Halogen-facilitated Preparation of $S_4(AsF_6)_2 \cdot xSO_2$ ($x \leq 1$) and $S_4(Sb_2F_{11})_2$, and a Convenient Synthesis of $Se_4(AsF_6)_2$ and $Se_4(Sb_2F_{11})_2^{\dagger}$

Michael P. Murchie, Jack Passmore,* George W. Sutherland and Ramesh Kapoor Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick, E3B 6E2, Canada

Sulfur reacted with an excess of AsF₅ at room temperature in the presence of a trace amount of halogen ($X_2 = Cl_2$, Br₂ or l_2) or AsCl₄AsF₆ in SO₂ to give S₄(AsF₆)₂·xSO₂ ($x \leq 1$) quantitatively in a few minutes. A similar, but slower, reaction with SbF₅ in SO₂ or AsF₃ at room temperature gave quantitative yields of S₄(Sb₂F₁₁)₂. The vibrational spectra of these salts with tentative assignments are reported. The corresponding preparations of Se₄(AsF₆)₂ and Se₄(Sb₂F₁₁)₂ are also greatly facilitated by the presence of traces of halogen. Reactions of sulfur (or selenium) with SbF₅ with and without traces of X₂ in SO₂ designed to give M₄(SbF₆)₂ (M = S or Se) gave products that contained M₄²⁺, an unidentified Sb^V fluoroanion and some Sb^{III}-containing species. A comparative study was made on the effect of solvent, oxidising agent and facilitating reagent on the course of reaction. Possible reaction pathways for oxidation of sulfur (or selenium) by AsF₅ (or SbF₅) with and without the addition of traces of X₂ or AsCl₄AsF₆ have been proposed.

Sulfur is oxidised quantitatively 1,2a,b by arsenic pentafluoride to $S_8(AsF_6)_2$ according to equation (1). Further oxidation does

$$S_8 + 3AsF_5 \xrightarrow{\text{HF,SO}_2}_{\text{or AsF}_3} S_8(AsF_6)_2 + AsF_3 \qquad (1)$$

not occur even with a large excess ^{1,2a,b} of AsF₅. However, in a preliminary communication we reported ³ that in the presence of a trace of bromine or iodine further oxidation occurs within minutes yielding crystalline S₄(AsF₆)₂·xSO₂ ($x \le 1$) according to equation (2) (r.t. = room temperature).

$$\frac{1}{2}S_8 + 3AsF_5 \xrightarrow{SO_2, f.t.} SO_2 + AsF_3 \xrightarrow{SO_2, f.t.} S_4(AsF_6) \cdot xSO_2 + AsF_3 \quad (2)$$

Selenium is oxidised to $Se_4(AsF_6)_2$ by heating the reactants for several days.^{2c} However, we discovered ³ that with a trace of halogen the reaction proceeded quantitatively in minutes. In this paper we give a full report of the oxidation of sulfur and selenium by AsF_5 and SbF_5 in a number of solvents with traces of halogen ($X_2 = Cl_2$, Br_2 or I_2) or $AsCl_4AsF_6$ to give $M_4(AsF_6)_2$ or $M_4(Sb_2F_{11})_2$ (M = S or Se) in quantitative yields. We propose possible reaction pathways for the oxidation process with and without traces of facilitating agent. The preparation, structure bonding and energetics of formation of the homopolyatomic cations of Group 16 have been the subject of a recent review.⁴

Experimental

All reactions were carried out in a two-bulb Pyrex glass vessel (equipped with a J. Young Teflon-stemmed glass valve and a coarse sintered-glass frit) which was attached to a Monel vacuum line. Sulfur dioxide (Canadian Liquid Air) and SO₂ClF (Aldrich) were distilled onto and stored over CaH₂. Chlorine (Canadian Liquid Air) and bromine (Fisher Scientific) were kept over P_4O_{10} in a flask equipped with a Rotoflo valve. Iodine (BDH) was taken in slight excess in a reaction vessel and evacuated under dynamic vacuum until the desired weight was

obtained. Sulfur (Fisher Scientific), selenium (BDH, 99.9%) and AsF_5 (Ozark-Mahoning) were used without further purification. Antimony pentafluoride (Ozark-Mahoning) was purified by double or triple distillation in an all-glass apparatus and stored in a Pyrex glass vessel fitted with a Rotoflo valve.

The IR spectra were recorded on Perkin-Elmer model 457 and 683 spectrometers. Spectra of solids were obtained as finely ground powders between AgCl and KBr plates and frequencies corrected using a polyethylene film. Raman spectra were recorded using a Ramalab spectrometer and a Spectra Physics 164 2 W argon-ion laser (5145 Å) with samples either in sealed glass melting-point tubes or *in situ* in the reaction vessels at r.t. using a slit width of 4 cm⁻¹. The ¹⁹F and ⁷⁷Se NMR spectra were recorded as in ref. 5, with high-frequency direction positive. Other techniques and general procedures have been described. ^{5.6}

Preparations of S₄²⁺ Compounds.—Reaction of sulfur with As F_5 in the presence of traces of halogen ($X_2 = Cl_2$, Br₂ or I_2) or AsCl₄AsF₆. (i) Arsenic pentafluoride (2.45 g, 14.41 mmol) was condensed onto a mixture of sulfur (0.51 g, 16.08 mmol) and liquid SO_2 (6.38 g). A dark blue solution was obtained on warming the contents to r.t. A trace quantity of Cl₂ (0.1 mmol) was condensed onto the solution, and a colourless crystalline precipitate under a light blue solution formed in less than 10 min after the solution had warmed to r.t. The solution was filtered and the precipitate washed twice with solvent $(1-2 \text{ cm}^3)$. The volatile materials [SO₂, AsF₃, SiF₄ (trace) (IR spectroscopy)] were removed under a dynamic vacuum leaving a white solid (2.10 g, see Table 1). The vibrational frequencies are listed in Table 2. The crystals collapsed to a powder when subjected to a dynamic vacuum for less than 10 min {Found [Calc. for S₄(AsF₆)₂•0.6SO₂]: As, 28.35 (27.50); F, 41.50 (41.90); S, 27.20 (27.10%) The X-ray crystal structure was reported in a preliminary communication.3

The results from similar experiments [(b)-(f)] with different halogens (X₂; X = Cl, Br or I) and containing varying amounts of X₂ are included in Table 1.

