Estimated Formation Constants for the Complexation of Methylmercury(II) by Captopril {1-[(2S)-3-Mercapto-2-methyl-1-oxopropyl]-L-proline}: Evidence of Stronger Binding to the *cis* Isomer of the Drug ## Anvarhusein A. Isab King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia Complexation of CH_3Hg^{11} by captopril $\{1-[(2S)-3-mercapto-2-methyl-1-oxopropyl]-L-proline\}$ has been studied by 1H and ${}^{13}C$ NMR spectroscopy. Very little changes were observed in the equilibrium constants of the cis and trans isomers of CH_3Hg^{11} —captopril at a 1:1 ratio and free captopril as a function of pH*. However, in the ${}^{13}C$ NMR spectrum the chemical shift of the HSCH $_2$ resonance was greater for the cis than for the trans form at a 1:1 ratio. The formation constants (log K_f) constants for the cis and trans isomers are estimated to be 16.85 and 16.57 based on the equation $\log K_f = pK_{SH} + 6.86$. Captopril, 1-[(2S)-3-mercapto-2-methyl-1-oxopropyl]-L-proline, is a recently developed drug for the treatment of high blood pressure. 1-3 High blood pressure can result from the production of angiotensin II from inactive angiotensin I, the conversion being catalysed by angiotensin-converting enzyme, 4.5 which is a zinc metalloenzyme. The mechanism by which captopril is thought to be active involves inhibition of angiotensin-converting enzyme, presumably through interaction with the enzyme at its active site. 1-3 More recently captopril has been used with some success to treat rheumatoid arthritis 7 and migraine. 8 It is well known that proline-containing peptides normally exist as an equilibrium mixture of *cis* and *trans* isomers with respect to the peptide bond involving the proline amino group. Thus, captopril is expected to be present in aqueous solution as the *trans* and *cis* forms, I and II, respectively, with their relative population dependent on the protonation state of the molecule. 10-13 It has been shown that conformationally restricted angiotensin-converting enzyme inhibitors require a *trans* amide bond of captopril when binding to the enzyme. ¹⁴ In view of the above restriction, it is of interest to study the metal-ion binding to captopril using ¹H and ¹³C NMR spectroscopy by which the two isomers can be studied easily. ¹³ In the present study $\text{CH}_3\text{Hg}^{\text{II}}$ has been selected as a metal ion for the following reasons: (i) the co-ordination chemistry is very simple, normally binding with thiols, with a co-ordination number of two; 15,16 (ii) it usually binds to a thiol group between pH <1 and >13; 17 and (iii) the aqueous solution chemistry of $\text{CH}_3\text{Hg}^{\text{II}}$ has been studied in detail so that the comparison of $\text{CH}_3\text{Hg}^{\text{II}}$ -captopril with other thiol systems is easier. $^{18-23}$ #### Experimental Chemicals.—The captopril was a gift from the Squibb Institute for Medical Research, Princeton, NJ. The 99.7% D_2O , 40% NaOD in D_2O and 65% DNO₃ in D_2O were obtained from Fluka Chemical Company. Methylmercury(II) iodide (Alfa Division, Ventron Corp.) was converted into a solution of methylmercury(II) hydroxide and standardized as described in the literature. ^{16,17} pH Measurements.—All pH measurements were made at 25 ± 1 °C with a Fisher model 520 Accumet pH meter, equipped with a Fisher microprobe combination electrode. Fisher-certified buffers of nominal pH 4.00, 7.00 and 10.00 were used for three-point calibration of the pH meter. All pH* measurements were made in D_2O solutions and have not been corrected for deuterium-isotope effects (pH* = pH + 0.40).