. Chem., 1983, 22, 266.
3 M. N. Bell, A. J. Blake, H-J. Küppers, M. Schröder, and K. Wieghardt, Angew. Chem., 1987, 99, 253; Angew. Chem. Int. Ed. Engl., 1987, 26, 250.

4 S. C. Rawle and S. R. Cooper, J. Chem. Soc., Chem. Commun., 1987, 308; S. C. Rawle, T. J. Sewell, and S. R. Cooper, Inorg. Chem., 1987, 26, 3769.
5 D. St. C. Black and I. A. McLean, Tetrahedron Lett., 1969, 3961; Aust. J. Chem., 1971, 24, 1401; S. R. Cooper, Acc. Chem. Res., 1988, 21, 141.

6 A. J. Blake, R. O. Gould, A. J. Lavery, and M. Schröder, Angew. Chem., 1986, 98, 282; Angew. Chem. Int. Ed. Engl., 1986, 25, 274.
7 A. J. Blake, R. O. Gould, A. J. Holder, T. I. Hyde, A. J. Lavery, G. Reid, and M. Schröder, unpublished work.

8 A. J. Blake, R. O. Gould, A. J. Holder, T. I. Hyde, and M. Schröder, Polyhedron, 1989, 8, 513.
9 A. J. Blake, R. O. Gould, J. A. Greig, A. J. Holder, T. I. Hyde, and M. Schröder, J. Chem. Soc., Chem. Commun., 1989, 876; A. J. Blake, J. A. Greig, A. J. Holder, T. I. Hyde, A. Taylor, and M. Schröder, Angew. Chem., 1990, 102, 203; Angew. Chem. Int. Ed. Engl., 1990, 29, 197.

10 A. J. Blake, R. O. Gould, A. J. Holder, T. I. Hyde, and M. Schröder, J. Chem. Soc., Dalton Trans., 1988, 1861.

11 H-J. Küppers, A. Neves, C. Pomp, D. Ventur, K. Wieghardt, B. Nuber, and J. Weiss, Inorg. Chem., 1986, 25, 2400; G. S. Wilson, D. D. Swanson, and R. S. Glass, ibid., 1986, 25, 3827.

12 K. Wieghardt, H-J. Küppers, and J. Weiss, Inorg. Chem., 1985, 24, 3067.

13 H-J Küppers, K. Wieghardt, B. Nuber, J. Weiss, E. Bill, and A. X. Trautwein, Inorg. Chem., 1987, 26, 3762; A. J. Blake, A. J. Holder, T. I. Hyde, and M. Schröder, J. Chem. Soc., Chem. Commun., 1989, 1433.
14 R. M. Christie, M. N. Bell, A. J. Blake, A. J. Holder, M. Schröder, and L. J. Yellowlees, unpublished work.

15 A. J. Blake, R. O. Gould, A. J. Holder, T. I. Hyde, G. Reid, and M. Schröder, J. Chem. Soc., Dalton Trans., 1990, 1759.
16 A. J. Blake, A. J. Holder, T. I. Hyde, and M. Schröder, J. Chem. Soc., Chem. Commun., 1987, 987.
17 A. J. Blake, R. O. Gould, A. J. Holder, T. I. Hyde, M. O. Odulate, A. J. Lavery, and M. Schröder, J. Chem. Soc., Chem. Commun., 1987, 118.
18 A. J. Blake, A. J. Holder, T. I. Hyde, H-J. Küppers, M. Schröder, and K. Wieghardt, J. Chem. Soc., Chem. Commun., 1989, 1600.

19 M. Schröder and T. A. Stephenson, 'Comprehensive Coordination Chemistry,' eds. G. Wilkinson, J. A. McCleverty, and R. D. Gillard, Pergamon Press, 1987, vol. 4, p. 277, and refs. therein.
20 DIRDIF, Applications of Direct Methods to Difference Structure Factors, P. T. Beurskens, W. P. Bosman, H. M. Doesbury, Th. E. M. van den Hark, P. A. J. Prick, J. H. Noordik, G. Beurskens, R. O. Gould, and V. Parthasarathai, University of Nijmegen, 1983.
21 SHELX 76, program for crystal structure refinement, G. M. Sheldrick, University of Cambridge, 1976.
22 DIFABS, Program for Empirical Absorption Corrections, N. Walker and D. Stuart, Acta Crystallogr., Sect. A, 1983, 39, 158
23 J. Cosier and A. M. Glazer, J. Appl. Crystallogr., 1986, 18, 105.
24 W. Clegg, Acta Crystallogr., Sect. A, 1981, 37, 22.
25 D. T. Cromer and J. L. Mann, Acta Crystallogr., Sect A, 1968, 24, 321.
26 CALC, program for molecular geometry calculations, R. O. Gould and P. Taylor, University of Edinburgh, 1985.
27 ORTEPII, interactive version, P. D. Mallinson and K. W. Muir, J. Appl. Crystallogr., 1985, 18, 51.

