Synthesis and Reactions of Complexes of 1,3-Bis(diphenyl-phosphino)-2-methylallyl with Molybdenum or Tungsten Tetracarbonyls

Bernard L. Shaw and Jonathan D. Vessey

School of Chemistry, Leeds University, Leeds LS2 9JT, UK

Treatment of molybdenum or tungsten hexacarbonyls with the diphosphine CH₂=C(CH₂PPh₂)₂ gives complexes $[M{(Ph_2PCH_2)_2C=CH_2)_(CO)_4}]$ (M = Mo, 3a; or W, 3b). Either of these complexes with sodium ethoxide in boiling ethanol exhibits prototropic rearrangement to give [M{Ph₂PCH=CMeCH₂PPh₂}(CO)₄] (M = Mo, 4a; or W, 4b). Treatment of either complexes 3 or 4 with strong bases such as methyllithium, lithium 2,2,6,6-tetramethylpiperidide or lithium bis(trimethylsilyl)amide gave bright orange solutions of the symmetrical 1,3-bis(diphenylphosphino)-2-methylallylmetal tetracarbonyl anions [M{Ph₂PCHC-(Me)CHPPh₂}(CO)₄] - 5. The molybdenum complex 5a, when treated with D₂O, gave [Mo(Ph₂PCH= CMeCHDPPh2)(CO)4] 6, which was shown to be a monodeuterio-complex by 2H, 1H and 13C NMR spectroscopy. Both the 31P-{1H} and the 13C-{1H} NMR spectra of this compound showed secondary isotope effects and the 13C-{1H} spectrum showed that there was no plane of symmetry, whereas with the corresponding perhydro complex 4a, there is such a plane (going through the Mo and the two P). The carbanions 5 react with electrophiles such as Mel, SiMe₃Cl, Etl, allyl bromide, PhCH₂Br or PPh₂Cl to give substitution products $[M(Ph_2PCH=CMeCHR'PPh_2)(CO)_4]$ (R' = Me, 7; SiMe₃, 8; Et, 9; CH₂=CHCH₂, 10; CH,Ph, 11, or PPh,, 13); these complexes were fully characterised. Treatment of 7a (M = Mo) with LiMe and then an equivalent amount of methanol, followed by more LiMe and methanol, gave the isomerised product $[Mo(Ph_2PCMe=CMeCH_2PPh_2)(CO)_4]$ 12. When a solution of complex 13a M = M) was heated in toluene the tricarbonyl [Mo{(Ph₂P)₂CHCMe=CHPPh₂}(CO)₃] 14a, in which all three phosphoruses are co-ordinated, was formed; similarly the corresponding tungsten complex 13b, when heated in decane, gave [W{(Ph₂P)₂CHCMe=CHPPh₂}(CO)₃] **14b**. Proton, ²H, ¹³C and ³¹P NMR data, infrared [v(C=O)] and some mass spectral data are given and discussed.

Chelating ditertiary phosphines are very important in coordination and organometallic chemistry and in associated areas of catalysis. ¹⁻⁴ Specific areas where ditertiary phosphines are useful include chiral hydrogenation using diphosphine-rhodium or -ruthenium complexes with diphosphines such as 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (binap), Ph₂PCH-MeCHMePPh₂ (chiraphos) or Ph₂PCH₂CHOCHO(CMe₂)-PPh₂(diop) etc. ^{4,5} Other areas include reactions of co-ordinated dinitrogen e.g. with the complex [W(N₂)₂(dppe)₂] (dppe = Ph₂PCH₂CH₂PPh₂) ⁶ and aryl coupling for which nickel or palladium complexes are effective. ⁴ Palladium—diphosphine complexes have also been used in the allylation reaction. ^{4,7}

It is well established that, on co-ordination of a tertiary phosphine, the hydrogen of a CH in the a position to coordinated phosphorus becomes much more acidic.8 It occurred to us that a diphosphine, Z-Ph₂PCH=CHCH₂PPh₂, when complexed to a metal, as in 1, might deprotonate readily to give a chelated bis(diphenylphosphino)allyl system, as in 2. Such a ligand system is hitherto unknown but its complexes could have interesting properties. In this paper we describe a convenient strategy for producing a closely related system, which was to start with the known diphosphine CH₂=C(CH₂PPh₂)₂. The synthesis of this diphosphine has been described by two other groups of workers 9-11 and is readily made by treating the commercially available dichloride CH₂=C(CH₂Cl)₂ L₂(PPh₂). The base-promoted isomerisation of CH₂=C(CH₂-PPh₂)₂ to a mixture of Z- and E-Ph₂PCH=C(Me)CH₂PPh₂ has been reported very briefly without experimental details. We considered that complexation of CH₂=C(CH₂PPh₂)₂ to a metal, followed by base-promoted isomerisation to give the coordinated Ph₂PCH=C(Me)CH₂PPh₂, which therefore must be the Z isomer exclusively, would be a better strategy and this is what we have done. The complex [Cr{PPh₂C(=CH₂)CH₂-

PPh₂)(CO)₄] has been shown to isomerise to [Cr{PPh₂-C(Me)=CHPPh₂)(CO)₄] in the presence of KOBu'.¹² We have gone on to study some reactions of carbanions analogous to those of type 2.

Results and Discussion

Treatment of [Mo(CO)₆] with an equimolar amount of the diphosphine CH₂=C(CH₂PPh₂)₂ in boiling decane gave the tetracarbonyl complex 3a in 89% yield. The corresponding tungsten complex 3b was prepared similarly in 88% yield: details are in the Experimental section. These complexes were characterised by elemental analysis (C and H, Table 1), mass spectrometry and by NMR and IR spectroscopy. The ³¹P-{¹H} spectrum of the molybdenum complex 3a showeed a singlet (Table 2) and the ¹H-{³¹P} NMR spectrum, two singlets, at δ 4.60 and 3.22 of relative intensities 1:2. Both of these resonances became second-order patterns in the ¹H NMR spectrum: that at δ 4.60 showed an N-doublet separation ¹³ $|^4J(PH)(cis)|$ + $^4J(PH)(trans)$ of 5.7 Hz; that at δ 3.22 showed an N-doublet separation of 11.0 Hz (Table 2). The tungsten complex 3b behaved similarly (see Table 2). The ¹³C-{¹H} NMR spectrum of the molybdenum complex confirmed the assigned structure 3a, with two resonance patterns due to the two types of carbonyl ligands. One pattern was a first-order 1:2:1 triplet at δ 210.1,

J. CHEM. SOC. DALTON TRANS. 1991

Table 1 Microanalytical data, infrared absorption maxima (cm⁻¹) and masses of the most intense peak in the molecular ion in the mass spectrum

	Analysis a	(%)			
Compound	C	Н	$V(C\equiv O)^b$	M^c	
3a	60.45	4.1	2025, 1925 (sh),	634 (634)	
	(60.75)	(4.15)	1900	` '	
3b	53.0	3.55	2022, 1922, 1898		
	(53.35)	(3.65)			
4a	60.85	4.15	2020, 1922 (sh),	634 (634)	
	(60.75)	(4.15)	1910, 1898 (sh)		
4b	53.35	3.55	2022, 1920 (sh),		
	(53.35)	(3.65)	1902, 1890 (sh)		
6	60.5	4.1	2020, 1920 (sh),	635 (635)	
	(60.7)	(4.3)	1900, 1890(sh)		
7a	61.05	4.35	2028, 1925 (sh),	648 (648)	
	(61.3)	(4.35)	1918, 1892		
7b	53.75	3.8	2025, 1922 (sh),		
	(53.95)	(3.85)	1905, 1890 (sh)		
8a	59.65	4.9	2030, 1930 (sh)	706 (706)	
	(59.65)	(4.85)	1915, 1890 (sh)		
8b	52.85	4.25	2020, 1920,		
	(53.05)	(4.3)	1900, 1885 (sh)		
9	61.6	4.5	2025, 1920 (sh),	662 (662)	
	(61.85)	(4.6)	1915, 1885		
10	55.15	3.95	2020, 1920 (sh),		
	(55.3)	(4.0)	1905, 1885		
11	64.75	4.5	2020, 1920 (sh),	724 (724)	
	(64.85)	(4.45)	1905, 1885 (sh)		
12	61.0	4.2	2022, 1922 (sh),	648 (648)	
	(61.3)	(4.35)	1910, 1890 (sh)		
13a	65.15	4.35	2025, 1922 (sh)		
	(64.7)	(4.3)	1915, 1895		
13b·C ₆ H ₆	61.5	4.15	2022, 1920 (sh),		
	(61.15)	(4.2)	1905, 1890		
13b-CH,Cl,	54.8	3.7			
	(54.6)	(3.75)			
14a	63.35	4.65	1946, 1855 (br)		
	(65.5)	(4.45)			
14b	59.1	3.95	1940, 1845 (br)		
	(58.9)	(4.0)			

^a Calculated values in parentheses. ^b Measured in CH₂Cl₂ solution; sh = shoulder, br = broad. All the peaks are very strong. ^c Calculated parent molecular ion mass for molybdenum-98 in parentheses. All the mass spectra showed ions corresponding to successive losses of one, two, three and four CO groups.

with $^2J(PC) = 8.7$ Hz, clearly due to the mutually *trans* carbonyls. The other pattern was second order and typical of an AA'X spin system, with an intermediate value of |J(AX) - J(A'X)|/J(AA'). The alkenyl carbon resonances were assigned (Table 3) by recording another ^{13}C NMR spectrum under conditions of low-power noise decoupling. The values of v(C=O) for these two complexes 3a and 3b are given in Table 1.

We have effected prototropic shift reactions on both complexes 3a and 3b by heating them in boiling ethanol, in the presence of NaOEt, for 16 h, giving the hoped-for rearranged complexes 4a and 4b in excellent (89%) isolated yields. Details of these preparations are in the Experimental section and microanalytical data are in Table 1. The ³¹P-{¹H} NMR spectrum of 4b consisted of two doublet resonances, at δ -0.5 and 32.2, ${}^{2}J(PP) = 24$ Hz, with satellites due to coupling to tungsten-183 (Table 2). The ¹H NMR spectrum showed three non-aromatic resonance patterns at δ 6.07, 3.18 and 1.80, of relative intensities 1:2:3, and assigned to the CH=, the CH₂ and the CH₃ protons, respectively. Broad-band and selective ³¹P decoupling of the proton spectra indicated that the phosphorus absorbing at 8 32.2 was coupled to all three types of aliphatic proton and was assigned as the allylic phosphorus CCH₂P (see Table 2 for data); the other phosphorus resonance (at $\delta - 0.5$)

was assigned to the alkenyl phosphorus C=CHP (data in Table 2). There was also a four-bond coupling of 1.4 Hz between the HC=C proton and the methyl group. The carbon-13 NMR spectrum (data in Table 3) was in agreement with the assigned structure 4b. The carbonyl resonances were at δ 206.6, 206.2 and 202.1 (relative intensities 1:1:2). The resonance of the mutually trans carbonyls, absorbing at δ 202.1, consisted of a 1:2:1 triplet through coupling to the two P nuclei, whilst the other two carbons gave doublet of doublet patterns. The molybdenum complex 4a was characterised in the same way as for the tungsten complex (data in Tables 1–3).

As already mentioned, Schmidbaur et al.^{9,10} have reported that treatment of $CH_2=C(CH_2PPh_2)_2$ with sodium methoxide gives a mixture of the cis and trans isomers of $PPh_2CH=CMe-CH_2PPh_2$, in unspecified proportions and which were not separated. We have observed no products which could have arisen from trans- $PPh_2CH=CMeCH_2PPh_2$.

