Reaction of [WMe(CO)₃(η -C₅H₅)] with LiBHEt₃. Formation and Reactions of the Anionic Formyl *trans*-[W(CHO)Me(CO)₂(η -C₅H₅)]⁻ and the Anionic Hydrido Acyl *trans*-[WH(COMe)(CO)₂(η -C₅H₅)]⁻

J. Trevor Gauntlett, Brian E. Mann, Mark J. Winter* and Simon Woodward Department of Chemistry, The University, Sheffield S3 7HF, UK

Addition of LiBHEt₃ to [WMe(CO)₃(η -C₅H₅)] 5 at -70 °C results in the formation of the formyl *trans*-[W(CHO)Me(CO)₂(η -C₅H₅)]⁻ 7. In solution, this species exists as a mixture of two BEt₃ adducts and a BEt₃-free species. All the formyl species undergo chemical exchange at -50 °C. Warming of the reaction mixture to ambient temperature results in solutions containing the anionic hydrido acyl complex *trans*-[WH(COMe)(CO)₂(η -C₅H₅)]⁻ 6 isolable as a boron-free salt [Li(12-crown-4)₂][WH(COMe)(CO)₂(η -C₅H₅)] (12-crown-4 = 1,4,7,10-tetraoxacyclododecane). This moisture-sensitive anion gives [W(CO)₃(η -C₅H₅)]⁻ on exposure to water and undergoes hydride for halide (X) exchange on low-temperature treatment with CCl₄, CBr₄ or CHI₃ forming the reactive anions [WX(COMe)(CO)₂(η -C₅H₅)]⁻ 8-10. The major product of warming these halogenoacyl anions is 5. Addition of [Me₃O][BF₄] to boron-free solutions of [WI(COMe)(CO)₂(η -C₅H₅)]⁻ 10 results in the new carbene *trans*-[WI{=C(OMe)Me}(CO)₂(η -C₅H₅)] 11, while treatment with SiMe₃Cl followed by low-temperature filtration through silica gives the hydroxycarbene *trans*-[WI{=C(OH)Me}(CO)₂(η -C₅H₅)] 12.

The interesting feature of many reactions between metal carbonyl derivatives and sources of hydride is that the initial products are frequently formyl complexes $[M(CHO)L_n]$, such as $[Cr(CHO)(CO)_2\{P(OMe)_3\}(\eta-C_5Me_5)]$, $[Re(CHO)(PPh_3)(NO)(\eta-C_5H_5)]$, and $[Re_2(CHO)(CO)_9]^{-}$. Such complexes are important, in part, because of the relevance of formyls to CO reduction chemistry. One hydride source that has attracted particular attention is LiBHEt₃. One of its advantages is that after functioning as a source of hydride the only by-product is BEt_3 . In principle, this should be easily removable from the reaction mixture since it is volatile.

We reported previously ⁷ the reaction of [MoMe(CO)₃-(η -C₅H₅)] 1 with LiBHEt₃. The eventual result is the formation of an anionic acetaldehyde complex [Mo(CO)₂(MeCHO)(η -C₅H₅)]⁻ 2 (Scheme 1). The two characterized intermediates are the formyl [Mo(CHO)Me(CO)₂(η -C₅H₅)]⁻ 3 and the hydrido acyl [MoH(COMe)(CO)₂(η -C₅H₅)]⁻ 4. Since we required to establish the generality or otherwise of such reactions, we examined the analogous tungsten systems and therefore in this paper we report some observations on the reaction of [WMe(CO)₃(η -C₅H₅)] 5 with LiBHEt₃. Some aspects of this work are the subject of a preliminary communication.⁸

Results and Discussion

The reaction between LiBHEt₃ and [WMe(CO)₃(η -C₅H₅)] 5 in tetrahydrofuran (thf) solution proceeds at ambient temperature to form a single product identified as the anionic hydrido acyl [WH(COMe)(CO)₂(η -C₅H₅)]⁻ 6 (Scheme 1). If the reaction is carried out at -70 °C, and the mixture warmed towards ambient temperature, a single intermediate is observable in the reaction mixture (IR and NMR spectra). This is the formyl [W(CHO)Me(CO)₂(η -C₅H₅)]⁻ 7.

The Formyl [W(CHO)Me(CO)₂(η -C₅H₅)] $\overline{}$ 7.—Addition of LiBHEt₃ to a solution in thf of the tricarbonyl 5 at -70 °C leads to a single anionic dicarbonyl [ν_{CO} (thf, -70 °C): 1917m

and 1826s cm⁻¹]. The relative intensities of the carbonyl stretching bands are those of a single *trans* dicarbonyl. However, subtleties are revealed on monitoring the reaction by ¹H and ¹³C NMR spectroscopy.

As the LiBHEt₃ is supplied in undeuteriated thf, and BEt₃ by-products are produced in the reaction, useful ¹H NMR data are found only in those regions where thf and BEt₃ do not give signals. Reproducible spectra obtained by low-temperature mixing of [WMe(CO)₃(η-C₅H₅)] 5 and LiBHEt₃ show three high-frequency signals (Fig. 1). Such signals are indicative of metal formyl complexes.

Only one cyclopentadienyl resonance is observed $[\delta_H(thf, -70\,^{\circ}C): 5.05]$, while the methyl signal is obscured by BEt₃ resonances. The intensity ratio of the two outer formyl signals at δ_H 14.68 and 12.18 is constant in a number of experiments, while the strength of the central signal varies, depending on reactant concentrations and the batch of LiBHEt₃. Addition of a solution of BEt₃ in thf to the reaction mixture at $-60\,^{\circ}C$ causes the central resonance at δ_H 14.00 to disappear. Spin-saturation transfer experiments at $-50\,^{\circ}C$ show that all three formyl complexes undergo chemical exchange. Reinforcing this, the formyl signals also show a temperature-dependent reversible broadening (Fig. 1). Unfortunately lower temperature data acquisitions are not attainable owing to increasing viscosity in thf around $-80\,^{\circ}C$.