(*ii*) A similar experiment but using trace amounts of $AsCl_4AsF_6^{-12}$ as a catalyst (instead of X_2) gave white crystals of $S_4(AsF_6)_2 \cdot xSO_2$ ($x \le 1$) in quantitative yield in 2 d.

Reaction of sulfur with an excess of SbF₅ in the presence of traces of X_2 . Arsenic trifluoride (12.19 g), SbF₅ (6.92 g, 31.89

[†] Non-SI unit employed: $eV \approx 1.60 \times 10^{-19} J.$

		S						Weight (g) of $S_4(AsF_6)_2 \cdot xSO_2$		
Reaction		s g	mmol	ASF 5 	mmol	$\frac{SO_2}{(g)}$	X ₂ (mmol)	observed	calc. $(x = 1)$	calc. (x = 0)
$S_4(AsF_6)_2 \cdot xSO_2 (x \le 1)$	(a) (b) (c) (d) (e) (f)	0.51 0.34 0.52 0.27 0.49 0.72	16.08 10.74 16.24 8.37 15.28 22.64	2.45 4.53 2.85 2.45 3.32 2.05	14.41 26.65 16.76 14.41 19.53 12.06	6.38 2.10 3.80 1.46 2.49 4.91	$\begin{array}{c} \text{Cl}_{2} (0.10) \\ \text{Br}_{2} (0.03) \\ \text{I}_{2} (0.04) \\ \text{Cl}_{2} (0.44) \\ \text{Br}_{2} (<0.01) \\ \text{I}_{2} (0.01) \end{array}$	2.10 1.54 1.96 1.32 1.93 2.25 °	2.27 1.53 2.34 1.20 2.18	2.01 1.36 2.06 1.06 1.93
S4(SbF ₆) ₂	(g) (b)	S 0.71 0.50	mmol 22.00 15.52	SbF ₅ g 5.54 3.43	mmol 25.53 15.81	SO ₂ or AsF ₃ * (g) 9.41 4.26*	Br ₂ (mmol) 0.03	$S_4(Sb_yF_z)$ (g) 3.65	3 96 (total	Soluble product (g) 2.87 ^b
	(i) (j)	0.46 0.50	14.48 15.76	3.18 2.84	14.65 13.09	5.78 * 3.60	0.02 0.05 0.08	2.43	– 3.36 (total	1.29°

Table 1 Preparation of $S_4(AsF_6)_2 \cdot xSO_2$ ($x \le 1$) and the attempted bromine-facilitated preparation of $S_4(SbF_6)_2$

^a The product was a mixture of $S_4(AsF_6)_2$ and $S_8(AsF_6)_2$. ^b The solution was transparent red-brown. The beige $S_4(Sb_2F_{11})_2$ was identified by IR and Raman spectroscopy (Table 2). ^c The solution was dark blue. The IR spectrum indicated the presence of $Sb_2F_{11}^{-1}$.

Table 2 Vibrational spectra (cm⁻¹) with tentative assignments of $S_4(AsF_6)_2 \cdot xSO_2$ where $x \le 1^a$

IR ^b	Raman	Tentative assignment ^c
1330w		
1305w		$v_3(SO_2)$
1270vw		AsF ₆
1148w	1146 (0.5)	$v_1(SO_2)$
1020w		1 2
810vw		
	728 (0.5)	
	707 (0.5)	AsF ₆ ⁻
699vs		$v_3(AsF_6)$
	673 (2.0) 🔪	
668 (sh)	ح ح	$V_1(ASF_6)$
	605 (5.5)	$v_3(S_4^{2+})$
	585 (10.0)	$v_1(S_4^{2+})$
575m	572(sh)	
552ms	l	$v_2(AsF_6^-)$
	545 (2.0)	$v_5(S_4^{2+})$
539m (sh)	J	
522vw	520 (0.5)	$v_2(SO_2)$
	396 (0.5)	$v_2(S_4^{2+})$
390s		$v_4(AsF_6^-)$
	368 (1.5)	$v_{s}(AsF_{c}^{-})$

^{*a*} Wavenumbers accurate to *ca.* $\pm 3 \text{ cm}^{-1}$. All data reported for spectra recorded at room temperature. ^{*b*} Key: s = strong, m = medium, w = weak, v = very, sh = shoulder and br = broad. Intensities in parentheses. ^{*c*} Assigned by comparison with the vibrational spectrum of solid SO₂, ^{7.8} the AsF₆⁻ anion in Cs[AsF₆]⁹ and IF₆AsF₆, ¹⁰ and the S₄²⁺ cation in S₄(SO₃F)₂ and S₄(S₂O₆F)₂.¹¹ The AsF₆⁻ sites in the crystal structure of S₄(AsF₆)₂·xSO₂ are C₁, ³ *i.e.* no symmetry, therefore considerable splitting is expected.

mmol) and Br₂ (0.11 mmol) were successively condensed onto sulfur (0.54 g, 17.04 mmol), giving a precipitate under a dark blue solution within 24 h. The solution changed from dark blue to transparent pink-red on standing at r.t. for 2 weeks. The solution was filtered through the frit and the insoluble solid was washed three times with solvent (*ca.* 2 cm³). The volatile materials were removed leaving 4.41 g of a beige-white soluble solid [calc. weight of $S_4(Sb_2F_{11})_2$: 4.40 g, based on sulfur] and 2.24 g of a white insoluble solid [calc. weight of SbF_3 · SbF_5 (Raman spectroscopy¹³) 1.68 g]. {Found [Calc. for $S_4(Sb_2-F_{11})_2$]: F, 39.90 (40.45); S, 11.70 (12.40); Sb, 48.45 (47.20%)}. The Raman and IR vibrational frequencies with tentative assignments are given in Table 3. The ¹⁹F NMR chemical shifts of the solid in SO₂ at -70 °C relative to CCl₃F are δ -90.0(1), -108.9(8) and -130.9(2) (relative intensities in parentheses) and indicate the presence of Sb₂F₁₁^{-.16} A similar reaction carried out in liquid SO₂ was complete after 1 week.

