Phosphorus-31 and Selenium-77 Nuclear Magnetic Resonance Spectra of Phosphorus-poor Phosphorus Selenide Compounds Hans-Peter Baldus, Roger Blachnik, *. Peter Loennecke and Bruce W. Tattershall *. b ^a Anorganische Chemie, FB Biologie/Chemie, Universität Osnabrück, D-4500 Osnabrück, Germany The compounds P_3Se_4X (X = I, Br, Cl, SC_2H_5 , SC_5H_{11} or SC_6H_5) have been made as phosphorus-poor analogues of the corresponding compounds α - or β - $P_4E_3X_2$ (E = S or Se), in which a PX unit has been replaced by Se. Analysis of ³¹P and (in part) ⁷⁷Se NMR spectra of the P_3Se_4X compounds has shown remarkable correspondence of the coupling constants and chemical shifts between the P_3Se_4X and α - $P_4S_3X_2$ series of compounds. Phosphorus-31 and ⁷⁷Se NMR spectra of α - $P_4Se_3l_2$ are reported for comparison. Further replacement of a PX unit by Se gives the ultimate phosphorus-poor cluster compound P_2Se_5 , for which a synthesis from the elements and full NMR data are reported. This sought after higher selenide of phosphorus is thus a phosphorus-poor molecule with concatenated selenium, rather than a selenium-rich structure with exocyclic selenium. The interconversion of optical isomers of the P_3Se_4X halides (X = I, Br or Cl), by skeletal rearrangement on the NMR time-scale, has been studied at several temperatures, yielding kinetic data. Phosphorus chalcogenides generally have molecular structures containing an approximate tetrahedron of phosphorus atoms. Edges of the tetrahedron may be bridged by chalcogen atoms. or remain as formal phosphorus-phosphorus bonds. Until recently, the only well known derivatives of these compounds containing additional, monofunctional ligands attached to the phosphorus atoms were the α - and β -P₄E₃X(Y) series 1 and 2 respectively (E = S or Se; X and Y are halogen, pseudohalogen or various similar groups), $^{1-4}$ of which the β series is generally thermally unstable with respect to the α . The place of bridging chalcogen atoms may be taken by other difunctional groups bonding through, e.g., silicon [in P₄(SiMe₂)₃]⁵ or further phosphorus [in P₄(PMe)₃],6 but except for the replacement of phosphorus by arsenic,7 the vertices of the tetrahedra have been occupied by phosphorus. Thus the normal minimum phosphorus content has been four atoms per molecule. The first phosphorus-poor analogue of these structures was P₃Se₄I 3 (X = I), in which an additional selenium atom took the place of a PI unit at a vertex of the approximate P4 tetrahedron of P₄Se₃I₂. The compound P₃Se₄I can be considered, e.g. for the purpose of rationalising its NMR parameters, as an analogue either of α -P₄Se₃I₂ or of β -P₄Se₃I₂, depending on whether Se_c or Se_d is thought of as replacing a PI unit. The ³¹P NMR spectrum of P₃Se₄I was of immediate interest because the compound was found to exist in solution in CS2 as its two optical isomers, interconverting by a skeletal rearrangement reaction on the NMR time-scale at room temperature. We now report satisfactory preparative routes to P_3Se_4I , and substitution reactions to yield P_3Se_4Br , P_3Se_4Cl and solutions containing $P_3Se_4(SR)$ ($R=C_6H_5$, C_2H_5 or C_5H_{11}). This has allowed not only a study of variations in NMR chemical shifts and coupling constants for the P_3Se_4 skeleton, on substitution, comparable to analogous work on the α - P_4S_3 skeleton, ^{4.9} but also an insight into how the rate of its isomerisation reaction depends on the exocyclic substituent. Replacement of the remaining PI unit of P₃Se₄I by a further selenium atom would yield the molecule in this series containing the least possible number of phosphorus atoms, P₂Se₅ 4. We report its preparation by direct reaction of the elements, ¹⁰ and its formation as a decomposition product of solutions of P₃Se₄I. ## **Results and Discussion** Triphosphorus Tetraselenide Iodide.—The identification by X-ray crystallography of P_3Se_4I as a minor by-product in the preparation of α - $P_4Se_3I_2$ by melting together an equimolar mixture of P_4Se_3 and iodine ⁸ led us to seek a more directed preparation. Reaction of red phosphorus, grey selenium and iodine, in a melt, in the atomic ratio 3:4:1 required by the formula of P_3Se_4I , led to a much improved yield (46%). The course of the reaction is unknown, but we have also found that in solution in CS_2 , while iodine reacts with P_4Se_3 alone to give β - $P_4Se_3I_2$, ¹ it reacted with a solution containing both P_4Se_3 and selenium, in the ratio required by equation (1), to give $$3 P_4 Se_3 + 7 Se + 2 I_2 \longrightarrow 4 P_3 Se_4 I \tag{1}$$ P₃Se₄I in 52% yield. The product, crystallising as black-red needles, could be separated from other components on account of its relatively low solubility. Triphosphorus Tetraselenide Bromide and Chloride.-The ^b Department of Chemistry, The University, Newcastle upon Tyne NE1 7RU, UK 2644 J. CHEM. SOC. DALTON TRANS. 