Reactivity of Sulphuryl Chloride in Acetonitrile with the Elements† # Alfred A. Woolf Department of Science, Bristol Polytechnic, Bristol BS16 1QY, UK Sulphuryl chloride in MeCN reacts with all but the most refractory elements to give mainly solvated chlorides at or below 300 K in contrast with SO₂Cl₂ elone which requires at least twice this temperature. There is evidence for an ionic mechanism based on analogy, thermochemistry, transport measurements and additive effects. The instability of these solutions leading to polymerization, together with its inhibition, is described. Sulphur dioxide formed in reactions seldom plays a reductive role apart from influencing formation of the mixed-valence Tl₄Cl₆. Semiquantitative kinetic measurements in different solvents emphasize the uniqueness of MeCN. For most elements attack is diffusion controlled across surface films giving a parabolic dependence on time which can be linearized if film growth is prevented by changing the solvent mix. The varied nature of these surface films vitiates any simple relation between rate and periodicity. Some applications are indicated. The halogenating propensity of SO_2Cl_2 should be comparable with that of the dihalides E_3AX_2 (E=a bond or lone pair; A= main group 15–18 element, X= Cl) which heterolyse to electrophilic halogen with suitable donor and or acceptor additions. Indeed, some organic reactions with SO_2Cl_2 in donor solvents seem to have ionic, rather than the usual radical, mechanisms, according to indirect evidence from the position of substitution $^{3-6}$ or kinetics. The Silberrad, Watson and Ballester-Molinet-Castaner reagents, consisting of SO_2Cl_2 with a Lewis acid and catalytic amounts of sulphur or its compounds, exemplify ionic reactivity via chlorosulphonium salts. The reactions of SO₂Cl₂ in donor solvents with the elements have been examined in this study. Few elements react with SO₂Cl₂ at ambient temperature ¹³⁻¹⁵ but in the presence of MeCN all but the most refractory ones do. An alternative polar mechanism to the high-temperature radical one is proposed, although instability of the electrophile to self-chlorination of the donor hinders definitive identification. # Experimental Commercial SO₂Cl₂ was refluxed over Hg, fractionated and the mid-fraction kept over copper foil in the dark. (This traps chlorine leaving traces of SO₂ which will not affect reactivity.) Acetonitrile (HPLC quality) stored over molecular sieves (4A) was distilled as required. Elements were used in consolidated form where possible and surfaces cleaned chemically or mechanically. Preliminary corrosion experiments were carried out in B24 stoppered boiling tubes (50 cm³) shaken horizontally at ambient temperature. Products were identified separately using a vacuum-line technique to avoid any hydrolysis and contamination with H₂SO₄. ¹⁶ A weighed sample was placed in a cylindrical vessel (35-50 cm³) fitted with a B14 side arm and closed by a Young's Teflon tap (diameter 1 cm). The requisite SO₂Cl₂ was distilled into a measuring tube (4 cm³), also fitted with a Teflon tap, and weighed before and after vacuum transfer to the reaction flask. Finally, MeCN was distilled in before agitating the contents magnetically, or ultrasonically in a thermostat. Excess of liquid was carefully distilled off after reaction, stirring constantly to avoid bumping. The remaining solid was analysed for chlorine (gravimetrically as AgCl) and metal content (from the metal dissolved or by standard methods; some valency states were found by redox titrimetry). Acetonitrile in adducts was identified by IR spectroscopy but not determined directly since most adducts are known. ^{17,18} Raman spectra were recorded on a Coderg spectrometer using an argon-ion laser. The results are summarized in Table 1; more detail is given on starred elements. Thallium. Freshly cut metal placed in a 1.95 mol dm⁻³ solution having SO₂Cl₂:Tl 2.83:1 was partly covered by a yellow film in a colourless solution after 1 d and dissolved completely in 3 d at an average rate of 10 mg h⁻¹. A mixed white and yellow powder remained on evaporation, only the white portion (TlCl₃) being water soluble, the remaining citronyellow solid contained Tl, Cl and no S as shown by electronmicroprobe analysis. Its composition was TlCl_{1.5} corresponding to the mixed-valence compound Tl₄Cl₆. The ratio TlCl_{1.5}:TlCl₃ was 1.20:1. Addition of SO₂ at Tl:SO₂Cl₂:SO₂ 1:2.19:2.33 increased the ratio to 1.53:1. Addition of KF at Tl:SO₂Cl₂: KF 1:3.21:3.87 increased the solution rate to 59 mg h⁻¹ over 18 h and no surface film was observed. Sulphur. Powdered sulphur (0.40 g) was equilibrated with SO_2Cl_2 $(0.5-2 \text{ cm}^3)$ in MeCN (10 cm^3) for 6 h to form yellow solutions with undissolved S. The solubility increased initially but remained constant above a unit ratio SO_2Cl_2 : S indicating a maximum take up of one Cl_2 per S $(Ph_2S \text{ also takes up one } Cl_2 \text{ from } SO_2Cl_2$ in MeCN to form Ph_2SCl_2 provided the solution is kept cool to avoid ring chlorination). Iodine. In a 1.36 mol dm⁻³ solution (SO₂Cl₂:I 2.87:1) the iodine colour became orange-yellow within 0.5 h. A yellow solid sublimed on evaporation and crystals separated which liquefied to a brown-red residue indicating decomposition of ICl₃ to ICl. Oxidation to I^{III} was demonstrated by the quantitative conversion of CsI into Cs[ICl₄] with excess of SO₂Cl₂ (Cs[ICl₂] can be isolated with equimolar CsI and SO₂Cl₂ in MeCN). Effect of NMe₄Cl on Rate.—The low solubility of NMe₄Cl in MeCN increased on adding SO₂Cl₂. J. CHEM. SOC. DALTON TRANS. 1991 Table 1 Products from elements and SO₂Cl₂-MeCN solutions with some relative rates | Groups 1, 2, 11 and 12
Li
Mg
Ca
Cu
Ag
Au
Zn
Cd
Hg
Au > Cu \geqslant Ag, Hg > Zn \geqslant Cd | Product LiCl (Ref. 19) MgCl ₂ ·2MeCN CaCl ₂ CuCl ₂ ·MeCN AgCl AuCl ₃ ·MeCN ZnCl ₂ ·2MeCN CdCl ₂ ·2MeCN HgCl ₂ | |--|---| | Groups 3 and 13 B Al Ga In Tl* Y Tl > Al In | Inert AlCl ₃ ·2.6MeCN GaCl ₃ ·1.5MeCN InCl ₃ ·3MeCN Tl ₄ Cl ₆ , TlCl ₃ YCl ₃ ·0.2MeCN | | Group 14 C, Si Ge Sn Pb Sn ≽ Ge > Pb | Inert
GeCl ₄
SnCl ₄ ·2MeCN
PbCl ₂ | | Group 15 P As Sb Bi Bi ≈ Sb ≫ As > P | PCl ₃
AsCl ₃
SbCl ₃
BiCl ₃ | | Group 16 S* Se Te Te > Se > S Group 17 | Solution
SeCl ₄
TeCl ₄ ·0.4MeCN | | Group 17 First transition-metal series Ti V Cr Mn Fe Co Ni Fe ≥ Ni > Co, Cr, V, Ti > Mn a | TiCl ₄ ·2MeCN
VCl ₃ ·4MeCN
CrCl ₃ ·3MeCN
MnCl ₂ ·2MeCN
FeCl ₂ ·2MeCN
CoCl ₂ ·3MeCN
NiCl ₂ ·2MeCN | # Second and third transition-metal series | become une time transition metal series | | |---|-----------------------------| | Zr | Chlorides of ZrIII and ZrIV | | Nb, Mo, Ru | Inert | | Rh | RhCl ₃ -3.7MeCN | | Pd | PdCl ₂ ·2MeCN | | Ta, W, Os, Ir | Inert | | Pt | PtCl ₄ ·xMeCN | | $Pd \gg Rh > Pt$ | | | U | UCl₄•4MeCN | ^a A quantitative rate comparison using bulk specimens of nearly the same area gave $Lt^{-\frac{1}{2}}c^{-1}$ (see Table 3) constants for Fe, Ni, Co and Mn of 14.7, 5.80, 2.75 and 0.257 respectively. | $10^3 (SO_2Cl_2: MeCN)$ | 0 | 9.62 | 24.4 | 203.3:1 | |------------------------------------|----------|-------|-------|---------| | Solubility (mol kg ⁻¹) | 0.003 26 | 0.315 | 0.568 | 0.924 | Pellets of Zn dissolved at >1 g h⁻¹ in 0.5 h using SO₂Cl₂:Zn:NMe₄Cl 2.91:1:2.14 compared to 7.6 mg h⁻¹ in 46 h without NMe₄Cl. The ZnCl₄²⁻ salt, identified from the Raman spectrum, could be isolated. At SO₂Cl₂:Zn:NMe₄Cl **Table 2** Dissolution of Ge in MeCN solutions of SO₂Cl₂ with ammonium salt additions | Salt | Ge dissolved
(as % of maximum)
in 1 d | Relative a | SO ₂ Cl ₂ :Ge:chloride | |------------------------------------|---|------------|--| | None ^b | 1.8 | 1 | 1.82:1 | | NBu ₄ Cl | 6.3 | 3.7 | 5.27:1:1.90 | | NH ₄ Cl | 9.8 | 6.1 | 3.32:1:2.39 | | NH ₃ Bu ¹ Cl | 19.2 | 6.9 | 2.54:1:2.02 | | NMe ₄ Cl ^b | 37.8 | 39.6 | 3.39:1:1.44 | ^a Corrected for different SO₂Cl₂ concentrations. ^b The last experiment was made using the lump specimen left from the first. 3.74:1:1 the solid was $ZnCl_3^-$ without any $ZnCl_2$. At NMe₄Cl:Zn 3:1 attack was even faster (>3 g h⁻¹). The product was a mixture of $ZnCl_4^{2-}$ and Cl^- without any $ZnCl_5^{3-}$. Guanidinium chloride addition at a 2:1 ratio dissolved Zn at lower rates (130 mg h⁻¹) yielding a $ZnCl_4^{2-}$ salt. Cadmium at SO₂Cl₂:Cd:NMe₄Cl 1:1:1 dissolved at 3.3 mg h⁻¹ over 45 h compared with 1.8 mg h⁻¹ over 96 h without NMe₄Cl. Results with Ge are given in Table 2. Example of a Quantitative Preparation of [NMe₄]₂[GeCl₆]. —Powdered Ge (0.25 g), NMe₄Cl (0.76 g), SO₂Cl₂ (2 cm³) and MeCN (15 cm³) were heated with stirring for 5.5 h at 70 °C in a Teflon-lined screw-capped pressure vessel. After vacuum evaporation, 1.49 g of white product remained (calc. for 2NMe₄Cl-GeCl₄:1.49 g) identified as the GeCl₆²⁻ salt from the Raman spectrum. A similar experiment at Ge:NMe₄Cl 1:1 gave the same salt via a quantitative disproportionation [NMe₄][GeCl₅] \longrightarrow 0.5[NMe₄]₂[GeCl₆] + 0.5GeCl₄. Effect of Lewis acids on Rate.