Reactions of the Seven-co-ordinate Complexes [MI₂(CO)₃(NCMe)₂] and [MI₂(CO)₃(NCMe)L] (M = Mo or W; L = PPh₃, AsPh₃ or SbPh₃) with Dithiocarbamate Ligands Paul K. Baker,* Stuart G. Fraser and Dafydd Ap Kendrick Department of Chemistry, University of Wales, Bangor, Gwynedd LL57 2UW, UK The complexes $[Ml_2(CO)_3(NCMe)_2]$ (M = Mo or W) react with 1 equivalent of $Na[S_2CN(CH_2Ph)_2]$ eventually to give the iodo-bridged dimers $[\{M(\mu-l)(CO)_3[S_2CN(CH_2Ph)_2]\}_2]$. The reaction of $[Ml_2(CO)_3(NCMe)_2]$ with 1 equivalent of L (L = PPh_3, AsPh_3 or SbPh_3) gave $[Ml_2(CO)_3(NCMe)L]$ which when treated in situ with $Na[S_2CNR_2]$ (R = Me, Et or CH_2Ph) afforded $[Ml(CO)_3L(S_2CNR_2)]$. The complexes $[Mol(CO)_3L(S_2CNR_2)]$ prepared as described above when treated in situ with 1 equivalent of $[S_2CNR_2]^-$ generally give the mixed-ligand oxides $[Mo_2O_3(S_2CNR_2)_2(S_2CNR'_2)_2]$. The complexes $[Wl(CO)_3(PPh_3)(S_2CNR_2)]$ (R = Me, Et or CH_2Ph) when treated in situ with $Na[S_2CNR'_2]$ afforded $[W(CO)_2(PPh_3)(S_2CNR_2)(S_2CNR'_2)]$ (R = Me, R' = Et; R = Me, R' = CH_2Ph); R = Et, R' = CH_2Ph), whereas reaction with the AsPh_3 and SbPh_3 complexes in an analogous manner gave $[W(CO)_3(S_2CNR_2)(S_2CNR'_2)]$ in low yield. Reaction of $[Mol_2(CO)_3(NCMe)_2]$ with 2 equivalents of $Na[S_2CNEt_2] \cdot 3H_2O$ gave the previously reported oxide compound $[Mo_2O_3(S_2CNEt_2)_4]$, whereas $[Wl_2(CO)_3(NCMe)_2]$ reacts to give $[W(CO)_3(S_2CNEt_2)_2]$. Two equivalents of $Na[S_2CN(CH_2Ph)_2]_4]$ and the seven-co-ordinate complex $[Mo(CO)_2(SbPh_3)\{S_2CN(CH_2Ph)_2\}_2]$ for $L = SbPh_3$. The complexes $[W(CO)_2L\{S_2CN(CH_2Ph)_2\}_2]$ ($L = PPh_3$, AsPh_3 or SbPh_3) were prepared in an analogous manner. Low-temperature ^{13}C NMR spectra are interpreted to suggest the likely stereochemistry of several of these complexes. Dithiocarbamate ligands have generally been found to coordinate to a transition metal as a bidentate ligand a, 1,2 however, monodentate co-ordination b as in $[W(CO)_3(S_2-CNMe_2-S)(\eta^5-C_5H_5)]^3$ and $[Mo(S_2CNEt_2-S)(S_2CNEt_2-SS')-\{HB(dmpz)_3\}]$ (dmpz = 3,5-dimethylpyrazolyl) have also been reported. Molybdenum complexes containing anionic sulphur-donor ligands such as dithiocarbamates have received considerable attention since it is believed that the Mo-S binding site in the nitrogenase enzyme is the active site for reduction of dinitrogen to ammonia. Since and seven-co-ordinate dithiocarbamate complexes of molybdenum(II) and tungsten(II) such as $[M(CO)_n(S_2CNR_2)_2]$ (M = Mo or W, n = 2 or 3, R = Me, Et or Pr^i) have been extensively studied. However, few reports of monodithiocarbamate seven-co-ordinate complexes have been published. However, for the sum of We have been studying the chemistry of the seven-coordinate complexes [MI₂(CO)₃(NCMe)₂] (M = Mo or W) ¹⁷ which are synthesised in quantitative yield by an *in situ* reaction of the tris(acetonitrile) complexes [M(CO)₃(NCMe)₃] with an equimolar quantity of I₂. In this paper we describe full details of the reactions of [MI₂(CO)₃(NCMe)₂] and [MI₂(CO)₃(NCMe)L] (L = PPh₃, AsPh₃ or SbPh₃) ¹⁸ with dithiocarbamates which afford a wide variety of products. A preliminary report of this work has appeared. ¹⁶ # **Results and Discussion** infrared (Table 1) and ¹H NMR spectroscopy (Table 2). The iodo-bridged dimers 1 and 2 are air-sensitive, however they can be stored under nitrogen for several days. The monodithiocarbamate compounds [MI(CO)₃L(S₂CNR₂)] 3–20 are all moderately air-stable in the solid state, but are much more air-sensitive in solution. The mixed and bis(dithiocarbamate) complexes 21–32 are all very air-sensitive (particularly the molybdenum complexes many of which decomposed to the oxides). The seven-co-ordinate complexes 1–32 are soluble in CHCl₃ and CH₂Cl₂ and very soluble in MeOH, and as expected only slightly soluble in diethyl ether and hydrocarbon solvents. Equimolar quantities of $[MI_2(CO)_3(NCMe)_2]$ (M = Mo or W) and Na[S₂CN(CH₂Ph)₂] react in CH₂Cl₂ eventually to afford the iodo-bridged dimers [{M(μ-I)(CO)₃[S₂CN(CH₂- Ph_{2} 1 and 2. It is likely that these reactions proceed with initial formation of the monoacetonitrile complexes [MI(CO)₃- $(NCMe){S_2CN(CH_2Ph)_2}$]. However, these intermediates could not be isolated since they rapidly dimerised with loss of acetonitrile to give the dimers 1 and 2. The dimeric nature of 1 and 2 was confirmed by molecular-weight measurements using Rast's method 19 (see Experimental section). Since the X-ray crystal structure of $[\{W(\mu-Br)Br(CO)_4\}_2]$ has been determined by Cotton et al.20 and shown to have bromide bridges it is highly likely that complexes 1 and 2 contain iodide bridges, although a possible structure containing metal-metal double bonds and no iodide bridges cannot be ruled out. Each tungsten atom in $[\{W(\mu-Br)Br(CO)_4\}_2]$ is in a capped-octahedral environment 20 with carbonyl ligands capping each octahedral face. The structures of seven-co-ordinate complexes of J. CHEM. SOC. DALTON TRANS. 