²⁴ NMR Measurements.—Proton NMR spectra were measured at 400 MHz on a Bruker WH-400 spectrometer operating in the pulsed Fourier-transform mode. The probe temperature was 25 °C and ¹H chemical shifts were measured relative to internal tert-butyl alcohol and are reported relative to the methyl proton resonance of sodium 4,4-dimethyl-4-silapentane-1-sulphonate (dss). The methyl resonance of t-butyl alcohol is +1.23 ppm relative to dss. Carbon-13 NMR spectra were measured at 50.3 MHz on a Bruker WH-200 spectrometer operating in the pulsed Fourier-transform mode, with broad-band ^{1}H decoupling. The ^{13}C chemical shifts were measured relative to internal dioxane but are reported relative to $Si(CH_3)_4$ [the dioxane resonance is +67.4 ppm to higher frequency from $Si(CH_3)_4$]. Positive shifts correspond to less shielding than in $Si(CH_3)_4$. Sample Preparation.—A 0.15 mol dm⁻³ stock solution of 1:1 ratio of CH₃HgOH-captopril was prepared containing 0.30 mol dm⁻³ NaNO₃ in D₂O.^{16,17} The pH* of the solution was first decreased to ≈ 1 by adding DNO₃. The samples were withdrawn under an argon atmosphere into NMR tubes at appropriate intervals as the pH* was increased by titration with NaOD. Fig. 1 Proton NMR chemical shift of the resonance for CH_3Hg^{II} in aqueous solution containing (dashed line) 0.19 mol dm⁻³ methylmercury and (solid line) 0.15 mol dm⁻³ CH_3Hg^{II} —captopril (1:1) in 0.30 mol dm⁻³ $NaNO_3$ in D_2O . The points for CH_3Hg^{II} itself (dashed line) are taken from refs. 21 and 26 ## Results The ¹H NMR chemical shift of the methyl resonance of CH₃Hg^{II} as a function of pH* (refs. 21 and 25–27) is shown in Fig. 1. The chemical shifts of free CH₃Hg^{II} are in the range from δ 1.10 to 0.83 from pH* < 1 to > 13. However, at the 1:1 ratio of CH₃Hg^{II}—captopril, it shifted from δ 0.87 to 0.77. Note the methyl resonance remains unshifted to pH* 9 and when pH* was increased further it started to follow a titration curve. Fig. 2 shows the mercury-proton coupling constant of CH_3Hg^{II} as a function of pH^* . The value of ${}^2J({}^{19}Hg^{-1}H)$ was 260 Hz at $pH^*\approx 1$ for free CH_3Hg^{II} . This decreased to 205 Hz at about pH^* 8. However, for CH_3Hg^{II} -captopril, the value was 185 Hz in the range pH^* 1–9 which decreased to 172 Hz from pH^* 9 to 13. These results indicate that captopril binds to CH₃Hg^{II} forming a CH₃Hg^{II}-captopril complex up to pH* 9. At higher pH* the OH⁻ competes with captopril as shown in equation (1). 16-21,25-27 $$CH_3Hg-SR + OH^- \iff CH_3HgOH + RS^-$$ (1) The 13 C NMR chemical shifts of the HSCH₂CH (2 C) and HSCH₂ (3 C) resonances of captopril in the presence and absence of CH₃Hg^{II} are shown in Fig. 3. The resonances of the *cis* isomer were shifted more than those of the *trans* isomer. As noted in Table 1, very little changes are observed in the chemical shifts of other captopril resonances. Note that the chemical shifts of the 2 C and 3 C resonances at a 1:1 ratio CH₃Hg^{II}—captopril remained constant to about pH*9; at higher pH* the chemical shifts of these two resonances were shifted toward the free positions. The fractional concentrations of the two isomers were determined as a function of pH* by using the relative intensities of the two multiplet patterns in the δ 3.4–3.9 region of the ¹H NMR spectrum. ¹³ The fractional concentrations of free captopril and CH₃Hg^{II}–captopril (1:1) as a function of pH* are shown in Fig. 4 The equilibrium constants for the I \iff II Fig. 2 pH* Dependence of ${}^2J({}^{199}Hg_-{}^{1}H)$ for CH_3Hg^{II} in aqueous solutions of the compositions given in