—A lump of Cd in a FeCl₃ solution in MeCN (0.69 mol kg⁻¹) containing SO₂Cl₂ at FeCl₃:SO₂Cl₂ 1.97:1 turned the brown solution pale green and precipitated white CdCl₂·MeCN. The rate of dissolution became constant after a rapid initial attack. A different product (CdCl₂·2MeCN) formed more slowly in the absence of FeCl₃. Similarly, a silver disc was attacked more rapidly until a film of AgCl formed. Further addition of FeCl₃ increased the rate temporarily. Additions of AlCl₃ to SO₂Cl₂ did not increase the rate of attack on Ge, Nb or W but did with Cd (×5), Mn (×8) and Pb which was not attacked without AlCl₃ present. No AlCl₄ salts could be isolated. Kinetic Measurements.—In preliminary experiments conditions for comparative rate measurements were delineated. Rectangular specimens cut from a single nickel sheet (99.9%, 0.055 mm thick) were immersed in solution and mechanically shaken at constant speed. The metal was removed at intervals, washed (water, Me₂CO), dried and reweighed within 2-3 min. This cleaning should not affect the kinetics because the surface film reforms at once while the bulk of NiCl₂ · 2MeCN separates. Measurements were limited to 1 d to avoid solvent chlorination. Sulphuryl chloride alone did not attack Ni (>1 month) and neither did solutions in chlorocarbons (e.g. CH2Cl2) or liquid SO_2 . Results of % weight loss L with time t at a variety of SO_2Cl_2 concentrations c, and the parameter $Lt^{-\frac{1}{2}}c^{-1}$ are given in Table 3. Duplicate specimens having twice the surface area (28.3 cm²) in an 0.345 mol dm³ solution were sampled alternately to give nine values from 1 to 9 h. The average $Lt^{-\frac{1}{2}}c^{-1}$ was 53.4 \pm 2, about twice the above value. Duplicate experiments at 21 and 4 °C (in a cold room) gave $Lr^{\frac{1}{2}}c^{-1}$ 65.8 \pm 1.3 using 0.473 mol dm⁻³ solution at 21 °C and 65.5 \pm 0.2 using 0.457 mol m⁻³ solution at 4 °C. Hence further experiments used 28.3 cm² specimens at ambient temperature allowing for different SO₂Cl₂ concentrations in the constant. **Table 3** Effect of SO_2Cl_2 concentration on the dissolution rate of Ni (21 \pm 1 °C) | Concentration of SO ₂ Cl ₂ in MeCN, c/mol dm ⁻³ | Time/h | Weight loss (L) as % of maximum * | $Lt^{-\frac{1}{2}}$ (mean) | $Lt^{-\frac{1}{2}}c^{-1}$ | |--|--------|-----------------------------------|----------------------------|---------------------------| | 0.363 | 2.43 | 15.1 | 9.7 | 27.6 | | | 4.65 | 21.6 | $10.0 (10.0 \pm 0.35)$ | | | | 6.65 | 26.8 | 10.4 | | | 0.525 | 2.43 | 18.3 | 11.7 | 24.2 | | | 4.65 | 27.8 | $12.5(12.7 \pm 1)$ | | | | 6.65 | 35.2 | 13.6 | | | 1.175 | 2.43 | 49.4 | 31.7 | 26.2 | | | 3.50 | 57.6 | $30.8 (30.8 \pm 0.5)$ | | | | 4.65 | 64.7 | 30.0 | | | | | | Mean 2 | 5.7 ± 1.3 | ^{*} The maximum is calculated on the initial amount of SO₂Cl₂. Table 4 Effect of base additions on the rate of attack on Ni in 0.574 mol dm $^{-3}$ SO_2Cl_2 in MeCN | Base | Mole ratio
Base: SO ₂ Cl ₂ | $Lt^{-\frac{1}{2}}c^{-1}$ | L at 23 h (%) | |-------------------------|---|---------------------------|---------------| | Pyridine | 1:1 | 36.8 | 36 | | - y 1 | 1:1* | 1.5 | 12 | | | 0.5:1 | 31.4 | 60 | | | 2.0:1 | 10.1 | 12 | | 1-Methylpyridine | 1:1 | 69.5 | 65 | | 2-Methylpyridine | 1:1 | 33.3 | 59 | | 2,6-Dimethylpyridine | 1:1 | 26.8 | 43 | | 3,5-Dimethylpyridine | 1:1 | 38.2 | 62 | | 3,4-Dimethylpyridine | 1:1 | 55.2 | 59 | | 2,4,6-Trimethylpyridine | 1:1 | 25.1 | 33 | | 2,6-Dichloropyridine | 1:1 | 32.5 | 95 | | 3,5-Dichloropyridine | 1:1 | 69.9 | 85 | | Quinoline | 1:1 | 38.3 | 56 | | Isoquinoline | 1:1 | 1.07 | 15 | | Piperidine | 1:1 | 26.5 | 57 | | Morpholine | 1:1 | 11.9 | 20 | | Dioxane | 1:1 | 44.3 | 94 | | Imidazole | 1:1 | No attack | | | No base addition | ŧ | 53 | 96 | ^{*} Solution aged for 1 d before use. L at 23 h > 95% shows complete reaction with Ni since sampling losses total about 5%. There are large isomer differences, e.g. with isoquinoline there is hardly any attack and the specimen remains polished, unlike with quinoline. Table 5 Analysis of hydrolysed solutions of MeCN-SO₂Cl₂ after ageing | Solution molality (mol kg ⁻¹) | Time/d | % of original acidity* | % SO ₂ Cl ₂ converted into SO ₂ | |---|--------|------------------------|--| | 2.45 | 1.27 | 99.6 | 1.0 | | 2.04 | 3.04 | 98.5 | 5.0 | | 2.18 | 6.79 | 93.0 | 28.0 | ^{* 1} mol hydrolysed $SO_2Cl_2 \equiv 4H^+$. Effect of Solvents on Rate.