1991 Table 1 Physical, analytical^a and infrared spectroscopic data^b for the seven-co-ordinate dithiocarbamate complexes of molybdenum(II) and tungsten(II) | | | Yield | Analysis (%) | | | | ν(CN)/ | |----------------------------------------------------------------------------------------------------|--------|-------|--------------|-----------|-----------|-------------------------|------------------| | Complex | Colour | (%) | C | Н | N | $v(CO)/cm^{-1}$ | cm ⁻¹ | | $1 \{ Mo(\mu-I)(CO)_3 [S_2CN(CH_2Ph)_2] \}_2 $ | Black | 62 | 37.1 (37.3) | 2.5 (2.4) | 2.6 (2.4) | 2020s, 1981s, 1945s | 1495m | | $2 \left[\left\{ W(\mu-I)(CO)_{3} \left[S_{2}CN(CH_{2}Ph)_{2} \right] \right\}_{2} \right]$ | Brown | 54 | 32.9 (32.4) | 2.1 (2.1) | 2.0 (2.1) | 2005s, 1926s, 1905s | 1481m | | $3 \lceil MoI(CO)_3(PPh_3)(S_2CNMe_2) \rceil$ | Brown | 64 | 42.2 (41.8) | 3.2 (3.1) | 1.9 (2.0) | 2040s, 1960s, 1939s | 1533m | | $4 [MoI(CO)_3(AsPh_3)(S_2CNMe_2)]$ | Brown | 66 | 39.2 (39.3) | 3.1 (2.9) | 2.0 (1.9) | 2040s, 1958s, 1937s | 1528m | | $5 [MoI(CO)_3(SbPh_3)(S_2CNMe_2)]$ | Brown | 60 | 37.4 (37.0) | 2.9 (2.7) | 1.7 (1.8) | 2035s, 1960s, 1930s | 1532m | | $6 [MoI(CO)_3(PPh_3)(S_2CNEt_2)]$ | Brown | 55 | 43.3 (43.5) | 4.0 (3.5) | 1.8 (2.0) | 2020m, 1935s, 1857m | 1493m | | $7 [MoI(CO)_3(AsPh_3)(S_2CNEt_2)]$ | Brown | 65 | 40.8 (41.0) | 3.6 (3.3) | 2.0 (1.8) | 2025s, 1953s, 1934s | 1500m | | $8 [MoI(CO)_3(SbPh_3)(S_2CNEt_2)]$ | Brown | 58 | 38.7 (38.6) | 3.4 (3.1) | 1.6 (1.7) | 2020s, 1959s, 1932m | 1505m | | $9 [MoI(CO)_3(PPh_3)\{S_2CN(CH_2Ph)_2\}]$ | Black | 58 | 51.2 (51.4) | 3.6 (3.5) | 1.5 (1.7) | 2020s, 1940s, 1905s | 1490m | | 10 [MoI(CO) ₃ (AsPh ₃){ S_2 CN(CH ₂ Ph) ₂ }] | Black | 58 | 47.5 (47.5) | 3.3 (3.3) | 1.7 (1.6) | 2025s, 1945s, 1865m | 1482m | | 11 $[MoI(CO)_3(SbPh_3)\{S_2CN(CH_2Ph)_2\}]$ | Black | 67 | 45.1 (45.1) | 3.4 (3.1) | 1.4 (1.5) | 2025s, 1945s, 1930s | 1478m | | $12 [WI(CO)_3(PPh_3)(S_2CNMe_2)]$ | Brown | 70 | 36.7 (37.1) | 2.8 (2.7) | 1.7 (1.8) | 2025s, 1930s, 1915s | 1534m | | $13 [WI(CO)_3(AsPh_3)(S_2CNMe_2)]$ | Orange | 75 | 34.7 (35.1) | 2.6 (2.6) | 1.4 (1.7) | 2030s, 1935s, 1922s | 1533m | | $14 [WI(CO)_3(SbPh_3)(S_2CNMe_2)]$ | Orange | 65 | 33.0 (33.2) | 2.5 (2.4) | 1.4 (1.6) | 2020s, 1920s, 1909s | 1532m | | 15 [WI(CO) ₃ (PPh ₃)(S_2CNEt_2)] | Orange | 68 | 39.2 (38.8) | 3.4 (3.1) | 1.8 (1.7) | 2010s, 1920s, 1832s | 1429m | | $16 [WI(CO)_3(AsPh_3)(S_2CNEt_2)]$ | Orange | 68 | 36.5 (36.8) | 3.0 (3.0) | 1.5 (1.7) | 2010s, 1928s, 1912s | 1494m | | $17 [WI(CO)_3(SbPh_3)(S_2CNEt_2)]$ | Orange | 62 | 34.8 (34.9) | 3.0 (2.8) | 1.3 (1.6) | 2005s, 1955s, 1900s | 1501m | | $18 \left[WI(CO)_3(PPh_3) \left\{ S_2CN(CH_2Ph)_2 \right\} \right]$ | Brown | 69 | 46.0 (46.5) | 3.4 (3.1) | 1.5 (1.5) | 2030s, 1925s, 1845s | 1482m | | $19 \left[WI(CO)_3(AsPh_3) \left\{ S_2CN(CH_2Ph)_2 \right\} \right]$ | Brown | 51 | 43.7 (44.4) | 3.1 (3.0) | 1.5 (1.4) | 2020s, 1977s, 1924s | 1480m | | $20 \left[WI(CO)_3(SbPh_3) \left\{ S_2CN(CH_2Ph)_2 \right\} \right]$ | Brown | 51 | 41.7 (42.4) | 2.7 (2.9) | 1.5 (1.4) | 2020s, 1979s, 1935s | 1480m | | 21 [$Mo(CO)_2(PPh_3)(S_2CNEt_2)\{S_2CN(CH_2Ph)_2\}$] | Brown | 82 | 57.6 (57.5) | 4.7 (4.7) | 3.3 (3.4) | 1925s, 1850s | 1481m | | 22 [Mo(CO)2(SbPh3)(S2CNMe2)- | | | | | | | | | ${S_2CN(CH_2Ph)_2}$ | Brown | 58 | 51.1 (50.9) | 3.8 (3.9) | 2.7 (3.1) | 1925s, 1845s | 1478m | | 23 $[Mo(CO)_2(SbPh_3)(S_2CNEt_2)$ - | | | | | | | | | ${S_2CN(CH_2Ph)_2}$]•0.5CH ₂ Cl ₂ | Brown | 61 | 49.9 (50.2) | 3.9 (4.2) | 3.1 (2.9) | 1930s, 1845s | 1479m | | $24 \left[\text{W(CO)}_2(\text{PPh}_3)(\text{S}_2\text{CNMe}_2)(\text{S}_2\text{CNEt}_2) \right]$ | Red | 85 | 44.0 (43.6) | 4.4 (4.1) | 3.4 (3.6) | 1918s, 1825s | 1478m | | $25 \left[W(CO)_2(PPh_3)(S_2CNMe_2) \left\{ S_2CN(CH_2Ph)_2 \right\} \right]$ | Red | 63 | 51.0 (51.0) | 4.1 (3.9) | 3.0 (3.1) | 1925s, 1835s | 1481m | | $26 \left[W(CO)_2(PPh_3)(S_2CNEt_2) \left\{ S_2CN(CH_2Ph)_2 \right\} \right]$ | Red | 58 | 51.6 (52.1) | 4.7 (4.3) | 3.2 (3.6) | 1919s, 1825s | 1482m | | 27 [W(CO) ₃ (S_2CNEt_2){ $S_2CN(CH_2Ph)_2$ }] | Brown | 21 | 35.3 (34.9) | 4.1 (3.5) | 4.0 (4.1) | 2005s, 1919s, 1822s | 1478m | | $28 \left[\mathbf{W}(\mathbf{CO})_{3} (\mathbf{S}_{2} \mathbf{CNEt}_{2})_{2} \right]$ | Brown | 56 | 27.0 (27.7) | 3.7 (3.6) | 5.0 (5.0) | 2010s, 1924s, 1905 (sh) | | | 29 [$Mo(CO)_2(SbPh_3)\{S_2CN(CH_2Ph)_2\}_2$] | Brown | 54 | 56.8 (57.2) | 4.2 (4.1) | 2.4 (2.7) | 1925s, 1842s | 1478m | | 30 $[W(CO)_2(PPh_3)\{S_2CN(CH_2Ph)_2\}_2]$ | Red | 83 | 57.4 (57.4) | 4.1 (4.1) | 2.4 (2.7) | 1922s, 1835s | 1478m | | 31 $[W(CO)_2(AsPh_3)\{S_2CN(CH_2Ph)_2\}_2]$ | Brown | 61 | 55.3 (55.1) | 4.2 (4.0) | 2.2 (2.6) | 1918s, 1830s | 1478m | | 32 $[W(CO)_2(SbPh_3)\{S_2CN(CH_2Ph)_2\}_2]$ | Brown | 54 | 52.4 (52.8) | 3.7 (3.8) | 2.3 (2.5) | 1925s, 1840s | 1475m | ^a Calculated values in parentheses. ^b Spectra recorded in CHCl₃; s = strong, m = medium, w = weak, br = broad and sh = shoulder. molybdenum(II) and tungsten(II) have generally been found to be capped octahedral. Colton and Kevekordes have described how NMR spectroscopy can be used to indicate if there is a carbonyl ligand in the unique capping position in capped-octahedral complexes. The low-temperature ($-70\,^{\circ}$ C, CD₂Cl₂) CNCMR spectrum of [{W(μ -I)(CO)₃[S₂CN(CH₂-Ph)₂]}₂] was measured and showed three carbonyl resonances at δ 199.63, 200.44 and 228.03 ppm. In view of the structure of [{W(μ -Br)Br(CO)₄}₂], and Colton and Kevekordes observations it is highly likely that the low-field resonance at δ 228.03 ppm is due to equivalent (one on each tungsten) carbonyls in capped-octahedral positions, and the resonances at δ 199.63 and 200.44 ppm due to equivalent pairs of octahedral carbonyls. A possible structure for this complex is shown below. The complexes $[MI_2(CO)_3(NCMe)_2]$ (M = Mo or W) react with 1 equivalent of L (L = PPh₃, AsPh₃ or SbPh₃) in CH₂Cl₂ at room temperature to give $[MI_2(CO)_3(NCMe)L]$, ¹⁸ which when treated *in situ* with Na[S₂CNR₂] (R = Me, Et or CH₂Ph) afford good yields of the monodithiocarbamate complexes [MI(CO)₃L(S₂CNR₂)] **3–20**. The low-temperature ¹³C NMR (-70 °C, CD₂Cl₂) spectra of a number of complexes **3–20** were measured, however, due to their low solubility, no satisfactory spectra were obtained. Many unsuccessful attempts were made to grow crystals of complexes **3–20**. It should also be noted that the S₂CNMe₂ complexes **3–5** and **12–14** all show two well separated methyl resonances in the ¹H NMR spectra even at 60 °C. Hence the barrier to rotation about the C–N bond in these complexes is likely to be high. Reaction of the molybdenum complexes [MoI(CO)₃L(S₂-CNR₂)] in situ with 1 equivalent of [S₂CNR'₂]⁻ generally afforded the purple oxides [Mo₂O₃(S₂CNR'₂)₂(S₂CNR'₂)₂] (see Experimental section). This type of reaction was previously observed by Colton and co-workers. They treated [{Mo(μ -Cl)Cl(CO)₄}₂] with Na[S₂CNEt₂] which afforded [Mo₂O₃(S₂-CNEt₂)₄]. It is likely that these reactions result from the initial formation of the seven-co-ordinate complexes [Mo(CO)₂L-(S₂CNR₂)(S₂CNR'₂)], but due to the extreme sensitivity of these complexes they decompose readily to the oxide. However, the seven-co-ordinate molybdenum complexes [Mo(CO)₂-(PPh₃)(S₂CNEt₂){S₂CN(CH₂Ph)₂}] 21 and [Mo(CO)₂-(SbPh₃)(S₂CNR₂){S₂CN(CH₂Ph)₂}] (R = Me or Et), 22 or 23, were formed from the reaction of [MoI(CO)₃L(S₂CNR₂)] with [S₂CNR'₂]⁻. These are the first examples of mixed dithiocarbamate seven-co-ordinate complexes of molybdenum-(II) and tungsten(II) to be reported. The triphenyl-phosphinetungsten complexes [WI(CO)₃(PPh₃)(S₂CNR₂)] Table 2 Proton NMR spectroscopic data * (δ) for the seven-co-ordinate dithiocarbamate complexes ### Complex 5.07 (s, 4 H, CH₂), 7.37 (s, 10 H, Ph) 4.76 (s, 2 H, CH₂), 4.88 (s, 2 H, CH₂), 7.4 (s, 10 H, Ph) 3.31 (s, 3 H, CH₃), 3.57 (s, 3 H, CH₃), 7.38 (s, 15 H, Ph) 3.40 (s, 3 H, CH₃), 3.47 (s, 3 H, CH₃), 7.51 (s, 15 H, Ph) 2.73 (s, 3 H, CH₃), 3.47 (s, 3 H, CH₃), 7.45 (s, 15 H, Ph) 1.18 (m, 6 H, CH₃), 3.89 (m, 4 H, CH₂), 7.53 (m, 15 H, Ph) $1.4 (t, J = 7.8, 6 H, CH_3), 3.92 (m, 4 H, CH_2), 7.34 (m,$ $1.26 (t, J = 6.6, 6 H, CH_3), 3.91 (m, 4 H, CH_2), 7.39 (m, 4 H, CH_3), CH_3)$ 15 H, Ph) 4.89 (s, 4 H, CH₂), 7.31, 7.39, 7.47 (m, 25 H, Ph) 10 4.78 (s, 2 H, CH₂), 5.07 (s, 2 H, CH₂), 7.35, 7.61, (m, 25 H, Ph) 4.85 (m, 4 H, CH₂), 7.39 (m, 25 H, Ph) 11 2.79 (s, 3 H, CH₃), 3.11 (s, 3 H, CH₃), 7.4 (s, 15 H, Ph) 12 13 2.61 (s, 3 H, CH₃), 3.25 (s, 3 H, CH₃), 7.48 (s, 15 H, Ph) 14 2.72 (s, 3 H, CH₃), 3.24 (s, 3 H, CH₃), 7.39 (s, 15 H, Ph) 15 1.18 (m, 6 H, CH₃), 3.26 (m, 2 H, CH₂), 3.57 (m, 2 H, CH₂), 7.38 (m, 15 H, Ph) $0.96 (t, J = 7.2, 6 \text{ H}, \text{CH}_3), 3.16 (q, J = 7.8, 2 \text{ H}, \text{CH}_2),$ 16 3.81 (m, 2 H, CH₂), 7.37 (m, 15 H, Ph) 1.41 (t, J = 8.4, 6 H, CH₃), 3.75 (m, 4 H, CH₂), 7.36 17 (m, 15 H, Ph) 18 4.13 (m, 2 H, CH₂), 4.66, 4.85 (m, 2 H, CH₂), 7.29, 7.39, 7.45 (m, 25 H, Ph) 19 4.75, 4.85, 5.03 (m, 4 H, CH₂), 7.34 (s, 25 H, Ph) 4.7, 4.85, 5.08 (m, 4 H, CH₂), 7.39 (s, 25 H, Ph) 1.32 (t, J = 6.6, 6 H, $CH_2\overline{C}H_3$), 3.92 (m, 4 H, CH_2CH_3), 21 4.94 (s, 4 H, CH₂Ph), 7.32, 7.52 (m, 25 H, Ph) 22 3.42 (s, 6 H, NCH₃), 4.96 (s, 4 H, CH₂Ph), 7.36 (s, 25 H, Ph) 23 1.26 (m, 6 H, CH₂CH₃), 3.92 (m, 4 H, CH₂CH₃), 4.91 $(5, 4 \text{ H}, CH_2Ph), 5.3 \text{ (s, 1 H, } CH_2Cl_2), 7.31, 7.36 \text{ (m,}$ 25 H, Ph) 1.18 (m, 6 H, CH₂CH₃), 3.11 (s, 6 H, NCH₃), 3.56 (m, 24 4 H, CH₂CH₃), 7.32 (s, 15 H, Ph) 3.3 (s, 6 H, NCH₃), 4.84 (s, 4 H, CH₂Ph), 7.31, 7.35, 7.52 25 (m, 25 H, Ph) 26 1.3 (t, $J = 8.4, 6 \text{ H}, \text{CH}_2\text{C}H_3$), 3.15, 3.25 (q, J = 6, 4 H,CH₂CH₃), 4.9 (s, 4 H, CH₂Ph), 7.3, 7.35, 7.51, 7.69 (m, 25 H, Ph) 27 1.42 (t, J = 7.2, 6 H, CH_2CH_3), 3.0, 3.14 (q, J = 8.4, 4 H, CH₂CH₃), 7.33 (s, 10 H, Ph) 29 4.94 (s, 8 H, CH₂), 7.36 (s, 35 H, Ph) 30 4.84 (s, 8 H, CH₂), 7.31 (s, 35 H, Ph) 4.89 (s, 8 H, CH₂), 7.32 (s, 35 H, Ph) 4.9 (s, 8 H, CH₂), 7.36 (s, 35 H, Ph) 31 * Spectra recorded in CDCl $_3$ (25 °C) and referenced to SiMe $_4$; J values in Hz; s = singlet, d = doublet, t = triplet, q = quartet and m = multiplet. when treated in situ with Na[S2CNR'2] afforded good yields of the bright red complexes [W(CO)2(PPh3)(S2CNR2)-(S₂CNR'₂)] 24-26. These complexes are remarkably stable and do not appear to disproportionate in solution. However, the triphenyl-arsine and stibine complexes [WI(CO)₃L(S₂CNR₂)] react in situ with 1 equivalent of Na[S2CNR'2] to give the tricarbonyl complexes [W(CO)₃(S₂CNR₂)(S₂CNR'₂)]. These complexes were very unstable and disproportionated in solution, however, [W(CO)₃(S₂CNEt₂){S₂CN(CH₂Ph)₂}] 27 was isolated and fully characterised. This difference in reaction type between PPh₃ and the more weakly co-ordinated AsPh₃ and SbPh₃ complexes is illustrated in Scheme 1. An explanation for this behaviour may be that the monodentate dithiocarbamate initially formed from iodide displacement prefers to displace carbon monoxide rather than the strongly bonded triphenylphosphine ligand, whereas the more weakly bonded (and larger) triphenyl-arsine and -stibine ligands are displaced in preference to carbon monoxide in these complexes. The lowtemperature (-70 °C, CD₂Cl₂) ¹³C NMR spectra of the seven- $[W(CO)_2(PPh_3)(S_2CNR_2)(S_2CNR_2')] \\ [W(CO)_3(S_2CNR_2)(S_2CNR_2')]$ Scheme 1 (i) $Na[S_2CNR'_2]$; (ii) $L = PPh_3$, -CO; (iii) $L = AsPh_3$ or $SbPh_3$, $-AsPh_3$ or $SbPh_3$ co-ordinate mixed dithiocarbamate complex $[W(CO)_2(PPh_3)-(S_2CNMe_2)\{S_2CN(CH_2Ph)_2\}]$ **25** shows carbonyl resonances at δ 204.62, 207.42, 212.23 and 212.62 ppm. From these data it appears that there is no carbonyl ligand in the capping position (no very low-field resonance) which is confirmed by the X-ray crystal structure ²⁴ of the related bis(diethyldithiocarbamate) complex $[W(CO)_2(PPh_3)(S_2CNEt_2)_2]$ shown below, which has a 4:3 tetragonal base–trigonal base geometry. The bis(acetonitrile)molybdenum complex [MoI₂(CO)₃-(NCMe)₂] reacts in CH₂Cl₂ with 2 equivalents of Na[S₂-CNEt₂]-3H₂O eventually to afford the oxide [Mo₂O₃-(S₂CNEt₂)₄] (see Experimental section) previously reported by Colton and Rose.²³ They prepared this type of complex by oxidation in acetone of [Mo(CO)₂L(S₂CNR₂)₂]. It could be that the water of crystallisation in Na[S2CNEt2]-3H2O is providing the oxygen for the formation of the oxo-complex [Mo₂O₃(S₂CNEt₂)₄]. It is interesting that they found ²³ the oxidation of [Mo(CO)₂L(S₂CNR₂)₂] in CCl₄-benzene gave oxides of empirical formulae [MoO₂(S₂CNR₂)₂]. As expected, reaction of the tungsten complex [WI2(CO)3(NCMe)2] with 2 equivalents of Na[S2CNEt2].3H2O afforded the tricarbonyl seven-co-ordinate compound [W(CO)₃(S₂CNEt₂)₂] 28. Tricarbonyl tungsten bis(dithiocarbamates) of this type have been previously reported, and the X-ray crystal structure of [W-(CO)₃(S₂CNMe₂)₂] has been determined and is shown below.