the legend to Fig. 1 Fig. 3 pH* Dependence of the 13 C NMR chemical shift of the C^2 (a) and C^3 resonances (b) of captopril in solutions containing (solid lines) 0.15 mol dm⁻³ CH₃Hg^{II}-captopril (1:1) and (dashed lines) 0.15 mol dm⁻³ captopril itself in 0.30 mol dm⁻³ NaNO₃ in D₂O equilibrium, $K_{eq} = [II]/[I]$, are given in Table 2 for free captopril (H_2A , HA^- and A^{2-} ions where H_2A = fully protonated molecule at low pH, $HA^- = CO_2^-$ deprotonated molecule at neutral pH, and A^{2-} = fully deprotonated molecule) and at a 1:1 ratio of CH_3Hg^{II} -captopril. #### Discussion The binding of captopril with zinc(II), cadmium(II), lead(II) and copper(II) has been reported. Since these studies were carried out by potentiometric titrations the *cis* and the *trans* isomers were not resolved. The interaction of captopril with gold(I) has also been reported recently. The chemical shift differences of the *cis* and the *trans* isomers bonded to Au^I were not resolved because of the overlapping of some resonances. Table 1 Carbon-13 NMR chemical shifts (ppm) of free captopril and CH₃Hg^{II}-captopril (1:1) at various pH* | Assignment | Free
captopril
at pH* 0.59 | CH ₃ Hg ^{II}
captopril
pH* 0.40 | Δ^{a} | Free
captopril
at pH* 7.45 | CH ₃ Hg ^{II} –
captopril
pH* 7.20 | Δ^{a} | Free captopril at pH* 12.30 | CH ₃ Hg ^{II} -
captopril
pH* 12.85 | Δ^{a} | |-------------------------|----------------------------------|---|--------------|----------------------------------|---|--------------|-----------------------------|--|--------------| | C ³ trans | 27.630 | 30.655 | +3.025 | 27.730 | 30.898 | +3.168 | 29.689 | 30.466 | +0.777 | | cis | b | 31.625 | | 27.560 | 31.161 | +3.610 | 29.101 | 30.089 | +0.988 | | C ² trans | 42.553 | 43.757 | +1.204 | 42.333 | 44.161 | +1.828 | 44.832 | 44.242 | -0.59 | | cis | 43.141 | 44.566 | +1.425 | 42.850 | 44.674 | +1.824 | b | 44.971 | | | CH ₃ trans | 16.898 | 17.095 | +0.197 | 16.901 | 17.338 | +0.437 | 16.751 | 17.310 | +0.559 | | cis | b | 17.634 | +0.736 | 16.750 | 17.175 | +0.425 | 16.089 | 16.933 | +0.844 | | CON trans | 177.153 | 177.069 | -0.084 | 176.505 | 176.823 | +0.318 | 178.476 | 177.000 | -1.476 | | cis | b | b | _ | 177.373 | b | b | 179.726 | b | - | | C, trans | 60.049 | 60.067 | +0.018 | 62.550 | 62.682 | +0.132 | 62.475 | 62.655 | +0.180 | | cis | b | 60.525 | +0.476 | 63.210 | 63.329 | +0.119 | 63.211 | 63.329 | +0.118 | | C _B trans | 29.836 | b | _ | 30.433 | 30.493 | +0.060 | 30.497 | 30.688 | +0.191 | | cis | 31.673 | b | _ | 32.190 | 32.190 | 0.000 | 32.261 | 32.165 | -0.096 | | C, trans | 25.204 | 25.155 | -0.049 | 25.130 | 25.130 | 0.000 | 25.131 | 25.101 | -0.030 | | cis | b | b | | 23.290 | 23.214 | -0.076 | 23.293 | 23.214 | -0.079 | | C_{δ} trans | 48.655 | 48.637 | -0.018 | 48.800 | 48.906 | +0.106 | 48.802 | 48.879 | +0.077 | | cis | 47.722 | 47.854 | +0.132 | 47.921 | 48.070 | +0.149 | 47.772 | 47.936 | +0.164 | | CO ₂ - trans | 177.006 | 176.638 | +0.632 | 180.534 | 180.827 | +0.293 | 178.402 | _ | | | cis | b | b | _ | b | b | _ | 179.729 | _ | _ | $[^]a\Delta$ = Chemical shift difference between free and bound captopril: +shift = low-field shift, -shift = high-field shift. b Resonance is either overlapped or not detected. Fig. 4 Fractional concentrations of the *trans* (I) and *cis* (II) isomers as a function of pH* determined by using the relative intensities of the two multiplet patterns in the δ 3.4–3.9 region of the 1 H NMR spectra. The points for the dashed lines are taken from ref. 13 (0.5 mol dm⁻³ captopril itself), the points for the solid lines from the 0.15 mol dm⁻³ CH₃Hg^{II}—captopril (1:1) in 0.30 mol dm⁻³ NaNO₃ in D₂O Nonetheless, captopril replaced thiomalate as a free ligand forming [Au(HA)₂] complex at a 1:2 ratio of Au¹-captopril at the physiological pH*. The pH dependence of the methyl resonance in the ¹H NMR spectrum of CH₃Hg^{II} is due to the titration of [Hg(CH₃)-(OH₂)]⁺ with OH⁻.