Attempted preparation of $S_4(SbF_6)_2$. (i) In the presence of traces of X_2 . The Br_2 -facilitated preparation of $S_4(SbF_6)_2$ was attempted by allowing sulfur and SbF_5 to react at mole ratios in the range 1:1.2 to 1:0.8 according to equations (3) and (4)

$$\frac{1}{2}S_8 + 4SbF_5 \xrightarrow{\text{traces of } Br_2}{SO_2 \text{ or } AsF_3, r.t.} S_4(SbF_6)_2 + SbF_3SbF_5 (3)$$

$$\frac{3}{2}S_8 + 10SbF_5 \xrightarrow{\text{traces of Br}_2}{SO_2 \text{ or AsF}_3, \text{ r.t.}}$$

$$3S_4(SbF_6)_2 + (SbF_3)_3SbF_5$$
 (4)

[Table 1, (g)-(j)]. All reactions gave a white precipitate under a dark blue solution which remained unchanged after 1 week, except for reaction (g) Table 1 (mole ratio $S:SbF_5 = 1:1.2$) which changed to a transparent red-brown solution over a white precipitate. The solutions for all reactions were filtered, the insoluble solids were washed until white, and the volatiles removed. The Raman and IR spectra of the white insoluble solids were essentially identical for all reactions [Table 1, (g)-(j)]. Raman: 658 (4.0), 652 (4.5), 635 (0.5), 605 (8.0), 594 (sh), 581 (sh), 578 (6.0), 549 (0.5), 516 (10.0), 376 (0.5) and 288 (0.5) cm⁻¹ (relative intensities in parentheses). IR: 662vs, 628*, 601*, 560*, 543* and 514 cm⁻¹ (asterisk indicates feature of a broad shoulder). The soluble beige powder from reaction (g) in Table 1 was identified as $S_4(Sb_2F_{11})_2$ (Raman spectroscopy). The soluble blue solids [reactions (h)-(j) in Table 1] contained $Sb_2F_{11}^{-}$ (IR spectroscopy).

(*ii*) In the absence of X₂. Antimony pentafluoride (10.67 g, 49.18 mmol) was condensed onto sulfur (0.23 g, 7.27 mmol) in a one-bulbed glass vessel. A dark blue solid under the colourless SbF₅ was formed on warming the mixture to r.t. The reactants were heated at 150 °C for 5 d during which time the solid and solution changed from dark to light blue to colourless. The volatiles were removed and the white solid was subjected to a dynamic vacuum for 3 d at 100 °C. The expected weight for S₄(SbF₆)₂ was only 1.08 g, *i.e.* 21% of the actual recovered solid (5.08 g). The powdered product contained a few irregular solid pieces of β -6SbF₃·SbF₅ (Raman spectroscopy ¹³). Raman: 705 (0.5), 678 (4.5), 654 (10.0), 643 (6.0), 632 (5.5), 606 (3.5), 582 (10.0), 539 (0.5), 370 (1.0) and 283 (br) cm⁻¹

Table 3 Vibrational spectra (cm⁻¹) with tentative assignments for $S_4(Sb_2F_{11})_2^a$

$S_4(Sb_2F)$	$(11)_2$	Tentative assignment ^b				
IR	Raman					
697 °	697w					
	682 (1.0)	Sb-F stretching				
666 °	669 (2)5)	modes (Sb_2F_{11})				
654 °						
630 ^c	648 (1.0)					
	603 (3.0)	$v_3(S_4^{2+})$, Sb-F stretching modes (Sb ₂ F ₁₁ ⁻)				
583m	580 (10.0)	$v_1(S_4^{2+})$, Sb-F stretching modes (Sb ₂ F ₁₁ ⁻)				
490ms		Sb-F-Sb bridging modes (Sb_3F_{11})				
	367 (0.5)	$v_2(S_4^{2+})$				
ta faata	atas in Table 2	b Assigned by comparison with				

^{*a*} Refer to footnotes in Table 2. ^{*b*} Assigned by comparison with the $Sb_2F_{11}^{-}$ anion in $NF_4Sb_2F_{11}^{14}$ and $CsSb_2F_{11}^{,15}$ and S_4^{2+} in $S_4(SO_3F)_2$ and $S_4(S_2O_6F)_2^{,11}$ ^{*c*} Definite peaks superimposed on a broad strong band.

(relative intensities in parentheses). IR: 661s, 525w (br) and 460w (br) cm⁻¹.

Preparation of Se₄²⁺ Compounds.—Reaction of selenium with As F_5 in the presence of traces of X_2 . (i) Arsenic pentafluoride (2.91 g, 17.12 mmol) was condensed onto a mixture of Se (1.27 g, 16.08 mmol) and SO₂ (5.12 g) followed by traces of Br_2 (0.04 mmol). On warming to r.t. a bright yellow precipitate appeared under an intense yellow-brown solution in about 5 min. The large amount of the yellow solid, which formed within 2 h, was filtered off and washed with SO₂. The volatiles were removed leaving 0.33 g of a more soluble yellow-green solid [mainly $Se_4(AsF_6)_2$ with a trace of green $Se_8(AsF_6)_2$ and 2.50 g of the bright yellow solid identified as $Se_4(AsF_6)_2$ by Raman and IR spectra^{9.11} (calc. yield based on Se: 2.79 g).

(ii) In another experiment, a large excess of AsF₅ (5.74 g, 33.76 mmol) was added to Se (0.64 g, 8.15 mmol) in liquid AsF₃ (8.74 g) in the presence of a trace quantity of Cl_2 (0.25 mmol), and refluxed at 135 °C for 2 weeks. A quantitative amount of $Se_4(AsF_6)_2$ (Raman and IR spectroscopy ^{9,11}) was recovered.

(iii) Selenium and AsF₅ were allowed to react in a 10 mm NMR tube in mole ratios in the range 21:3 to 1:3, according to equation (5). The products were identified in situ by ⁷⁷Se NMR

$$xSe + 3AsF_5 \xrightarrow{\text{traces of } Br_2} Se_x(AsF_6)_2 + AsF_3$$
 (5)

spectroscopy as Se_n^{2+} $(n = 4, 8 \text{ or } 10).^{17,18}$ The reactions proceeded quantitatively, up to the formation of $Se_4(AsF_6)_2$.