²⁵ Reaction of the molybdenum complexes [MoI₂(CO)₃-(NCMe)L] (L = PPh₃, AsPh₃ and SbPh₃) with 2 equivalents of Na[S₂CN(CH₂Ph)₂] afforded the seven-co-ordinate complexes [Mo(CO)₂L{S₂CN(CH₂Ph)₂}₂] which were identified by infrared spectroscopy, e.g. v(CO)/cm⁻¹ (CHCl₃) 1920 and 1840 (L = PPh₃), 1922 and 1835 (L = AsPh₃) and 1925 and 1840 (L = SbPh₃). These complexes were extremely airsensitive and it was difficult to obtain satisfactory analytical J. CHEM. SOC. DALTON TRANS. 1991 data. However, the compound $[Mo(CO)_2(SbPh_3)\{S_2CN(CH_2-Ph)_2\}_2]$ **29** was isolated and fully characterised. The considerably more air-stable tungsten complexes $[W(CO)_2L-\{S_2CN(CH_2Ph)_2\}_2]$ **30–32** were prepared by treating $[WI_2(CO)_3(NCMe)L]$ in situ with 2 equivalents of $Na[S_2CN(CH_2Ph)_2]$. The low-temperature $(-70\,^{\circ}C, CD_2Cl_2)^{13}C$ NMR spectra of **30** and **32** showed carbonyl resonances at δ 207.35 and 212.68 and 208.06, 208.33 and 209.59 ppm respectively. These resonances are typical for carbonyl ligands in normal octahedral environments and the structure is likely to be similar to that shown for $[W(CO)_2(PPh_3)(S_2CNEt_2)_2]^{24}$ i.e. a 4:3 tetragonal base—trigonal base geometry. # **Experimental** All reactions described were carried out under an atmosphere of dry nitrogen unless otherwise stated using standard Schlenkline techniques. The complexes $[MI_2(CO)_3(NCMe)_2]$ (M =Mo or W) were prepared by the published procedure.¹⁷ All chemicals used were purchased from commercial sources. Proton and ¹³C NMR spectra were recorded on either a JEOL FX60 or a Bruker WH 400 spectrometer and calibrated against tetramethylsilane, infrared spectra on a Perkin-Elmer 197 spectrophotometer. Elemental analysis (C, H and N) were recorded on a Carlo Erba Elemental Analyser MOD 1106 (using helium as a carrier gas) by Mr. E. Lewis of the Department of Chemistry, University of Wales, Bangor. Molecular weights were determined by Rast's method 19 using camphor (bornan-2-one) as the solvent. Magnetic susceptibilities were determined using a Johnson-Matthey magnetic susceptibility balance. [{Mo(μ -I)(CO)₃[S₂CN(CH₂Ph)₂]}₂] 1.—To [MoI₂(CO)₃-(NCMe)₂] (0.50 g, 0.969 mmol) dissolved in CH₂Cl₂ (15 cm³) with continuous stirring under a stream of dry nitrogen was added Na[S₂CN(CH₂Ph)₂] (0.286 g, 0.968 mmol) and MeOH (10 cm³). The mixture was stirred for 18 h. The solvents were removed *in vacuo* and the resulting product resolvated in CH₂Cl₂ and filtered to remove NaI. The solvent was removed *in vacuo* to give the black crystalline solid [{Mo(μ -I)(CO)₃-[S₂CN(CH₂Ph)₂]}₂] (yield = 0.35 g, 62%) which was recrystallised from CH₂Cl₂; M_r 1094 (calc. 1158). A similar reaction of $[WI_2(CO)_3(NCMe)_2]$ with an equimolar quantity of $Na[S_2CN(CH_2Ph)_2]$ afforded $[\{W(\mu-I)(CO)_3[S_2CN(CH_2Ph)_2]\}_2]$ **2.** See Table 1 for colour and yield; M_r 1027 (calc. 1334). [WI(CO)₃(SbPh₃)(S₂CNMe₂)] **14.**—To [WI₂(CO)₃(NC-Me)₂] (0.222 g, 0.368 mmol) dissolved in CH_2Cl_2 —MeOH (1:1, 20 cm³) with continuous stirring under a stream of nitrogen was added SbPh₃ (0.130 g, 0.368 mmol). After stirring for 5 min, Na[S₂CNMe₂]-2H₂O (0.066 g, 0.368 mmol) was added and the mixture stirred for 25 min. Removal of solvent *in vacuo* afforded a brown powder which was dissolved in CH_2Cl_2 and filtered. Removal of solvent *in vacuo* gave orange crystals of [WI(CO)₃(SbPh₃)(S₂CNMe₂)] **14**; yield of pure product = 0.206 g, 65%. Similar reactions of $[MI_2(CO)_3(NCMe)_2]$ with L ($L=PPh_3$, $AsPh_3$ or $SbPh_3$) and $Na[S_2CNMe_2]\cdot 2H_2O$ gave the complexes $[MI(CO)_3L(S_2CNMe_2)]$ 3–5, 12 and 13. Reaction times for $[MI_2(CO)_3(NCMe)_2] + L \longrightarrow [MI_2(CO)_3(NCMe)_L]$ and $Na[S_2CNMe_2]\cdot 2H_2O \longrightarrow [MI(CO)_3L-(S_2CNMe_2)] + 2NCMe + NaI at 25 °C are: 3 (M = Mo), L = PPh_3, 1 min; <math>Na[S_2CNMe_2]\cdot 2H_2O$, 30 min; 4 (M = Mo), $L = AsPh_3$, 3 min; $Na[S_2CNMe_2]\cdot 2H_2O$, 27 min; 5 (M = Mo), $L = SbPh_3$, 5 min; $Na[S_2CNMe_2]\cdot 2H_2O$, 25 min. Similar times were recorded for the tungsten complexes 12–14. See Table 1 for colours and yields. [MoI(CO)₃(PPh₃)(S₂CNEt₂)] 6.