—Approximately molar solutions of SO_2Cl_2 were used at SO_2Cl_2 : Ni 0.69:1 and the rate order found was $EtCN > MeCN > dimethylsulphoxide (dmso) > dimethylformamide (dmf) > MeNO_2 > tetrahydrothiophene 1,1-dioxide (sulpholane) > Me_2CO > Et_2O, ethyl acetate e.g. <math>Lt^{-\frac{1}{2}}c^{-1}$ for EtCN, MeCN and $MeNO_2$ was 77.9, 54.8 and 0.43. Similar orders were obtained with tin ($MeCN \gg sulfolane > Et_2O$). Dissolution of SO_2Cl_2 in dmf and dmso was exothermic, requiring cooling during make-up. The effect of mixed solvents on the rate is described later. Effect of Additives.—The compounds PhI, Ph₂S and PPh₃ added to SO_2Cl_2 gave $Lr^{\frac{1}{2}}c^{-1}$ values of 26.7, 13.2 and 11.1 respectively. Addition of $SnCl_4$ to the PhI did not increase the rate. Tetrabutylammonium iodide added at 1:2 ratio to SO_2Cl_2 Table 6 Raman intensities in CH₂ClCN-MeCN-SO₂Cl₂ mixtures on ageing | CH ₂ CICN | MeCN | SO ₂ Cl ₂ | SO_2 | |----------------------|---------------------|-----------------------------------|--| | 15.4 | 38.3 | 12.4 | _ | | 746 | 923 | 410 | 1150 | | 51.5 | 36.5 | 162 | 4 | | 8 | 9.5 | 5 | 41 | | | 15.4
746
51.5 | 15.4 38.3
746 923
51.5 36.5 | 15.4 38.3 12.4
746 923 410
51.5 36.5 162 | gave a rate constant of 9.8 ($[NBu_4][ICl_4]$ can be isolated from this solution although it self-chlorinates and liquefies in daylight). The effect of base additives is summarized in Table 4. Stability of MeCN-SO₂Cl₂ Solutions.—Under ambient conditions these solutions acquire a brown tinge in a few days which slowly changes to black and a black solid is precipitated. The aged solutions are still corrosive, ruling out a number of instrumental methods apart from Raman spectroscopy which is particularly suitable since all fundamental frequencies can be seen. Changes in composition (Table 5) were followed by hydrolysing vacuum-prepared solutions after standing, the acidity being determined alkalimetrically and SO₂ content iodimetrically. The acidity decreases to 3 equivalents of H $^+$ on substitution. Thus in the last run the acid equivalent is $28 \times 3 + 0.72 \times 4 = 3.72$ or 93% of the original $4H^+$, in agreement with the alkalimetric value. The symmetrical stretch of Cl_2 at 546 cm^{-1} was never seen. A 2.61 mol kg⁻¹ solution after 10 d left a small amount of a brown oil under an aqueous layer on hydrolysis. The oil precipitated a black solid on dilution, amounting to 5% of the original solution weight. The aqueous extracts had 73% of the original acidity and 50% of the chlorine in the original SO₂Cl₂ was precipitated as AgCl. Raman intensities (Table 6) were referenced to CCl_3CH_3 lines after showing the inertness of the latter compound. Thus, SO_2Cl_2 in CCl_3CH_3 (0.278:1) remained colourless over 40 d and the ratio SO_2Cl_2 : CCl_3CH_3 , as measured by the 410:530 cm⁻¹ lines, remained at 1.63 ± 0.01 :1 over 27 d. A ternary solution SO_2Cl_2 : CCl_3CH_3 :MeCN was examined up to 15 d when darkening obscured the spectrum. The results (Fig. 1) conform with the chemical analyses. The degree of substitution exceeds unity because CH_2ClCN additions accelerate decomposition. Most of the SO_2Cl_2 is used up in 6 h. Decomposition is photochemically promoted (see Table 7). Stabilization of MeCN-SO₂Cl₂ Solutions.—(a) Addition of SO₂ at SO₂:SO₂Cl₂ 1.94:1. The intensity ratio remained at 1.42 ± 0.01 :1 over 10 d. After 25 d it increased to 3.55:1 and the line of CCl₃CN at 490 cm⁻¹ appeared. (b) Addition of S₂O₈²⁻. This was judged by the time for the 3328 J. CHEM. SOC. DALTON TRANS. 1991 Table 7 Effect of light on ageing of SO₂Cl₂-MeCN solutions | Ratio | of R: | aman in | tensities | |-------|-------|---------|-----------| | Solution mole fraction of SO ₂ Cl ₂ | Time/d | SO ₂ Cl ₂ : MeCN * 410:920 cm ⁻¹ | SO ₂ : MeCN*