1991 | Table 1 | Iterative fitting of NMR spectra of α-l | $P_aSe_aI_a$ 1 (E = Se: X = Y | = 1). P ₂ Se ₂ X 3 (X = L | Br or Cl) and PaSe, 4 | |----------|--|---|--|-----------------------| | i abie i | Tierative litting of Inivia Spectra of a-1 | $ADC_{3}I_{2}I_{3}I_{4}U_{4} - DC_{1}A - I_{4}$ | -1 , Γ_3 $\cup \Gamma_4$ \wedge \supset $(\Lambda - 1)$ | BI OF CITAIN F 20C 4 | | | ⁷⁷ Se at | | Fraction of transitions observed, for | | | Post moon square | |---|---------------------|------------------|---------------------------------------|----------------|------------------|--| | Compound | position | $\overline{P_A}$ | P _B | P _c | ⁷⁷ Se | Root mean square (r.m.s.) deviation/Hz | | α-P ₄ Se ₃ I ₂ | _ | 12/12 | 12/12 | | | 0.69 | | | a | 23/24 | 0 | | 16/16 | 0.58 | | | b | 18/32 | 32/48 | | 19/26 | 0.19 | | P ₃ Se ₄ I | _ | 4/4 | 4/4 | 4/4 | | 0.02 | | | a | 8/8 | 0 | 5/8 | 0 | 0.69 | | | b | 0 | 4/8 | 4/8 | 0 | 0.58 | | | c | 0 | 0 | 6/8 | 0 | 0.41 | | | d | 7/8 | 4/8 | 0 | 4/8 | 0.69 | | P ₃ Se ₄ Br | | 4/4 | 4/4 | 4/4 | | 0.01 | | | a | 8/8 | 4/8 | 8/8 | 7/8 | 0.20 | | | b | 8/8 | 8/8 | 8/8 | 7/8 | 0.23 | | | c | 8/8 | 4/8 | 8/8 | 8/8 | 0.20 | | | d | 8/8 | 4/8 | 0 | 4/8 | 0.16 | | P ₃ Se ₄ Cl | | 4/4 | 4/4 | 4/4 | | 0.01 | | | a | 8/8 | 5/8 | 6/8 | 8/8 | 0.29 | | | b | 4/8 | 8/8 | 8/8 | 7/8 | 0.25 | | | c | 8/8 | 0 | 5/8 | 8/8 | 0.24 | | | d | 8/8 | 4/8 | 0 | 5/8 | 0.44 | | P_2Se_5 | a | | | 4/4 | 4/4 | 0.08 | | | c | | | 8/8 | 6/6 | 0.29 | bromide P₃Se₄Br could be made in the same way as the iodide P₃Se₄I, by heating together stoichiometric quantities of the elements. Alternatively, the bromide or the chloride could be made from the iodide: stirring a solution of the iodide with a suspension of silver halide in CS2, as in the preparation of the corresponding α -P₄S₃ halides 1 (E = S; X = Y = Br or Cl),¹¹ gave the purest products, but at the lower temperature (0 °C) necessary to avoid decomposition of the P₃Se₄ skeleton, the rate of substitution was very low. Identification of P₃Se₄X 3 (X = Br or Cl) was by detailed comparison of their NMR parameters (see below) with those of the known P₃Se₄I, as well as by comparison of IR spectra. Use of soluble (SnEt₃Br or SnMe₃Cl) or slightly soluble (HgBr₂) halide-exchange reagents gave solutions containing P₃Se₄X suitable for NMR studies, in a few hours instead of many days, although the formation of poorly soluble by-products made these methods unattractive for the preparation of isolated products. The ³¹P-³¹P coupling constants for P₃Se₄Br were the same to within experimental error, irrespective of the method of preparation, and hence of the presence of other reaction components in the solution. Phosphorus-31 NMR chemical shifts showed only slight variations, but the skeletal rearrangement reaction of P₃Se₄Br made using HgBr₂ proceeded at an obviously higher rate $(k_r = 13 \text{ s}^{-1} \text{ at } 270 \text{ K})$ than for P_3Se_4Br made using either AgBr or $SnEt_3Br$ $(k_r = 1 \text{ s}^{-1}, \text{ see below})$. It is interesting that this rate of rearrangement could be affected, probably by weak complexation of the bromine atom by dissolved mercury compounds, without a pronounced effect on coupling constants or chemical shifts. An attempt to force complex formation by P₃Se₄Cl, by addition of excess HgCl₂, led to complete decomposition to PCl₃ and insoluble, unidentified products. Diphosphorus Pentaselenide.—The decomposition of solutions of P_3Se_4I in CS_2 over several weeks at room temperature, led to the formation of α - $P_4Se_3I_2$ and the new binary selenide P_2Se_5 4, in a reaction which can probably be represented by the equilibrium in equation (2). The compound P_2Se_5 , initially $$2 P_3 Se_4 I \Longrightarrow P_2 Se_5 + \alpha P_4 Se_3 I_2$$ (2) postulated to explain its singlet main ³¹P NMR spectrum and the appearance of its molecular ion in the electron impact (EI) mass spectrum of the mixture, was positively identified (see below) by comparison of its NMR parameters, obtained from the ^{31}P and ^{77}Se NMR spectra of its ^{77}Se isotopomers, with those of the P_3Se_4 halides 3 (X = Cl, Br or I), and those of α - $P_4Se_3I_2$ which are also reported here. A direct preparation of P₂Se₅ was then achieved by hightemperature combination of the elements. Procedures have been described previously for making P₂Se₅¹² or P₄Se₁₀, ¹³ but while these materials were amorphous solids of unknown structure, which could not be dissolved without reaction, extra annealing and extraction stages have now produced a molecular compound that can be recrystallised. It formed black-red crystals which were sparingly soluble in CS₂ to give straw-coloured solutions. Monteil and Vincent¹³ preferred the formula P₄Se₁₀ for their product, and gave some IR evidence that it contained one-co-ordinate, exocyclic selenium atoms, corresponding to a structure analogous to that of P₄S₁₀. Our product showed an IR absorption at 500 cm⁻¹, as assigned by Monteil and Vincent ¹³ to P=Se stretching, but only of medium intensity, which increased on exposure of the sample to moist air. Kudchadker et al.12 used the formula P2Se5, but found that their product would react with alcohols to give oxygen diesters of diselenophosphoric acid, in which phosphorus(v) carried a one-co-ordinate