—To [MoI₂(CO)₃(NC-Me)₂] (0.21 g, 0.407 mmol) dissolved in CH₂Cl₂ (15 cm³) with continuous stirring under a stream of dry nitrogen was added PPh₃ (0.107 g, 0.408 mmol). After stirring for 1 min, Na[S₂CNEt₂]·3H₂O (0.092 g, 0.408 mmol) was added and the mixture was stirred for 2 h. After filtration, removal of solvent *in vacuo* gave brown crystals of [MoI(CO)₃(PPh₃)(S₂CNEt₂)] 6 (yield = 0.16 g, 55%), which were recrystallised from CH₂Cl₂. Similar reactions of $[MI_2(CO)_3(NCMe)_2]$ with L (L = PPh₃, AsPh₃ or SbPh₃) and Na[S₂CNEt₂]·3H₂O gave the complexes $[MI(CO)_3L(S_2CNEt_2)]$. Reaction times for $[MI_2-(CO)_3(NCMe)_2] + L \longrightarrow [MI_2(CO)_3(NCMe)_L]$ and Na- $[S_2CNEt_2]\cdot 3H_2O \longrightarrow [MI(CO)_3L(S_2CNEt_2)] + 2NCMe$ at 25 °C are: 6 (M = Mo), L = PPh₃, 1 min; Na[S₂CNEt₂]·3H₂O, 120 min; 7 (M = Mo), L = AsPh₃, 3 min; Na[S₂CNEt₂]·3H₂O, 66 min; 8 (M = Mo), L = SbPh₃, 5 min; Na[S₂CNEt₂]·3H₂O, 180 min. Similar times were recorded for the tungsten complexes 15–17. See Table 1 for colours and yields. [MoI(CO)₃(PPh₃){S₂CN(CH₂Ph)₂}] **9.**—To [MoI₂(CO)₃-(NCMe)₂] (0.50 g, 0.969 mmol) dissolved in CH₂Cl₂ (15 cm³), with continuous stirring under a stream of dry nitrogen was added PPh₃ (0.254 g, 0.969 mmol). After stirring for 1 min, Na[S₂CN(CH₂Ph)₂] (0.268 g, 0.968 mmol) and MeOH (10 cm³) were added. The mixture was stirred for 18 h. The solvents were removed *in vacuo* and the resulting product resolvated in CH₂Cl₂ and filtered to remove NaI. The solvent was removed *in vacuo* to give the black crystalline solid [MoI(CO)₃(PPh₃)-{S₂CN(CH₂Ph)₂}] **9** (yield 0.47 g, 58%), which was recrystallised from CH₂Cl₂. Similar reactions of $[MI_2(CO)_3(NCMe)_2]$ with L ($L=PPh_3$, $AsPh_3$ or $SbPh_3$) and $Na[S_2CN(CH_2Ph)_2]$ gave the complexes $[MI(CO)_3L\{S_2CN(CH_2Ph)_2\}]$. Reaction times for $[MI_2(CO)_3(NCMe)_2] + L \longrightarrow [MI_2(CO)_3(NCMe)L]$ and $Na[S_2CN(CH_2Ph)_2] \longrightarrow [MI(CO)_3L\{S_2CN(CH_2Ph)_2\}] + 2NCMe$ at 25 °C are: 9 (M=Mo), $L=PPh_3$, 1 min; $Na[S_2CN(CH_2Ph)_2]$, 18 h; 10 (M=Mo), $L=AsPh_3$, 3 min: $Na[S_2CN(CH_2Ph)_2]$, 18 h; 11 (M=Mo), $L=SbPh_3$, 5 min; $Na[S_2CN(CH_2Ph)_2]$, 18 h. Similar times were recorded for the tungsten complexes 18–20. See Table 1 for colours and yields. Reactions of [MoI(CO)₃L(S₂CNR₂)] with Na[S₂CNR'₂].- $[MoI(CO)_3(PPh_3)(S_2CNMe_2)]$ with $Na[S_2CNEt_2]$. [MoI₂(CO)₃(NCMe)₂] (0.50 g, 0.969 mmol) dissolved in CH₂Cl₂ (15 cm³) with continuous stirring under a stream of dry nitrogen was added PPh₃ (0.254 g, 0.969 mmol). After stirring for 1 min, Na[S₂CNMe₂]·2H₂O (0.174 g, 0.969 mmol) and MeOH (10 cm³) were added. The mixture was stirred for 2 h, after which Na[S2CNEt2]-3H2O (0.218 g, 0.969 mmol) and MeOH (10 cm³) were added and the mixture stirred for 18 h. The solvents were removed in vacuo and the resulting product resolvated in CH₂Cl₂ and filtered to remove NaI. The solvent was removed in vacuo to give an orange product which rapidly formed a purple product, which was washed in diethyl ether to give [Mo₂O₃(S₂CNMe₂)₂(S₂CNEt₂)₂] (yield 0.27 g, 72%) and recrystallised from CH_2Cl_2 (Found: C, 25.0; H, 4.3; N, 7.0. $C_{16}H_{32}Mo_2N_4O_3S_8$ requires C, 24.7; H, 4.2; N, 7.2%). ¹H NMR (CDCl₃, 25 °C): δ 1.2, 1.32, 1.43(t, J6, 12 H, CH₂CH₃), 3.42 (s, 12 H, NCH₃), 3.62, 3.76, 3.88 and 4.0 (q, J 7.2 Hz, 8 H, CH_2CH_3). Similar reactions of $[MoI_2(CO)_3(NCMe)_2]$ with L ($L = AsPh_3$ or $SbPh_3$), followed by $Na[S_2CNMe_2]\cdot 2H_2O$ and $Na[S_2CNEt_2]\cdot 3H_2O$ gave the purple complex $[Mo_2O_3-(S_2CNMe_2)_2(S_2CNEt_2)_2]$. Reaction times for [MoI(CO)₃NCMe)₂] + L \longrightarrow [MoI₂·(CO)₃(NCMe)L] + Na[S₂CNMe₂]·2H₂O and Na[S₂CNEt₂]·3H₂O \longrightarrow [Mo₂O₃(S₂CNMe₂)₂(S₂CNEt₂)₂] + 2NCMe at 25 °C are: M = Mo, L = AsPh₃, 3 min; Na[S₂CNMe₂]·2H₂O, 2 h; Na[S₂CNEt₂]·3H₂O, 18 h; yield = 66% (Found: C, 24.8; H, 4.2; N, 6.8. C₁₆H₃₂Mo₂N₄O₃S₈ requires C, 24.7; H, 4.2; N, 7.2%); M = Mo, L = SbPh₃, 5 min; Na[S₂CNMe₂]·2H₂O, 2 h; Na[S₂CNEt₂]·3H₂O, 18 h; yield = 45% (Found: C, 24.6; H, 4.2; N, 6.8. C₁₆H₃₂Mo₂N₄O₃S₈ requires C, 24.7; H, 4.2; N, 7.2%). $[Mo(CO)_2(PPh_3)(S_2CNEt_2)\{S_2CN(CH_2Ph)_2\}] \qquad \textbf{21}. \\ - To [MoI_2(CO)_3(NCMe)_2] \quad (0.50 \ g, \ 0.969 \ mmol) \ dissolved in $CH_2Cl_2 \ (15 \ cm^3)$ with continuous stirring under a stream of dry nitrogen was added PPh_3 \ (0.254 \ g, 0.969 \ mmol). After stirring for 1 \ min, $Na[S_2CNEt_2] \cdot 3H_2O \ (0.218 \ g, 0.969 \ mmol)$ and MeOH were added. The mixture was stirred for 2 h after which $Na[S_2CN(CH_2Ph)_2]$ \ (0.268 \ g, 0.969 \ mmol)$ and MeOH \ (10 \ cm^3)$ were added and the mixture was stirred for 18 h. The solvents were removed in vacuo and the resulting product resolvated in CH_2Cl_2 and filtered to remove NaI. The solvent was removed in vacuo to give the brown crystalline product $[Mo(CO)_2(PPh_3)(S_2CNEt_2)\{S_2CN(CH_2Ph)_2\}]$ \ \mathbf{21}$, yield = 0.67 g \ (82\%)$, which was recrystallised from CH_2Cl_2.