1150:920 cm ⁻¹ | SO ₂ :SO ₂ Cl ₂ | |---|--------|---|--|--| | 0.0810 (exposed to 100 W lamp) | 0.083 | 2.63 | 0.15 | 0.056 | | | 1.92 | 0.84 | 0.45 | 0.585 | | | 2.92 | 0.44 | 1.10 | 2.52 | | 0.123 (in dark) | 0.083 | 2.07 | 0.13 | 0.063 | | | 1.83 | 1.97 | 0.12 | 0.061 | | | 4.00 | 2.00 | 0.14 | 0.070 | ^{*} Chlorination of MeCN has only a small effect on the intensity of the band at 920 cm⁻¹ since MeCN is present in 7-11 fold excess over SO₂Cl₂. Fig. 1 Raman intensities of an ageing $CCl_3CH_3-SO_2Cl_2-MeCN$ solution (5:2:3) referenced to the intensity of the band of CCl_3CH_3 at 526 cm⁻¹ [intensities of SO_2Cl_2 (\bigcirc), SO_2 (+) and MeCN (\times) measured at 410, 1150 and 2257 cm⁻¹ respectively] solutions to darken. At $S_2O_8^2$: SO_2Cl_2 0.076:1 the solution became faint brown in 19 d under ambient conditions, whereas for $S_2O_8^2$: SO_2Cl_2 0.150:1 in the dark it took 99 d. (c) Addition of Cl in the form of KCl. This kept a solution (c) Addition of Cl⁻ in the form of KCl. This kept a solution 14 d and a saturated NMe₄Cl solution 20 d before colouration. Addition of Na₂CO₃ at CO₃²⁻:SO₂Cl₂ 0.869:1 yielded a colourless solution after 56 d. The Na₂CO₃ was partly converted into NaCl. Detection of Ionization.—The conductivity, measured in a cell with tungsten electrodes, increased continuously over days when SO₂Cl₂ was distilled into MeCN. (Results using platinum electrodes were discounted because Pt was not inert as seen by removal of platinum black.) Transport measurements were made in an H-shaped cell with vertical compartments isolated by a sintered glass disc in the horizontal arm. Silver-rod electrodes removed discharged chlorine as AgCl. The low conductivity of an 0.328 molal solution limited the current and it needed 2 d at 40 V to pass 0.01 F of electricity. Solutions from each compartment were analysed after electrolysis for SO₂ (adding to excess of I_2 , back titration with $S_2O_3^{\ 2^-}$) and total S ($SO_2 + SO_2Cl_2$ after oxidation with H_2O_2 and precipitation as BaSO₄). The amount of the anolyte SO_2 became greater than that of the catholyte and *vice versa* for SO_2Cl_2 . The electrolysis efficiency was only 60% due to ohmic loss and non-electrolytic reactions common to both compartments. The loss in SO_2Cl_2 when compared with the starting solution balanced the gain in SO_2 to within 10%. ### **Results and Discussion** The enhanced reactivity of SO_2Cl_2 in MeCN, comparable with that of N_2O_4 in organic solvents towards metals, ²⁰ suggests an ionic mechanism. The extent of ionization is minute, and not detectable in Raman or NMR spectra of fresh solutions, but the presence of ions is detectable from the conductivity increase. Possible gas-phase ionizations (1)–(3) can be compared. $$SO_2Cl_2 \longrightarrow SO_2Cl^+ + Cl^-$$ (1) $$SO_2Cl_2 \longrightarrow Cl^+ + SO_2Cl^-$$ (2) $$2SO_2Cl_2 \longrightarrow SO_2Cl^+ + SO_2Cl_3^-$$ (3) A minimum neglect of differential overlap (MNDO) 21 calculation gave $\Delta H_{\rm f}({\rm SO_2Cl^-}) - 63.8$ and $\Delta H_{\rm f}({\rm SO_2Cl^+}) + 341.3$ kcal mol $^{-1}$. An experimental value of $\Delta H_{\rm f}({\rm SO_2Cl^+}) - 135$ kcal mol $^{-1}$ has been found 22 and hence $\Delta H_{\rm f}({\rm SO_2Cl^+})$ can be corrected to 270 kcal mol $^{-1}$ which is reasonable since the negative and positive ions are stabilized by 10 or 12 kcal over the sum of ${\rm SO_2 + Cl^-}$ or ${\rm Cl^+}$ values. Ionization (1) is then favoured by 32 kcal over (2). Further stabilization arises in (3) using the experimental 22 $\Delta H_{\rm f}({\rm SO_2Cl_3}^-)$ of -149 to -157 kcal mol $^{-1}$ which is 10–14 kcal more stable than the values for ${\rm SO_2Cl_2 + Cl^-}$ or ${\rm SO_2 + Cl_3}^-$. In solution extra stabilization by solvation favours the 'softer' ${\rm SO_2Cl^+}$ over ${\rm Cl^+}$ cation. (Following Pearson's 24 measure of hardness, (ionization energy - electron affinity)/2, the values 19.7 and 11.1 eV can be assigned to ${\rm Cl^+}$ to ${\rm SO_2Cl^-}$ respectively using the MNDO calculated ionization energies of 5.61 and 19.50 eV for ${\rm SO_2Cl^-}$ and ${\rm SO_2Cl^+}$.) Qualitatively, analogies between SO₂Cl₂ and SO₂ClF support the thermochemical results. The compound SO₂ClF, like SO₂Cl₂, needs high temperatures to attack metals,²⁵ whereas in MeCN attack occurs at room temperature to give mixtures of chloride and fluoride.