²⁵⁻²⁷ When captopril was added to the CH₃Hg^{II} solution at a 1:1 ratio, the CH₃ resonance of CH₃Hg^{II} remained unshifted until pH* 9 and then titrated at higher pH*.²¹ The coupling constant ²J(¹⁹⁹Hg⁻¹H) also shows similar results which indicate that captopril forms a stable complex **Table 2** Equilibrium constants $K_{eq} = [II]/[I]$ of the *trans* (I) and *cis* (II) isomers of captopril itself^a and CH_3Hg^{II} -captopril at a 1:1 ratio^b | pН | Species | Captopril | CH ₃ Hg ^{II} -captopril | |-------|-----------------|-----------|---| | 0.59 | H_2A^c | 0.17 | 0.11 | | 7.43 | HA - | 0.69 | 0.64 | | 12.30 | A ²⁻ | 0.30 | 0.43 | $[^]a$ Values are taken from ref. 13. b This work. c For the definition of H_2A , HA^- and A^{2-} see the text. Table 3 Formation constants for methylmercury(11)—thiol complexes | Ligand | pK_{SH} | $\log K_{\rm f}$ | Ref. | |-------------------------|-----------|------------------|------| | Mercaptoacetic acid | 10.08 | 16.92 | 17 | | Mercaptoethanol | 9.62 | 16.12 | 17 | | N-Acetylpenicillamine a | 10.19 | 16.76 | 17 | | Mercaptosuccinic acid | 10.26 | 17.31 | 17 | | Captopril cis | 9.99 | 16.85 | b | | trans | 9.71 | 16.57 | b | | | | | | ^a Penicillamine = 3-mercaptovaline. ^b This work; the log K_f values are estimated by using log $K_f = pK + 6.86$ as given in ref. 17. which is in fast exchange. Beyond pH* 9 the OH competes with captopril as shown in equation (1). 16-21,25-27 Reid and Rabenstein ¹⁷ measured the formation constants for various thiols with CH_3Hg^{II} and proposed a general equation $\log K_f = pK_{SH} + 6.86$. Based on this, as noted in Table 3, we found the $\log K_f$ for the *cis* and *trans* isomers for captopril to be 16.85 and 16.57 respectively. The formation constants for other thiols are also compared. Fig. 5 shows the two different isomers bonded to CH_3Hg^{II} . two different isomers bonded to CH₃Hg^{II}. As noted in Table 1, the C³ and C² resonances for the *cis* isomer were shifted by 3.610 and 1.824 ppm and for the *trans* isomer 3.168 and 1.828 ppm respectively at the physiological pH*. The other resonances were shifted little compared to those of C³ and C². This indicates that CH₃Hg^{II} binds *via* the SH, consistent with other CH₃Hg^{II}—thiol systems. ^{16–21} It binds to the *cis* isomer strongly compared to the *trans* isomer as observed by the chemical shift differences. The 1 H coupling constant $^{2}J(^{199}\text{Hg}^{-1}\text{H})$ observed for CH₃Hg^{II}–captopril at neutral pH* is 184.0 Hz compared to the values for hydroselenoacetic acid and mercaptoacetic acid which are reported to be 16731 and $^{172.0}$ Hz. 17 The log $K_{\rm f}$ for Fig. 5 The *cis* and *trans* isomers of captopril bonded to CH₃Hg^{II} *via* the SH binding site these two ligands were reported to be 17.36^{31} and $16.92,^{17}$ respectively. This suggests that the smaller the coupling constants the stronger is the complex. In the present system, 2J decreased from 260 to 185 Hz at a 1:1 ratio of CH_3Hg^{II} –captopril at the physiological pH* which strongly indicates that CH_3Hg^{II} forms a stronger complex with captopril. The methyl resonance of CH_3Hg^{II} is in fast exchange with both isomers and therefore 2J was not resolved for these two isomers. The pK