As discussed above, we anticipated that an allylic disphosphine complex of type 4 would be deprotonated by a strong base. We have therefore treated complexes of types 3 and 4 with strong bases: methyllithium, lithium 2,2,6,6-tetramethylpiperidide or lithium bis(trimethylsilyl)amide. Treatment of tetrahydrofuran solutions of complexes of types 3 or 4 with any of these strong bases caused an immediate colour change from pale yellow to bright orange. Thus treatment of a tetrahydrofuran solution of the molybdenum complex 3a with methyllithium gave a bright orange solution. 31P-{1H} NMR spectroscopy showed that none of the starting complex remained and that only one phosphorus-containing species, characterised by a singlet ^{31}P resonance at δ 14.6, was present. This species was longed-lived in solution in the absence of air or moisture but reacted rapidly with moisture or methanol to give 4a (but no 3a) and we assign to the deprotonated product a symmetrical allylic carbanion structure 5a. The deprotonated product showed an invariant ³¹P-{¹H} NMR singlet resonance over the range -70 to +28 °C. Similar treatment of either of the tungsten complexes 3b or 4b gave the symmetrical allylic carbanion 5b, characterised by a singlet ³¹P resonance at δ 4.4 with satellites due to coupling to tungsten-183, ${}^{1}J(WP) = 206$ Hz. We also found that complexes of type 5 could be generated from the unrearranged complexes of type 3 using 1 mol equivalent of lithium tetramethylpiperidide, but that, when an

Table 2 ${}^{31}P - {}^{1}H}^a$ and ${}^{1}H^b$ and ${}^{1}H - {}^{31}P}^b$ NMR spectroscopic data