Reaction of selenium with SbF_5 in the presence of X_2 . (i) Antimony pentafluoride (3.59 g, 16.53 mmol) and a trace of Br_2 (0.02 mmol) were condensed onto a mixture of Se (0.73 g, 9.18 mmol) and SO₂ (10.68 g) as per equation (6). A yellow-green

$$24Se + 35SbF_5 \xrightarrow{\text{traces of } Br_2}{SO_2, \text{ r.t.}} \\ 6Se_4(Sb_2F_{11})_2 + 6SbF_3 \cdot 5SbF_5 \quad (6)$$

solution over a white precipitate was obtained after 4 d of stirring at r.t. The solution was transferred and the insoluble white solid was washed with SO₂. The volatiles were removed leaving 2.96 g of a bright yellow solid [calc. yield for Se₄(Sb₂F₁₁)₂: 2.81 g] and 0.74 g of an insoluble white solid
$$\beta$$
-6SbF₃·5SbF₅ (Raman spectroscopy¹³) (calc. yield for 6SbF₃·5SbF₅: 0.83 g). The yellow solid was identified as Se₄(Sb₂F₁₁)₂ [Raman,¹¹ IR,^{15 19}F¹⁶ and ⁷⁷Se NMR^{17,18}

spectroscopy; $\delta_{(CH_3)_2Se}$ 1941.2 at r.t. for 0.64 g in 3.07 g SO₂]. (ii) In another experiment designed to yield a selenium cation

S

more highly oxidised than Se_4^{2+} , Se (0.53 g, 6.67 mmol) was treated with a large excess of SbF₅ (4.95 g, 22.81 mmol) with traces of Br₂ (0.05 mmol) in AsF₃ (7.59 g) at 63 °C for 2 weeks. The solution was filtered and the precipitate was washed about 15 times with AsF_3 (ca. 1-2 cm³), leaving the white insoluble SbF₃·SbF₅ (Raman spectroscopy ¹³) (0.66 g) and a quantitative yield of a yellow solid, Se₄(Sb₂F₁₁)₂ (Raman,¹¹ IR spectroscopy¹⁵).

Attempted preparation of $Se_4(SbF_6)_2$. Selenium (0.74 g, 9.41 mmol) and SbF₅ (2.11 g, 9.79 mmol) were allowed to react as per equation (4) (but Se instead of S) in liquid SO₂ (3.61 g) in the presence of Br₂ (0.06 mmol). A yellow precipitate under a yellow-orange solution was observed on stirring at r.t. for about 1 week. The volatiles were removed leaving 2.88 g of a solid product, which was extracted ¹⁹ with SO₂, to give a bright yellow soluble product (2-3 g), and a white insoluble solid $[\approx 0.5 \text{ g} (\text{SbF}_3)_3 \text{SbF}_5 (\text{Raman spectroscopy}^{20})$ with a weak peak attributable to Se_4^{2+} (Raman spectroscopy¹¹)]. The soluble yellow solid was shown to contain Se_4^{2+} and a complex Sb^v-Sb^{III} fluoroanion by Raman [672vw, 653m, 647m, 631vw, 600vw, 586vw, 549vw (br), 534vw and 324vvs $(Se_4^{2+}) \text{ cm}^{-1}$ and IR spectroscopy [673vs, 667vs, 651 (sh), 630mv, 537m and 491w cm^{-1}].

Reaction of CsCl with AsF₅.—Caesium chloride (0.52 g, 3.07 mmol) and AsF₅ (2.22 g, 13.09 mmol) were allowed to react at a 1:4.3 mole ratio in liquid SO₂ (4.91 g). A white precipitate under a light yellow solution was observed after several days. The solution was transferred to a second bulb through a frit and the white solid was washed two or three times with solvent (1-2 cm³). The volatiles were removed giving 0.83 g insoluble, solid $Cs[AsF_6]^9$ and 0.37 g of soluble, beige-white $AsCl_4AsF_6$ (Raman spectroscopy ¹²).

Reaction of KBr with AsF₅.—Potassium bromide (0.46 g, 3.88 mmol) and AsF₅ (2.58 g, 15.19 mmol) were allowed to react in 1:3.9 mole ratio in liquid SO₂ (5.37 g). A vigorous reaction with evolution of a red-brown vapour took place on warming to r.t. A red-brown vapour (Br₂) and a transparent brown solution over a white precipitate were noted after 16 h. The volatiles $[SO_2, {}^7 AsF_5, {}^{21} SO_2BrF$ (trace), ${}^{22} AsF_3, {}^{23} SiF_4$ (trace) and SO_2F_2 (trace) 22a,25 (IR spectroscopy)] were removed leaving 0.81 g of insoluble white powder K[AsF₆] (IR spectroscopy⁹) and 0.13 g of a soluble unidentified beige tar.

Results and Discussion

Preparation of $S_4(AsF_6)_2 \cdot xSO_2$ and $S_4(Sb_2F_{11})_2$. $S_4(AsF_6)_2 \cdot xSO_2$ ($x \le 1$). Reaction between sulfur and AsF_5 in SO₂, in the presence of traces of Cl_2 , Br, I_2 or AsCl₄AsF₆ according to equation (2) gave white crystals of $S_4(AsF_6)_2 \cdot xSO_2$ $(x \leq 1)$ quantitatively. Reactions carried out with different halogens in varying amounts [Table 1, (a)-(e)] all produced this compound in quantitative yield within minutes at r.t. Using AsF₃ as a solvent the reaction took 1 d.²⁶ The salt was identified by product weights, elemental analyses, vibrational spectroscopy (Table 2) and its X-ray crystal structure.³

 $S_4(Sb_2F_{11})_2$. Reaction between sulfur and excess of SbF₅ in the presence of traces of Br_2 [equation (7)] yielded $S_4(Sb_2F_{11})_2$ quantitatively in SO_2 within 1 week and 2 weeks in AsF_3 . The salt was identified by product weight, elemental analysis, vibrational spectroscopy (Table 3) and ¹⁹F NMR spectroscopy in SO₂. Pure $S_4(Sb_2F_{11})_2$ was not obtained (Table 1) in the absence of excess of SbF₅.