values for the CO_2^- group did not change significantly in the presence of CH_3Hg^{II} for either isomer. The K_{eq} show very little difference at pH* 0.4, 7.20 and 12.85. This indicates that the conformations of the *cis* and *trans* isomers along the peptide bond remain the same at a 1:1 ratio of CH_3Hg^{II} —captopril compared to captopril itself. The data presented here show that the *cis* isomer binds to CH₃Hg^{II} more strongly than does the *trans* isomer. This conclusion is based on the formation constants and chemical shift difference between the free and bound *cis* and *trans* isomers of captopril. # Acknowledgements This research was supported by the Research Committee of the King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia (CY/DRUG/124). I thank the Squibb Institute for Medical Research, Princeton, NJ for their generous gift of captopril and Professor D. L. Rabenstein, University of California, Riverside for providing research facilities and for helpful discussions. #### References - 1 M. A. Ondetti, B. Rubin and D. W. Cushman, *Science*, 1977, **196**, 441. 2 D. W. Cushman, H. S. Cheung, E. F. Sabo and M. A. Ondetti, - 2 D. W. Cushman, H. S. Cheung, E. F. Sabo and M. A. Ondetti, *Biochemistry*, 1977, 16, 5484. - 3 D. W. Cushman, H. S. Cheung, E. F. Sabo and M. A. Ondetti, *Prog. Cardiovasc. Dis.*, 1978, 21, 176. - 4 L. T. Skeggs, J. P. Kahn and N. P. Shumway, *J. Exp. Med.*, 1956, **103**, 295. - 5 L. T. Skeggs, F. E. Dorer, J. R. Kahn, K. E. Lentz and M. Levine, Am. J. Med., 1976, 60, 737. - 6 B. H. Migdalof, K. K. Wong, S. J. Lan, K. J. Kripalani and S. M. Singhvi, Fed. Proc., Fed. Am. Soc. Exp. Biol., 1980, 39, 757. - 7 M. F. R. Martin, F. McKenna, H. A. Bird, K. E. Surrall, J. S. Dixon and V. Wright, *Lancet*, 1984, 1, 1325. - 8 F. Sicuteri, Adv. Exp. Med. Biol., 1983, 156B, 1141. - 9 V. Madison and J. Schellman, Biopolymers, 1970, 9, 511. - 10 J. T. Gerig, Biopolymers, 1971, 10, 2435. - 11 C. A. Evans and D. L. Rabenstein, J. Am. Chem. Soc., 1974, 96, 7312. - 12 W. E. Stewart and T. H. Siddall III, Chem. Rev., 1970, 70, 517. - 13 D. L. Rabenstein and A. A. Isab, Anal. Chem., 1982, 54, 526. - 14 C. H. Hassall, A. Krohn, C. J. Moody and W. A. Thomas, *J. Chem. Soc.*, *Perkin Trans.* 1, 1984, 155. - 15 R. B. J. Simpson, J. Am. Chem. Soc., 1961, 83, 4717. - 16 R. S. Reid and D. L. Rabenstein, J. Am. Chem. Soc., 1982, 104, 6733 - 17 R. S. Reid and D. L. Rabenstein, Can. J. Chem., 1981, 59, 1505. - 18 D. L. Rabenstein, Acc. Chem. Res., 1978, 11, 100. - 19 D. L. Rabenstein and R. S. Reid, Inorg. Chem., 1984, 23, 1246. - 20 D. L. Rabenstein, J. Am. Chem. Soc., 1973, 95, 2797. - 21 D. L. Rabenstein and M. T. Fairhurst, J. Am. Chem. Soc., 1975, 97, 2086. - 22 D. L. Rabenstein, R. S. Reid and A. A. Isab, *Biochim. Biophys. Acta*, 1982, **696**, 53. - 23 D. L. Rabenstein, R. S. Reid and A. A. Isab, *J. Inorg. Biochem.*, 1983, 18, 241. - 24 P. K. Glasoe and F. A. J. Jong, J. Phys. Chem., 1960, 64, 188. - 25 T. L. Sayer, S. Backs, C. A. Evans, E. K. Millar and D. L. Rabenstein, Can. J. Chem., 1977, 55, 3255. - 26 D. L. Rabenstein and C. A. Evans, Bioinorg. Chem., 1978, 8, 107. - 27 D. L. Rabenstein, M. C. Tourangeau and C. A. Evans, Can. J. Chem., 1976, 54, 2517. - 28 M. A. Hughes, G. L. Smith and D. R. Williams, *Inorg. Chim. Acta*, 1985, 107, 247. - 29 G. L. Christie, M. A. Hughes, S. B. Rees and D. R. Williams, *Inorg. Chim. Acta*, 1988, **151**, 215. - 30 A. A. Isab, J. Inorg. Biochem., 1987, 30, 69. - 31 A. P. Arnold, K. S. Tan and D. L. Rabenstein, *Inorg. Chem.*, 1986, 25, 2433. Received 15th August 1990; Paper 0/03756G