11 See text $ \begin{array}{ccccccccccccccccccccccccccccccccccc$		(11) and 11 and 11 (1) 14 min spectroscopic data	
322 (CH, P. A.A, XXX. N 11.0) ² 463 (CH, A.A, XXX. N 11.9) ² 18.5 PC-C 18.6 CP (H, J, PP) 24	Complex	$^{31}P-\{^{1}H\}(\delta)$	1 H (δ)
38	3a	24.2 PCH ₂ ^c	
333 [CH, P. A, X, XX, X1, 19]* 48			
48	3 b	4.9 (226) PCH ₂ ^c	
18.5 PC-C 3.22 (CH), "J(PH) 1.7, "J(PH) 1.9]" 1.71 (CH), "J(PH) 1.7, "J(PH) 1.9]" 1.71 (CH), "J(PH) 1.7, "J(PH) 1.9]" 1.72 (CH), "J(PH) 0.5, "J(PH) 4.7, "J(PH) 1.4]" 1.80 (CH), "J(PH) 0.5, "J(PH) 4.7, "J(PH) 1.4]" 1.80 (CH), "J(PH) 0.7, "J(PH) 8.6] 1.80 (CH), "J(PH) 0.7, "J(PH) 8.6] 1.80 (CH), "J(PH) 1.4, "J(PH) 1.1, "J(PH) 1.2]" 1.80 (CH), "J(PH) 0.7, "J(PH) 1.1, "J(PH) 1.2]" 1.80 (CH), "J(PH) 0.7, "J(PH) 1.1, "J(PH) 1.2]" 1.80 (CH), "J(PH) 0.7, "J(PH) 1.1, "J(PH) 1.2]" 1.80 (CH), "J(PH) 1.1, "J(PH) 1.3] 1.80 (CH), "J(PH) 1.3, "J(49	48 1 PCH . /(PP) 29	
46 322 (244) PCH ₃ , J(PP) 24 -05 (221) PC=C 318 (CH ₃ , ¹ /(PH) 05, ² /(PH) 4.7, ⁴ /(HH) 1.4] ² 180 (CH ₃ , ¹ /(PH) 07, ² /(PH) 8.6, ⁴ /(PH) 1.4] (17) (17) (17) (18) (18) (18) (18) (18) (18) (18) (18	7.4		3.22 [CH ₂ , ⁴ J(PH) 1.7, ² J(PH) 7.9] ^e
-0.5 (221) PC-C 47.2 PCHD/ J(PP) 30 17.7 PC-C/ 58.8 PCHMe, J(PP) 26 12.8 PC-C 13.10 (CM-C, J(PH) 1.5, -J(PH) 1.6] 13.10 (CM-C, J(PH) 1.5, -J(PH) 1.1] 13.10 (CM-C, J(PH) 1.5, -J(PH) 1.1] 14.			$1.71 [CH_3^2, {}^4J(PH) 1.7, {}^4J(HH) 1.5]^e$
180 CH, - \(\frac{1}{1} \) (P H) 1.4 \(\frac{1}{1} \) (P H) 1.5 \(\frac{1}{1} \) (P H) 1.5 \(\frac{1}{1} \) (P H) 1.5 \(\frac{1}{1} \) (P H) 1.6 \(\frac{1}{1} \) (P H) 1.1 \(\frac{1}{1} \) (P H) 1.2 \(\frac{1}{1} \) (P H) 1.3 \(\frac{1} \) (P H) 1.3 \(\frac{1}{1} \) (P H)	4b		6.07 [HC=C, ² J(PH) 5.6, ⁴ J(PH) 4.7, ⁴ J(HH) 1.4] ^e
6 47.2 PCHD/ J(PP) 30 17.7 PC-C'		-0.5 (221) PC=C	
17.7 PC-C/ 17.4 PCH, 3/PPI) 8.6]/ 7a	6	47.2 PCHD / I(PP) 30	$6.00 \text{ [HC}_{=}\text{C}^{-4}I(\text{PH}) 4.2^{-2}I(\text{PH}) 5.6^{-4}I(\text{PH}) 1.4^{-0.61}$
7a	U		
12.8 PC=C 3.10 [CHMe, ¹ /(PH) 13.0, ¹ /(HH) 7.1] 3.0 3 [CH, CC, ¹ /(HH) 1.1] 3.0 3 [CH, CC, ¹ /(HH) 1.1] 0.90 [CH, CH, ¹ /(PH) 1.1, ¹ /(PH) 1.1, ¹ /(PH) 1.1] 0.90 [CH, CH, ¹ /(PH) 2.1, ¹ /(PH) 1.1, ¹ /(PH) 1.1] 1.9			$1.74 [CH_3, {}^4J(PH) 1.7, {}^4J(HH) 1.4]^f$
233 [CH, C=C, 4/HH) 1.3] 00 [CH, CH, 2/PP) 159, 3/JHH) 7.1] 6.27 [HC=C, 4/PP) 12, 12/PP) 11.1, 4/HH) 1.2]* 3.14 [CHMe, 3/PP) 152, 3/JHH) 7.1] 8a	7a		
7b 37.7 (234) PCHMe, J(PP) 19		12.8 PC=C	
7b			
Total Content	7b	37.7 (234) PCHMe. J(PP) 19	
8a			
8a		, ,	
12.4 PC=C 3.14 [CHS, 4 /(PH) 1.5, 2 /(PH) 14.8, 2 /(SiH) 10.0] 2.51 [CH, 4 /(HH) 1.7] 1.7 [CHS, 2 /(SiH) 10.0] -0.41 [SiCH, 3 -/(SiH) 10.0] -0.41 [SiCH, 3 -/(SiH) 10.4] 8b 26.3 (238) PCHSi, J (PP) 20 644 [HC=C, 4 /(PH) 1.7, 4 /(HH) 1.2] 2.50 [CH, 4 -/(HH) 1.3] 3.7 (PH) 1.3, 4 /(PH) 1.0] 2.50 [CH, 4 -/(HH) 1.1] -0.40 [SiCH, 3 -/(SiH) 6.4] 642 [HC=C, 4 /(PH) 2.8, 3 /(PH) 1.3, 4 /(HH) 1.3] 3.06 [PC-HE, 4 -/(PH) 1.29, 3 -/(HH) 1.48] 2.26 [C=CCH, 4 -/(HH) 1.3] 1.28 [CH,CH, 3 -/(HH) 1.43, 4 /(HH) 1.49] 1.28 [CH,CH, 3 -/(HH) 1.74] 1.29 1.28 [CH,CH, 3 -/(HH) 1.74] 1.29 1.29 [CH,CH-CH] 1.29 1.29 [CH] 1.30 [CH]	_		
2.51 [CH, ⁴ //HH) 1.0] -0.41 [SiCH ₃ , ² //SiH) 6.4] 8b 26.3 (238) PCHSi, J(PP) 20 -7.5 (226) PC=C 3.39 [CHSi, ² /RPH) 1.7, ⁴ /HH) 1.2] 3.39 [CHSi, ² /RPH) 1.53, ⁴ /RPH) 1.0] 2.50 [CH ₃ , ⁴ /RH) 1.1] -0.40 [SiCH ₃ , ² /SiH) 6.4] 9 See text 6.42 [Hc=C, ⁴ /(PH) 2.8, ² /(PH) 1.3, ⁴ /(HH) 1.3] 3.06 [PCHt, ⁴ /RHH) 1.3, ⁴ /(HH) 1.4] 2.26 [C-CCH ₃ , ⁴ /RHH) 1.3, ⁴ /(HH) 1.4] 1.28 [CH ₂ CH ₃ , ³ /RHH) 7.4] 0.68 [CH ₂ CH ₃ , ³ /RHH) 7.4] 0.68 [CH ₂ CH ₃ , ³ /RHH) 7.4] 0.68 [CH ₂ CH ₃ , ³ /RHH) 7.4] 1.11 See text 6.44 [HC=C, ⁴ /(PH) 2.7, ² /(PH) 1.3, ⁴ /(HH) 1.2] 3.26 [PCH(CH ₂ CH=CH ₃), ² /(PH) 1.3, ⁴ /(HH) 1.3] 3.27 [PCH(CH ₂ CH=CH ₃), ² /(PH) 1.3, ⁴ /(HH) 1.3] 3.28 [PCH(CH ₂ CH=CH ₃), ² /(PH) 1.3, ⁴ /(HH) 1.3] 3.29 [PCH(CH ₂ Ph), ³ /(PH) 3.7, ⁴ /(PH) 1.3, ⁴ /(HH) 1.2] 1.2 48.3 PCH ₃ , J(PP) 31 3.6 PC=C 1.56 [CHPRh, ³ /(PH) 8.0, ³ /(PH) 3.0, ³ /(PH) 3.2, ³ /(PH) 2.4] 3.13 SO ₇ , MoPCHP, ⁹ / ₂ J(MoPCHP) 173, ² J(PMoP) 26 1.26 MoPCH= ⁹ − 8.1 MoPCHP, ⁹ /PMoPCHP) 8 1.27 (CH ₃ Ph) (PCCH ₃), ⁴ /(PH) 1.3, ⁴ /(PH) 1.3, ⁴ /(PH) 1.3] 1.28 [C-CCH ₃ , ⁴ /(PH) 1.7] 1.29 (PCH ₃ Ph) (PCH ₃ P	8a		
-0.41 [SiCH ₂ , ² /(SiH),6.4] 6.44 [HC-C ₂ , ⁴ /(PH) 1.7, ⁴ /(HH) 1.2] -7.5 (226) PC=C 3.39 [CHS ₁ , ³ /(PH) 15.3, ⁴ /(PH) 1.0] 2.50 [CH ₃ , ⁴ /(PH) 1.1] -0.40 [SiCH ₂ , ² /(SiH),6.4] 9 See text 6.42 [HC-C ₂ , ⁴ /(PH) 1.3, ⁴ /(PH) 1.3] 3.06 [PC/HE ₁ , ² /(PH) 1.3, ⁴ /(PH) 1.48] 2.26 [C-CCH ₃ , ⁴ /(HH) 1.3] 1.28 [CH ₂ ,CH ₃ , ³ /(HH) 7.4] 0.68 [CH ₂ ,CH ₃ , ³ /(HH) 7.4] 0.68 [CH ₂ ,CH ₃ , ³ /(HH) 7.4] 0.68 [CH ₂ ,CH ₃ , ³ /(PH) 2.7, ² /(PH) 1.3, ⁴ /(HH) 1.2] 5.50 4.81 4.40 (CH ₂ CH=CH ₂) 1.99 3.26 [PC/H(CH ₂ CH=CH ₂), ² /(PH) 13.6, ³ /(HH) 1.4] 2.28 [C=CH ₃ , ⁴ /(HH) 1.2] 2.28 [C=CH ₃ , ⁴ /(HH) 1.2] 2.29 [C=CH ₃ , ⁴ /(HH) 1.2] 2.29 [C=CH ₃ , ⁴ /(HH) 1.2] 2.20 [CH ₂ CH ₃ , ⁴ /(HH) 1.2] 2.21 [CH ₂ CH ₃ , ⁴ /(PH) 2.7, ² /(PH) 13.7, ⁴ /(PH) 0.4, ³ /(HH) 1.25] 2.24 [CHPP ₃ , ⁴ /(PH) 2.7, ² /(PH) 13.7, ⁴ /(PH) 13.2, ³ /(HH) 12.5] 2.24 [CHPP ₃ , ⁴ /(PH) 2.7, ² /(PH) 13.2, ⁴ /(HH) 1.3] 3.09 [PC/H(CH ₂ CH ₃ , ⁴ /(HH) 1.3] 3.09 [PC/H(CH ₂ CH ₃ , ⁴ /(HH) 1.3] 3.09 [PC/H(CH ₃ CH ₃), ⁴ /(PH) 8.0, ² /(PH) 13.2, ⁴ /(HH) 1.3] 3.09 [PC/H ₂ , ² /(PH) 6.1, ⁴ /(PH) 8.0, ² /(PH) 8.0, ⁴ /(PH)		12.4 PC=C	
8b 26.3 (238) PCHSi, J(PP) 20 -7.5 (226) PC=C 3.39 [CHSi, ² /(PH) 1.7, ⁴ /(PH) 1.0] 2.50 [CH, ³ /(SiH) 6.4] 9 See text 6.42 [HC=C, ⁴ /(PH) 2.8, ² /(PH) 1.3, ⁴ /(HH) 1.3] 3.06 [PC/HE, ² /(PH) 1.2, ³ /(HH) -3/(HH) 1.48] 2.26 [C=CCH, ⁴ /(PH) 2.8, ² /(PH) 1.3, ⁴ /(PH) 7.4] 0.68 [CH ₂ CH ₃ , ³ /(HH) 7.4, ³ /(PH) 7.4] 0.68 [CH ₂ CH ₃ , ³ /(HH) 7.4, ³ /(PH) 1.3, ⁴ /(HH) 1.2] 5.50 4.81 (CH ₂ CH=CH ₂) 4.81 (CH ₂ CH=CH ₂) 4.81 (CH ₂ CH=CH ₂) 4.83 PCH ₂ , J(PP) 31 3.64 PC=C 4.83 PCH ₂ , J(PP) 31 3.64 PC=C 3.64 PC=C 4.83 PCH ₂ , J(PP) 31 3.64 PC=C 3.64 PC=C 4.83 PCH ₂ , J(PP) 31 3.64 PC=C 3.64 PCH ₂ P(P) P(P) P(P) P(P) P(P) P(P) P(P) P(P			-0.41 [SiCH ₃ , ² J(SiH) 6.4]
-7.5 (226) PC=C 3.39 [CHSi, ² /(PH) 15.3, ⁴ /(PH) 1.0] 2.50 [CH3, ⁴ /(HH) 1.1] -0.40 [SiCH3, ² /(SiH) 6.4] 6.42 [HC=C, ⁴ /(PH) 12.8, ² /(PH) 1.3, ⁴ /(HH) 1.3] 3.06 [PCHEi, ² /(PH) 12.9, ³ /(HH) + ³ /(HH) 14.8] 2.26 [C=CCH3, ⁴ /(HH) 1.3] 1.28 [CH2CH3, ³ /(HH) 7.4, ³ /(PH) 7.4] 0.68 [CH2CH3, ³ /(HH) 7.4, ³ /(PH) 7.4] 6.64 [HC=C, ⁴ /(PH) 2.7, ² /(PH) 13.4, ⁴ /(HH) 1.2] 5.50 4.81 (CH2CH=CH2) 1.99 3.26 [PCH(CH2CH=CH2), ² /(PH) 13.6, ³ /(HH) + ³ /(HH) 14.2 2.28 [C=CH3, ⁴ /(HH) 1.2] 3.39 [PCH(CH2PH), ² /(PH) 13.7, ⁴ /(PH) 0.4, ³ /(HH) 12.5, 2.4 1.73 [C=CH3, ⁴ /(HH) 1.5] 2.83 [CHPPh, ³ /(PH) 8.0, ² /(HH) 13.2, ³ /(HH) 12.5] 2.54 [CHPh, ³ /(PH) 8.0, ² /(HH) 13.2, ³ /(HH) 1.2] 1.53 [PC(CH3)=C(CH3), ⁴ /(PH) 8.0, ³ /(PH) 8.6] 1.54 [PC(CH3)=C(PH3), ⁴ /(PH) 8.9, ³ /(PH) 8.6] 1.55 [PC(CH3)=C(PH3), ⁴ /(PH) 8.9, ³ /(PH) 8.6] 1.56 [PC(CH3)=C(PH3), ⁴ /(PH) 8.9, ³ /(PH) 8.6] 1.57 [PC(CH3)=C(PH3), ⁴ /(PH) 1.1] 1.58 [PC(CH3)=C(PH3), ⁴ /(PH) 1.1] 1.59 [PC(CH3)=C(PH3), ⁴ /(PH) 1.1] 1.50 [PC(CH3)=C(PH3), ⁴ /(PH) 1.1] 1.50 [PC(CH3)=C(PH3), ⁴ /(PH) 1.1] 1.51 [PC(CH3)=C(PH3), ⁴ /(PH) 1.1] 1.52 [PC(CH3)=C(PH3), ⁴ /(PH) 1.1] 1.53 [PC(CH3)=C(PH3), ⁴ /(PH) 1.1] 1.54 [PC(CH3)=C(PH3), ⁴ /(PH) 1.1] 1.55 [PC(CH3)=C(PH3), ⁴ /(PH) 1.1] 1.56 [PC(CH3)=C(PH3), ⁴ /(PH) 1.1] 1.57 [PC(CH3)=C(PH3), ⁴ /(PH) 1.1] 1.58 [PC(PH3)=C(PH3), ⁴ /(PH) 1.1] 1.59 [PC(CH3)=C(PH3), ⁴ /(PH) 1.1] 1.50 [PC(CH3)=C(PH3), ⁴ /(PH) 1.1] 1.51 [PC(CH3)=C(PH3), ⁴ /(PH) 1.1] 1.52 [PC(CH3)=C(PH3), ⁴ /(PH) 1.1] 1.53 [PC(CH3)=C(PH3), ⁴ /(PH) 1.1] 1.54 [PC(PH3)=C(PH3), ⁴ /(PH) 1.1] 1.55 [PC(CH3)=C(PH3), ⁴ /(PH) 1.1] 1.56 [PC(CH3)=C(PH3), ⁴ /(PH) 1.1] 1.57 [PC(CH3)=C(PH3), ⁴ /(PH) 1.1] 1.58 [PC(PH3)=P(H	8b	26.3 (238) PCHSi, J(PP) 20	