selenium atom. More recently, 14 magic angle spinning solid-state NMR has shown that phosphorus-poor P-Se glasses can best be described in terms of an equilibrium [equation (3)] between three- and four-co-ordinate phosphorus $$PSe_{3/2} + Se \Longrightarrow Se=PSe_{3/2}$$ (3) centres,forwhich $K = [Se=PSe_{3/2}]/[PSe_{3/2}][Se] = 0.85 \pm 0.05$ (atom fraction)⁻¹. The Se atom in equation (3) represents 'selenium atoms in excess of a $PSe_{3/2}$ stoichiometry, assumed to engage in Se–Se bonding.' Clearly, our extracted product could not have a P_4S_{10} -like structure, since ⁷⁷Se-containing isotopomers of this molecule would constitute AB_3X (exocyclic ⁷⁷Se) or A_2B_2X (endocyclic ⁷⁷Se) nuclear spin systems, whose NMR spectra would be quite different from those observed. Molecular P_2Se_5 may have been formed in previous work, but remained undiscovered because of lack of foreknowledge of how to extract, handle and identify it: the mass spectrum listed by Monteil and Vincent ¹³ is very similar to that measured by us for recrystallised P_2Se_5 , and can reasonably be assigned to ionisation products of molecular P_2Se_5 , together with some free selenium. Monteil and Vincent ¹³ used a maximum reaction temperature of 250 °C in preparing ' P_4Se_{10} ,' and claimed that Table 2 NMR parameters for α -P₄Se₃I₂ 1 (E = Se; X = Y = I), P₃Se₄X 3 (X = I, Br or Cl) and P₂Se₅ 4 | Compound | α -P ₄ Se ₃ I ₂ | P_3Se_4I | P ₃ Se ₄ Br | P ₃ Se ₄ Cl | P_2Se_5 | |--|---|-----------------|-----------------------------------|--|------------| | T/\mathbf{K} | 297 | 240 | 270 | 297 | 297 | | (-) C !' | | | | | | | (a) Coupling con | istants (Hz)" | | | | | | $(i)^{31}P^{-31}P$ | | | | | | | $^{1}J(\mathbf{P_{A}P_{B}})$ | -239.7(3) | -234.43(2) | -245.76(1) | -254.70(1) | | | $^{2}J(P_{A}P_{C})$ | 87.2(4) | 120.99(2) | 117.85(1) | 115.74(1) | 181.0(2) | | $^{2}J(P_{B}P_{C})$ | 21.4(2) | 41.10(2) | 43.13(1) | 44.91(1) | | | $^3J(P_BP_D)$ | 5.3(4) | | | | | | $(ii)^{31}P^{-77}Se_a$ | | | | | | | $^{1}J(P_{A}Se_{a})$ | -279.6(2) | -315.4(6) | -317.4(1) | -316.6(2) | | | $^{1}J(P_{C}Se_{a})$ | . , | -219.8(8) | -215.6(1) | -213.2(2) | -243.49(6) | | $^2J(P_BSe_a)$ | 6.0(2) | | 19.7(1) | 22.2(2) | , , | | (iii) ³¹ P- ⁷⁷ Se _b | | | | | | | $^{1}J(P_{R}Se_{b})$ | -285.41(7) | -299.6(10) | -309.0(1) | -318.5(2) | | | $^{1}J(P_{C}Se_{b})$ | -207.76(8) | -273.6(8) | -271.5(1) | -271.2(2) | | | $^{2}J(P_{A}Se_{b})$ | 13.0(1) | · / | 8.8(2) | 9.8(3) | | | $(iv)^{31}P^{-77}Se_c,^{31}$ | P- ⁷⁷ Se ₄ | | | | | | $^{1}J(P_{A}Se_{d})$ | u . | -191.7(5) | -192.8(1) | -199.5(4) | | | $^{1}J(P_{C}Se_{c})$ | | -287.3(4) | -284.0(1) | -282.3(2) | -283.6(3) | | $^{2}J(P_{A}Se_{c})$ | | 207.5(1) | 16.4(1) | 17.0(2) | 14.7(7) | | $^{2}J(P_{C}Se_{d})$ | | 4.2(9) | 5.0(2) | 5.4(8) | (/) | | $^{2}J(P_{B}Se_{d})$ | 48.55(7) | 71.2(8) | 74.0(2) | 73.1(4) | | | $^{3}J(P_{B}Se_{c})$ | | | -7.7(2) | -7.9(2) | | | (b) Chemical shif | its (ppm) ^b | | | | | | | | 90.49 | 05.12 | 00.40 | | | $\delta(P_A)$ | 105.25
126.15 | 80.48
113.61 | 85.13
132.97 | 88.48
142.33 | | | $\delta(P_B)$
$\delta(P_C)$ | 120.13 | 125.06 | 124.32 | 122.99 | 104.95 | | $\delta(\mathbf{Se_a})$ | -598.65 | 125.00 | -534.39 | - 540.92 | -408.24 | | $\delta(Se_h)$ | -744.96 | | -466.72 | -458.79 | 400.24 | | $\delta(Se_c)$ | | -411.74 | -458.00 | -481.50 | -388.28 | | $\delta(Se_d)$ | | -662.81 | -716.81 | -751.23 | | | (c) Secondary iso | otope shifts (ppb) ^c | | | | | | • | | 7(0) | 6.1(5) | ************************************** | | | $^{1}\Delta P_{A}(Se_{a})$ | 6(1) | 7(2) | 6.1(7) | 6(1) | 4 ((4) | | $^{1}\Delta P_{C}(Se_{a})$
$^{1}\Delta P_{B}(Se_{b})$ | 5.8(4) | 5(3) | 6.4(7) | 3(1) | 4.6(4) | | $^{1}\Delta P_{B}(Se_{b})$
$^{1}\Delta P_{C}(Se_{b})$ | 3.8(4)
4.7(4) | 10(3)
4(3) | 6.2(8)
5.3(8) | 6.9(9)
4.2(9) | | | $^{1}\Delta P_{A}(Se_{d})$ | 7.7(7) | 2(3) | 4.7(6) | 4(2) | | | $^{1}\Delta P_{c}(Se_{c})$ | | 8(2) | 5.9(7) | 6(1) | 4(2) | | _ ~ ((CC) | F 21= | ~(-) | | | | ^a Standard deviations (σ) in parentheses. ^{b 31}P NMR shifts relative to 85% H_3PO_4 — H_2O ; ⁷⁷Se NMR shifts relative to saturated H_2SeO_3 — H_2O ; all ⁷⁷Se shifts measured at 297 K. ^c Relative to main ³¹P NMR spectrum shifts, *i.e.* to average shifts for all Se isotopomers, but excluding those containing any ⁷⁷Se. at higher temperatures irreversible polymerisation took place. Kudchadker et al. 12 and ourselves used temperatures of 450 and 400 °C respectively, but in our method this was followed by very long annealing (four months) at 100 °C, just above the glass-transition temperature of the mixture. Assignment of NMR Spectra.—The main ³¹P NMR spectra of selenium isotopomers not containing ⁷⁷Se, of the compounds P_3Se_4X 3 (X=I, Br, Cl, SC_2H_5 , SC_5H_{11} or SC_6H_5) were readily observed and analysed, initially as first-order spin systems, the hand analysis being followed in each case by iterative fitting using computer programs NUMARIT¹⁵ or PANIC.¹⁶ Fitting data are shown in Table 1 and results in Tables 2 and 3. The main ³¹P NMR spectrum parameters for α -P₄Se₃I₂, initially analysed as an AA'MM' spin system, were confirmed similarly (Tables 1 and 2).