$ Similar reactions of $[MoI_2(CO)_3(NCMe)_2]$ with SbPh₃ followed by Na[S₂CNMe₂]·2H₂O or Na[S₂CNEt₂]·3H₂O and Na[S₂CN(CH₂Ph)₂] gave the complexes $[Mo(CO)_2(SbPh_3)-(S_2CNR_2)\{S_2CN(CH_2Ph)_2\}]$ (R = Me or Et). Reaction times for $[MoI_2(CO)_3(NCMe)_2] + SbPh_3 \longrightarrow [MI_2(CO)_3-(NCMe)(SbPh_3)] + Na[S_2CNMe_2]·2H_2O$ or Na[S₂CNEt₂]·3H₂O followed by Na[S₂CN(CH₂Ph)₂] $\longrightarrow [Mo(CO)_2-(SbPh_3)(S_2CNR_2)\{S_2CN(CH_2Ph)_2\}] + 2NCMe$ at 25 °C are: 22 (M = Mo), SbPh₃, 5 min; Na[S₂CNMe₂]·2H₂O, 2 h; Na[S₂CN(CH₂Ph)₂], 18 h; 23 (M = Mo), SbPh₃, 5 min; Na[S₂CNEt₂]·3H₂O, 2 h; Na[S₂CN(CH₂Ph)₂], 18 h. See Table 1 for colours and yields. Reactions of [WI(CO)₃L(S₂CNR₂)] with Na[S₂CNR'₂].—[W(CO)₂(PPh₃)(S₂CNMe₂)(S₂CNEt₂)] **24.** To [WI₂(CO)₃-(NCMe)₂] (0.50 g, 0.828 mmol) dissolved in CH₂Cl₂ (15 cm³) with continuous stirring under a stream of dry nitrogen was added PPh₃ (0.2172 g, 0.828 mmol). After stirring for 1 min, Na[S₂CNMe₂]·2H₂O (0.148 g, 0.826 mmol) and MeOH (10 cm³) were added. The mixture was stirred for 2 h, after which Na[S₂CNEt₂]·3H₂O (0.187 g, 0.829 mmol) and MeOH (10 cm³) were added, and the mixture stirred for 18 h. The solvents were removed *in vacuo* and the resulting product resolvated in CH₂Cl₂ and filtered to remove NaI. The solvent was removed *in vacuo* to give a bright red product [W(CO)₂(PPh₃)-(S₂CNMe₂)(S₂CNEt₂)] **24** (yield = 0.54 g, 85%), which was recrystallised from CH₂Cl₂. Similar reactions of $[WI_2(CO)_3(NCMe)_2]$ with PPh₃ and Na[S₂CNR₂] (R = Me or Et) followed by Na[S₂CN-(CH₂Ph)₂] gave the complexes $[W(CO)_2(PPh_3)(S_2CNR_2)-\{S_2CN(CH_2Ph)_2\}]$. Reaction times for $[WI(CO)_2(NCMe)_2] + PPh_3 \longrightarrow [WI_2(CO)_3(NCMe)(PPh_3)]$ and Na[S₂CNR₂]·xH₂O (R = Me or Et, x = 2 or 3) followed by Na[S₂CN-(CH₂Ph)₂] $\longrightarrow [W(CO)_2(PPh_3)(S_2CNR_2)\{S_2CN(CH_2Ph)_2\}] + 2NCMe$ at 25 °C are: 25 (M = W), PPh₃, 1 min; Na[S₂CN-Me₂]·2H₂O, 2 h; Na[S₂CN(CH₂Ph)₂], 18 h; 26 (M = W), PPh₃, 1 min; Na[S₂CNEt₂]·3H₂O, 2 h; Na[S₂CN(CH₂Ph)₂], 18 h. [W(CO)₃(S₂CNEt₂){S₂CN(CH₂Ph)₂}] **27**. To [WI₂(CO)₃-(NCMe)₂] (0.50 g, 0.828 mmol) dissolved in CH₂Cl₂ (15 cm³) with continuous stirring under a stream of dry nitrogen was added AsPh₃ (0.2535 g, 0.828 mmol). After stirring for 3 min, Na[S₂CNEt₂]·3H₂O (0.187 g, 0.829 mmol) and MeOH (10 cm³) were added. The mixture was stirred for 2 h, after which Na[S₂CN(CH₂Ph)₂] (0.245 g, 0.827 mmol) and MeOH (10 cm³) were added and the mixture stirred for 18 h. The solvents were removed *in vacuo*, and the resulting product resolvated in CH₂Cl₂ and filtered to remove NaI. The solvent was removed *in vacuo* to afford a golden-brown product which after washing with diethyl ether and recrystallisation from CH₂Cl₂ gave the brown complex [W(CO)₃(S₂CNEt₂){S₂CN(CH₂Ph)₂}] **27** (yield of pure product = 0.12 g, 21%). Reactions of [MI₂(CO)₃(NCMe)₂] with 2 equivalents of Na[S₂CNEt₂]·3H₂O.—To [MoI₂(CO)₃(NCMe)₂] (0.25 g, 0.485 mmol) dissolved in CH₂Cl₂ (15 cm³) with continuous stirring under a stream of dry nitrogen was added Na[S₂CNEt₂]·3H₂O (0.218 g, 0.968 mmol). After stirring for 160 min, and filtration, removal of the solvent *in vacuo* gave purple crystals of [Mo₂O₃(S₂CNEt₂)₄], yield of pure product = 0.14 g (69%) (Found: C, 28.5; H, 4.8; N, 6.6. $C_{20}H_{40}Mo_2N_4O_3S_8$ requires C, 28.8; H, 4.8; N, 6.7%). To $[WI_2(CO)_3(NCMe)_2]$ (0.23 g, 0.381 mmol) dissolved in CH_2Cl_2 (15 cm³) with continuous stirring was added $Na[S_2CNEt_2]\cdot 3H_2O$ (0.172 g, 0.763 mmol). After stirring for 90 min and filtration, removal of solvent *in vacuo* gave brown crystals of $[W(CO)_3(S_2CNEt_2)_2]$ 28, yield of pure product = 0.12 g (56%). Reactions of [MI₂(CO)₃(NCMe)L] with 2 equivalents of Na[S₂CN(CH₂Ph)₂].