²⁶ It is bound to polarize with positive chlorine and since lithium alkyls yield sulfonyl chlorides with both SO₂Cl₂²⁷ and SO₂ClF²⁸ the common electrophile must be SO₂Cl⁺. More directly, a simple transport experiment using silver electrodes to trap discharged chlorine shows that SO₂ is transported with the positive species, and SO₂Cl₂ with the negative, in accord with the symmetry-allowed chloride-ion transfer. This ionization explains the effect of NMe₄Cl additions, which produce 'basic' solutions,²⁹ on reactivity. Wasif and co-workers $^{30.31}$ have measured the stability of $SO_2Cl_3^-$ in MeCN, with a large excess of NMe₄Cl which preserves these solutions. The $SO_2Cl_2\cdots Cl^-$ complex is weak and was considered to be formed by charge transfer. Nevertheless, the solubility of NMe₄Cl in MeCN can be enhanced 100 fold by SO_2Cl_2 addition. The rate of dissolution of zinc also increases 100 fold at unit NMe₄Cl: SO_2Cl_2 ratio and chlorozincates can be isolated from solution. By contrast Cd is almost unaffected. The dissolution rates of Al and In are similarly enhanced, the latter spectacularly by a factor of more than 10 000 if ultrasonic agitation is used. Enhancements of up to 40 fold were found for Ge and the basicity order NMe₄Cl > NH₃Bu^tCl > NBu₄Cl > NH₄Cl established. The complementary 'acid' behaviour with Lewis acids was obscured because they partly ionize in MeCN. Thus AlCl₃ in MeCN forms solid 1:1, 2:3 and 1:2 adducts, the last with a structure [AlCl(MeCN)₅][AlCl₄]₂·MeCN.³² Some increase in rate is probably due to chlorine liberated via SO₂Cl₂ + AlCl₃ \rightleftharpoons Cl₂ + AlCl₃·SO₂.³³ Iron trichloride similarly autoionizes to FeCl₄⁻ anions.³⁴ However, addition of FeCl₃ substantially increases the rate of dissolution of Cd in spite of the absence of Lewis acidity, because of the redox reaction Cd + 2Fe³⁺ \longrightarrow Cd²⁺ + 2Fe²⁺. The SO_2 , formed during chlorination with SO_2Cl_2 , only seems to affect reaction with Tl which is incompletely oxidized to Tl^{III} . Stable $Tl^ITl^{III}Cl_6^{\ 35-37}$ is formed on the surface and $TlCl_3$ in solution. Addition of SO_2 increases the Tl_4Cl_6 : $TlCl_3$ ratio whereas addition of KF, which complexes SO_2 as SO_2F^- , eliminates the surface film and considerably increases the rate of attack. There is no evidence for the radical ion $SO_2^{\ *-}$ responsible for the attack on metals in dmso– $SO_2^{\ *-}$ Most heterogeneous reactions are diffusion controlled through surface films rather than chemically controlled at the metal-solution interface. Hence there is only a broad division between refractory elements, with high melting point or hardness, and the rest which parallel aqueous reactivities. This is shown in the periodic variation of reactivity with atomization energies. The transition elements with values above 150 kcal mol⁻¹ [Ta, Nb; W, Mo; Re, Tc(?); Os, Ru and Ir] are inert. Similarly the main-group elements with higher atomization energies (C, B, Si) are also inert. Low-melting elements which form chlorides soluble in MeCN, e.g. Sn, Se, Bi, dissolve rapidly even in SO₂Cl₂ alone, but elements forming unsolvated chloride films, e.g. Ag, Pb, Li, Ca, are passivated. However, atomically dispersed Pb, as in Pb–Sn alloys, is rapidly and completely converted into PbCl₂. Kinetic measurements were made to examine these rates and the effect of additives and solvents. Nickel foil was a convenient substrate, thinning uniformally and clearly showing film formation of yellow NiCl₂·2MeCN. The solution rate, measured in terms of the % of the maximum loss (L) allowed by the SO₂Cl₂ content, varied parabolically with time (t) and was proportional to the SO₂Cl₂ molarity (c). It also depended on the surface area but not on the temperature (from 4 to 22 °C). For comparative purposes, rate constants $Lt^{-\frac{1}{2}}c^{-1}$ obtained on standard-sized foils were used. (A parabolic relation is characteristic of diffusion control in metal oxidation.) Vigorous agitation eliminated any transport control via the liquid.³⁹ No reaction was observed using Ni in chlorinated solvents, or in Et₂O and ethyl acetate. The rate order found was EtCN > MeCN > dmso > dmf > MeNO₂ > tetrahydrothiophane 1,1-dioxide > Me₂CO which is not that of the relative permittivity or donor number. The superiority of nitriles suggests a specific N \longrightarrow S stabilization of SO₂Cl⁺ ions since all the other solvents are oxygen donors. An attempt to probe this interaction by addition of nitrogen bases, mainly pyridine derivatives, was inconclusive because the strongest bases precipitated 2:1 complexes with SO₂Cl₂⁴⁰⁻⁴² and others self-chlorinated to a greater extent than with MeCN. This was shown by incomplete reaction of SO₂Cl₂ with the equivalent amount of Ni, as well as by the greater stability of chlorinated pyridines. A more regular series was observed on addition of equivalent amounts of PhI, Ph₂S and PPh₃, which form PhICl₂, Ph₂SCl₂ and Ph₃PSO₂Cl₂ in situ. A rate order SO₂Cl₂ > PhI > Ph₂S > PPh₃ agrees with the previously derived order based on oxidation couples.