$${}^{1}_{2}S_{8} + 6SbF_{5} \xrightarrow{SO_{2} \text{ or } AsF_{3}}{}^{1}_{\text{traces of } X_{2}} S_{4}(Sb_{2}F_{11})_{2} + SbF_{3} \cdot SbF_{5}$$
(7)

Other characterised S_4^{2+} -containing salts, $S_4(SO_3F)_2^{27}$ and

^{*} We have also observed that sulfur is oxidised by AsF₅ in the presence of traces of bromine in HF or AsF₃ to give $S_4(AsF_6)_2 \cdot AsF_3^{-26}$

Scheme 1 A possible reaction pathway to the formation of $S_8(AsF_6)_2$ from S_8 and AsF_5

 $S_4(S_2O_6F)_{2,}^{11}$ have been prepared by the reaction of sulfur with $S_2O_6F_2$ (which is not commercially available) for several days. Thus, $S_4(AsF_6)_2 \cdot xSO_2$ ($x \le 1$) and $S_4(Sb_2F_{11})_2$ are the only* conveniently preparable salts of S_4^{2+} . Gillespie and coworkers²⁷ reported the preparation of $S_4(SbF_6)_2$ by the reaction of SbF₅ and sulfur on refluxing at 140 °C. However, our attempts to prepare $S_4(SbF_6)_2$ with or without halogen led to white solids that contained S_4^{2+} , an unidentified Sb^V fluoroanion, and some Sb^{III}-F-containing species, according to their Raman spectra. These compounds may be related to (SeS₃)₂-(Sb₄F₁₇)(SbF₆)₃²⁸ Te₂Se₂(Sb₃F₁₄)(SbF₆), Te₃Se(Sb₃F₁₄)-(SbF₆)²⁹ or Se₄(Sb₂F₄)(Sb₂F₅)(SbF₆)₅.³⁰ It is possible that $M_4(SbF_6)_2$ (M = S or Se) could be prepared by reaction of $M_4(AsF_6)_2$ with an exact equivalent of SbF₅ in SO₂ solution.

Preparation of Se₄(AsF₆)₂ and Se₄(Sb₂F₁₁)₂.—The syntheses of the previously known^{2.4} Se₄(AsF₆)₂ [by equation (2), but with Se] and Se₄(Sb₂F₁₁)₂ [equation (7)] are greatly facilitated by the presence of traces of X₂. In the present work the reduced product of the reaction with SbF₅ was identified as β-6SbF₃·5SbF₅¹³ and with a large excess of SbF₅, SbF₃·SbF₅,^{13.31} whereas SbF₃ was reported in the earlier investigation.^{2c} Attempts to prepare Se₄(SbF₆)₂ led to a yellow, soluble material containing Se₄²⁺, an unidentified Sb^V fluoroanion and some Sb^{III}-containing species (Raman).

Some Comments on the Choice of Solvents, Oxidising Agents and Facilitating Agents.—Reactions proceed faster in SO₂ than AsF₃ because SO₂ is a weaker base (SbF₅·AsF₃^{32,33} is more stable to dissociation than is SbF₅·SO₂).^{34,35} Similarly, reactions also proceed faster with AsF₅ than SbF₅, because AsF₅ is a weaker Lewis acid. Arsenic pentafluoride is easier to manipulate because it is more volatile. Its reduced product is the simple, volatile AsF₃, and not an insoluble, complex fluoride, *cf.* SbF₃·SbF₅,³¹ (SbF₃)₃SbF₅,²⁰ (SbF₃)₆(SbF₅)₅¹³ and (SbF₃)₅(SbF₅)₃.³⁶ Also the counter anion is simple AsF₆⁻, and not the more complex Sb₂F₁₁⁻, Sb₃F₁₆⁻ or Sb₄F₁₇⁻.²⁹

Reactions using Cl₂ or Br₂ as facilitators are faster than those with I₂ or AsCl₄AsF₆, probably because of the lower solubility of the latter. In addition AsCl₄AsF₆ only slowly loses Cl₂ in SO₂²⁶ (slow increase in AsF₃ concentration in a solution of AsCl₄AsF₆ monitored by ¹⁹F NMR spectroscopy). Thus the combination SO₂-A:F₅-X₂ (Cl₂ or Br₂) is the most ideal for preparing salts of polyatomic chalcogen cations and AsF₃-SbF₅-I₂ the least preferred.

Our attempts to prepare $S_6(AsF_6)_2$ and more highly oxidised homopolyatomic cations of sulfur and selenium, *e.g.* M_6^{4+} (M = S or Se), *cf.* Te_6^{4+} ,³⁷ using traces of halogen were unsuccessful.

Scheme 2 A possible reaction pathway for the oxidation of Se_8^{2+} to Se_4^{2+} by AsF₅

Possible Reaction Pathways for the Oxidation of Sulfur and Selenium by AsF₅.--(i) Without the facilitating agent (X₂). Sulfur and selenium are oxidised by AsF₅ to give cations of the type S_{19}^{2+} , Se_{10}^{2+} , M_8^{2+} (M = S or Se) and Se_4^{2+} (on heating).^{1,2,4} Initially the weak donor S₈ and AsF₅ may form a 1:1 adduct (Scheme 1, A) similar to the weak adducts PF₃•AsF₅.³⁸ SO₂F₂•AsF₅,³⁹ SO₂•AsF₅.^{39,40} The first ionisation energy of S₈ is 9.04 eV and that of SO₂ is 12.34 eV, and so sulfur (S₈) may be expected to form an adduct with AsF₅, even in the presence of excess of SO₂. The 1:1 adduct A may rearrange and donate F⁻ to another AsF₅ to give S₈F⁺AsF₆⁻ D (Scheme 1); S₈F⁺ may rearrange to the structure S₇SF⁺ E (analogous structural features are observed in S₁₉²⁺⁴¹ and Se₇SeSeCl⁺⁴²) from which the fluorine atom is more easily abstracted. It is more difficult to envisage the abstraction of fluorine from the electrophilic, positively charged S atom in S₈F⁺ D. Attempts to prepare S₈X⁺ (X = I, Br, Cl or F) led to the isolation of the crystalline salts of S₇I⁺⁴³ and S₇Br⁺,⁴⁴ and in more recent work to S₇X⁺ (X = Cl or F).⁴⁵ It is possible that S₇SX⁺ (E, Scheme 1) is also an intermediate in these reactions.