³ The rate of isomerisation of the P_3Se_4 skeleton increased in the order $P_3Se_4Cl < P_3Se_4Br < P_3Se_4I$ (see below), and while ⁷⁷Se satellites in the ³¹P NMR spectrum of P_3Se_4Cl could be observed at 297 K, it was necessary to study those of P_3Se_4Br and P₃Se₄I at 270 and 240 K respectively, when their isomerisation reactions were just sufficiently slowed down. Marginal solubility of the compounds at low temperatures made these satellite spectra extremely difficult to distinguish from noise (after accumulation over 16 h), while useful ⁷⁷Se NMR spectra could be obtained only at ambient temperature (during 64 h accumulations), limiting observable ⁷⁷Se transitions to those invariant in the exchange. Insolubility was not a major problem in the case of α-P₄Se₃I₂, but many of the ⁷⁷Se satellite peaks were overlaid by the non-first-order ³¹P main NMR spectrum. These limitations are shown in Table 1 in terms of the fractions of transitions observed with sufficient certainty for inclusion in the iterative fitting, and were responsible for the omission of some of the smaller ³¹P-⁷⁷Se couplings and secondary isotope shifts from Table 2. The main 3 P NMR spectrum of P_2Se_5 was a readily observed singlet at δ 104.95, surrounded by the four strong lines of the satellite spectrum due to isotopomers **4c** (^{77}Se present as Se_c) (ABX spin system) and the two lines of the satellite spectrum due to isotopomers **4a** (A_2X spin system). Only after 2646 J. CHEM. SOC. DALTON TRANS. 1991 Table 3 NMR parameters for $P_3Se_4(SR)$ 3 (X = SR) where $R = C_2H_5$, C_5H_{11} or C_6H_5 | Compound | $P_3Se_4(SC_2H_5)$ | $P_3Se_4(SC_5H_{11})$ | $P_3Se_4(SC_6H_5)$ | |----------------------------------------|--------------------------------|-----------------------|--------------------| | (a) ³¹ P- ³¹ P C | Coupling constants (Hz) | ā | | | $^{1}J(P_{A}P_{B})$ | -286.6 | -288.6 | -280.3 | | $^{2}J(P_{A}P_{C})$ | 115.4 | 114.4 | 115.9 | | $^2J(P_BP_C)$ | 39.5 | 37.2 | 39.7 | | (b) 31P Chem | ical shifts (ppm) ^b | | | | $\delta(P_{\Delta})$ | 79.5 | 77.5 | 81.2 | | $\delta(P_B)$ | 125.4 | 125.0 | 125.0 | | $\delta(P_C)$ | 116.5 | 114.0 | 116.7 | ^a Standard deviations (σ) in parentheses. ^b Relative to 85% H₃PO₄-H₂O. long accumulations (as above) using saturated solutions, could all the ³¹P and ⁷⁷Se transitions due to isotopomers **4c** be found, allowing all three coupling constants to be determined (Table 2). The ⁷⁷Se triplet of isotopomers **4a** was barely distinguishable from noise, but the correct assignment of the selected peaks was borne out by the excellent r.m.s. deviation obtained in fitting it (Table 1). The measured ratio of integrals in the ³¹P NMR spectrum for isotopomers **4c** and **4a** was 4.02:1 (expected ratio 4:1). Of the four sets of isotopomers of P₂Se₅ containing two ⁷⁷Se nuclei, isotopomers **4cd** (⁷⁷Se present as Se_c and Se_d) and isotopomers **4bd** constituted AA'XX' spin systems, differing practically only in the values of their ⁷⁷Se-⁷⁷Se coupling constants. The two strongest peaks in the ³¹P NMR spectra of these isotopomers were therefore coincident, and had enough combined intensity to be clearly visible in the best experimental spectra. $^{31}P^{-31}P$ Coupling Constants.—Within the P_3Se_4 halide series, only $^{1}J(P_AP_B)$ changed markedly, becoming more negative with increasing electronegativity of the halogen (Table 2), and still more negative on substitution of alkylthio- or arylthio-groups (Table 3). The changes closely paralleled those for the $\alpha\text{-}P_4S_3$ halides I (E = S; X = Y = I, Br or Cl) 4 and thioalkylates and thioarylates I (E = S; X = Y = SC $_2H_5$ or SC $_6H_5$), 17 constant differences of 9.3–8.5 or 2.2–2.1 Hz being observed between corresponding members of the respective series. The changes in ${}^{2}J(P_{A}P_{C})$ between $P_{3}Se_{4}X$ compounds were about half of those between the corresponding α -P₄S₃ halides 1 (E = S; X = Y = I, Br or Cl), but in the same sense. In the unsymmetric compounds $\alpha - P_4 S_3 X(Y)$ 1 (E = S; $X \neq Y$), $^2J(P_AP_C)$ has been shown to depend approximately equally on the two substituents X and Y.^{4,9} The changes within the P_3Se_4 halide series, where there was only one substituent, were very similar to those within the P_4S_3 cyanide halides 1 (E = S; X = I, Br or Cl; Y = CN), where only one substituent was changed. Despite this similarity of differences, the actual values of $^{2}J(\hat{P}_{A}P_{C})$ [and of $^{2}J(\hat{P}_{B}P_{C})$] were much more positive for the P_3Se_4 skeleton than for α - P_4E_3 skeletons (E = S or Se). The presence of the larger Se_c in P_3 Se₄I, instead of P_D I in α - P_4 Se₃I₂, caused increased bond angles at Se_a and Se_b, ^{3.8} which transmitted the couplings $^2J(P_AP_C)$ and $^2J(P_BP_C)$; an increased bond angle has been shown to be associated with more positive transmitted ${}^2J({}^{31}P{}^{-31}P)$ couplings. Replacement of the remaining P_BI unit in P₃Se₄I by Se to give P₂Se₅ was found to cause an even larger increase in ${}^2J(P_AP_C)$ (Table 2). Signs of $^{31}P_{-}^{-77}Se$ Coupling Constants.