9 See text $ -0.40 [SiCH_3, {}^{2}J(SiH) 6.4] $ $6.42 [HC=C, {}^{4}J(PH) 2.8, {}^{2}J(PH) 1.3, {}^{4}J(HH) 1.3] $ $3.06 [PCHEL, {}^{2}J(PH) 1.29, {}^{3}J(HH) + {}^{3}J(HH) 1.48] $ $2.26 [C=CCH_3, {}^{4}J(HH) 1.3] $ $1.28 [CH_2CH_3, {}^{3}J(HH) 7.4] $ $0.68 [CH_2CH_3, {}^{3}J(HH) 7.4] $ $0.69 [CH_2CH_3, {}^{3}J(HH) 1.2] $ $0.69 [CH_2, {}^{3}J(HH) 1.2] $ $0.9 [CH_2, {}^{3}$			3.39 [CHSi, ² J(PH) 15.3, ⁴ J(PH) 1.0]
9 See text 6.42 [HC=C, 4 /(PH) 2.8, 2 /(PH) 1.3, 4 /(HH) 1.3] 3.06 [PC+Et, 2 /(PH) 1.29, 3 /(HH) + 3 /(HH) 1.48] 2.26 [C=CCH3, 4 /(HH) 1.3] 1.28 [CH2,CH3, 3 /(HH) 7.4] 0.68 [CH2,CH3, 3 /(HH) 1.2] 5.50 4.81 4.40 1.99 3.26 [PC+H(CH2,CH=CH2), 2 /(PH) 1.3.6, 3 /(HH) + 3 /(HH) 1.4 1.2 1.28 [C=CH3, 4 /(HH) 1.2] 6.74 [HC=C, 4 /(PH) 2.4, 4 /(HH) 1.3] 3.39 [PC+H(CH2,CH=CH2), 4 /(HH) 1.1] 3.39 [PC+H(CH2,CH3, 4 /(HH) 1.3] 3.39 [PC+H(CH3, 4 /(HH) 1.3] 3.39 [PC+H(3, 4 /(HH) 1.3] 3.39			2.50 [CH ₃ , ⁴ J(HH) 1.1]
3.06 [PCHEt, 2 J(PH) 12.9, 3 J(HH) + 3 J(HH) 14.8] 2.26 [C=CCH ₃ , 4 J(HH) 7.4, 3 J(PH) 7.4] 1.8 [CH ₂ CH ₃ , 3 J(HH) 7.4] 1.9 [CH ₂ CH ₃ , 3 J(HH) 7.4] 1.0 See text 1.1 See text 1.2 [PCH(CH ₂ CH=CH ₂), 2 J(PH) 13.6, 3 J(HH) + 3 J(HH) 14.2] 1.1 See text 1.2 (As 3 PCH ₂ , J(PP) 31 3.39 [PCH(CH ₂ Ph), 2 J(PH) 13.7, 4 J(PH) 12.5] 2.38 [CHPh, 3 J(PH) 4.7, 2 J(HH) 12.5] 2.38 [CHPh, 3 J(PH) 4.7, 2 J(HH) 12.5] 2.39 [CHPh, 3 J(PH) 8.0, 2 J(HH) 12.5] 2.30 [CHPh, 3 J(PH) 8.0, 2 J(HH) 13.2, 3 J(HH) 2.4] 1.3 (As 3 PCH ₂ , J(PP) 31 3.0 (As 4 PC=C) 1.5 (PC(H ₃), 2 J(PH) 6.8, 4 J(PH) 2.6] 1.5 (PC(H ₃), 2 J(PH) 8.9, 3 J(PH) 8.9, 3 J(PH) 8.9, 3 J(PH) 8.9, 3 J(PH) 8.0, 3		Con Anna	-0.40 [SiCH ₃ , ² J(SiH) 6.4]
10 See text $ \begin{array}{c} 2.26 \left[\text{C=CCH}, ^4J(\text{HH}) 1.3 \right] \\ 1.28 \left[\text{CH}_2\text{CH}_3, ^3J(\text{HH}) 7.4, ^3J(\text{PH}) 7.4 \right] \\ 0.68 \left[\text{CH}_3, ^4J(\text{HH}) 7.4, ^3J(\text{PH}) 7.4 \right] \\ 0.68 \left[\text{CH}_4, \text{CH}_3, ^3J(\text{HH}) 7.4, ^3J(\text{PH}) 7.4 \right] \\ 0.68 \left[\text{CH}_4, \text{CH}_3, ^3J(\text{HH}) 7.4 \right] \\ 0.68 \left[\text{CH}_4, \text{CH}_3, ^3J(\text{PH}) 1.3, ^4J(\text{HH}) 1.2 \right] \\ 0.81 \left[\text{CH}_4, \text{CH}_2, $	9	See text	3.06 (PCHFt ² /(PH) 12.9 ³ /(HH) + ³ /(HH) 14.87
10 See text 0.68 [CH, CH_3 , $^3J(HH)$ 7.4] 6.44 [HC=C, $^4J(PH)$ 2.7, $^2J(PH)$ 1.3, $^4J(HH)$ 1.2] 5.50 4.81 4.40 1.99 3.26 [PCH(CH ₂ CH=CH ₂), $^2J(PH)$ 13.6, $^3J(HH)$ + $^3J(HH)$ 1.4 2.28 [C=CH ₃ , $^4J(HH)$ 1.2] 6.47 [HC=C, $^4J(PH)$ 2.4, $^4J(HH)$ 1.3] 3.39 [PCH(CH ₂ Ph) 2.4, $^4J(HH)$ 1.3] 3.39 [PCH(CH ₂ Ph) 2.4, $^4J(HH)$ 1.3] 2.38 [CHPPh, $^3J(PH)$ 4.7, $^3J(PH)$ 4.7, $^3J(HH)$ 13.2, $^3J(HH)$ 12.5] 2.54 [CHHPh, $^3J(PH)$ 8.0, $^2J(PH)$ 13.2, $^3J(HH)$ 2.5] 2.54 [CHHPh, $^3J(PH)$ 8.0, $^2J(PH)$ 2.6] 1.56 [PC(CH ₃)=C(CH ₃), $^4J(PH)$ 1.3, $^4J(PH)$ 1.3] 1.53 [PC(CH ₃)=C(CH ₃), $^4J(PH)$ 1.3] 1.53 [PC(CH ₃)=C(CH ₃), $^4J(PH)$ 1.3] 1.53 [PC(CH ₃)=C(CH ₃), $^4J(PH)$ 1.3] 1.54 [PCHP, $^3J(PH)$ 2.6] 6.28 [HC=C, $^4J(HH)$ 1.1] 1.7 1.8 [PCCCH ₃] 1.9 [PCCCCH ₃] 1.9 [PCCCCH ₃] 1.9 [PCCCCH ₃] 1.9 [PCCCCCH ₃] 1.9 [PCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC			2.26 [C=CCH ₃ , ⁴ J(HH) 1.3]
10 See text $ \begin{cases} 6.44 \text{ [HC=C, }^4J(\text{PH}) 2.7, ^2J(\text{PH}) 1.3, ^4J(\text{HH}) 1.2]} \\ 5.50 \\ 4.81 \\ 4.40 \\ 1.99 \end{cases} $ $ 3.26 \text{ [PCH(CH}_2\text{CH=CH}_2), ^2J(\text{PH}) 13.6, ^3J(\text{HH}) + ^3J(\text{HH}) 14} \\ 2.28 \text{ [C=CH}_3, ^4J(\text{HH}) 1.2]} \\ 2.28 \text{ [C=CH}_3, ^4J(\text{HH}) 1.3]} \\ 3.39 \text{ [PCH(CH}_2\text{Ph}), ^2J(\text{PH}) 13.7, ^4J(\text{PH}) 0.4, ^3J(\text{HH}) 12.5, 2.4} \\ 1.73 \text{ [C=CCH}_3, ^4J(\text{HH}) 1.5]} \\ 2.38 \text{ [CHHPh}, ^3J(\text{PH}) 4.7, ^2J(\text{HH}) 13.2, ^3J(\text{HH}) 12.5]} \\ 2.38 \text{ [CHHPh}, ^3J(\text{PH}) 8.0, ^2J(\text{HH}) 13.2, ^3J(\text{HH}) 2.4]} \\ 36.4 \text{ PC=C} \\ 136.4 \text{ PC=C} \\ 12.6 \text{ MoPCH=}, ^9 - 8.1 \text{ MoPCHP}, ^9 1J(\text{PMoPCHP}) 8 \\ 12.6 \text{ MoPCH=}, ^9 - 8.1 \text{ MoPCHP}, ^9 1J(\text{PMoPCHP}) 8 \\ 12.6 \text{ MoPCH=}, ^9 - 8.1 \text{ MoPCHP}, ^9 1J(\text{PMOPCHP}) 8 \\ 12.6 \text{ MoPCH=}, ^9 - 8.1 \text{ MoPCHP}, ^9 1J(\text{PMOPCHP}) 8 \\ 12.6 \text{ MoPCH=}, ^9 - 8.1 \text{ MoPCHP}, ^9 1J(\text{PMOPCHP}) 8 \\ 12.6 \text{ MoPCH=}, ^9 - 8.1 \text{ MoPCHP}, ^9 1J(\text{PMOPCHP}) 8 \\ 12.6 \text{ MoPCH=}, ^9 - 8.1 \text{ MoPCHP}, ^9 1J(\text{PMOPCHP}) 8 \\ 12.6 \text{ MoPCH}, ^9 1J(\text{PWPCHP}) 167, ^2J(\text{PWP}) 19 \\ -7.2 \text{ (224)}, \text{ WPCH}, ^9 1J(\text{PWPCHP}) 6 \\ 1.93 \text{ [C=CCH}_3, ^4J(\text{HH}) 1.0]} \\ -7.2 \text{ WPCHP}, ^9 1J(\text{PWPCHP}) 6 \\ 1.93 \text{ [C=CCH}_3, ^4J(\text{HH}) 1.0]} \\ -7.2 \text{ WPCHP}, ^9 1J(\text{PWPCHP}) 6 \\ 1.93 \text{ [C=CCH}_3, ^4J(\text{HH}) 1.0]} \\ -7.2 \text{ WPCHP}, ^9 1J(\text{PWPCHP}) 6 \\ 1.93 \text{ [C=CCH}_3, ^4J(\text{HH}) 1.0]} \\ -7.2 \text{ WPCHP}, ^9 1J(\text{PWPCHP}) 6 \\ 1.93 \text{ [C=CCH}_3, ^4J(\text{HH}) 1.0]} \\ -7.2 \text{ WPCHP}, ^9 1J(\text{PWPCHP}) 6 \\ 1.93 \text{ [C=CCH}_3, ^4J(\text{HH}) 1.0]} \\ -7.2 \text{ WPCHP}, ^9 1J(\text{PWPCHP}) 6 \\ 1.93 \text{ [C=CCH}_3, ^4J(\text{HH}) 1.0]} \\ -7.2 \text{ WPCHP}, ^9 1J(\text{PWPCHP}) 6 \\ 1.93 \text{ [C=CCH}_3, ^4J(\text{HH}) 1.0]} \\ -7.2 \text{ WPCHP}, ^9 1J(\text{PWPCHP}) 6 \\ 1.93 \text{ [C=CCH}_3, ^4J(\text{HH}) 1.0]} \\ -7.2 \text{ WPCHP}, ^9 1J(\text{PWPCHP}) 6 \\ 1.93 \text{ [C=CCH}_3, ^4J(\text{HH}) 1.0]} \\ -7.2 \text{ WPCHP}, ^9 1J(\text{PWPCHP}) 6 \\ 1.93 \text{ [C=CCH}_3, ^4J(\text{HH}) 1.0]} \\ -7.2 \text{ WPCHP}, ^9 1J(\text{PWPCHP}) 6 \\ 1.93 \text{ [C=CCH}_3, ^4J(\text{HH}) 1.0]} \\ -7.2 \text{ WPCHP}, ^9 1J(\text{PWPCHP}) 6 \\ 1.93 \text{ [C=CCH}_3, ^4J(\text{HH}) 1.0]} \\ -7.2 \text{ WPCHP}, ^9 1J(P$			$1.28 \left[CH_2CH_3, ^3J(HH) 7.4, ^3J(PH) 7.4 \right]$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	See text	
11 See text			481
3.26 [PCH(CH ₂ CH=CH ₂), ² J(PH) 13.6, ³ J(HH) + ³ J(HH) 14 2.28 [C=CH ₃ , ⁴ J(HH) 1.2] 11 See text 6.47 [HC=C, ⁴ J(PH) 2.4, ⁴ J(PH) 1.3] 3.39 [PCH(CH ₂ Ph), ² J(PH) 13.7, ⁴ J(PH) 0.4, ³ J(HH) 12.5, 2.4 1.73 [C=CCH ₃ , ⁴ J(HH) 1.5] 2.38 [CHHPh, ³ J(PH) 4.7, ² J(HH) 13.2, ³ J(HH) 12.5] 2.54 [CHHPh, ³ J(PH) 8.0, ² J(HH) 13.2, ³ J(HH) 2.4] 36.4 PC=C 1.56 [PC(CH ₃)=C(CH ₃), ⁴ J(PH) 1.3, ⁴ J(PH) 1.3] 1.53 [PC(CH ₃)=C(CH ₃), ⁴ J(PH) 1.3, ⁴ J(HH) 1.3] 1.53 [PC(CH ₃)=C, ³ J(PH) ≈ 9, ⁵ J(PH) ≈ 6] 1.54 [PCH ₂ , ² J(PH) 2.4, ⁴ J(PH) 1.1] ^h 1.55 [PC(CH ₃)=C, ³ J(PH) 1.1] ^h 1.56 [PC(CH ₃)=C, ³ J(PH) 1.1] ^h 1.57 [PC(CH ₃)=C, ³ J(PH) 1.1] ^h 1.58 [PC(CH ₃)=C, ³ J(PH) 1.1] ^h 1.89 [PCHP, ² J(PH) 1.2, 1.1] ^h 1.80 [PCHP, ² J(PH) 1.2, 1.1] ^h 1.81 [PCHP, ² J(PH) 1.2, 1.1] 1.82 [PCHP, ² J(PH) 1.3, 1.1] 1.83 [PCH(2, ⁴ J(HH) 1.0] 1.84 [PCHP, ² J(PH) 3.7, ⁴ J(HH) 0.9] 1.85 [PCHP, ² J(PH) 6.1, ⁴ J(PH) 1.7] 1.96 [PCHP, ² J(PH) 6.1, ⁴ J(PH) 1.7] 1.97 [PCHP, ² J(PH) 6.1, ⁴ J(PH) 1.7] 1.98 [PCHP, ² J(PH) 6.1, ⁴ J(PH) 1.7] 1.99 [PCHP, ² J(PH) 6.1, ⁴ J(PH) 1.7] 1.90 [PCHP, ² J(PH) 6.5, ⁴ J(PH) 1.2]			\$((H (H-I H)
11 See text $ \begin{array}{ccccccccccccccccccccccccccccccccccc$			
11 See text 6.47 [HC=C, ${}^4J(PH) \ 2.4, {}^4J(HH) \ 1.3]$ 3.39 [PCH(CH ₂ Ph), ${}^2J(PH) \ 13.7, {}^4J(PH) \ 0.4, {}^3J(HH) \ 12.5, 2.4$ 1.73 [C=CCH ₃ , ${}^4J(HH) \ 1.5]$ 2.38 [CHHPh, ${}^3J(PH) \ 4.7, {}^2J(HH) \ 13.2, {}^3J(HH) \ 12.5]$ 2.54 [CHPh, ${}^3J(PH) \ 8.0, {}^2J(HH) \ 13.2, {}^3J(HH) \ 2.4]$ 12 48.3 PCH ₂ , ${}^2J(PH) \ 6.8, {}^4J(PH) \ 2.6]$ 36.4 PC=C 1.56 [PC(CH ₃)=C(CH ₃), ${}^4J(PH) \ 2.6]$ 1.53 [PC(CH ₃)=C, ${}^3J((PH) \approx 9, {}^5J(PH) \approx 6]$ 13a 50.7, MoPCHP, ${}^g \ {}^2J(MoPCHP) \ 173, {}^2J(PMoP) \ 26$ 12.6 MoPCH=, ${}^g \ -8.1 \ MoPCHP, {}^g \ {}^gJ(PMoPCHP) \ 8$ 2.8 (213) PC=C, ${}^g \ {}^2J(PP) \ 24$ 2.8 (213) PC=C, ${}^g \ {}^2J(PP) \ 20$ 6.27 [PCHP, ${}^2J(PH) \ 6.5, {}^4J(PH) \ 1.2]$			$3.26 [PCH(CH_2CH=CH_2), {}^2J(PH) 13.6, {}^3J(HH) + {}^3J(HH) 14.5]$