These observations are interpreted as follows. Hydride attack by LiBHEt₃ on the alkyl 5 gives the formyl 7 and BEt₃. Complexation of the evolved BEt₃ at the formyl oxygen of some 7 (represented by the central 1H NMR signal) gives two isomeric adducts with BEt₃, 7·BEt₃, represented by the two outer signals in the 1H NMR spectra. Addition of extra BEt₃ to the reaction solution complexes out the remaining 7 as 7·BEt₃. It is quite probable that the formyl group in uncomplexed 7 rotates very freely between the two forms 7a and 7b related by formyl orientation as indicated in Scheme 2. This motion is not frozen out at $-70\,^{\circ}$ C in the 1H NMR spectrum, although the signal is quite broad. However the spectra do not exclude the possibility that the formyl exists as just one of either 7a or 7b.

Slow interconversion of all 7 and 7·BEt₃ occurs at low temperature. There are at least two explanations for the two outer formyl signals. Neglecting steric preferences, the two signals assigned to 7·BEt₃ can be a consequence of the slow interconversion of 7a·BEt₃ with 7b·BEt₃ or 7a·BEt₃ with 7b·BEt₃ or 7a·BEt₃ with 7b·BEt₃ and 7b·BEt₃ with 7b·BEt₃ with 7a·BEt₃ with 7a·BEt₃ with 7a·BEt₃ with 7a·BEt₃ with 7a·BEt₃ with 7a·BEt₃ with 7b·BEt₃ (BEt₃-oxygen lone pair site interconversion, fast interconversion of 7a·BEt₃ with 7b·BEt₃ and 7a·BEt₃ with 7b·BEt₃. It is not possible to distinguish these pairs of possibilities on the NMR evidence available.

One would expect that the concentration of species such as 7b·BEt₃ would be low for steric reasons (clash of BEt₃ with cyclopentadienyl). This would mean that the tungsten-formyl rotation path would principally involve interconversion of 7a·BEt₃ with 7b·BEt₃ (fast 7a·BEt₃-7a·BEt₃ interconversion) while the BEt₃-oxygen lone pair site interconversion pathway would involve slow interconversion of 7a·BEt₃ with 7a·BEt₃ (fast 7a·BEt₃-7b·BEt₃ interconversion).

The above conclusions are reinforced by the 13 C NMR spectra. After initial mixing, the 13 C NMR spectrum at $-50\,^{\circ}$ C shows three cyclopentadienyl, three methyl and three carbonyl resonances. These signals are in addition to minor peaks assigned to traces of starting material $5\{\delta_{\rm C}[^2H_8]$ thf, $-50\,^{\circ}$ C): 93.4 $(\eta$ -C₅H₅), -34.0 (Me)} and $[W({\rm CO})_3(\eta$ -C₅H₅)] $^-$ [δ 88.8

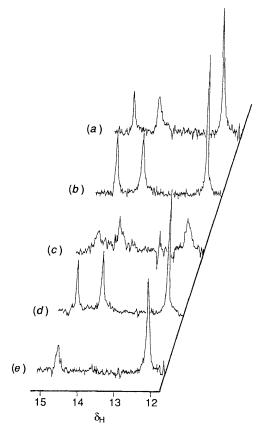


Fig. 1 Proton NMR spectrum of [W(CHO)Me(CO)₂(η -C₅H₅)]⁻ 7 in the formyl region. Conditions: (a) immediately after mixing reagents at $-70\,^{\circ}$ C, (b) warming to $-50\,^{\circ}$ C, (c) warming to $-30\,^{\circ}$ C, (d) recooling to $-50\,^{\circ}$ C and (e) after addition of BEt₃ at $-60\,^{\circ}$ C, spectrum recorded at $-60\,^{\circ}$ C

 $(\eta-C_5H_5)$]. These are assigned to 7, 7a-BEt₃ and 7b-BEt₃. These results back up the conclusions of the ¹H NMR experiments. Only two formyl signals are apparent, but probably two signals overlap at δ 268.5. Given the similar nature of

the complexes, such an overlap, while unfortunate, is not unlikely.

The presence of just two carbonyl stretches in the low-temperature IR spectrum is a consequence of overlapping signals for all the formyl rotamers. They overlap because of the broad nature of carbonyl IR spectra in thf and the very small effect the formyl orientation and BEt $_3$ complexation are expected to have on $v_{\rm CO}$.

The reaction of LiBHEt₃ with metal carbonyls is a recognized general route to metal formyls.1 However, little is written concerning the fate of the BEt, by-product. Formyl chemical shifts of complexes generated in this way are often dependent on BEt₃ concentration.¹ While such effects are frequently attributed to exchange processes such as in Scheme 2, direct observation of formyl adducts is rare. Surprisingly, there is no indication of BEt3 adduct formation by the analogous molybdenum formyl trans-[Mo(CHO)Me(CO)₂(η-C₅H₅)]⁻, 3.7 The neutral formyls cis- and trans- $[M(CHO)(CO)_2$ - $(PR_3)(\eta-C_5Me_5)$] (M = Cr or Mo; R = Ph or OMe) are known, but, again, there is no suggestion of adduct formation.^{2,10} There are a few reports of formyl boron adducts. 11,12 For instance, NaBH₄ reduction of [Fe(CO)₂-(PMe₃)(η-C₅Me₅)]⁺ results in BH₃ adducts of [Fe(CHO)- $(CO)(PMe_3)(\eta-C_5Me_5)$] in which it is felt that the $C(O\cdot BH_3)H$ formyl unit undergoes facile iron-formyl bond rotation.12 On the other hand, it is suggested that the NMR spectra of BF₃ adducts of cycloalkanones are interpreted by a process involving BF₃ exchange between the two sp² lone pair orbitals.13