—All the ^{1}J coupling constants were assumed to be negative, in accord with previous results. 19 Positive signs could be established for $^{2}J(P_{B}Se_{d})$ and $^{2}J(P_{A}Se_{b})$ in the necessarily non-first-order spin system of α - $P_{4}Se_{3}I_{2}$. The non-bonded distance $P_{B}\cdots Se_{d}$ is known to be less than the sum of the van der Waals radii, 3 and the coupling $^{2}J(P_{B}Se_{d})$ was probably dominated by a through-space mechanism, which generally leads to positive $^{2}J(^{31}P_{-}^{-31}P)$ couplings, 20 and presumably also to positive $^2J(^{31}P^{-77}Se)$ couplings. The magnitude of $^2J(P_BSe_d)$ in α - $P_4Se_3I_2$ was greater than might have been expected for through-bond coupling. For the P₃Se₄ halides, each set of isotopomers containing ⁷⁷Se at a particular skeletal position constituted an ABCX spin system, but in contrast to the P₄E₃ compounds, the phosphorus part of the spin system was sufficiently first order that it was practically impossible to find the sign of the ³¹P-⁷⁷Se coupling constants from the relative success of iterative fitting. However, some other information was available. The coupling ${}^{2}J(P_{B}Se_{d})$ had an even larger value in P₃Se₄I than in α-P₄Se₃I₂, while the measured $P_B \cdots Se_d$ distance was practically the same in both compounds.⁸ This implies a positive sign for ${}^2J(P_BSe_d)$ in P_3Se_4I too. That ${}^2J(P_BSe_d)$ and ${}^1J(P_ASe_d)$ were of opposite sign in both P₃Se₄I and P₃Se₄Br, could be proved because ⁷⁷Se NMR spectra, at temperatures at which the sketetal exchange was taking place on the NMR time-scale, showed sharp ⁷⁷Se_d peaks only for those transitions which were separated by $J(P_BSe_d) + {}^{1}J(P_ASe_d)$ and were hence invariant to the exchange of roles of P_A and P_B (see below). Since the magnitudes of the couplings could be measured at low temperatures in the P_B or P_A regions respectively, the relationship between their signs could be obtained. The sign of ${}^2J(P_ASe_c)$ was opposite to that of ${}^1J(P_CSe_c)$, and therefore positive, for the necessarily non-first-order ABX spin system of P_2Se_5 , so the very similar ${}^2J(P_ASe_c)$ couplings in P_3Se_4Br and P_3Se_4Cl were also positive. The smaller, though geometrically similar, couplings ${}^2J(P_CSe_d)$ in the P_3Se_4 halides were assumed positive by analogy, as were ${}^2J(P_ASe_b)$, where the signs were confirmed by analogy with α - $P_4Se_3I_2$. The coupling ${}^3J(P_BSe_c)$ in P_3Se_4Br was of opposite sign to ${}^2J(P_ASe_c)$, and therefore negative, again shown by the extra sharpness of peaks separated by ${}^3J(P_BSe_c) + {}^2J(P_ASe_c)$ in the Se_c multiplet at 297 K (estimated k_r for the exchange = 15 s⁻¹). The analogous ${}^{31}P_{-}^{31}P$ coupling ${}^3J(P_BP_D)$ is positive in the α - P_4S_3 halides 1 (E = S; X = Y = I, Br or Cl) but is negative in all other symmetric α - P_4S_3 compounds 1 (E = S; X = Y) for which it has been reported. 4.9 Most doubt remains about the sign of ${}^2J(P_BSe_a)$. This was unobtainable for α - $P_4Se_3I_2$, where the satellite spectrum due to isotopomers $\mathbf{1a}$ (E = Se, X = Y = I) was not resolved from the main spectrum in the P_B region. If the atoms P_C , Se_b and Se_c in the P_3Se_4 halides 3, or P_C , Se_b and P_D in α - $P_4Se_3I_2$, though not constituting a formally bonded three-membered ring, are considered analogous to the basal P_3 ring in $[P_7H]^{2-}$, 20 then if $^2J(P_BSe_d)$ is positive because of through-space lone-pair overlap (see above), $^2J(P_BSe_a)$ should be negative. Magnitude of $^{31}P^{-77}Se$ Coupling Constants.—Just as $^{2}J(P_{A}P_{C})$ became more positive with increasing bond angle at Se_{a} (see above), the average of the two ^{1}J couplings to Se_{a} became less negative (-279.6, -267.6 and -243.49 Hz for α -P₄Se₃I₂, P₃Se₄I and P₂Se₅ respectively) (Table 2), again supporting previous conclusions for P₄E₃ compounds. ¹⁸ About this average for the P₃Se₄ halides, there was a balancing of the two couplings: ¹J(P_ASe_a) became more negative than in α -P₄Se₃I₂, as ${}^{1}J(P_{C}Se_{a})$ became much less negative. For couplings to the diselenide bridge nuclei, the situation was reversed: ${}^{1}J(P_{C}Se_{c})$ was much more negative than ${}^{1}J(P_{A}Se_{d})$ in the P_3Se_4 halides, attaining approximately the value found for ${}^1J(P_cSe_c)$ in P_2Se_5 , while ${}^1J(P_ASe_d)$ was similar in value to ${}^{1}J(P_{A}Se_{d})$ in α - $P_{4}Se_{3}I_{2}$ [tabulated as ${}^{1}J(P_{C}Se_{b})$]. These variations seem connected mostly with changes in environment of the P_C nucleus in going from α - $P_4Se_3I_2$ to the P_3Se_4 halides: ${}^1J(P_BSe_b)$ altered relatively little, while ${}^1J(P_CSe_b)$ became, surprisingly, much more negative [resulting in the reversal of the order ${}^{1}J(P_{C}Se_{b}) > {}^{1}J(P_{C}Se_{a})$]. As might be expected, ${}^{1}J(P_{B}Se_{b})$ was noticeably dependent on the exocyclic ligand attached to P_B, becoming more negative with more electronegative halogen to an extent, coincidently, very similar to that for the ³¹P-³¹P couplings $^{1}J(P_{A}P_{B})$ (see above). It was surprising that $^{2}J(P_{B}Se_{d})$ in the $P_{3}Se_{4}$ halides was insensitive to the substituent. Chemical Shifts.