3.39 $[PCH(CH_2Ph), ^2J(PH) 13.7, ^4J(PH) 0.4, ^3J(HH) 12.5, 2.4]$ 1.73 $[C=CCH_3, ^4J(HH) 1.5]$ 2.38 $[CHHPh, ^3J(PH) 4.7, ^2J(HH) 13.2, ^3J(HH) 12.5]$ 2.54 $[CHHPh, ^3J(PH) 8.0, ^2J(HH) 13.2, ^3J(HH) 2.4]$ 1.56 $[PC(H_3)=C(CH_3), ^4J(PH) 2.6]$ 3.04 $[PCH_2, ^2J(PH) 6.8, ^4J(PH) 2.6]$ 3.05 $[PC(CH_3)=C(CH_3), ^4J(PH) 1.3, ^4J(HH) 1.3]$ 3.06 $[PC(CH_3)=C(CH_3), ^4J(PH) 1.3, ^4J(HH) 1.3]$ 3.07 $[PC(CH_3)=C(CH_3), ^4J(PH) 1.3, ^4J(HH) 1.3]$ 3.08 $[PC(CH_3)=C(CH_3), ^4J(PH) 1.3, ^4J(HH) 1.3]$ 3.09 $[PCH(H) 1, ^2J(HH) 1.3, ^2J(HH) 1.2, ^2J(HH) 1.3, ^2J(HH) 1.3, ^2J(HH) 1.3]$ 3.09 $[PCH(H) 1, ^2J(HH) 1.3, ^2J(HH)$		2	
1.73 [C=CCH ₃ , ${}^{4}J$ (HH) 1.5] 2.38 [CHHPh, ${}^{3}J$ (PH) 4.7, ${}^{2}J$ (HH) 13.2, ${}^{3}J$ (HH) 12.5] 2.54 [CHHPh, ${}^{3}J$ (PH) 8.0, ${}^{2}J$ (HH) 13.2, ${}^{3}J$ (HH) 2.4] 2.54 [CHHPh, ${}^{3}J$ (PH) 8.0, ${}^{2}J$ (HH) 13.2, ${}^{3}J$ (HH) 2.4] 3.04 [PCH ₂ , ${}^{2}J$ (PH) 6.8, ${}^{4}J$ (PH) 2.6] 3.04 [PCH ₂ , ${}^{2}J$ (PH) 6.8, ${}^{4}J$ (PH) 1.3, ${}^{4}J$ (HH) 1.3] 1.53 [PC(CH ₃)=C, ${}^{3}J$ (PH) \approx 9, ${}^{5}J$ (PH) \approx 6] 1.56 [PC(CH ₃)=C, ${}^{3}J$ (PH) \approx 9, ${}^{5}J$ (PH) \approx 6] 1.58 [PC(CH ₃)=C, ${}^{3}J$ (PH) \approx 9, ${}^{5}J$ (PH) \approx 6] 1.59 [PC(H ₃)=C, ${}^{3}J$ (PH) 1.1] h 1.80 [PCHP, ${}^{2}J$ (PH) 12.7, 1.2] h 1.81 [PC(PH) 12.7, 1.2] h 1.82 [PCHP, ${}^{2}J$ (PH) 12.7, 1.2] h 1.83 [PC(PH) 12.7, 1.2] h 1.84 [PCHP, ${}^{2}J$ (PH) 12.7, 1.2] h 1.85 [PC(PH) 12.7, 1.2] h 1.86 [PCHP, ${}^{2}J$ (PH) 1.0] 1.96 [PCHP, ${}^{2}J$ (PH) 1.0] 1.97 [PCHP, ${}^{2}J$ (PH) 1.0] 1.98 [PCHP, ${}^{2}J$ (PH) 1.0] 1.99 [PCHP, ${}^{2}J$ (PH) 6.1, ${}^{4}J$ (PH) 1.7] 1.99 [PCHP, ${}^{2}J$ (PH) 6.1, ${}^{4}J$ (PH) 1.7] 1.90 [PCHP, ${}^{2}J$ (PH) 6.1, ${}^{4}J$ (PH) 1.7] 1.90 [PCHP, ${}^{2}J$ (PH) 6.5, ${}^{4}J$ (PH) 1.7] 1.90 [PCHP, ${}^{2}J$ (PH) 6.5, ${}^{4}J$ (PH) 1.7] 1.90 [PCHP, ${}^{2}J$ (PH) 6.5, ${}^{4}J$ (PH) 1.2]	11	See text	
2.38 [CHHPh, ${}^{3}J(PH)$ 4.7, ${}^{2}J(HH)$ 13.2, ${}^{3}J(HH)$ 12.5] 2.54 [CHHPh, ${}^{3}J(PH)$ 8.0, ${}^{2}J(HH)$ 13.2, ${}^{3}J(HH)$ 2.4] 3.04 [PCH ₂ , ${}^{2}J(PH)$ 6.8, ${}^{4}J(PH)$ 2.6] 3.04 [PCH ₂ , ${}^{2}J(PH)$ 6.8, ${}^{4}J(PH)$ 2.6] 1.56 [PC(CH ₃)=C(CH ₃), ${}^{4}J(PH)$ 1.3, ${}^{4}J(HH)$ 1.3] 1.53 [PC(CH ₃)=C, ${}^{3}J(PH)$ \approx 9, ${}^{5}J(PH)$ \approx 6] 6.28 [HC=C, ${}^{4}J(HH)$ 1.1] ^h 1.13h 32.7 (241), WPCHP, ${}^{9}J(PHP)$ 167, ${}^{2}J(PWP)$ 19 4.24 [PCHP, ${}^{2}J(PH)$ 12.7, 1.2] ^h 1.82 [C=CCH ₃ , ${}^{4}J(HH)$ 1.1] ^h 6.50 [HC=C, ${}^{4}J(HH)$ 1.0] 4.69 [PCHP, ${}^{2}J(PH)$ 12.3, 1.1] 4.69 [PCHP, ${}^{2}J(PH)$ 12.3, 1.1] 4.93 [C=CH ₃ , ${}^{4}J(HH)$ 1.0] 4.69 [PCHP, ${}^{2}J(PH)$ 3.7, ${}^{4}J(HH)$ 0.9] 4.8 PCHP ^g 5.60 [PCHP, ${}^{2}J(PH)$ 6.1, ${}^{4}J(PH)$ 1.7] 2.40 [C=CCH ₃ , ${}^{4}J(HH)$ 0.9] 4.627 [PCHP, ${}^{2}J(PH)$ 6.5, ${}^{4}J(PH)$ 1.2]			
12 48.3 PCH ₂ , $J(PP)$ 31 3.04 $[PCH_2, {}^2J(PH)$ 6.8, ${}^4J(PH)$ 2.6] 36.4 PC=C 1.56 $[PC(CH_3) = C(CH_3), {}^4J(PH)$ 1.3, ${}^4J(PH)$ 1.3] 1.53 $[PC(CH_3) = C, {}^3J((PH) \approx 9, {}^5J(PH) \approx 6]$ 13a 50.7, MoPCHP, g ${}^4J(PMOPCHP)$ 173, ${}^2J(PMOP)$ 26 6.28 $[HC = C, {}^4J(HH)$ 1.1] h 4.24 $[PCHP, {}^2J(PH)$ 12.7, 1.2] h 1.82 $[C = CCH_3, {}^4J(HH)$ 1.1] h 1.82 $[C = CCH_3, {}^4J(HH)$ 1.1] h 1.81 $[C = CCH_3, {}^4J(HH)$ 1.0] 4.69 $[PCHP, {}^2J(PH)$ 12.3, 1.1] 4.69 $[PCHP, {}^2J(PH)$ 12.3, 1.1] 4.69 $[PCHP, {}^2J(PH)$ 13.7, ${}^4J(PH)$ 1.0] 1.93 $[C = CH_3, {}^4J(HH)$ 1.0] 5.60 $[PCHP, {}^2J(PH)$ 1.7] 2.40 $[C = CCH_3, {}^4J(HH)$ 0.9] 5.60 $[PCHP, {}^2J(PH)$ 6.1, ${}^4J(PH)$ 1.7] 2.40 $[C = CCH_3, {}^4J(HH)$ 0.9] 1.4b 2.8 (213) $PC = C, {}^g$ $J(PP)$ 20 6.27 $[PCHP, {}^2J(PH)$ 6.5, ${}^4J(PH)$ 1.2]			2.38 [C <i>H</i> HPh, ³ <i>J</i> (PH) 4.7, ² <i>J</i> (HH) 13.2, ³ <i>J</i> (HH) 12.5]
36.4 PC=C			
13a 50.7, MoPCHP, $^g ^2 J$ (MoPCHP) 173, $^2 J$ (PMoP) 26 12.6 MoPCH=, $^g - 8.1$ MoPCHP, $^g ^4 J$ (PMoPCHP) 8 4.24 [PCHP, $^2 J$ (PH) 1.1] h 1.82 [C=CCH3, $^4 J$ (HH) 1.1] h 1.82 [C=CCH3, $^4 J$ (HH) 1.0] -7.2 (224), WPCH=, $^g ^4 J$ (PWPCHP) 6 1.93 [C=CH3, $^4 J$ (HH) 1.0] -7.2 WPCHP, $^g ^4 J$ (PWPCHP) 6 1.93 [C=CH3, $^4 J$ (HH) 1.0] 1.94 (PCHP, $^2 J$ (PH) 24.8 PCHP, $^2 J$ (PP) 24 6.10 [HC=C, $^4 J$ (PH) 3.7, $^4 J$ (HH) 0.9] 24.8 PCHP, $^g ^4 J$ (PP) 20 6.27 [PCHP, $^2 J$ (PH) 6.5, $^4 J$ (PH) 1.2]	12	• ,	
13a 50.7, Mo PCHP, g 2 J(Mo PCHP) 173, 2 J(PMo P) 26 12.6 Mo PCH=, g - 8.1 Mo PCHP, g 4 J(PMo PCHP) 8 13b 32.7 (241), W PCHP, g 2 J(W PCHP) 167, 2 J(PW P) 19 -7.2 (224), W PCH= g -7.2 W PCHP, g 4 J(PW PCH P) 6 14a 20.0, PC=C, g 2 J(PP) 24 24.8 PCHP g 24.8 PCHP g 28 (213) PC=C, g 2 J(PP) 20 14b 2.8 (213) PC=C, g 2 J(PP) 20 6.28 [HC=C, 4 J(HH) 1.1] h 4.24 [PCHP, 2 J(PH) 12.7, 1.2] h 1.82 [C=CCH ₃ , 4 J(HH) 1.0] 6.50 [HC=C, 4 J(HH) 1.0] 4.69 [PCHP, 2 J(PH) 12.3, 1.1] 1.93 [C=CH ₃ , 4 J(HH) 1.0] 6.10 [HC=C, 4 J(PH) 3.7, 4 J(HH) 0.9] 5.60 [PCHP, 2 J(PH) 6.1, 4 J(PH) 1.7] 2.40 [C=CCH ₃ , 4 J(HH) 0.9] 6.27 [PCHP, 2 J(PH) 6.5, 4 J(PH) 1.2]		36.4 PC=C	
12.6 MoPCH=, g -8.1 MoPCHP, g 4 J(PMoPCHP) 8 1.82 [C=CCH ₃ , 4 J(HH) 1.1] h 1.82 [C=CCH ₃ , 4 J(HH) 1.1] h 1.84 [C=CCH ₃ , 4 J(HH) 1.0] 1.85 (E=CCH ₃ , 4 J(HH) 1.0] 1.86 (E=CCH ₃ , 4 J(HH) 1.0] 1.87 (E=CH ₃ , 4 J(HH) 1.0] 1.89 [C=CH ₃ , 4 J(HH) 1.0] 1.91 (E=CH ₃ , 4 J(HH) 1.0] 1.92 (E=CH ₃ , 4 J(HH) 1.0] 1.93 (E=CH ₃ , 4 J(HH) 0.9] 1.94 (E=CCH ₃ , 4 J(HH) 0.9] 1.95 (E=CCH ₃ , 4 J(HH) 0.9] 1.96 (E=CCH ₃ , 4 J(HH) 0.9] 1.97 (E=CCH ₃ , 4 J(HH) 0.9] 1.98 (E=CCH ₃ , 4 J(HH) 0.9] 1.99 (E=CCH ₃ , 4 J(HH) 0.9]	13a	50.7 MoPCHP 9.2 I(MoPCHP) 173. 2 I(PMoP) 26	
1.82 [C=CCH ₃ , ⁴ J(HH) 1.1] ^h 13b 32.7 (241), W <i>P</i> CHP, ^g ² J(W <i>P</i> CH <i>P</i>) 167, ² J(<i>P</i> W <i>P</i>) 19 6.50 [HC=C, ⁴ J(HH) 1.0] -7.2 (224), W <i>P</i> CH= ^g 4.69 [PCHP, ² J(PH) 12.3, 1.1] -7.2 W <i>P</i> CH <i>P</i> , ^g ⁴ J(<i>P</i> W <i>P</i> CH <i>P</i>) 6 1.93 [C=CH ₃ , ⁴ J(HH) 1.0] 14a 20.0, PC=C, ^g ² J(PP) 24 6.10 [HC=C, ⁴ J(PH) 3.7, ⁴ J(HH) 0.9] 24.8 <i>P</i> CH <i>P</i> ^g 5.60 [PCHP, ² J(PH) 6.1, ⁴ J(PH) 1.7] 2.40 [C=CCH ₃ , ⁴ J(HH) 0.9] 14b 2.8 (213) PC=C, ^g ² J(PP) 20 6.27 [PCHP, ² J(PH) 6.5, ⁴ J(PH) 1.2]	154		
13b 32.7 (241), W <i>P</i> CHP, ⁹ ² <i>J</i> (W <i>P</i> CH <i>P</i>) 167, ² <i>J</i> (<i>P</i> W <i>P</i>) 19 6.50 [HC=C, ⁴ <i>J</i> (HH) 1.0] -7.2 (224), W <i>P</i> CH= ⁹ 4.69 [PCHP, ² <i>J</i> (PH) 12.3, 1.1] -7.2 W <i>P</i> CH <i>P</i> , ⁹ ⁴ <i>J</i> (<i>P</i> W <i>P</i> CH <i>P</i>) 6 1.93 [C=CH ₃ , ⁴ <i>J</i> (HH) 1.0] 14a 20.0, PC=C, ⁹ ² <i>J</i> (PP) 24 6.10 [HC=C, ⁴ <i>J</i> (PH) 3.7, ⁴ <i>J</i> (HH) 0.9] 24.8 <i>P</i> CH <i>P</i> ⁹ 5.60 [PCHP, ² <i>J</i> (PH) 6.1, ⁴ <i>J</i> (PH) 1.7] 2.40 [C=CCH ₃ , ⁴ <i>J</i> (HH) 0.9] 14b 2.8 (213) PC=C, ⁹ ² <i>J</i> (PP) 20 6.27 [PCHP, ² <i>J</i> (PH) 6.5, ⁴ <i>J</i> (PH) 1.2]		, , , , , , , , , , , , , , , , , , , ,	$1.82 [C=CCH_3, {}^4J(HH) 1.1]^h$
-7.2 WPCH <i>P</i> , ⁹ ⁴ <i>J</i> (<i>P</i> WPCH <i>P</i>) 6 1.93 [C=CH ₃ , ⁴ <i>J</i> (HH) 1.0] 14a 20.0, PC=C, ⁹ ² <i>J</i> (PP) 24 24.8 <i>P</i> CH <i>P</i> ⁹ 5.60 [PCHP, ² <i>J</i> (PH) 6.1, ⁴ <i>J</i> (PH) 1.7] 2.40 [C=CCH ₃ , ⁴ <i>J</i> (HH) 0.9] 14b 2.8 (213) PC=C, ⁹ ² <i>J</i> (PP) 20 6.27 [PCHP, ² <i>J</i> (PH) 6.5, ⁴ <i>J</i> (PH) 1.2]	13b		
14a 20.0, PC=C, ^g ² J(PP) 24 6.10 [HC=C, ⁴ J(PH) 3.7, ⁴ J(HH) 0.9] 24.8 PCHP ^g 5.60 [PCHP, ² J(PH) 6.1, ⁴ J(PH) 1.7] 2.40 [C=CCH ₃ , ⁴ J(HH) 0.9] 14b 2.8 (213) PC=C, ^g ² J(PP) 20 6.27 [PCHP, ² J(PH) 6.5, ⁴ J(PH) 1.2]			
24.8 <i>P</i> CH <i>P</i> ^g 5.60 [PCHP, ² <i>J</i> (PH) 6.1, ⁴ <i>J</i> (PH) 1.7] 2.40 [C=CCH ₃ , ⁴ <i>J</i> (HH) 0.9] 14b 2.8 (213) PC=C, ^g ² <i>J</i> (PP) 20 6.27 [PCHP, ² <i>J</i> (PH) 6.5, ⁴ <i>J</i> (PH) 1.2]	149		
2.40 [C=CCH ₃ , ⁴ J(HH) 0.9] 14b 2.8 (213) PC=C, ^g ² J(PP) 20 6.27 [PCHP, ² J(PH) 6.5, ⁴ J(PH) 1.2]	174	, , , ,	
14b 2.8 (213) PC=C, g ² J(PP) 20 6.27 [PCHP, ² J(PH) 6.5, ⁴ J(PH) 1.2]		J	
	14b		6.27 [PCHP, ² J(PH) 6.5, ⁴ J(PH) 1.2]
1.6 (200) $PCHP^g$ 6.13 [HC=C, $^4J(PH)$ 3.9, $^4J(HH)$ 1.3]		1.6 (200) PCHP ^g	
2.39 [C=CCH ₃ , ⁴ J(PH), 2.3, ⁴ J(HH) 1.3]			2.39 [C=CCH ₃ , $^*J(PH)$, 2.3, $^*J(HH)$ 1.3]