Storage of concentrated solutions (ca. 150 mg cm⁻³) of the formyl 7 at -70 °C results in precipitation of a yellow powder. Removal of thf, washing with pentane, and pumping under vacuum at -35 °C gives a yellow powder, the [Li(thf)_n]⁺ salt of 7. Removal of solvents is slow at -35 °C and traces still remain after 4 h under vacuum. Warming to -10 °C while pumping removes the last of the pentane, but at this temperature the yellow powder converts to an oil, which then solidifies to a yellow solid. The solid-state IR spectrum of this solid (KBr disc) is identical to that of the [Li(thf)_n]⁺ salt of 6 (see below), indicating isomerization of the formyl 7. Warming thf solutions of the formyl 7 above -20 °C also results in rearrangement to the anionic hydrido acyl trans-[WH(COMe)-(CO)₂(η -C₅H₅)]⁻ 6 (Scheme 2). As a consequence of these properties of 7, no elemental analysis was obtained.

The Hydrido Acyl trans-[WH(COMe)(CO)₂(η -C₅H₅)]⁻6.—The isomerization of the formyl 7 into the hydrido acyl complex 6 is conveniently followed by variable-temperature IR spectroscopy. An identical solution is generated if the LiBHEt₃ is added to the alkyl 5 at room temperature, although in this case no intermediate is observed due to the rapidity of the reaction.

The 1H NMR spectrum of the reaction mixture shows single product cyclopentadienyl and methyl resonances $[\delta_H(thf): 4.94 (s, 5 H, \eta-C_5H_5)]$ and 2.25 (s, 3 H, Me) together with a clear hydride signal $(\delta_H - 6.18)$ which has ^{183}W satellites. Signals attributed to BEt₃ are also observed, together with a small peak whose variation with temperature confirms it to be $[Et_3B-H-BEt_3]^{-}$. Given the slight excess of LiBHEt₃ used during the formation of 6, its presence is not unexpected. The IR spectrum of 6 is characteristic of an anionic *trans* dicarbonyl and this is reinforced by the ^{13}C NMR spectrum, which shows a very high frequency acyl signal $[\delta_C(thf-[^2H_8]toluene): 286.4]$ and just a single CO resonance in addition to cyclopentadienyl and methyl signals.

Isolation of 6 as its $[\text{Li}(\text{thf})_n]^+$ salt is achieved by removal of the thf solvent under vacuum followed by washing with light petroleum. This yields a bright yellow highly reactive solid, apparently $[\text{Li}(\text{thf})_n][\text{WH}\{\text{C}(\text{O-BEt}_3)\text{Me}\}(\text{CO})_2(\eta-\text{C}_5-\text{H}_5)]$ (n=3-4). The proton NMR signals of this material are broad in CD₂Cl₂ both at ambient temperature and at $-50\,^{\circ}\text{C}$,

but integrations show one mole of BEt_3 per mole of 6. Satisfactory ^{13}C NMR spectra could not be obtained on this material in CD_2Cl_2 .

Addition of 1,4,7,10-tetraoxacyclododecane (12-crown-4) to the reaction mixture containing 6 causes no change in the IR spectrum, implying that 6 exists as solvent separated ion pairs in solution whereas changes in the carbonyl spectrum would have suggested that the lithium cation is bound to 6, probably by an isocarbonyl interaction. Removal of the thf and washing with Et₂O gives a pale yellow powder, the [Li(12-crown-4)₂] salt of 6 in good yield (78%). Alternatively, addition of LiBHEt₃ to the alkyl 5 dissolved in Et₂O in the presence of 12-crown-4 causes the immediate precipitation of the same salt in similar yield. This latter preparation is more convenient. Reproducible ¹H NMR spectra indicate that this salt does not contain BEt₃, and that there are two crown ether molecules per lithium cation. A very clear low-frequency hydride signal displays 183W satellites $[\delta(CD_2Cl_2): -6.22 \text{ (s, 1 H, WH, }^1J_{WH} \text{ 46 Hz})]$. It is relatively unusual for two 12-crown-4 ligands to associate with a lithium cation but a number of other examples are characterized crystallographically.15 Unfortunately, the poor crystallinity of [Li(12-crown-4)₂][WH(COMe)(CO)₂(η -C₅H₅)] prevented an X-ray crystallographic study.

Apart from the differences due to the 12-crown-4 and lack of BEt₃, the ¹H and ¹³C NMR spectra (Table 1) of isolated [Li-(12-crown-4)₂][WH(COMe)(CO)₂(η -C₅H₅)] are very similar to those of the reaction mixture and require little further comment. The negative-ion FAB mass spectrum confirms the relative molecular mass of the anion as 349. Satisfactory elemental analyses could not be obtained on samples of [Li(12-crown-4)₂][WH(COMe)(CO)₂(η -C₅H₅)] due to its rapid decomposition in air.

Often, the reactivity of $[Li(thf)_n]$ [WH(COMe)(CO)₂(η -C₅H₅)] produced *in situ* (and therefore containing BEt₃) is very similar to that of the $[Li(12\text{-crown-4})_2]^+$ salt, meaning that it is frequently not necessary to isolate the anion before further reaction. In whatever form handled, 6 is very moisture-sensitive. The consequence of water contamination or addition is the formation of $Li[W(CO)_3(\eta-C_5H_5)]$ [$\delta_H(CD_2Cl_2)$: 5.16 (s, 5 H, η -C₅H₅)]. Methane is evolved in the reaction and detected by GLC.