—The shift of P_B, carrying the exocyclic substituent, moved to higher frequency for the P₃Se₄ halides, with more electronegative halogen, the intervals being quite similar to those observed for corresponding α -P₄S₃X(CN).⁴ The average shifts of the bridgehead nuclei P_A and P_C (δ 102.77, 104.72 and 105.74 for P_3Se_4I , P_3Se_4Br and P_3Se_4Cl respectively) were close to the values for α -P₄Se₃I₂ (δ 105.25) and for P_2Se_5 (δ 104.95). The variation in these averages was about two-thirds of that within the α - P_4S_3 dihalide series, presumably for reasons similar to those discussed above for the coupling ²J(P_AP_C). Clearly there was a balancing of these bridgehead shifts somewhat similar to the balancing of the couplings ${}^{1}J(P_{A}Se_{a})$ and ${}^{1}J(P_{C}Se_{a})$ described above: as $\delta(P_{A})$ moved to more positive frequency with more electronegative substituents, this was partly balanced by a decrease in $\delta(P_c)$. Compared with α -P₄Se₃I₂, the increased value of δ (P_C) in the P₃Se₄ halides may be attributed to the deshielding effect of the extra, electronegative adjacent selenium atom; the decrease in the value of $\delta(P_A)$ then followed. Shifts of Se_a and particularly Se_b reflected the increase in bond angles at these atoms, on going from α -P₄Se₃I₂ to the P₃Se₄ halides, in accord with previous findings for P₄E₃ molecules. ¹⁸ The shifts of the diselenide bridge nuclei Se_e and Se_d in the P₃Se₄ halides were unexpectedly more sensitive to the exocyclic substituent than were those of the monoselenide bridge nuclei. Secondary Isotope Shifts.—Fitting of 77Se satellite spectra in the ³¹P region yielded ³¹P NMR chemical shifts which differed slightly from those found for the main ³¹P NMR spectra. The secondary isotope shifts thus found (Table 2) were generally positive, because the atomic mass of ⁷⁷Se is slightly less than the weighted average of the masses of the remaining isotopes. Values of $^{1}\Delta$ were typically in the range 4–7 ppb, while $^{2}\Delta$ was rarely significantly non-zero. Results in these ranges were useful confirmations of the correct assignment of satellite spectra, but were rarely sufficiently precise for further chemical conclu- The Skeletal Exchange of P₃Se₄ Compounds.—Changes in main and satellite 31P NMR spectra of P₃Se₄I and P₃Se₄Br with temperature, and the appearance of their ⁷⁷Se spectra, were consistent with intramolecular skeletal rearrangement in which P_A and P_B exchanged roles. Atom Se_d of the diselenide bridge was connected alternatively to PA or PB, while the halogen ligand alternated between connection to \bar{P}_B or P_A respectively. The result of the rearrangement was interconversion of the two optical isomers of the compound. Atoms P_C, Se_c and Se_d did not change their roles, so some transitions of their NMR multiplets were visible at all temperatures: even though Sed changed its connectivity in the rearrangement, in either optical isomer it was connected to a bridgehead phosphorus atom. In contrast, although Se_a and Se_b remained connected between P_C and P_A or P_B respectively, their roles changed along with the change in roles of P_A or P_B . Lineshape simulation using the program DNMR3 21 of parts of the NMR spectra which showed maximum change at each temperature, yielded rate constants for the exchange. The following observations for P₃Se₄I were for a ³¹P operating frequency of 121.5 MHz. At 240 K (estimated $k_r = 4$ s-1) all 31P intensities were almost those predicted for a static system, using NUMARIT. At 250 K ($k_r = 11 \text{ s}^{-1}$) the centre peaks of the P_C main multiplet had broadened, while the outer peaks [separated by the sum of $J(P_AP_C)$ and $J(P_BP_C)$, which were thus shown to have the same sign] remained sharp. The P_A and P_B multiplets showed slight broadening, but this was sufficient for most of their satellite peaks to become invisible. At 260 K $(k_r = 35 \text{ s}^{-1})$ and 270 K $(k_r = 90 \text{ s}^{-1})$ the satellites of P_C had disappeared, except for those due to ⁷⁷Se_c. [Since both P_C and Se_c retained their roles in the exchange, these peaks were visible at all temperatures: fitting at 297 K gave ${}^{1}J(P_{c}Se_{c})$ of -286.1(1) Hz; the change of coupling constant with temperature (cf. Table 2) was similar to that found for endocyclic ${}^{1}J({}^{31}P{-}^{31}P)$ in α - $P_{4}S_{3}$ compounds. 