The S_8^{2+} cation is not further oxidised by AsF_5 in the absence of halogen. However, Se_8^{2+} (which may be formed in a manner described for S_8^{2+}) is slowly oxidised by AsF_5 and SbF_5 to Se_4^{2+} on heating. The first step in the oxidation of

Se₈²⁺ to Se₄²⁺ may be the formation of an Se₈²⁺ AsF₅ intermediate (A in Scheme 2) formed by the donation of an electron pair from the slightly negative charged axial fluorine in AsF₅ to the more acidic positive charged three-co-ordinate selenium atoms in Se₈²⁺ [*i.e.* Se(4) and Se(5) in A].⁴⁶ The selenium atom Se(1) is the most basic atom in Se₈^{2+,46} and may donate a pair of electrons to the partially positive arsenic in the AsF₅ molecule. Rearrangement may follow, resulting in the formation of Se₈F₂²⁺ and the reduction of AsF₅ to AsF₃ (Scheme 2, A to C). Attempts to prepare solutions of the analogous Se₈I₂²⁺ cation led to crystalline (Se₆I)_n(AsF₆)_n⁴⁷ over a solution of Se₈²⁺, Se₆I₂²⁺ and its equilibrium products (SeI₃⁺, Se₄I₄²⁺, and five unidentified selenium species at lower concentration) and Se₁₀²⁺ (2%, ⁷⁷Se NMR spectroscopy).⁴⁸ Therefore, the postulated species Se₈F₂²⁺ C may rearrange to D [cf. (S₇I)₂I³⁺⁴⁹] containing an abstractable fluorine, and/or to other equilibrium products, which may disproportionate, or lose F⁻ by abstraction with AsF₅, finally to give 2Se₄²⁺.

The absence of an analogous $(S_8^{2+} \longrightarrow S_4^{2+})$ oxidation step in the sulfur system may relate to the Se(4)–Se(5) distance being relatively longer in Se₈²⁺ than the S(4)–S(5) transannular bond in S₈²⁺. In the valence bond terms this implies that resonance structure 1 is more important for Se₈²⁺ than S₈²⁺, and other resonance structures 2 and 3 are relatively more important for S₈²⁺. Consistently, the charges on Se(4)–Se(5) (+0.42) were calculated to be higher than those on S(4)–S(5) (+0.38).⁴⁶ It is possible, therefore, that the more negative axial fluorine on AsF₅ may act as a base to Se₈²⁺, but not to S₈²⁺.

(ii) In the presence of halogen. In the presence of a trace amount of halogen (Cl₂, Br_2 , I_2) and an excess of AsF₅ the oxidation of S_8 to $S_8(AsF_6)_2$ may proceed through an S_8X^+ -AsF₅X⁻ intermediate (Scheme 3). The neutral S_8 species may initially form a donor-acceptor adduct with $X_2 [cf. S_8 \cdot I_2^{50a}$ and =M·X₂ (M = S, Se or Te; X = Cl, Br or I)^{50b}] by donating a lone pair of electrons into the σ^* lowest occupied molecular orbital of X_2 .⁵⁰ This would weaken the X-X bond and AsF₅ may then abstract X⁻ to give AsF₅X⁻⁵¹ and S₈X⁺ which may rearrange to (S₇)SX⁺ (C, Scheme 3) [cf. S₇X⁺ (X = Br or I),^{43,44} Se₇SeSeCI].⁴² Further halide abstraction by AsF₅, and rearrangement of the cation, leads to S_8^{2+} (C — \rightarrow **D**, Scheme 3). The compound $S_8(AsF_6)_2$, in the presence of a trace quantity of X_2 and an excess of AsF₅, is rapidly oxidsed to $S_4(AsF_6)_2$, possibly via $S_8X_2^{2+}$ which may isomerise to the more stable $[(S_7X)SX]^{2+}$ (H, Scheme 3). This cationic species may undergo abstraction to form $S_8 X^{3+}$ which may rearrange, or disproportionate, and/or loose another X⁻ ion by abstraction with AsF_5 to give two S_4^{2+} cations. Alternatively disproportionation or rearrangement products may themselves be oxidised by fluoride-ion abstraction to give S_4^{2+} .

The $S_4^{2^+}$ and $Se_4^{2^+}$ cations are not further oxidised by AsF_5 to other homopolyatomic cations, even in the presence of a trace quantity of halogen. However, $Se_4^{2^+}$ has been shown to react with a stoichiometric amount of bromine, in the presence of an excess of AsF_5 , to form $SeBr_3^{+,52}$ Thus, it is reasonable that $Se_4^{2^+}$ and $S_4^{2^+}$ react with trace quantities of halogen in excess of AsF_5 to form MX_3^+ cations ($M = S \text{ or } Se; X = Cl, Br \text{ or } I)^{53}$ or $S_2I_4^{-2^+54}$ as intermediates. The compound $Se_8(AsF_6)_2$ reacts with $SeI_3AsF_6^{47,48}$ in a 1:1 mole ratio to form $Se_6I_2(AsF_6)_2$ according to equation (8). Therefore, the MX_3^+ (X = I, Br or

$$2\operatorname{Sel}_{3}\operatorname{AsF}_{6} + 2\operatorname{Se}_{8}(\operatorname{AsF}_{6})_{2} \longrightarrow 3\operatorname{Se}_{6}\operatorname{I}_{2}(\operatorname{AsF}_{6})_{2} \quad (8)$$

Cl) species and $S_2I_4^{2+}$ may act as oxidising agents themselves and also recycle the halogen providing an alternative reaction

Scheme 3 A possible pathway to the formation of $S_4(AsF_6)_2$ by the reaction of S_8 and AsF_5 in the presence of a trace amount of halogen

pathway to that proposed above. However, SF_3AsF_6 does not react with $S_8(AsF_6)_2$ (¹⁹F NMR spectroscopy) under similar conditions,²⁶ and so if MF₃⁺ is formed at all in reactions without a halogen facilitator it cannot recycle the fluorine and thus does not act as a 'catalyst'. It is only when there is no lowoxidation-state species (*e.g.* $S_8^{2^+}$, $Se_8^{2^+}$ and $Se_{10}^{2^+}$) left that MX_3^+ (X = Cl, Br or I) species and $S_2I_4^{2^+}$ will exist (in trace quantities) and represent the final fate of the halogen in these reactions In this sense the halogens are not true catalysts as they are not regenerated at the end of the reaction.