⁴³ The specificity of MeCN is encountered with mixed solvents. Solutions of SO₂Cl₂ in MeNO₂, with a high permittivity but low donor number, mixed with diethyl ether of opposite properties, failed to attack Ni whereas addition of MeCN to MeNO₂ at a MeCN:SO₂Cl₂ ratio of 1.6:1 was enough to increase the rate 20 fold over that of MeNO₂ alone. Similarly, CH₂Cl₂–SO₂Cl₂ solutions which are inert to Ni required less than a unit MeCN:SO₂Cl₂ ratio to initiate attack. Interestingly, CH₂Cl₂–MeCN (1:1 v/v) attacks Ni faster than with MeCN as solvent. The attack was linear because a surface film was absent. Results with dmf–MeCN mixtures, in which the rate decreased with increasing dmf:SO₂Cl₂ ratio, indicates that the electrophile [Me₂N=CHCl]⁺⁴⁴ is less effective than SO₂Cl⁺ as expected since Vilsmeier-type reagents formylate rather than chlorinate. Before discussing reactions with platinum metals some comment on the stability of MeCN-SO₂Cl₂ solutions is needed. Conductivities increase as soon as the components mix and the change can be followed within 1 d by conventional analysis since SO₂ forms and ionizable chlorine decreases. Solutions $(2-3 \text{ mol dm}^3)$ lose ca. 1% of SO_2Cl_2 in 1 d accelerating to about 30% within a week when the solution acquires a brown tinge. This darkens with deposition of a black solid. The change can also be monitored from Raman intensities using CCl₃CH₃ as an internal standard. Fig. 1 shows the growth of SO₂ at the expense of SO₂Cl₂ and the MeCN present in excess. The distinctive $v(C \equiv N)$ of CCl₃CN is detectable towards the end. The average degree of chlorine substitution cannot be determined from the ionizable chlorine on hydrolysis, which is limited to 50% $MeCN + nSO_2Cl_2 \longrightarrow CH_{(3-n)}Cl_nCN +$ according to $nSO_2 + nHCl$, but it is greater than monosubstitution because CH₂ClCN-SO₂Cl₂ solutions change more rapidly. The HCl released does not increase the acidity. It is neutralized in 'adducts' such as MeCN \cdot nHCl (n=1 or 2). The latter, as a solid, is MeCCl=NH $_2$ +Cl $^-$; ⁴⁵ the former probably exists as an equilibrium between MeCCl=NH and MeCNH+Cl $^-$. Since the imidyl chloride is analogous to an acyl chloride it hydrolyses and titrates as ionizable chloride. Condensation reactions can occur in the presence of HCl. Thus MeCCl=N-C=NHMe and its hydrochloride can be isolated in high yield. ⁴⁶ Further polymerization would produce a conjugated chain, akin to that in black paracyanogen, $(CN)_x$, and would explain the observed darkening. High-temperature polymerization of MeCN in adducts with Lewis-acid chlorides has been reported ⁴⁷ and this behaviour could hinder desolvation of some metal chlorides. Deterioration occurs to some extent by radical chlorination since it is quicker in the light than in the dark and solutions stabilize in the presence of $S_2O_8^{2-}$ presumably *via* radical capture by SO_4^{*-} . Chlorides such as NMe_4Cl also stabilize solutions by suppression of the SO_2Cl^+ electrophile, as does Na_2CO_3 by neutralization of HCl. Sulphuryl chloride itself is dissociated by daylight but can be kept unchanged in CCl_3CH_3 for over 1 month. Hence the simplest stabilization procedure would be to add MeCN to this solution immediately before use. There is a diagonal pattern of reactivity among Group 8 and 9 metals with Rh, Os and Ir inert in SO₂Cl₂-MeCN. Palladium is the most reactive, the powder giving an immediate brown solution at the melting point of MeCN before precipitating yellow PdCl₂·2MeCN. If the reaction is prolonged for more than 1 d, as may be required for complete dissolution of consolidated specimens, a much higher-molecular-weight product with a high organic content results. Possibly PdII interacts with the conjugated -C=N- system from the MeCN-SO₂Cl₂ decomposition and may even catalyse the latter. The same difficulty arises with Pt which needed days to dissolve. The organic content increases with reaction time whilst the CI: Pt ratio remains near 4:1. Rhodium powder reacts, at a hundredth the rate of Pd, to give RhCl₃·xMeCN. The dissolution of Pt is speeded up by NMe₄Cl additions to give a PtCl₆² salt but still with an organic content. Palladium(II) is oxidized to PdIV with a diminution in rate but the oxidation state $\mathbf{R}\mathbf{h}^{\text{III}}$ is unchanged with NMe₄Cl present. Even the inert Ru slowly dissolves. A more detailed study is required to resolve the organic chemistry involved in dissolution of Pd and Pt. ## Conclusion The SO₂Cl₂-MeCN reagent should be useful for quantitative small-scale preparations of solvated chlorides (e.g. PdCl₂. 