22 The satellites of P_{C} due to ${}^{77}Se_{d}$ were obscured by the main spectrum at all temperatures.] By 285 K ($k_r = 300$ s⁻¹) the centre peaks of the P_C multiplet had collapsed, being replaced by a central peak, as PA and PB started to appear equivalent; the $J(P_BP_C)$ splitting of the P_B multiplet had disappeared, but all four peaks of the PA multiplet were still just visible. At 285 K and higher temperatures, satellites of P_C appeared at a splitting corresponding to the average of ${}^{1}J(P_{C}Se_{a})$ and ${}^{1}J(P_{C}Se_{b})$. While at high temperatures the main spectrum of P_C appeared as a triplet, because both positions P_A and P_B, rendered equivalent by the exchange, were occupied by spin $\frac{1}{2}$ nuclei, this spectrum was further split only into a doublet in the satellite spectrum due to Se_a and Se_b, since only one of those positions was occupied at a time by ⁷⁷Se, although the positions were rendered equivalent and showed an averaged coupling to P_C. This satellite spectrum had twice the intensity of that due to $^{77}\mathrm{Se_c}$. At 297 K ($k_r = 800 \, \mathrm{s^{-1}}$) the P_A multiplet had lost all structure, while the $J(P_A P_B)$ splitting of the P_B multiplet was barely discernible. In the $^{77}\mathrm{Se}$ NMR spectrum (57.3 MHz), the Se_a and Se_b absorptions had collapsed so as to be insufficiently visible for chemical shift measurement. The Se multiplet appeared as an intense doublet $[^{1}J(P_{C}Se_{c})]$, further split by $|^{2}J(P_{A}Se_{c}) + {}^{3}J(P_{B}Se_{c})|$ [2.7(2) Hz], and the Se_d multiplet as a doublet $[^{1}J(P_{A}Se_{d}) + {}^{2}J(P_{B}Se_{d})]$ further split by $^2J(P_cSe_d)$. At 315 K $(k_r = 2600 \text{ s}^{-1})$ all structure of the P_B multiplet had been lost, but coalescence to a single peak for PA and P_B had not yet been reached. The compound P₃Se₄Br exchanged more slowly than P₃Se₄I $(k_r = 1 \text{ s}^{-1} \text{ at } 270 \text{ K}; 30 \text{ s}^{-1} \text{ at } 305 \text{ K})$, so measurement of rates could be made only by simulating the P_C multiplet. At 297 K, the Se_a and Se_b multiplets, and Se_d peaks not separated by ${}^{1}J(P_{A}Se_{d}) + {}^{2}J(P_{B}Se_{d})$, were visible, besides the peaks seen for P_3Se_4I . Evidence for exchange of P_3Se_4Cl could be seen only at high temperatures ($k_r = 5 \text{ s}^{-1}$ at 360 K), while P_3Se_4 thioalkylates and thioarylates showed no evidence for exchange at temperatures up to 370 K. Fitting of rates gave $\Delta H^{\ddagger} = 52.4(6) \text{ kJ mol}^{-1} \text{ and } \Delta S^{\ddagger} =$ -13(2) J K⁻¹ mol⁻¹ for P₃Se₄I, and $\Delta H^{\ddagger} = 66(4)$ kJ mol⁻¹ and $\Delta S^{\ddagger} = 0(12) \text{ J K}^{-1} \text{ mol}^{-1} \text{ for } P_3 Se_4 Br.$ The single rate constant obtained for P_3Se_4Cl corresponded to $\Delta G^{\ddagger} = 84 \text{ kJ mol}^{-1}$. It was interesting that exchange was observed for P₃Se₄I but not for α -P₄Se₃I₂, despite the similar distance P_B · · · Se_d (see above) corresponding to the bond made in the exchange mechanism. Analogous fluxionality for the α -P₄E₃X(Y) compounds 1 would probably result in inversion at the phosphorus, P_D, taking the place of Se in P₃Se₄I, relative to the new bridging selenium, so the product would be the asymmetric invertomer of the starting material, rather than its optical isomer, and ΔG would not be identically zero for the rearrangement. While NMR spectra have been assigned to such asymmetric invertomers in the β-P₄S₃X(Y) series, ^{17,23} no fluxionality, analogous to that in P_3Se_4I , has yet been reported for any $P_4E_3X(Y)$ compound. The distance $P_B \cdot \cdot \cdot Se_d$ was probably similar throughout the P_3Se_4 halide series, since the mainly non-bonded coupling $^2J(P_BSe_d)$ had similar values (Table 2). Similar orbital availability at P_A and Se_d was evidenced by similarity of most static NMR parameters associated with each respectively. It is probable, therefore, that the contribution of phosphorushalogen bond strengths to the activation enthalpy is the chief factor which differentiates the rates of rearrangement of these compounds. ### **Experimental** All operations were carried out under dry argon by Schlenk methods. Carbon disulphide was dried by distillation from P_4O_{10} . NMR spectra were measured using a Bruker AC250 spectrometer operating at 101.27 MHz for ^{31}P , or using a Bruker WM300WB spectrometer operating at 121.5 MHz for ^{31}P and 57.3 MHz for ^{77}Se . [$^{2}H_{6}$]Benzene was used as the internal lock and temperature-dependent measurements were carried out in evacuated and sealed glass tubes, or a $(CD_3)_2CO$ capillary was used as the external lock and normal capped (and wax-sealed) 10 mm diameter tubes were used. Mass spectra were measured using a Kratos MS80 spectrometer in the EI mode at 50–70 eV (0.80– 1.12×10^{-17} J), samples being introduced as solutions in CS_2 into the ionisation chamber at ca. 220 °C. Preparation of P_3Se_4I 3 (X = I).—High temperature method. Red phosphorus (4.59 g, 148 mmol), grey selenium (15.6 g, 198 mmol) and I_2 (6.27 g, 24.7 mmol) were sealed under vacuum in a glass ampoule, then heated to 250 °C until a homogeneous melt was obtained. The ampoule was cooled slowly to room temperature, then the product was stirred with CS_2 (200 cm³) for 3 d. The solution, after filtration and cooling to -30 °C for 8 h, yielded dark red crystals of P_3Se_4I . The extraction procedure was repeated ten times, using the mother-liquor as solvent, to give a total yield of 12.2 g (22.8 mmol, 46.1%). Solution method. The compound P_4Se_3 (4.3 g, 11.9 mmol) and Se (2.2 g, 27.9 mmol) were dissolved in CS_2 (250 cm³) at room temperature and I_2 (2.0 g, 7.9 mmol) in CS_2 (60 cm³) was added at a rate of one drop per second. Precipitates appearing while the solution was stirred for a further 12 h, were removed by filtration. On cooling the dark red filtrate to $-30\,^{\circ}C$, P_3Se_4I precipitated as black-red needles. The crystals were filtered off, washed with CS_2 and dried in vacuum. The yield was 4.4 g (8.2 mmol, 52% based on P_4Se_3 taken). IR: v_{max} at 390s, 364m, 354w, 342w, 333m, 313vs (PI), 289s and 225m cm $^{-1}$. Halide Exchange Using Silver Halides.