Hydrido acyl complexes are a rare class of compounds. Although accepted as intermediate in, for example, hydroformylation ⁵ and aldehyde decarbonylation reactions, ¹⁶ only a few examples have been isolated. A short report describes the preparations of *cis*-[ReH(COMe)(CO)₄] by the reaction of LiMe with [ReH(CO)₅] or by treatment of [Re(COMe)(CO)₅] with LiBHEt₃ followed by gentle warming at 32 °C.¹⁷ Other hydrido acyl complexes are generated by oxidative addition of aldehydes to co-ordinatively unsaturated metal complexes.¹⁸

Reactions of [WH(COMe)(CO)₂(η -C₅H₅)]⁻ 6.—The molybdenum analogue of 6, trans-[MoH(COMe)(CO)₂(η -C₅-H₅)]⁻ 4, undergoes rearrangement below 0 °C to give the aldehyde complex cis-[Mo(CO)₂(MeCHO)(η -C₅H₅)]⁻ 2.⁷ The tungsten hydrido acyl 6 shows no signs of converting to the hypothetical cis-[W(CO)₂(MeCHO)(η -C₅H₅)]⁻. Perhaps the formation of the tungsten-aldehyde linkage would not compensate thermodynamically for the loss of the W-H bond, expected to be stronger in 6 than in the molybdenum species 4.

The hydridoacyl 6 does demonstrate other reactions however. Anionic acyls such as [W(COPh)(CO)₅] are good sources of Fischer carbenes on reaction with alkylating agents.¹⁹ A similar reactivity for 6 on reaction with such reagents would lead to hydrido carbenes of the type [WH-{=CMe(OR)}(CO)₃(n-C₅H₅)].

 ${=CMe(OR)}(CO)_2(\eta-C_5H_5)]$. In fact, addition of $[Me_3O][BF_4]$ to reaction mixtures containing $[Li(thf)_n][WH(COMe)(CO)_2(\eta-C_5H_5)]$ leads only to the regeneration of 5. Attempted methylation of the $[Li(12-crown-4)_2]^+$ analogue leads to a mixture of some 5 and other very unstable, uncharacterized *cis* and *trans* dicarbonyls. The

Table 1 IR, ¹H and ¹³C NMR spectroscopic data for the complexes ^a

Compound	v_{CO}/cm^{-1}	$\delta_{\mathbf{H}}$	$\delta_{ m c}$
6 b	1907m, 1816s	4.94 (s, 5 H, η -C ₅ H ₅), 2.25 (s, 3 H, Me), -6.18 (s, 1 H, WH, $^{1}J_{WH}$ 44.5 Hz)	286.4 (COMe), 229.8 (CO), 89.8 (η-C ₅ H ₅), 54.5 (Me) ^c
6 ^d	1902m, 1803s e	5.10 (s, 5 H, η -C ₅ H ₅), 3.75 (s, 32 H, OCH ₂), 2.31 (s, 3 H, Me), -6.22 (s, 1 H, WH, $^{1}J_{WH}$ 46 Hz) ^{f}	295.2 (COMe), 230.0 (CO), 90.9 (η-C ₅ H ₅), 70.2 (OCH ₂), 54.6 (Me) ^g
7	1917m, 1826s h	14.68, 14.00, 12.18 (formyls, see text), 5.05 (s, 5 H, Me)	276.9, 268.5 (CHO); 227.3, 225.1, 221.4 (CO); 95.0, 93.2, 92.8 (η-C ₅ H ₅); -29.8, -30.0, -31.4 (Me)
8	1945m, 1846s	5.05 (s, 5 H, η -C ₅ H ₅), 2.60 (s, 3 H, Me)	
9	1943m, 1845s	4.95 (s, 5 H, η -C ₅ H ₅), 2.48 (s, 3 H, Me)	
10	1937m, 1846s	5.01 (s, 5 H, η -C ₅ H ₅), 2.47 (s, 3 H, Me)	
11	1979m, 1897s e	5.64 (s, 5 H, η -C ₅ H ₅), 3.94 (s, 3 H, OMe), 2.93 (s, 3 H, Me) ^j	299.8 (W=C), 218.4 (CO), 96.2 (η-C ₅ H ₅), 60.5 (OMe), 44.9 (Me) ^k
12	1976m, 1898s	12.65 (s, br, 1 H, OH), 5.65 (s, 5 H, η -C ₅ H ₅), 2.61 (s, 3 H, Me)	295.6 (W=C), 218.1 (CO), 94.4 (η-C ₅ H ₅), 47.2 (Me) ^k

^a In thf or thf-[²H₈]thf unless specified. ^b As [Li(thf)_n]⁺ salt. ^c In thf-[²H₈]toluene. ^d As [Li(12-crown-4)₂]⁺ salt. ^e In CH₂Cl₂. ^f In CD₂Cl₂. ^g In CD₃OD at -50 °C. ^b At -50 °C. ^c See Fig. 1, methyl signals obscured by BEt₃ signals. ^f In CDCl₃. ^k In [²H₆]acetone at -50 °C.

alkyl 5 is regenerated by hydride abstraction from 6, followed by retro alkyl insertion of the resulting intermediate [W(CO-Me)(CO)₂(η -C₅H₅)] (or its solvate).