^a Recorded at 36.2 MHz in CDCl₃ solution at 28 °C unless stated otherwise, chemical shifts ± 0.1 ppm, J values ± 1 Hz. Values of $J(^{18.3}W-P)$ are shown in parentheses. ^b Recorded at 400.13 MHz in CDCl₃ at 25 °C, unless stated otherwise, chemical shifts ± 0.1 ppm, J Values ± 10 Hz. ^c In CH₂Cl₂. ^d At 89.5 MHz and 28 °C. ^e At 99.5 MHz and 22 °C. ^f At ± 40 °C. ^g In CH₂Cl₂ solution at 161 MHz. ^h In CD₂Cl₂ solution at 99.5 MHz and 22 °C.

equivalent amount of lithium bis(trimethylsilyl)amide was used, deprotonation of 3 or 4 to 5 was incomplete, as judged by the ³¹P-{¹H} NMR spectra.

We have also studied the action of D₂O on the carbanion 5a in an attempt to effect monodeuteriation at an allylic position,

as in 6. We added an equimolecular amount of D_2O to a tetrahydrofuran solution of this carbanion, generated by adding methyllithium to a solution of 3a. The 2D - 1H NMR spectrum of 6 was measured at $+40\,^{\circ}C$ in order to sharpen the resonance by reducing the rate of quadrupole relaxation. The 2D NMR

Table 3 Carbon-13 NMR data

Table 3 Car	bon-13 NMR	data ª							
						PC ₆ H ₅ group	os		
Compound 3a ^b	M-CO 214.9 (t) (15.9°) 210.1 (t)	HC= <i>C</i> 137.2 (s)	HC=C 118.8 (t) (8.2 ^d)	PHCR 42.1 (t) (19.5°)	C=CCH ₃	P-C _i 137.8 (m) (34.8°)	P-C _o 132.1 (t) (11.6 ^f)	P-C _m 128.2 (t) (9.2 ^g)	P-C _p 129.5 (s)
3b b	(8.7 ^h) 205.6 (t) (16.8°) 202.5 (t) (7.0 ^h)	137.3 (t) (8.7 ^h)	119.2 (t) (8.7 ^d)	42.3 (t) (23.5°)		137.3 (m) (40.9°)	132.1 (t) (11.4 ^f)	128.2 (t) (9.4 ^g)	129.8 (s)
4a ^b	215.5 (dd) (26.7, ^h 9.5 ^h) 215.5 (dd) (23.2, ^h 7.7 ^h) 209.7 (t) (8.5 ^h)	150.3 (dd) (10.4, ^h 1.2 ^h)	120.8 (dd) (34.2, 11.0 ^d)	36.1 (dd) (14.6, 12.9 ^d)	30.0 (dd) (11.0, ^d 2.5 ^d)	137.5 (dd) (36.0, 2.5 ^d) 136.8 (dd) (29.9, 1.2 ^d)	131.9 (d) (12.8 h) 131.8 (d) (12.2 h)	128.5 (d) (9.8 ^d) 128.4 (d) (8.5 ^d)	129.8 (d) (1.8 ⁱ) 129.5 (d) (1.8 ⁱ)
4b*	206.6 (dd) (25.7, ^h 7.2 ^h) 206.2 (dd) (21.8, ^h 5.0 ^h) 202.1 (t) (6.7 ^h)	150.9 (dd) (9.4, ^h 1.7 ^h)	120.3 (dd) (39.2, 10.2 ^d)	36.0 (dd) (18.6, 11.9 h)	30.3 (dd) (11.7, ^d 3.0 ^d)	137.0 (dd) (42.0, 3.0 ^d) 136.4 (dd) (36.7, 1.7 ^d)	131.9 (d) (12.1 h) 131.8 (d) (11.4 h)	128.5 (d) (9.8 ^d) 128.4 (d) (9.1 ^d)	129.9 (d) (2.0 ⁱ) 129.7 (d) (1.7 ⁱ)
6 ^j	215.8 (dd) (27.1, ^h 9.5 ^h) 215.4 (dd) (22.9, ^h 7.9 ^h) 209.7 (t) (8.5 ^h) 209.7 (t) (8.5 ^h)	150.2 (dd) (10.5, ^h 1.1 ^h)	120.9 (dd) (33.7, 10.8 d)	35.8 (br)	30.0 (dd) (11.2, ^d 2.7 ^d)	137.6 (dd) (36.2, 2.5 ^d) 137.5 (dd) (36.5, 2.5 ^d) 136.9 (dd) (30.5, 1.2 ^d) 136.9 (dd) (30.2, 1.1 ^d)	131.9 (d) (12.8 h) 131.9 (d) (12.8 h) 131.8 (d) (11.9 h) 131.8 (d) (11.8 h)	128.5 (d) (9.4 ^d) 128.3 (d) (8.9 ^d)	129.7 (d) (1.2 ¹) 129.7 (d) (1.2 ¹) 129.4 (d) (1.3 ¹) 129.4 (d) (1.4 ¹)
7 a ^k	215.6 (dd) (21.6, h 9.5 h) 215.5 (dd) (25.4, h 9.5 h) 211.7 (t) (9.3 h) 207.1 (t) (7.9 h)	158.6 (dd) (12.1, ^h 1.9 ^h)	119.6 (dd) (32.9, 8.0 ^d)	36.1 (dd) (16.7, 8.6 ^d)	31.2 (dd) (12.1, ^d 4.4 ^d)	140.8 (dd) (39.8, 2.8 ^d) 140.2 (d) (13.3 ^h) 137.0 (d) (35.5) 135.5 (dd) (30.4, 3.2 ^d)	134.2 (d) (13.3*) 132.6 (d) (13.3*) 130.6 (d) (10.2*) 130.4 (d) (12.1*)	128.4 (d) (9.5 ^d) 128.2 (d) (8.3 ^d)	129.9 (d) (1.9 ⁱ) 128.9 (d) (1.3 ⁱ) 128.7 (m) ¹
7b ™	206.1 (dd) (23.8, ^h 7.6, ^h) 205.9 (dd) (21.0, ^h 6.6, ^h) 203.5 (t) (7.6, ^h) 199.5 (t) (6.4, ^h)	159.3 (dd) (10.7, ^h 1.4 ^h)	118.3 (dd) (38.9, 7.4°)	35.3 (dd) (11.1, 8.1 ^d)	31.4 (dd) (12.5, ^d 4.6 ^d)	140.3 (dd) (45.6, 3.6 ^d) 139.8 (d) (38.1) 136.2 (dd) (40.6, 1.3 ^d) 134.8 (dd) (36.5, 4.2 ^d)	134.3 (d) (12.4 h) 132.6 (d) (12.3 h) 130.4 (d) (10.2 h) 130.3 (d) (11.4 h)	128.3 (d) (9.8 ⁴) 128.1 (d) (8.5 ⁴) 128.0 (d) (9.5 ⁴)	130.4 (d) (2 ⁱ) 129.9 (d) (2 ⁱ) 129.0 (d) (1.5 ⁱ) 128.7 (dd) (1.9 ⁱ)
8a	215.8 (dd) (22.3, ^h 8.9, ^h) 215.4 (dd) (25.9, ^h 9.6, ^h) 213.4 (t) (9.1, ^h) 205.5 (t) (7.7, ^h)	157.3 (d) (13.0*)	117.5 (dd) (35.3, 9.2 ^d)	34.8 (d)° (7.6)	33.2 (dd)° (12.1, ^d 5.3 ^d)		Others" $0.7 (d) (1.7^d) Si(CH_3)_3$		
8b	206.4 (dd) (20.9, h 6.8 h) 205.8 (dd) (24.5, h 7.6 h) 205.7 (t) (7.7 h) 198.2 (t) (5.7 h)	157.8 (d) (11.7 ^h)	116.7 (dd) (40.5, 8.9 ^d)	34.4 (dd)° (7.2, 4.1°)	35.5 (dd)° (12.6, ^d 5.6 ^d)		0.71 (d) (1.6 ^a) Si(CH ₃) ₃		
9	(3.7°) 215.7 (dd) (22.6, h 8.5 h) 215.5 (dd) (26.2, h 9.8 h) 211.2 (t) (9.2 h) 207.7 (t) (8.2 h)	158.3 (d) ^p (11.9 ^h)	118.0 (dd) ^p (33.5, 8.9 ^d)	42.3 (dd) ^{p,q} (15.0, 8.7 ^d)	33.8 (dd) ^p (12.2, ^d 3.7 ^d)			8 ^h) PCH <i>C</i> H ₂	СН3

Table 3	(continued)
IADICS	(commueu)