—Preparation of $P_3Se_4Cl\ 3$ (X = Cl). Silver chloride (3.2 g, 22 mmol) and P_3Se_4I (1.5 g, 2.8 mmol) were stirred in CS_2 (200 cm³) at 0 °C for 10 d, with intermittent monitoring of compounds in solution by ³¹P NMR spectroscopy. After filtration to remove AgI and unreacted starting materials, and evaporation of most of the CS_2 under vacuum, the resulting red solution gave dark-orange needles of P_3Se_4Cl after 1 h at -30 °C (yield <5%). IR: v_{max} at 452s, 430vs (PCl), 400m, 370m, 360w, 335s, 318m and 302vs cm⁻¹. Brown $P_3Se_4Br\ 3$ (X = Br) was made similarly. IR: v_{max} at 404s, 400w, 375w, 370w, 350vs (PBr), 330vs, 320m and 292w cm⁻¹. Alkylthio and Arylthio Derivatives $P_3Se_4(SR)$ 3 (X = SR; R = C_2H_5 , C_5H_{11} or C_6H_5).—These were prepared from P_3Se_4I by a low-temperature modification of the method used previously, ¹⁷ for the thioalkylation of α - $P_4S_3I_2$. Triethylamine in CS_2 was added dropwise to a rapidly stirred solution of P_3Se_4I and the appropriate thiol in CS_2 at -50 °C, the three reagents being taken in equimolar quantities with careful avoidance of excess base. The mixture was allowed to warm, with stirring, to room temperature over 10 h to give a yellow solution suitable for NMR studies. Removal of CS_2 gave a yellow, oily solid which turned red in 1 h at room temperature, indicating decomposition. Preparation of P₂Se₅ 4.—Red phosphorus (0.762 g, 24.6 mmol) and grey selenium (4.858 g, 61.5 mmol) were sealed under vacuum in a quartz ampoule, then heated to 400 °C until a homogeneous melt was obtained (10 d). The ampoule was quenched in ice-water, then the product was powdered, resealed in glass, and annealed at 100 °C, i.e. above the glass-transition temperature, for 4 months. Stirring of the resulting powder with CS₂ (200 cm³) at room temperature for several days gave, after filtration, a straw-coloured solution, which on cooling slowly to -50 °C yielded black crystals of P₂Se₅ 4. Repeating the extraction five times, using the same mother-liquor, gave a combined yield of 0.32 g (5.62%) of P_2Se_5 ; EI MS (with relative intensities of specified peaks in isotope patterns given in parentheses): m/z 458 (13, $P_2Se_5^+$), 300 (24, $P_2Se_3^+$), 222 (5, $P_2Se_2^+$), 191 (9, PSe_2^+), 160 (20, Se_2^+), 142 (13, P_2Se^+) and 111 (100, PSe⁺); IR (CsI disc): v_{max} at 500m, 389s, 358vs, 322(sh), 310s, 245w and 220w cm⁻¹. ### Acknowledgements The British German Academic Research Collaboration Programme (ARC) and the Deutsche Forschungsgemeinschaft are thanked for financial support. Dr. H. Rosemeyer (University of Osnabrück) and Dr. M. N. S. Hill (University of Newcastle) are thanked for obtaining NMR spectra. #### References - 1 G. J. Penney and G. M. Sheldrick, Acta Crystallogr., Sect. B, 1970, 26, 2092. - 2 G. J. Penney and G. M. Sheldrick, J. Chem. Soc. A, 1971, 1100; G. W. Hunt and A. W. Cordes, Inorg. Chem., 1971, 10, 1935. - 3 R. Blachnik, G. Kurz and U. Wickel, Z. Naturforsch, Teil B, 1984, 39, 778. - 4 B. W. Tattershall, J. Chem. Soc., Dalton Trans., 1987, 1515. - 5 G. Fritz and R. Uhlmann, Z. Anorg. Allg. Chem., 1978, 440, 168. - M. Baudler, W. Faber and J. Hahn, Z. Anorg. Allg. Chem., 1980, 469, 15. - 7 R. Blachnik, P. Schröter and U. Wickel, Z. Anorg. Allg. Chem., 1985, 525, 150. - 8 R. Blachnik, W. Buchmeier, C. Schneider and U. Wickel, Z. Naturforsch., Teil B, 1987, 42, 47. - 9 B. W. Tattershall, J. Chem. Soc., Dalton Trans., 1991, 483. - 10 R. Blachnik, H. P. Baldus, P. Lönnecke and B. W. Tattershall, Angew. Chem., Int. Ed. Engl., 1991, 30, 605. - 11 E. Fluck, N. Yutronic S. and W. Haubold, Z. Anorg. Allg. Chem., 1976, 420, 247. - 12 M. V. Kudchadker, R. A. Zingaro and K. J. Irgolic, Can. J. Chem., 1968, 46, 1415. - 13 Y. Monteil and H. Vincent, Z. Anorg. Allg. Chem., 1977, 428, 259. - 14 D. Lathrop and H. Eckert, J. Phys. Chem., 1989, 93, 7895 - 15 A. R. Quirt, J. S. Martin and K. M. Worvill, NUMARIT, Version 771, 1977, SERC NMR Program Library, Daresbury. - 16 Program PANIC, Bruker Spectrospin Ltd, 1988. - 17 B. W. Tattershall, J. Chem. Soc., Dalton Trans., 1985, 1707. - 18 B. W. Tattershall, R. Blachnik and H. P. Baldus, J. Chem. Soc., Dalton Trans., 1989, 977. - 19 W. McFarlane and J. A. Nash, Chem. Commun., 1969, 913. - 20 M. Baudler, R. Heumüller and K. Langerbeins, Z. Anorg. Allg. Chem., 1984, 514, 7. - 21 G. Binsch and D. A. Kleier, DNMR3, 1970, DNMRL from SERC NMR Program Library, Daresbury. - 22 B. W. Tattershall, J. Chem. Soc., Dalton Trans., 1990, 663. - 23 R. Blachnik and K. Hackmann, unpublished work.