One way to prevent hydride abstraction is, of course, to replace the hydride before alkylation. This is accomplished by the addition of CCl₄, CBr₄ or CHI₃ at $-80\,^{\circ}$ C to freshly generated solutions of 6, followed by warming towards ambient temperature. The result is hydride for halide exchange resulting in anionic halogenoacyls [WX(COMe)(CO)₂(η -C₅H₅)]⁻ (X = Cl, 8; Br, 9; or I, 10). This type of behaviour is quite well known for mononuclear hydride complexes and often serves to demonstrate the presence of labile hydride complexes.²⁰

Provided that the spectra are run quickly, it is possible to obtain ¹H NMR and IR data on these anionic acyls. The ¹H NMR spectrum after addition of CHI₃ to a solution of 6 shows four new signals associated with organotransition metal species. Two of these are associated with 10 [δ_H ([2H_8]thf): 5.01 (s, 5 H, η -C₅H₅) and 2.47 (s, 3 H, COMe)] and two with 5 $[\delta_{H}([^{2}H_{8}]thf): 5.51 \text{ (s, 5 H, } \eta\text{-}C_{5}H_{5}) \text{ and } 0.35 \text{ (s, 3 H, Me)}].$ A further singlet at δ_H 3.94 is assigned to CH_2I_2 and this is confirmed by spectra of authentic samples. The signals attributed to 5 grow in with time, replacing those due to 10. Rapidly recorded IR spectra of the reaction mixture indicate the anionic dicarbonyl 10 [$v_{CO}(thf)$: 1937m and 1846s cm⁻¹] which converts to the neutral tricarbonyl 5 [v_{CO}(thf): 2013s and 1917s cm⁻¹]. Clearly, the anion 10 loses I at ambient temperature and rearranges by a retro migratory insertion reaction to 5. It is worth noting that [MoMe(CO)₃(η -C₅H₅)] does not react with I under a number of different conditions and the tendency of 10 to iodide loss fits in with that result. The corresponding halides 8 and 9 are similarly characterized, although they are much less stable. Consequently, all subsequent preparations involving these halogeno acyl anions were performed with 10. In the cases where the anions 8-10 are produced in the presence of BEt3, it is not clear whether these anions are associated with BEt3 in solution. However, iodide for hydride exchange is also accomplished by treating [Li(12crown-4)₂][WH(COMe)(CO)₂(η-C₅H₅)] with CHI₃, in which case there is definitely no BEt₃ associated with the anion 10. The reactivity of 10 does vary according to whether BEt, is present in the solution.

Addition of [Me₃O][BF₄] to a solution of 10 generated from [Li(12-crown-4)₂][WH(COMe)(CO)₂(η -C₅H₅)] gives three products which are separable by chromatography. These are the starting material 5, traces of [WI(CO)₃(η -C₅H₅)], and the new carbene complex *trans*-[WI{=C(OMe)Me}(CO)₂(η -C₅H₅)] 11 in low and variable isolated yields up to 22%. The spectroscopic properties of this compound are clearly closely related to those of the known cyclic carbene complex *trans*-[WI{=C(CH₂)₃O}(CO)₂(η -C₅H₅) and require no comment.²¹

This alkylation reaction is clearly related to known syntheses of cis- and trans-[W(CN){=CMe(OR)}(CO)_2(\eta-C_5H_5)] by addition of [R₃O][BF₄] (R = Me or Et) to cis- and trans-[W(CN)(COMe)(CO)_2(η -C₅H₅)]^{-.22} The reason for the low and variable isolated yields of 11 is that as 10 is being formed it converts to 5, and this competes with the alkylation step. This competition will depend on precise instantaneous concentrations of reagents and temperatures. If BEt₃ is present during the alkylation step, as when 6 is prepared in situ, the only isolated products are 5 and [WI(CO)₃(η -C₅H₅)]. The reason for the differing reactivity may be linked to co-ordination of BEt₃ at the acyl of 10 in such solutions and so blocking that alkylation site.

One might expect that the carbene 11 would also form on addition of LiMe to $[WI(CO)_3(\eta-C_5H_5)]$ (which should give 10), followed by alkylation with $[Me_3O][BF_4]$. This does not happen. Instead, formation of $[W(CO)_3(\eta-C_5H_5)]^-$ and some 5 is observed.

Addition of HBF₄•OEt₂ at −65 °C to solutions containing 10 leads to a neutral trans dicarbonyl [$v_{CO}(thf)$: 1976m and 1898s cm⁻¹] identified as the hydroxy carbene [WI{=C-(OHMe) $\{(CO)_2(\eta-C_5H_5)\}$ 12. This reaction is not synthetically useful as many other uncharacterized products are also formed. A much better approach to 12 is the addition of SiMe₃Cl to 10 at low temperature followed by low-temperature filtration through a silica plug. Addition of SiMe₃Cl results in [WI- ${=C(OSiMe_3)Me}(CO)_2(\eta-C_5H_5)$] 13, which desilylates on silica to form 12 as a brown oil in an overall crude yield of 94%. As a consequence of this high lability, 13 is characterized by its IR spectrum only. The hydroxy carbene of 12 is indicated by the high-frequency 13 C NMR signal at $\delta_{\rm C}$ 295.6. The OH group is indicated by a broad singlet in the ¹H NMR spectrum at δ_H 12.65 but the position and line shape of this signal are dependent on the degree of water contamination of the NMR solvent.

The hydroxy carbene 12 decomposes to uncharacterized complex mixtures in solvents other than the or acetone. The reactive nature of hydroxy carbenes is recognized. The OH groups of hydroxy carbenes are known to behave as strong acids, 23 while there is also a tendency for hydroxycarbene ligands to be lost as aldehydes, 24

Experimental

Infrared spectra were measured using a Perkin-Elmer 257 instrument, calibrated using the 1601.4 cm⁻¹ absorption of polystyrene film, or on a Perkin-Elmer 1710 Fourier-transform instrument linked to a Perkin-Elmer 4600 Data Station. Variable-temperature IR spectra were obtained on the Perkin-Elmer 1710 instrument using a purpose built IR cell. Proton NMR spectra were recorded using a Bruker WP-80SY (80)

MHz), Perkin-Elmer R34 (220 MHz), Bruker AM-250 (250 MHz) or Bruker WH-400 (400 MHz) spectrometer. Carbon-13 spectra were obtained using Bruker AM-250 (62.9 MHz) and Bruker WH-400 (100.6 MHz) instruments. Mass spectra were recorded using Kratos MS25 (electron impact mode), or Kratos MS80 [fast atom bombardment (FAB) mode] spectrometers.