143100 (00)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
10	206.0 (dd) (21.0,*6.4*) 205.9 (dd) (24.8,*7.5*) 203.5 (t) (7.5*) 199.7 (t) (6.2*)	159.1 (d) ^p (10.0 ^h)	118.1 (dd) ^p (38.9, 7.2 ^h)	41.7 (dd) (17.7, 7.8 ^d)	34.6 (dd) ^p (12.5, ^d 3.8 ^d)	39.1 (d) ^p (9.1 ^h) PCHCH ₂ CH=CH ₂ 134.8 (d) (13.9 ^d) PCHCH ₂ CH=CH ₂ 117.2 (s) PCHCH ₂ CH=CH ₂
11	215.7 (dd) (22.4,* 8.8*) 215.1 (dd) (26.0,* 10.0*) 212.1 (dd) (9.7,* 9.0*) 206.8 (t)* (8.6*)	158.8 (dd) ^p (11.9, h 1.3 h)	119.2 (dd) ^p (33.6, 7.9 ^d)	44.6 (dd) (13.8, 8.4 ^d)	34.3 (dd) ^p (11.8 ^d 3.8 ^d)	40.5 (d) ^p (9.3 ^h) PCHPh 139.0 (d) (14.1 ^d) PCHPh-C _i 128.4 (s) PCHPh-C _o 128.2 (s) PCHPh-C _m 126.4 (s) PCHPh-C _p
12	216.0 (dd) (22.7, ^h 7.8 ^h) 216.0 (dd) (27.8, ^h 9.0 ^h) 210.1 (t) (8.6 ^h)	140.3 (dd) (14.6, ^h 2.1 ^h)	125.3 (dd) (26.9, 11.0 ^d)	39.6 (dd) (16.7, 14.0 ^d)	24.7 (dd) (8.9, ^d 2.2 ^d)	19.6 (dd) (4.7, ^h 3.2 ⁱ) PC(CH ₃)=C
13a'	216.3 (dd) (22.9, h 9.3 h) 216.0 (dd) (25.8, h 10.0 h) 213.5 (dt) (12.3 h 9.7 i) 206.6 (dt) (7.6, h 1.2 i)	153.5 (d) (12.7 ^h)	121.7 (ddd) (33.2, 8.0, ^d 4.0 ^d)	41.5 (ddd) (38.4, 14.6, 6.3 ^d)	33.5 (dd) (11.9, ^d 5.2 ^d)	
13b	206.2 (dd) (21.5,h 7.3h) 205.8 (dd) (24.3,h 7.8h) 205.2 (dt) (11.3,h 8.1i) 198.2 (dt) (5.4,h 1.3i)	153.3 (dd) (10.3,* 1.0*)	120.5 (ddd) (38.1, 7.4, ^d 3.9 ^d)	40.7 (ddd) (39.5, 19.0, 5.9 ^d)	33.7 (dd) (12.3, ^d 5.6 ^d)	
14a	223.6 (dt) (18.8, c 9.7 h) 222.2 (dt) (24.0, h 8.5 h)	152.7 (dt) (17.5, ^h 5.4 ^h)	115.3 (dt) (33.4, 7.5 ^h)	58.1 (dt) (12.7, 6.7 ^d)	32.6 (dt) (13.0, ^d 2.0 ^d)	
14b	216.2 (dt) (18.3, c 9.0 h) 214.2 (dt) (22.5, h 7.0 h)	152.6 (dt) (10.0, 5.8 h)	114.7 (dt) (38.1, 7.3 ^d)	60.5 (dt) (16.3, 6.3 ^d)	32.7 (dt) (13.5, ⁴ 2.2 ⁴)	

^a Measured at 100.6 MHz and 27 °C in CDCl₃ solution, unless stated otherwise. Figures in parentheses are couplings to phosphorus (in Hz) and unless shown otherwise are ${}^{1}J(PC)$. s = Singlet, d = doublet, t = triplet, m = multiplet and br = broad. ^b At 22.5 MHz. ^c $|{}^{2}J(PC) + {}^{2}J(PC)|$. ^d $|{}^{3}J(PC) + {}^{3}J(PC)|$. ^e $|{}^{3}J(PC) + {}^{3}J(PC)|$. ^f $|{}^{2}J(PC) + {}^{3}J(PC)|$. ^g $|{}^{3}J(PC) + {}^{5}J(PC)|$. ^h $|{}^{2}J(PC) + {$

spectrum of the product 6 consisted of a single, broad resonance at δ 3.0 ($w_{\frac{1}{2}} = 12$ Hz at 61.4 MHz) indicating, as expected, that all the deuterium was present in the allylic position. The ${}^{31}P^{-{1}}H$ NMR spectrum of 6 was almost identical to that of 4a, except that the resonance due to the allylic phosphine was shifted by ca. 0.2 ppm to lower frequency from the resonance of the undeuteriated complex 4a (a small amount of this undeuteriated complex was present in the deuteriated sample so that this small difference in the phosphorus-31 chemical shifts, due to a secondary isotope effect, was measured accurately). The phosphorus-31 resonance of the deuteriated complex was slightly broader than that of the undeuteriated complex [since ${}^{2}J(PH)$ (allylic protons) is 7.9 Hz one would expect ${}^{2}J(PD)$ to be 1.2 Hz and unresolved]; the two values of $w_{\frac{1}{2}}$ were 1.1 (deuteriated) and 0.7 Hz (undeuteriated).

The ¹H NMR spectrum showed allylic and alkenyl resonances of equal intensity and, again, a small isotope shift was observed for the allylic resonance with respect to the CH₂

resonance of the small amount of the undeuteriated complex 4a present in the deuteriated sample 6. No H-D coupling was observed but the CHD resonance was slightly broader than the equivalent resonance of CH₂. Additionally, a long-range coupling, ⁴J(HH), of 0.6 Hz was observed between the alkenyl and CHD protons (the expected triplet pattern for the alkenyl proton in 4a was not resolved). The single deuterium in complex 6 was sufficient to destroy the symmetry to the extent that pairs of carbons related by the plane of symmetry present in 4a showed different chemical shifts in the 13C-{1H} NMR spectrum of 6 (see Fig. 1 and Table 3). The CHD carbon resonance was broad with some fine structure but we were unable to resolve the ${}^{1}J(CD)$ coupling. A ${}^{13}C-\{{}^{1}H\}$ NMR spectrum recorded with an attached-proton test sequence demonstrated that the allylic carbon bore only one hydrogen and thus unequivocally established that 6 was a monodeuteriated species.

We have also methylated the carbanions of type 5. A

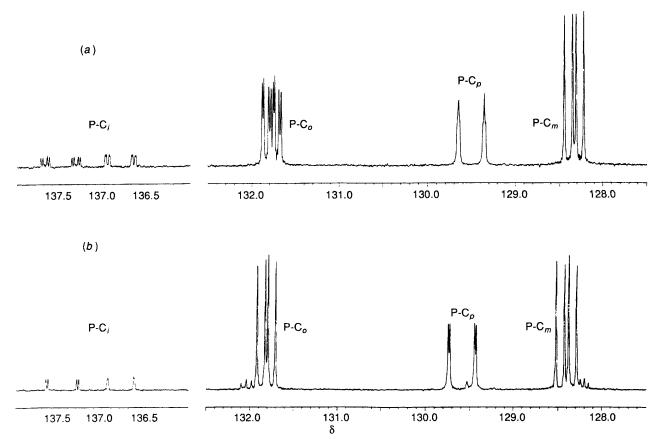


Fig. 1 ¹³C-{¹H} NMR spectra, in the phenyl region, of (a) of the monodeuterio-complex 6 and (b) its perhydro analogue 4a, showing the secondary isotope effect of the deuterium atom in making all four phenyl groups non-equivalent, as is shown particularly by the *ipso*- and *ortho*-carbon resonances. Spectra measured at 27 °C and 100.6 MHz in CDCl₃ solution

convenient method of doing this was to treat a solution of 4a or 4b with a five-fold excess of the commercially available lithium bis(trimethylsilyl)amide and then add a five-fold excess of methyl iodide. This produced the required methylated complex 7a or 7b in 69 and 73% yields, respectively. These complexes were fully characterised (Tables 1-3) in particular the ¹H NMR spectra established the position of the methyl group to be as shown. With smaller proportions of lithium bis(trimethylsilyl)amide and methyl iodide the yields were lower but we also prepared the methyl derivative 7a by deprotonating the molybdenum complex 4a with lithium tetramethylpiperidide (1 equivalent) and adding 1 equivalent of methyl iodide to the resultant carbanion; the yield of 7a was 82%. We also prepared the trimethylsilyl derivative 8a by treating complex 4a with lithium bis(trimethylsilyl)amide and adding trimethylsilyl chloride; similarly for the tungsten complex 8b. Details of these preparations are in the Experimental section and characterising data in the Tables.

We have also made analogues of the methyl derivatives of type 7 by alkylating the carbanions of type 5 with (i) ethyl iodide, (ii) allyl bromide, or (iii) benzyl bromide, giving, respectively, the ethyl derivative 9 (Mo), the allyl 10 (W), or the benzyl 11 (Mo). Preparative details for these three complexes are in the Experimental section and characterising data are in Tables 1-3. When the carbanions of type 5 were treated with 2-bromopropane, diiodomethane or neopentyl chloride we were unable to isolate substitution products, some of the impure complex of type 4 being recovered in each case. For each of the complexes 9-11 the substituent is of the type CH₂R and the methylene protons are diastereotopic. For the ethyl derivative 9 the ¹H-{³¹P} NMR spectrum (100 MHz) showed the CH₂ protons to give a single, broad resonance and the allylic proton gave a deceptively simple 1:2:1 triplet pattern resulting from a strongly coupled ABX spin system. At 400 MHz the resonance of this methine proton appeared as a sixline pattern, confirming the ABX spin system but the CH, resonances were not resolved. For the allyl derivative $[W{PPh_2CH=CMeCH(CH_2CH=CH_2)PPh_2}(CO)_4]$ 10 the resonances of the diastereotopic methylene (CH_2CH) hydrogens remained coincident at 400 MHz and the methine hydrogen [CH(CH₂CH=CH₂)] gave a virtual triplet even at this high field. For the benzyl complex 11, however, separate resonances were observed for the two CH₂Ph protons (ABX spectrum at 100 MHz) and the spectrum was approximately first order (AMX) at 400 MHz and -40 °C. The coupling constants between the three (CHCH₂Ph) protons established that of the two resonances for the benzylic methylene group the one at higher field (§ 2.38) was more strongly coupled to the vicinal methine proton. This was therefore assigned as being approximately antiperiplanar to the methine proton (H_a in the Newman projection shown in Fig. 2). At 25 °C and at 400 MHz the other benzylic proton absorbed as a broad resonance at δ 2.54 and this suggested fluxionality in the complex. The best evidence for fluxionality in complexes 9-11 came from the ³¹P-{¹H} NMR spectra over a range of temperatures, in contrast to the spectra of complexes of types 3, 4, 7 and 8 which were invariant over the range +25 to -70 °C.

Thus the benzyl complex 11, at -63 °C and 161 Mz, gave a low-temperature-limiting spectrum consisting of a major component with $\delta(P)$ 56.5 and 11.3 and $^2J(PP)=26$ Hz and a minor component $(1-2)'_0$ of the whole) with $\delta(P)$ 67.8 and 18.9 and $^2J(PP)=26$ Hz. At +27 °C and 161 MHz the resonances of the minor component had broadened and disappeared whilst those of the major component had broadened, $w_{\frac{1}{2}}\approx 150$ and ≈ 100 Hz, respectively. The fast-exchange limit was more readily seen at 36.2 MHz and at 28 °C, with δ 56.5 and 11.3 and J(PP)=26 Hz.