The Reaction of AsF_5X^- with Excess of AsF_5 .—The ion AsF_5X^- has been proposed as an intermediate in the various reaction pathways given above which we presumed reacts with AsF_5 to give AsF_6^- . To test this proposal we investigated the reactions of CsCl and KBr with an excess of AsF_5 .

The reaction CsCl with AsF_5 gave $Cs[AsF_6]$ and $AsCl_4AsF_6$ according to equation (9). The initial product reasonably

$$4CsCl + 6AsF_5 \longrightarrow 4Cs[AsF_6] + AsCl_4AsF_6 \quad (9)$$

contains AsF_5Cl^{-51} which may exchange with AsF_5 to form $Cs[AsF_6]$ and AsF_4Cl . The latter may rearrange to give AsF_3Cl_2 and/or $AsCl_4AsF_6$ [equation (10] and the various complex equilibria given in equation (12), or AsF_3 and Cl_2 via equations (10) and (11).

$$2AsF_4Cl \longrightarrow AsF_3Cl_2 + AsF_5$$
(10)

$$AsF_{3}Cl_{2} \longrightarrow AsF_{3} + Cl_{2}$$
(11)

$$2AsF_{3}Cl_{3} \iff [AsF_{2}Cl_{2}^{+}][AsF_{4}Cl_{2}^{-}] \iff AsCl_{3}F_{2} + AsF_{4}Cl_{3}F_{2} + AsF_{4}Cl_{3}F_{2$$

1

$$[AsCl_4^+][AsF_6^-] \iff AsCl_4F + AsF_5 \iff [AsCl_3F^+][AsF_5Cl^-]$$

We have also shown that $AsCl_4AsF_6$ is a halogen-facilitating agent. One of the disproportionation products (e.g. $AsCl_3F_2$ or Cl₂) may act as a chlorinating agent toward chalcogen homopolyatomic cations. The analogous AsBr₄AsF₆⁵⁵ and $AsI_4AsF_6^{\ 55,56}$ are unstable at r.t. and readily revert to AsF_3 and X_2 (X = Br or I). Consistently the reaction of KBr gave

KAsF₅, Br₂ and AsF₃ as the major identified products. Very recently a paper on vibrational and normal coordinates analysis of isotopically substituted $S_4(AsF_6)$ -0.62 SO₂ and $S_4(SbF_6)_2 \cdot SO_2$ has appeared.⁵⁷ However, no mention of how the $S_4(SbF_6)_2$ ·SO₂ was prepared was included.

Acknowledgements

We thank the Natural Sciences and Engineering Research Council (NSERC) (Canada) for financial support and for an International Scientific Exchange Award (R. Kapoor, Panjab University, Chandigarh, India), Dr. G. Schatte for help in improving the manuscript, and Ms. I. Dionne for her unpublished work.

References

- C. G. Davies, R. J. Gillespie, J. J. Park and J. Passmore, Inorg. Chem., 1971, 10, 2781.
- 2 (a) P. A. W. Dean, R. J. Gillespie and P. K. Ummat, Inorg. Synth., 1974, 15, 213; (b) R. J. Gillespie and J. Passmore, Chem. Commun., 1969, 1333; (c) J. Barr, D. B. Crump, R. J. Gillespie, R. Kapoor and P. K. Ummat, Can. J. Chem., 1968, 46, 3607.
- 3 J. Passmore, G. W. Sutherland and P. S. White, J. Chem. Soc., Chem. Commun., 1980, 330.
- 4 N. Burford, J. Passmore and J. C. P. Sanders, in From Atoms to Polymers: Isoelectronic Analogies, eds. J. F. Liebman and A. Greensberg, VCH, Weinheim, 1989, p. 53 and refs. therein.
- 5 W. A. S. Nandana, J. Passmore, P. S. White and C.-M. Wong, Inorg. Chem., 1990, 29, 3529.
- 6 M. P. Murchie and J. Passmore, Inorg. Synth., 1986, 24, 76.
- 7 R. N. Wiener and E. R. Nixon, J. Am. Chem. Soc., 1956, 25, 175.
- 8 H. Gerding and J. W. Ypenburg, Recl. Trav. Chim. Pays-Bas, 1967, 86.458
- 9 G. M. Begun and A. C. Rutenberg, Inorg. Chem., 1967, 6, 2212.
- 10 K. O. Christie and W. Sawodny, Inorg. Chem., 1967, 6, 1783.
- 11 R. C. Burns and R. J. Gillespie, Inorg. Chem., 1982, 21, 3877.
- 12 L. Kolditz, Z. Anorg. Allg. Chem., 1955, 280, 313.
- 13 W. A. S. Nandana, J. Passmore and P. S. White, J. Chem. Soc., Dalton Trans., 1985, 1623.
- 14 K. O. Christe, C. J. Schack and R. D. Wilson, Inorg. Chem., 1976, 15, 1275
- 15 (a) R. J. Gillespie and B. Landa, Inorg. Chem., 1973, 12, 1383; (b) B. Bonnet and G. Mascherpa, Inorg. Chem., 1980, 19, 785.
- 16 J. Bacon, P. A. W. Dean and R. J. Gillespie, Can. J. Chem., 1969, 47, 1655
- 17 G. J. Schrobilgen, R. C. Burns and P. J. Granger, J. Chem. Soc., Chem. Commun., 1978, 957
- 18 R. C. Burns, M. J. Collins, R. J. Gillespie and G. J. Schrobilgen, Inorg. Chem., 1986, 25, 4465.
- 19 A. J. Banister, Z. V. Hauptman and R. W. H. Small, J. Chem. Soc., Dalton Trans., 1984, 1377.
- 20 W. A. S. Nandana, J. Passmore, D. C. N. Swindells, P. Taylor, P. S. White and J. E. Vekris, J. Chem. Soc., Dalton Trans., 1983, 619.
- 21 L. C. Hoskins and R. C. Lord, J. Chem. Phys., 1967, 46, 2402.
- 22 (a) R. J. Gillespie and E. A. Robinson, Can. J. Chem., 1961, 39, 3171; (b) T. T. Crow and R. T. Lagemann, Spectrochim. Acta, 1958, 12, 143.
 23 L. C. Hoskins and R. C. Lord, J. Chem. Phys., 1965, 43, 155.