All reactions were performed under nitrogen or argon atmospheres using deoxygenated solvents dried with an appropriate agent: thf from sodium-benzophenone, CH_2Cl_2 from CaH_2 , and light petroleum (b.p. 40–60 °C throughout) from LiAlH₄. Diethyl ether was sodium dried. Brockman Activity II alumina and silica were used as supplied. The crown ether 12-crown-4 was dried as an approximately 1.0 mol dm⁻³ diethyl ether solution over CaH_2 . The compound [WMe-(CO)₃(η -C₅H₅)] 5 was prepared by literature methods.²⁰ The boron compounds BEt₃ (Aldrich) and LiBHEt₃ (Aldrich 'Super Hydride') were used as solutions in thf as supplied and titrated periodically.

Preparation of Solutions containing [WH(COMe)(CO)₂(η -C₅H₅)]⁻ 6.—A solution of LiBHEt₃ (2.0 cm³, 2.0 mmol) was added to a solution of [WMe(CO)₃(η -C₅H₅)] **5** (0.5 g, 1.43 mmol) in dry thf (50 cm³) at room temperature. The solution darkened slightly from its initial bright yellow colour more or less instantly to form a solution containing the anion [WH(COMe)(CO)₂(η -C₅H₅)]⁻ **6** [ν _{CO}(thf); 1907m and 1816s cm⁻¹7.

Preparation of [Li(12-crown-4)₂][WH(COMe)(CO)₂(η-C₅H₅)].—Addition of 12-crown-4 as a solution in Et₂O (3.4 cm³, 3.1 mmol) to a solution of 6 prepared as above resulted in no change in colour, or to the IR spectrum. Removal of solvent under vacuum gave an oily yellow solid. Washing with Et₂O (4 × 10 cm³), and drying under vacuum, gave [Li(12-crown-4)₂][WH(COMe)(CO)₂(η-C₅H₅)] as a pale yellow powder (0.79 g, 78%, m.p. 44–48 °C decomp.), which can be handled briefly in air. Similar yields are obtained by adding LiBHEt₃ to [WMe(CO)₃(η-C₅H₅)] dissolved in Et₂O containing 12-crown-4, in which case the [Li(12-crown-4)₂]⁺ salt of 6 precipitates directly from the reaction mixture [Found: M^- (negative ion FAB) 349. C₉H₉O₃W requires M^- 349].

NMR Experiments monitoring the Reaction of [WMe-(CO)₃(η -C₅H₅)] 5 with LiBHEt₃.—In a typical experiment, freshly sublimed [WMe(CO)₃(η -C₅H₅)] 5 (0.07 g, 0.20 mmol) was placed in an NMR tube and dissolved in thf (0.30 cm³). After cooling to -70 °C, a solution of LiBHEt₃ (0.25 cm³, 0.25 mmol) was layered slowly onto the thf solution of 5, and the sample mixed with a thin glass rod after the LiBHEt₃ solution had cooled. Proton NMR spectra were recorded unlocked in the continuous-wave mode at 220 MHz, or at 250 MHz (Fourier transform) with solvent presaturation techniques. Carbon-13 NMR spectra at 100.6 MHz were obtained in mixed thf–[2 H₈]thf solvents. Additionally, the composition of all 13 C NMR samples was examined further by obtaining proton spectra immediately after acquisition of the 13 C NMR data.

Preparation of Solutions containing the Anion [WI(COMe)- $(CO)_2(\eta-C_5H_5)$] $^-$ 10.—Addition of CHI₃ (0.45 g, 1.14 mmol) to a thf (40 cm³) solution of [Li(12-crown-4)₂][WH(COMe)- $(CO)_2(\eta-C_5H_5)$] (0.80 g, 1.13 mmol) at -90 °C followed by warming to ambient temperature resulted in a brown solution whose IR spectrum contains four bands attributed to [WI- $(COMe)(CO)_2(\eta-C_5H_5)$] $^-$ [$v_{CO}(thf)$: 1937m, 1846s cm⁻¹] and the tricarbonyl 5 [$v_{CO}(thf)$: 2013s and 1917s cm⁻¹]. It is essential to use the solution promptly, since conversion of [WI- $(COMe)(CO)_2(\eta-C_5H_5)$] to 5 is quite rapid at room temperature. These solutions are free of BEt₃.

Solutions containing BEt₃ were prepared as follows. A solution of LiBHEt₃ (1.2 cm³, 1.2 mmol) was added to a solution

of [WMe(CO)₃(η -C₅H₅)] (0.3 g, 0.86 mmol) in dry thf (30 cm³) at room temperature to form a solution containing the anion [WH(COMe)(CO)₂(η -C₅H₅)]⁻. Iodoform (0.35 g, 0.88 mmol) was added after cooling the solution to -70 °C, after which the IR spectrum of the reaction mixture confirmed the formation of [WI(COMe)(CO)₂(η -C₅H₅)]⁻ [ν _{CO}(thf): 1937m and 1849s cm⁻¹] together with some 5 [ν _{CO}(thf): 2013s and 1917s cm⁻¹].

Progress of the reaction was monitored by NMR techniques by placing [WMe(CO)₃(η -C₅H₅)] 5 (0.07 g, 0.20 mmol) in an NMR tube, dissolving it in thf (0.30 cm³) and adding LiBHEt₃ (0.25 cm³, 0.25 mmol). The tube was cooled to -90 °C and an excess of CHI₃ added. The ¹H NMR spectra were then recorded at 220 MHz as the solution approached ambient temperature.