—To [MoI₂(CO)₃(NCMe)₂] (0.50 g, 0.969 mmol) dissolved in CH₂Cl₂ (15 cm³) with continuous stirring under a stream of dry nitrogen was added PPh₃ (0.254 g, 0.968 mmol). After stirring for 1 min, Na[S₂CN(CH₂Ph)₂] 0.572 g, 1.936 mmol) and MeOH (10 cm³) were added. The mixture was stirred for 18 h. The solvents were removed *in vacuo* and the resulting product resolvated in CH₂Cl₂ and filtered to remove NaI. The solvent was removed *in vacuo* to give the purple product [Mo₂O₃{S₂CN(CH₂Ph)₂}₄] (yield 0.26 g, 47%) which was washed with ether to remove any unco-ordinated PPh₃ and recrystallised from CH₂Cl₂ (Found: C, 54.2; H, 4.2; N, 4.4. C₆₀H₅₆Mo₂N₄O₃S₈ requires C, 54.2; H, 4.3; N, 4.2%). A similar reaction of [MoI₂(CO)₃(NCMe)₂] with AsPh₃, followed by 2 equivalents of Na[S₂CN(CH₂Ph)₂] gave the identical purple complex [Mo₂O₃{S₂CN(CH₂Ph)₂}₄]. Reaction times for [MoI₂(CO)₃(NCMe)₂] + AsPh₃ \longrightarrow [MoI₂(CO)₃(NCMe)(AsPh₃)] + 2Na[S₂CN(CH₂Ph)₂] \longrightarrow [Mo₂O₃-{S₂CN(CH₂Ph)₂}₄]: AsPh₃, 3 min; 2Na[S₂CN(CH₂Ph)₂], 18 h (Found: C, 54.4; H, 4.3; N, 4.7. C₆₀H₅₆Mo₂N₄O₃S₈ requires C, 54.2; H, 4.3; N, 4.2%), yield = 42%. ¹H NMR (CDCl₃, 25 °C): δ 4.94 (s, 16 H, CH₂Ph) and 7.33 (s, 40 H, Ph). [Mo(CO)₂(SbPh₃){S₂CN(CH₂Ph)₂}₂] **29**. To [MoI₂(CO)₃-(NCMe)₂] (0.50 g, 0.969 mmol) dissolved in CH₂Cl₂ (15 cm³) with continuous stirring under a stream of dry nitrogen was added SbPh₃ (0.342 g, 0.969 mmol). After stirring for 5 min, Na[S₂CN(CH₂Ph)₂] (0.572 g, 1.936 mmol) and MeOH (10 cm³) were added. The mixture was stirred for 18 h. The solvents were removed *in vacuo* and the resulting product resolvated in CH₂Cl₂ and filtered to remove NaI. The solvent was removed *in vacuo* to give the brown crystalline product [Mo(CO)₂(SbPh₃)-{S₂CN(CH₂Ph)₂}₂] **29** (yield = 0.55 g, 54%), which was recrystallised from CH₂Cl₂. [W(CO)₂(PPh₃){S₂CN(CH₂Ph)₂}₂] **30.** To [WI₂(CO)₃-(NCMe)₂] (0.50 g, 0.828 mmol) dissolved in CH₂Cl₂ (15 cm³) with continuous stirring under a stream of dry nitrogen was added PPh₃ (0.2172 g, 0.828 mmol). After stirring for 1 min, Na[S₂CN(CH₂Ph)₂] (0.493 g, 1.654 mmol) and MeOH (10 cm³) were added. The mixture was stirred for 18 h. The solvents were removed *in vacuo* and the resulting product resolvated in CH₂Cl₂ and filtered to remove NaI. The solvent was removed *in vacuo* to give the red crystalline product [W(CO)₂(PPh₃)-{S₂CN(CH₂Ph)₂}₂] **30** (yield = 0.72 g, 83%), which was recrystallised from CH₂Cl₂. Similar reactions of $[WI_2(CO)_3(NCMe)_2]$ with L ($L = AsPh_3$ or $SbPh_3$) and 2 equivalents of $Na[S_2CN(CH_2Ph)_2]$ gave the complexes $[W(CO)_2L\{S_2CN(CH_2Ph)_2\}_2]$. Reaction times for $[WI_2(CO)_3(NCMe)_2] + L \longrightarrow [WI_2(CO)_3(NCMe)_1]$ and $2Na[S_2CN(CH_2Ph)_2] \longrightarrow [W(CO)_2L\{S_2CN(CH_2Ph)_2\}_2] + 2NCMe$ at 25 °C are: 31, $L = AsPh_3$, 3 min; $2Na[S_2CN(CH_2Ph)_2]$, 18 h; 32, $L = SbPh_3$, 5 min; $2Na[S_2CN(CH_2Ph)_2]$, 18 h. See Table 1 for colours and yields. # References - 1 D. Coucouvanis, Prog. Inorg. Chem., 1970, 23, 233. - 2 D. Coucouvanis, Prog. Inorg. Chem., 1979, 26, 301. - 3 H. B. Abrahamson, M. L. Freeman, M. B. Hussain and D. Van der Helm, *Inorg. Chem.*, 1984, 23, 2286. - 4 C. J. Young, S. A. Roberts and J. H. Enemark, *Inorg. Chem.*, 1986, 25, 3667. - 5 J. W. McDonald, J. L. Corbin and W. E. Newton, J. Am. Chem. Soc., 1975, **97**, 1970. - 6 E. A. Maata, R. A. D. Wentworth, W. E. Newton, J. W. McDonald and G. D. Watt, J. Am. Chem. Soc., 1978, 100, 1320. - 7 R. Colton, G. R. Scollary and I. B. Tomkins, Aust. J. Chem., 1968, 21, - 8 R. Colton and G. R. Scollary, Aust. J. Chem., 1968, 21, 1427. - 9 G. J.-J. Chen, R. O. Yelton and I. B. Tomkins, Inorg. Chim. Acta, 1977, 22, 249. - 10 J. L. Templeton and B. C. Ward, *J. Am. Chem. Soc.*, 1980, **102**, 6568. 11 J. L. Tempeton and B. C. Ward, *Organometallics*, 1982, **1**, 1007. - 12 J. A. Broomhead and C. G. Young, Aust. J. Chem., 1982, 35, 277. - 13 B. Zhuang, L. Huang, L. He, Y. Yang and J. Lu, Inorg. Chim. Acta, - 14 E. Carmona, K. Doppert, J. M. Marin, M. L. Poreda, L. Sanchez and R. Sanchez-Delgado, *Inorg. Chem.*, 1984, 23, 530. - 15 J. L. Templeton, Adv. Chem. Ser., 1979, 173, 263. - 16 P. K. Baker and S. G. Fraser, Transition Met. Chem. (Weinheim, Ger.), 1986, 11, 273. - 17 P. K. Baker, S. G. Fraser and E. M. Keys, J. Organomet. Chem., 1986, 309, 319, - 18 P. K. Baker and S. G. Fraser, Transition Met. Chem. (Weinheim, Ger.), 1987, 12, 560. - 19 F. G. Mann and B. C. Saunders, Practical Organic Chemistry, Longmans Green and Co., London, 1954, pp. 342–344. 20 F. A. Cotton, L. R. Falvello and J. H. Meadows, *Inorg. Chem.*, 1985, - **24**, 514. - 21 M. G. B. Drew, Prog. Inorg. Chem., 1977, 23, 67. - 22 R. Colton and J. Kevekordes, Aust. J. Chem., 1982, 35, 895. - 23 R. Colton and G. G. Rose, Aust. J. Chem., 1970, 23, 1111. - 24 J. L. Templeton and B. C. Ward, J. Am. Chem. Soc., 1981, 103, 3743. 25 J. L. Templeton and B. C. Ward, Inorg. Chem., 1980, 19, 1753. Received 22nd June 1990; Paper 0/02804E