- 24 E. A. Jones, J. S. Kirby-Smith, P. J. H. Woltz and A. H. Nielsen, J. Chem. Phys., 1951, 19, 242.
- 25 T. Birchall and R. J. Gillespie, Spectrochim. Acta, 1966, 22, 681.
- 26 I. Dionne and J. Passmore, unpublished work.
- 27 J. Barr, R. J. Gillespie and P. K. Ummat, Chem. Commun., 1970, 264. 28 M. J. Collins, R. J. Gillespie, J. F. Sawyer and G. J. Schrobilgen, Inorg. Chem., 1986, 25, 2053.
- 29 P. Boldrini, I. D. Brown, M. J. Collins, R. J. Gillespie, E. Maharajh, D. R. Slim and J. F. Sawyer, Inorg. Chem., 1985, 24, 4302.
- 30 G. Cardinal, R. J. Gillespie, J. F. Sawyer and J. E. Vekris, J. Chem. Soc., Dalton Trans., 1982, 765.
- 31 T. Birchall, P. A. W. Dean, B. Della Valle and R. J. Gillespie, Can. J. Chem., 1973, 51, 667.
- 32 A. A. Woolf and N. N. Greenwood, J. Chem. Soc., 1950, 2200.
- 33 A. J. Edwards and R. J. C. Sills, J. Chem. Soc. A, 1971, 942.
- 34 J. W. Moore, H. W. Baird and H. B. Miller, J. Am. Chem. Soc., 1968, 90.1358.
- 35 D. M. Byler and D. F. Shriver, Inorg. Chem., 1976, 15, 32.
- 36 W. A. S. Nandana, J. Passmore, P. S. White and C.-M. Wong, J. Chem. Soc., Dalton Trans., 1987, 1989.
- 37 R. C. Burns, R. J. Gillespie, W. C. Luk and D. R. Slim, Inorg. Chem., 1979, 18, 3086.
- 38 G. S. H. Chen and J. Passmore, J. Chem. Soc., Dalton Trans., 1979, 1251.
- 39 G. S. H. Chen and J. Passmore, J. Chem. Soc., Dalton Trans., 1979, 1258.
- 40 M. Brownstein and R. J. Gillespie, J. Am. Chem. Soc., 1970, 92, 2718.
- 41 R. C. Burns, R. J. Gillespie and J. F. Sawyer, Inorg. Chem., 1980, 19, 1423
- 42 R. Faggiani, R. J. Gillespie, J. W. Kolis and K. C. Malhotra, J. Chem. Soc., Chem. Commun., 1987, 591.
- 43 J. Passmore, G. W. Sutherland, P. Taylor, T. K. Whidden and P. S. White, Inorg. Chem., 1981, 20, 3839.
- 44 J. Passmore, G. W. Sutherland, T. K. Whidden, P. S. White and C. M. Wong, Can. J. Chem., 1985, 63, 1209.
- 45 R. Minkwitz and J. Nowicki, Inorg. Chem., 1990, 29, 2361.
- 46 K. Tanaka, T. Yamabe, H. Teramae and K. Fukui, Nouv. J. Chim., 1979, 3, 379.
- 47 W. A. S. Nandana, J. Passmore, P. S. White and C.-M. Wong, Inorg. Chem., 1989, 28, 3320 and refs. therein.
- 48 M. Carnell, F. Grein, M. P. Murchie, J. Passmore and C-M. Wong, J. Chem. Soc., Chem. Commun., 1986, 225; C.-M. Wong, Ph.D. Thesis, University of New Brunswick, Fredericton, New Brunswick, 1986.
- 49 J. Passmore, G. W. Sutherland and P. S. White, Inorg. Chem., 1982, 21. 2717.
- 50 (a) J. Jander and G. Turk, Chem. Ber., 1964, 97, 25; M. E. Peach, J. Sulfur Chem., 1973, 8, 151; (b) J. B. Lambert, D. H. Johnson, R. G. Keske and C. E. Mixan, J. Am. Chem. Soc., 1972, 94, 8172.
- 51 M. A. Dove, J. C. P. Sanders, E. L. Jones and M. J. Parkin, J. Chem. Soc., Chem. Commun., 1984, 1578.
- 52 W. V. F. Brooks, J. Passmore and E. K. Richardson, Can. J. Chem., 1979. 57. 3230.
- 53 J. P. Johnson, M. P. Murchie, J. Passmore, M. Tajik, P. S. White and C.-M. Wong, Can. J. Chem., 1987, 65, 2744 and refs. therein
- 54 J. Passmore, G. W. Sutherland, T. K. Whidden and P. S. White, J. Chem. Soc., Chem. Commun., 1980, 289; M. P. Murchie, J. Passmore, G. W. Sutherland, M. Tajik, T. K. Whidden and P. S. White, Inorg. Chem., in the press.
- 55 T. Klapötke and J. Passmore, J. Chem. Soc., Dalton Trans., 1990, 3815.
- 56 I. Tornieparth-Vetting and T. Klapötke, J. Chem. Soc., Chem. Commun., 1990, 132.
- 57 R. Minkwitz, J. Nowicki, W. S. Saurodny and K. Härtner, Spectrochim. Acta, Part A, 1991, 47, 151.

Received 2nd September 1991; Paper 1/04563F

(12)