Preparation of Solutions containing the Anion [WCl(COMe)- $(CO)_2(\eta-C_5H_5)$] 9 or [WBr(COMe) $(CO)_2(\eta-C_5H_5)$] 8.— The halides 8 and 9 are available in similar fashion by using appropriate quantities of CBr₄ or CCl₄. They are much more inclined to lose halide than does 10 and are therefore synthetically less useful. The NMR monitoring experiments were carried out in similar fashion to those of 10.

Preparation of [WI $\{=C(OH)Me\}(CO)_2(\eta-C_5H_5)$] 12.—A solution containing [Li(12-crown-4)₂][WH(COMe)(CO)₂(η-C₅- H_5] (0.46 g, 0.60 mmol) in dry thf (30 cm³) was treated at -70 °C with CHI₃ (0.3 g, 0.8 mmol) to form [WI(COMe)- $(CO)_2(\eta-C_5H_5)$] 10 as above. After addition of SiMe₃Cl (0.1 cm³, 0.8 mmol), the resulting solution was allowed to warm to 0 °C (1 h) after which the IR spectrum showed just two bands assigned to [WI{= $C(OSiMe_3)Me$ }($CO)_2(\eta-C_5H_5)$] 13 [$v_{CO}(thf)$: 1927m and 1899s cm⁻¹]. The reaction mixture was filtered through silica (4 \times 2 cm) at -50 °C to give an orange solution with an IR spectrum [$v_{CO}(thf)$: 1977m and 1899s cm⁻¹] of the product [WI $\{=C(OH)Me\}(CO)_2(\eta-C_5H_5)$] 12. The solvent was removed under vacuum to give crude 12 as an air-sensitive brown oil (0.30 g, 94%). The air sensitivity of the product precluded elemental analysis but the NMR spectra indicate the oil to be substantially pure. Attempted further purification led only to decomposition [Found: $(M - CH_4)^+$ 460. $C_9H_9IO_3W$ requires M 476]. The highest observed ion in the mass spectrum corresponds to $[WI(CO)_3(\eta-C_5H_5)]^+$, i.e. loss of methane. The IR spectrum of the bulk sample before and after the mass spectrum was recorded showed that the sample was still intact. The compound is too sensitive to record the IR spectrum as a KBr disc in order to identify the v_{OH} stretch.

Similar yields are obtained from solutions of 6 generated from addition of LiBHEt₃ (0.8 cm³, 0.8 mmol) to [WMe(CO)₃(η -C₅H₅)] (0.2 g, 0.6 mmol) without work-up to remove BEt₃, and followed by the above method.

Preparation of $[WI{=C(OMe)Me}(CO)_2(\eta-C_5H_5)]$ 11.—A solution containing [Li(12-crown-4)₂][WH(COMe)(CO)₂(η-C₅H₅)] (0.8 g, 1.1 mmol) in dry thf (40 cm³) was treated at -70 °C with CHI₃ (0.45 g, 1.2 mmol) to form [WI- $(COMe)(CO)_2(\eta-C_5H_5)]^-$ 10 as above. The solution was allowed to warm to -50 °C and [Me₃O][BF₄] (0.5 g, 3.4 mmol) added. The reaction mixture was allowed to warm to room temperature slowly (1.5 h), during which time the colour changed from yellow to orange. Removal of the solvent, followed by chromatography on Al₂O₃ (12 × 2 cm) provided [WMe(CO)₃(η -C₅H₅)] 5 (0.19 g, 50%) and a trace of $[WI(CO)_3(\eta-C_5H_5)]$ upon elution with light petroleum-CH₂Cl₂ (2:1). Elution with CH₂Cl₂ gave [WI{=C(OMe)Me}-(CO)₂(η-C₅H₅)] 11 as a dark oil which crystallized from CH₂Cl₂-hexane as orange microcrystals (0.12 g, 22%), m.p. 83-84 °C decomp. (Found: C, 24.5; H, 2.7%; M^+ , 490. C₁₀H₁₁IO₃W requires C, 24.5; H, 2.3%; M, 490).

Reaction of [WI(CO)₃(η-C₅H₅)] with LiMe and [Me₃-O][BF₄].—A solution of LiMe in Et₂O (0.8 cm³, 1.2 mmol)

was added to a solution of [WI(CO)₃(η -C₅H₅)] (0.5 g, 1.08 mmol) in dry thf (50 cm³) at $-80\,^{\circ}$ C and the solution allowed to warm to $-50\,^{\circ}$ C. The IR spectrum at room temperature indicated only the formation of some 5 [ν_{CO} (thf): 2013s and 1917s cm⁻¹] and [W(CO)₃(η -C₅H₅)] [ν_{CO} (thf): 1900s, 1801s, 1777s and 1715s cm⁻¹]. An excess of [Me₃O][BF₄] (0.4 g, 2.7 mmol) was added and the reaction allowed to come to room temperature slowly. Removal of the solvent followed by chromatography on Al₂O₃ (10 × 1 cm) provided [WMe-(CO)₃(η -C₅H₅)] (0.13 g, 35%) as the only significant product on elution with light petroleum–CH₂Cl₂ (2:1).

Reaction of [WH(COMe)(CO)₂(η -C₅H₅)] ⁻ 6 with Water.— A solution of LiBHEt₃ (0.7 cm³, 0.5 mmol) was added to a solution of [WMe(CO)₃(η -C₅H₅)] (0.17 g, 0.5 mmol) in dry thf (10 cm³) at room temperature. A little water (0.05 cm³, 2.78 mmol) was added at room temperature. The reaction mixture darkened immediately and a gas (methane, GLC) was evolved. The IR spectrum [ν_{CO} (thf): 1900s, 1801s, 1777m and 1715s cm⁻¹] indicated the formation of Li[W(CO)₃(η -C₅H₅)]. Iodine (0.13 g, 0.5 mmol) was added and the reaction stirred for 10 min. Removal of solvent followed by chromatography on Al₂O₃ (10 × 1 cm) gave traces of 5 (0.002 g, 1%) and [WI(CO)₃(η -C₅H₅)] (0.039 g, 17%).