Similar behaviours were shown by the tungsten complex 10 and the molybdenum complex 9. For 10, at -63 °C the major component had $\delta(P)$ 40.4, ${}^{1}J(WP) = 241$ Hz and -8.9,

$$\begin{array}{c} \text{Me} \\ \text{H} \\ \text{Ph}_2 \\ \text{P} \\ \text{H}_a \\ \text{PPh}_2 \\ \text{PPh}_2 \\ \text{H}_b \\ \text{PPh}_2 \\ \text{PPh}_2 \\ \text{PPh}_2 \\ \text{(CO)}_4 \\ \text{ii} \\ \\ \text{Ph}_2 \\ \text{PPh}_2 \\ \text{PPh}_2 \\ \text{(CO)}_4 \\ \text{iii} \\ \end{array}$$

Fig. 2 Newman projections of the conformers i-iii of complexes of the type $[M\{Ph_2PCH=CMeCH(CH_2R)PPh_2\}(CO)_4]$ $(R=Me, 9; CH=CH_2, 10; or Ph, 11)$. We suggest that conformer i is the most stable and iii the least stable for steric reasons. Since only two conformers were observed in the low-temperature $^{31}P-\{^{1}H\}$ NMR spectra (see Discussion), we suggest that these are i (major) and ii (minor) and that the amount of conformer iii was too small for us to observe

 $^{1}J(WP) = 222$ Hz and $^{2}J(PP) = 21$ Hz and the minor component (1-2% of the whole) showed $\delta(P)$ 56.5 and 12.3 and $^{2}J(PP) = 21$ Hz. At +27 °C and at 161 MHz the resonances of the minor component had disappeared whilst those of the major component had broadened, $w_{\frac{1}{2}} \approx 200$ Hz. In the fast-exchangelimiting spectrum, at 36.2 MHz and at 28 °C, the two shifts were δ 40.3 and -8.0 and J(PP) = 21 Hz. For 9, at -63 °C, the major component had $\delta(P)$ 58.2 and 13.1 and ${}^2J(PP) = 28$ Hz and the minor component (1–2% of the whole) showed $\delta(P)\,70.6$ and 21.3 and ${}^2J(PP) = 28$ Hz. As before, at +27 °C and at 161 MHz the resonances of the minor component had disappeared whilst those of the major component had broadened, $w_{\star} \approx 150$ and ≈ 100 Hz, respectively. In the fast-exchange limit, at 36.2 MHz and at 28 °C, the two shifts were δ 57.9 and 12.9 and J(PP) = 29 Hz. We suggest that these effects of temperature are caused by the presence of the two conformers i (major) and ii (minor) in Fig. 2 and that the third conformer iii is present in amounts which we could not detect.

The ¹³C-{¹H} NMR spectrum of complex 11 at 25 °C also showed that some of the resonances were broadened by exchange effects (Table 3). A series of ¹H nuclear Overhauser enhancement (n.O.e.) difference spectra indicated no unusually close interactions with the benzyl group.

We have also tried to effect a base-promoted 1,2-prototropic shift of the C=C bond in the chelated ring of complex 7a. Treatment of 7a in boiling ethanol-sodium ethoxide solution caused decomposition, but two successive treatments of 7a with methyllithium, followed by methanol, gave the required product 12, containing a tetrasubstituted C=C bond. The yield of this product was only 13% but it was fully characterised (see Tables 1-3).

We have treated solutions of the carbanions of type 5 with chlorodiphenylphosphine and thereby made the molybdenum 13a and tungsten 13b complexes of the triphosphine (Ph₂P)₂CHCMe=CHPPh₂ acting in a bidentate fashion. When complexes 13 were heated (at 100 °C for Mo or ca. 180 °C for W) the fac-tricarbonyl complexes 14a or 14b were formed containing the triphosphine (Ph₂P)₂CHCMe=CHPPh₂, acting in a tridentate fashion. See Experimental section and Tables 1-3 for preparative details and characterising data for all four complexes.

Experimental

All reactions were carried out in an atmosphere of dry nitrogen or dry argon. Tetrahydrofuran was distilled from sodium and benzophenone under argon immediately before use. Infrared spectra were recorded using a Perkin-Elmer model 257 grating spectrometer with the sample contained in a cell with path length 0.1 mm. The NMR spectra were recorded using a JEOL FX-90Q (operating frequencies for ¹H, ³¹P and ¹³C of 89.5, 36.2 and 22.5 MHz, respectively), a JEOL FX-100 (operating frequencies for ¹H and ³¹P of 99.5 and 40.25 MHz, respectively) or a Bruker AM400 spectrometer (operating frequencies for ¹H, ³¹P, ¹³C and ²H of 400.13, 161.9, 100.6 and 61.4 MHz, respectively); ¹H and ¹³C shifts are relative to tetramethylsilane, ²H shifts to δ(CDCl₃) 7.27 and ³¹P shifts to 85% phosphoric acid. Mass spectra were recorded on an AEI MS30 mass spectrometer.

[Mo{(Ph₂PCH₂)₂C=CH₂}(CO)₄] **3a.**—A mixture of [Mo(CO)₆] (1.00 g, 3.8 mmol) and the diphosphine (1.62 g, 3.8 mmol) in decane (35 cm³) was heated under reflux for 70 min. The mixture was allowed to cool, upon which the product separated as pale yellow microcrystals. These were collected and recrystallised from dichloromethane—ethanol to give the required product as pale yellow microcrystals. Yield 2.14 g, 89%. The corresponding tungsten complex **3b** was prepared similarly from [W(CO)₆], with a reflux time of 2.5 h. Yield 88%.

[Mo(Ph₂PCH=CMeCH₂PPh₂)(CO)₄] 4a.—The tetracarbonyl complex 3a (2.1 g, 3.34 mmol) was heated under reflux with ethanolic sodium ethoxide solution (40 cm³, 0.65 mol dm⁻³) for 16 h. The mixture was allowed to cool and the resultant solid collected and recrystallised from dichloromethane—ethanol, giving the required compound as pale yellow microcrystals (1.86 g, 89%). The corresponding tungsten complex 4b was prepared similarly from 3b in 89% yield.

[Mo(Ph₂PCH=CMeCHDPPh₂)(CO)₄] 6.—A solution of complex $\bf 3a$ (0.27 g, 0.42 mmol) in tetrahydrofuran (8 cm³) was treated with a solution of methyllithium in diethyl ether (0.4 cm³, 1.4 mol dm⁻³, 0.42 mmol). The mixture was stirred for 10 min, D₂O (0.07 cm³) was then added and the product was isolated by evaporation and recrystallisation from dichloromethane–ethanol. Yield 0.22 g, 85%.

[Mo(Ph₂PCH=CMeCHMePPh₂)(CO)₄] 7a.—A solution of complex 3a (0.13 g, 0.21 mmol) in tetrahydrofuran (5 cm³) was treated with methyllithium (0.21 mmol), as above, and the resultant solution then treated with methyl iodide (0.02 cm³, 0.31 mmol). The mixture was then stirred for 10 min and the product isolated by evaporation and extraction into dichloromethane. The product was recrystallised from dichloromethane-ethanol as yellow microcrystals. Yield 0.058 g, 43%.

The corresponding benzyl derivative 11 was prepared similarly using benzyl bromide as the alkylating agent, and isolated as white microcrystals. Yield 30%. The ethyl derivative 9 was prepared in an analogous fashion except that the rearranged species 4a was deprotonated and the resulting carbanions ethylated with ethyl iodide. Yield 65%. The allyl tungsten derivative 10 was similarly prepared from 4b, alkylating with allyl bromide. Yield 40%.

Using lithium 2,2,6,6-tetramethylpiperidide as strong base. A solution of lithium 2,2,6,6-tetramethylpiperidide was prepared from 2,2,6,6-tetramethylpiperidine (124 μl, 0.74 mmol) and butyllithium (0.48 cm³, 1.55 mmol dm⁻³ solution in hexane, equivalent to 0.74 mmol). This solution was then mixed with a solution of complex 3a (0.47 g, 0.74 mmol) in tetrahydrofuran (5 cm³) and after 10 min methyl iodide (0.46 cm³, 0.74 mmol) was added and the resultant solution stirred for 10 min. The product was isolated as before; yield 82%. A similar preparation, using 5 mol equivalents of lithium bis(trimethylsilyl)amide as deprotonating agent, gave 7a in 69% yield.

[W(Ph₂PCH=CMeCHMePPh₂)(CO)₄] **7b.**—A solution of complex **4b** (0.29 g, 0.41 mmol) in tetrahydrofuran (2 cm³) was treated with a tetrahydrofuran solution of lithium bis(trimethylsily)amide (2.5 mmol) and after 10 min the resultant solution was treated with methyl iodide (1 cm³). The mixture was then stirred for 10 min and the product isolated by evaporation and extraction into dichloromethane. The product was recrystallised from dichloromethane–ethanol and formed pale yellow microcrystals. Yield 0.22 g, 73%.

The following compounds were similarly made by treating the molybdenum complex 4a or the tungsten complex 4b with lithium bis(trimethylsilyl)amide, followed by the appropriate alkylating agent. They were all recrystallised from dichloromethane-ethanol: 8a, pale yellow microcrystals, yield 27%, using trimethylsilyl chloride; 8b, off-white microcrystals, yield 26%, using trimethylsilyl chloride; 13a, white microcrystals, yield 78%, using chlorodiphenylphosphine; and 13b, white microcrystals, yield 42%, using chlorodiphenylphosphine.

[Mo(Ph₂PCMe=CMeCH₂PPh₂)(CO)₄] 12.—A solution of methyllithium (0.3 cm³, 1.4 mol dm⁻³, 0.42 mmol) was added to a solution of complex 7a (0.26 g, 0.40 mmol) in tetrahydrofuran (10 cm³). The progress of the reaction was monitored by ³¹P-{¹H} NMR spectroscopy until no further change took place. After 0.5 h methanol (0.009 g) was added. Another portion of methyllithium (0.42 mmol) was added and the progress of the reaction again followed by NMR spectroscopy and methanol added. The solvent was evaporated and the product taken up in dichloromethane. A ³¹P-{¹H} NMR spectroscopic study showed that some of the starting complex 7a was present in the mixture. The dichloromethane solution was passed through a short column of Fluorisil (ca. 0.6 g) and then evaporated to dryness and triturated with ethanol. This gave the required product as pale yellow microcrystals (0.035 g, 13%).

[Mo{(Ph₂P)₂CHMe=CHPPh₂}(CO)₃] **14a.**—A solution of complex **13a** (0.35 g, 0.43 mmol) in toluene (2 cm³) was heated to 100 °C for 2 h, during which time it became yellow. The solution was then heated under reflux for 15 min and allowed to cool to 20 °C. This gave the required product as yellow prisms, which were filtered off, washed with pentane and dried. Yield 0.27 g, 76%.

[W{(Ph₂P)₂CHCMe=CHPPh₂}(CO)₃] **14b.**—A suspension

of complex 13b (0.094 g, 0.10 mmol) in decane (5 cm³) was heated carefully to reflux and the suspension kept at reflux temperature for 3 h. The mixture was then allowed to cool and the yellow crystalline precipitate collected, washed with pentane and dried. This gave the required product as yellow microcrystals. Yield 0.077 g, 85%.

Acknowledgements

We thank the SERC for a postdoctoral research fellowship (to J. D. V.) and for other support.

References

- Comprehensive Organometallic Chemistry, eds. G. Wilkinson, F. G. A. Stone and E. W. Abel, Pergamon, Oxford, 1982 and refs. therein.
- 2 Comprehensive Coordination Chemistry, eds. G. Wilkinson, R. D. Gillard and J. A. McCleverty, Pergamon, Oxford, 1987 and refs. therein.
- 3 C. A. McAuliffe and W. Levason, Phosphine, Arsine and Stibine Complexes of Transition Elements, Elsevier, Amsterdam, Oxford, New York, 1979 and refs. therein.
- 4 J. P. Collman, L. S. Hegedus, J. R. Norton and R. G. Finke, *Principles and Applications of Organotransition Metal Chemistry*, University Science Books, California, 1987.
- 5 R. Noyori and H. Takaya, Acc. Chem. Res., 1990, 23, 345 and refs. therein.
- 6 H. M. Colquhoun, Acc. Chem. Res., 1984, 17, 23 and refs. therein.
- 7 B. M. Trost, Acc. Chem. Res., 1980, 13, 385 and refs. therein.
- 8 S. Al-Jibori and B. L. Shaw, *Inorg. Chim. Acta*, 1983, 74, 235 and refs. therein.
- H. Schmidbaur, C. Paschalidis, O. Steigelmann and G. Müller, Angew. Chem., Int. Ed. Engl., 1989, 28, 1700.
- 10 H. Schmidbaur, C. Paschalidis, O. Steigelmann and G. Müller, Chem. Ber., 1989, 122, 1851.
- 11 J. A. Van Doorn and R. L. Wife, Eur. Pat., Appl. EP296687, 1987 (Chem. Abstr., 1989, 110, 213629p).
- 12 J. L. Bookham and W. McFarlane, J. Chem. Soc., Dalton Trans., 1990 489
- 13 H. Günther, NMR Spectroscopy: An Introduction, Wiley, Chichester, New York, Brisbane, Toronto, 1986.
- 14 P. S. Pregosin and R. W. Kunz, ³¹P and ¹³C NMR of Transition Metalphosphine Complexes, Springer, Berlin, 1979.

Received 20th June 1991; Paper 1/03073F