2MeCN) or unsolvated ones (SeCl₄ and Tl₄Cl₆) as well as complex salts (e.g. ZnCl₃⁻, ZnCl₄²⁻ or GeCl₆²⁻). Some convenient analytical separations are possible such as Pb from solders, Pd from other platinum metals or of refractory carbides and nitrides from steels.⁴⁸ Finally, etching or surface finishing of metals, alloys and semiconducting materials is possible and will be reported elsewhere. #### References - 1 M. Cartwright and A. A. Woolf, J. Fluorine. Chem., 1981, 19, 101. - 2 T. Tabushi and H. Kitaguchi, in Synthetic Reagents, ed. J. S. Pizey, Ellis Horwood, Chichester, 1981, vol. 4, ch. 3. - 3 J. Tabushi, Z. Yoshida and Y. Tamara, Tetrahedron, 1973, 29, 81. - 4 W. Middlebos, B. Zwanenburg and J. Strating, Recl. Trav. Chim. Pays-Bas, 1971, 90, 435. - 5 M. Hojo and K. Masuda, Synth. Commun., 1975, 5, 169. - 6 R. Davis, J. Durrant and C. C. Rowland, J. Organomet. Chem., 1986, 315, 119, - 7 R. Bolton, P. B. D. de la Mare and H. Suzucki, Recl. Trav. Chim. Pays-Bas, 1966, 85, 1206. - 8 R. Bolton, J. Chem. Soc. B, 1967, 1044; 1968, 712. - 9 R. Bolton, J. Chem. Soc. B, 1970, 1770; J. Chem. Soc., Perkin Trans. 1, 1972, 2004, - 10 O. Silberrad, J. Chem. Soc., 1921, 119, 2029; 1922, 121, 1015; 1925, 127, 2680. - 11 W. D. Watson, J. Org. Chem., 1985, 50, 2145. - 12 M. Ballester, C. Molinet and J. Castaner, J. Am. Chem. Soc., 1960, 82, - 13 Gmelin Handbuch der Anorganische Chemie., Springer, Berlin, Sulphur [B]3 8th edn., 1952 p. 1816. - 14 D. A. Edwards and A. A. Woolf, J. Chem. Soc. A, 1966, 250. - 15 M. Dillamore and D. A. Edwards, J. Inorg. Nucl. Chem., 1969, 31, - 16 M. J. Stiff and A. A. Woolf, J. Inorg. Nucl. Chem., 1972, 34, 2070. - 17 R. A. Walton, Q. Rev. Chem. Soc., 1965, 19, 126. - 18 J. Reedijk, Thesis, Leiden University, 1968. - 19 G. W. Blomgren, Pure Appl. Chem., 1985, 57, 383. - 20 C. C. Addison, J. C. Sheldon and H. Hodge, J. Chem. Soc., 1956, 3906. - 21 M. J. S. Dewar and W. Thiel, J. Am. Chem. Soc., 1977, 99, 4899. - 22 S. H. Sullivan and J. L. Beauchamp, Int. J. Mass Spectrom Ion Phys., 1978, 28, 69. - 23 R. Robbiani and J. L. Franklin, J. Am. Chem. Soc., 1979, 101, 3709. - 24 R. G. Pearson, J. Chem. Educ., 1987, 64, 561. - 25 D. K. Padma, V. S. Bhat and A. R. V. Marthy, J. Fluorine Chem., 1981, 17, 501. - 26 A. A. Woolf, unpublished work. - 27 H. Quast and J. Kees, Synthesis, 1974, 489. - 28 T. Abe and J. M. Shreeve, Inorg. Chem., 1981, 20, 2100. - 29 V. Gutmann, Monatsh. Chem., 1954, 85, 393, 405. - 30 A. Salama, S. B. Salama, M. Sobeir and S. Wasif, J. Chem. Soc. A, 1971, 1112. - 31 S. B. Salama and S. Wasif, Arab Gulf J. Sci. Res., 1985, 3, 121. - 32 J. A. K. Howard, L. E. Smart and C. J. Gilmore, J. Chem. Soc., Chem. Commun., 1976, 477. - 33 O. Ruff, *Chem. Ber.*, 1902, **35**, 4453. 34 V. Gutmann and W. K. Lux, *Monatsh. Chem.*, 1967, **98**, 276. - 35 R. Bohme, J. Rath, B. Grunwald and G. Thiele, Z. Naturforsch., Teil B, 1980, 35, 1367. - 36 R. J. Meyer, *Z. Anorg. Allg. Chem.*, 1900, **24**, 350. 37 J. R. Partington and A. L. Whynes, *J. Chem. Soc.*, 1948, 1953. - 38 W. D. Harrison, J. B. Gill and D. C. Goodall, J. Chem. Soc., Dalton Trans., 1979, 847. - 39 L. L. Bircumshaw and A. C. Riddiford, Q. Rev. Chem. Soc., 1952, 6, - 40 R. C. Paul, S. S. Sandhu and S. B. Viz, J. Indian Chem. Soc., 1962, 39, - 41 R. C. Paul, H. Kiran and S. L. Chadhu, J. Indian Chem. Soc., 1969, 46, 863. - 42 A. J. Bannister, B. Bell and L. J. Moore, J. Inorg. Nucl. Chem., 1972, **34**, 1161. - 43 M. Cartwright and A. A. Woolf, Polyhedron, 1983, 2, 811. - 44 H. A. Lehman, C. Ringel and V. Keoltzsch, Z. Chem., 1965, 5, 315. - 45 S. W. Peterson and J. M. Williams, J. Am. Chem. Soc., 1966, 88, 2866. - 46 L. E. Hinkel and G. J. Treharne, J. Chem. Soc., 1945, 866. - 47 E. Oikawa and S. Kambara, Polym. Lett., 1964, 2, 649. - 48 I. S. Busheina and J. B. Headridge, Analyst (London), 1981, 106, 221. Received 13th June 1991; Paper 1/02848K