Acknowledgements

We should like to thank the SERC for funding and for the award of research studentships (to J. T. G. and S. W.).

References

- 1 J. A. Gladysz, Adv. Organomet. Chem., 1982, 20, 1.
- 2 P. Leoni, A. Landi and M. Pasquali, J. Organomet. Chem., 1987, 321, 365
- 3 W. Tam, G.-U. Lin, W.-K. Wong, W. A. Kiel, V. K. Wong and J. A. Gladysz, J. Am. Chem. Soc., 1982, 104, 141.
- 4 W. Tam, M. Marsi and J. A. Gladysz, Inorg. Chem., 1983, 22, 1413.
- 5 J. P. Collman, L. S. Hegedus, J. R. Norton and R. G. Finke, *Principles and Applications of Organotransition Metal Chemistry*, University Science Books, Mill Valley, California, 2nd edn., 1987, and refs. therein
- 6 J. A. Gladysz, G. M. Williams, W. Tam, D. L. Johnson, D. W. Parker and J. C. Selover, *Inorg. Chem.*, 1979, 18, 553.
- 7 J. T. Gauntlett, B. F. Taylor and M. J. Winter, J. Chem. Soc., Dalton Trans., 1985, 1815; J. Chem. Soc., Chem. Commun., 1984, 420; J. T. Gauntlett and M. J. Winter, Polyhedron, 1986, 5, 451.

- 8 J. T. Gauntlett, B. E. Mann, M. J. Winter and S. Woodward, J. Organomet. Chem., 1988, 342, C5.
- 9 F. A. Cotton and G. Wilkinson, in Advanced Inorganic Chemistry, Wiley-Interscience, New York, 5th edn., 1988, pp. 1034–1040 and refs. therein; A. R. Manning, J. Chem. Soc. A, 1967, 1984; P. Kubacek, R. Hoffmann and Z. Havlas, Organometallics, 1982, 1, 180.
- 10 P. Leoni, E. Aquilini, M. Pasquali, F. Marchetti and M. Sabat, J. Chem. Soc., Dalton Trans., 1988, 329; A. Asdar and C. Lapinte, J. Organomet. Chem., 1987, 327, C33.
- 11 J. R. Sweet and W. A. Graham, J. Am. Chem. Soc., 1982, 104, 2811.
- 12 D. Catheline, C. Lapinte and D. Astruc, C.R. Acad. Sci. Paris, Ser. II, 1985, 301, 479; C. Lapinte, D. Catheline and D. Astruc, Organometallics, 1988, 7, 1683.
- 13 A. Fratiello, R. Kubo and S. Chow, *J. Chem. Soc.*, *Perkin Trans.* 2, 1976, 1205.
- 14 D. J. Saturnino, M. Yamauchi, W. Y. Clayton, R. W. Nelson and S. G. Shore, *J. Am. Chem. Soc.*, 1975, **97**, 6063; R. K. Hertz, H. D. Johnson and S. G. Shore, *Inorg. Chem.*, 1973, **12**, 1875; C. A. Brown, *J. Organomet. Chem.*, 1978, **156**, C17 and refs. therein.
- 15 H. Hope, M. M. Olmstead, P. P. Power and X. Xu, J. Am. Chem. Soc., 1984, 106, 819; M. M. Olmstead and P. P. Power, J. Am. Chem. Soc., 1985, 107, 2174; R. A. Bartlett and P. P. Power, Organometallics, 1986, 5, 1916.
- C. F. Lochow and R. G. Miller, J. Am. Chem. Soc., 1976, 98, 1281;
 J. W. Suggs, J. Am. Chem. Soc., 1978, 100, 640;
 R. E. Campbell,
 C. F. Lochow, K. P. Vora and R. G. Miller, J. Am. Chem. Soc., 1980, 102, 5824.
- 17 K. P. Darst and C. M. Lukehart, J. Organomet. Chem., 1979, 171, 65.
- E. F. Landvatter and T. B. Rauchuff, Organometallics, 1982, 1, 506;
 C. A. Ghilardi, S. Midollini, S. Moneti and A. Orlandini, J. Chem. Soc., Dalton Trans., 1988, 1833;
 C. A. Tolman, S. D. Ittel, A. D. English and J. P. Jesson, J. Am. Chem. Soc., 1979, 101, 1742.
- 19 E. O. Fischer, U. Schubert, W. Kleine, H. Fischer, K. P. Darst, C. M. Lukehart, L. T. Warfield, D. J. Darensbourg, R. R. Burch and J. A. Frolich, *Inorg. Synth.*, 1978, 19, 164, and refs. therein.
- 20 T. S. Piper and G. Wilkinson, J. Inorg. Nucl. Chem., 1956, 3, 104.
- 21 N. A. Bailey, P. L. Chell, C. P. Manuel, A. Mukhopadhyay, D. Rogers, H. E. Tabbron and M. J. Winter, J. Chem. Soc., Dalton Trans., 1983, 2397.
- 22 T. Kruck, M. Hofler and L. Liebig, Chem. Ber., 1972, 105, 1174; T. Kruck and L. Liebig, Chem. Ber., 1973, 106, 3661.
- 23 K. R. Grundy and W. R. Roper, J. Organomet. Chem., 1981, 216, 255.
- 24 K. P. Darst, P. G. Lenhert, C. M. Lukehart and L. T. Warfield, J. Organomet. Chem., 1980, 195, 317.

Received 28th November 1990; Paper 0/05372D