Indenyl Carbametallaboranes. Part 2. ${ }^{1}$ Compounds with Phenyl or Ether Groups substituted at Cage Carbon Atoms within a 3- $\left(\eta-\mathrm{C}_{9} \mathrm{H}_{7}\right)$-3,1,2-closo- $\mathrm{CoC}_{2} \mathrm{~B}_{9}$ Framework \dagger

Zoë G. Lewis, David Reed and Alan J. Welch *
Department of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, UK

Abstract

Reaction of [Co(acac) $)_{3}$ (acac = acetylacetonate), $\mathrm{Li}\left[\mathrm{C}_{9} \mathrm{H}_{7}\right]$ and $\mathrm{TI}_{2}\left[\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{R}^{1} \mathrm{R}^{2}\right]$ in tetrahydrofuran (thf) affords the substituted indenyl carbacobaltaboranes [1-R'-2- $R^{2}-3-\left(\eta-C_{9} H_{7}\right)-3,1,2-$ closo- $\mathrm{CoC}_{2} \mathrm{~B}_{9} \mathrm{H}_{9}$] ($R^{1}=P h, R^{2}=H 2 ; R^{1}=\mathrm{CH}_{2} \mathrm{OMe}, R^{2}=H 3 ; R^{1}=R^{2}=\mathrm{CH}_{2} \mathrm{OMe} 4$). The indenyl ligand of 4 (and also, by inference, that of 3) is, in solution, in rapid rotation about the metal-carbaborane cage axis, even at 185 K . In contrast, the room-temperature solution fluxionality of 2 , which involves synchronous rotation of the indenyl ligand as in 3 and 4 with rotation of the phenyl group about the phenyl-C(1) axis, may be arrested by cooling to 185 K . The limiting low-temperature structure of 2 is in full agreement with the molecular conformation determined in the solid state. For both compounds 2 and 3, cisoid conformations are observed, in which the ring-junction atoms of the indenyl ligand are as near as they can be to the carbaborane carbon atoms, given an overall staggered relationship between metal-bonded η^{5} rings. In contrast the steric influence of two substituent ether functions in 4 is sufficient to push round the sixmembered ring of the indenyl ligand to the next best staggered conformation. All the molecular conformations observed, and the relative heights of the barriers to indenyl rotation, are supported by the results of molecular orbital calculations at the extended-Hückel level. Crystal structure data at $185 \pm 1 \mathrm{~K}$: 2, $a=17.732(11), b=13.186(3), c=17.739(7) \AA, \beta=117.00(4)^{\circ}$, space group $C 2 / c, R=0.0439$ for 2741 observed reflections; $3, a=12.382(3), b=8.914(5), c=15.523(9) A, \beta=103.60(4)^{\circ}$, space group $P 2 \sqrt{1} / c, R=0.0269$ for 2651 reflections; $4, a=10.927(4), b=14.743(4), c=11.789(6) \AA, \beta=90.61(4)^{\circ}$, space group $P 2, / n, R=0.0290$ for 3087 reflections.

Recently ${ }^{1}$ we reported the synthesis and molecular structure of the first indenyl carbametallaborane, [3-($\left.\eta-\mathrm{C}_{9} \mathrm{H}_{7}\right)-3,1,2$-closo$\left.\mathrm{CoC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right] \mathbf{1}$, an analogue of the cyclopentadienyl compound [3-($\left.\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$-3,1,2-closo- $\mathrm{CoC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}$] which had been known for some time. ${ }^{2}$ Compound 1 and its derivatives are of interest because formal replacement of the $\eta-\mathrm{C}_{5} \mathrm{H}_{5}$ ligand by indenyl introduces the possibility of a preferred molecular conformation (indenyl ligand versus carbaborane ligand) and of slipping distortions in both η-bonded ligands. ${ }^{1,3-5}$
The results of extended-Hückel molecular orbital (EHMO) calculations on an idealised model of compound 1 suggested that the preferred conformation was that in which the indenyl ring-junction carbon atoms lay cisoid ('cisoid' implies a cisstaggered arrangement of the two η-bonded rings) to the cage carbon atoms, and such a conformation was indeed observed crystallographically (see later). Clearly, therefore, substitution at one or both cage carbon atoms by bulky alkyl or aryl functions could result in competing electronic and steric effects on the preferred conformation. In this paper we accordingly report the synthesis and structural characterisation of two mono- and one di-substituted derivatives of 1.

Experimental

Syntheses.-All reactions were performed under an atmosphere of dry, oxygen-free N_{2} using standard Schlenk-line techniques, with some subsequent manipulation in air. Solvents

[^0]were dried and distilled under N_{2} prior to use. Infrared spectra were recorded as $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions on a Perkin-Elmer 598 spectrophotometer, and NMR spectra, unless otherwise stated, as $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solutions at room temperature on a Bruker WH360 spectrometer. Chemical shifts are reported relative to external $\mathrm{SiMe}_{4}\left({ }^{1} \mathrm{H}\right)$ or $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}\left({ }^{11} \mathrm{~B}\right)$, with positive shifts to high frequency in each case.

The compounds $\mathrm{Tl}_{2}\left[7-\mathrm{Ph}-7,8\right.$-nido- $\left.\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right] .{ }^{6} \mathrm{Tl}_{2}\left[7-\mathrm{CH}_{2}-\right.$ OMe-7,8-nido- $\left.\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right]^{7}$ and $\mathrm{Tl}_{2}\left[7,8-\left(\mathrm{CH}_{2} \mathrm{OMe}\right)_{2}-7,8\right.$-nido$\left.\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9}\right]^{7} \ddagger$ were synthesised as described previously, $\mathrm{Li}\left[\mathrm{C}_{9} \mathrm{H}_{7}\right]$ was prepared from freshly distilled indene (BDH) and LiBu (Aldrich) in tetrahydrofuran (thf), and [Co(acac) ${ }_{3}$ (acac = acetylacetonate) (Koch-Light) was used as supplied.
[1-Ph-3-($\left.\boldsymbol{\eta}-\mathrm{C}_{9} \mathrm{H}_{7}\right)-3,1,2-\cos o-\mathrm{CoC}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}$] 2. The complex $\left[\mathrm{Co}(\mathrm{acac})_{3}\right](0.52 \mathrm{~g}, 1.46 \mathrm{mmol})$ was dissolved in thf, and Tl_{2} [7-$\mathrm{Ph}-7,8-$ nido- $\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}$] ($0.90 \mathrm{~g}, 1.46 \mathrm{mmol}$) was suspended in the resulting green solution. The mixture was stirred at room temperature and to it was added, dropwise, a freshly prepared solution of $\mathrm{Li}\left[\mathrm{C}_{9} \mathrm{H}_{7}\right]$ (1.46 mmol) in thf. The resultant brown product was stirred overnight and filtered. Volatiles were removed from the filtrate in vacuo, and the resultant solid dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(15 \mathrm{~cm}^{3}\right)$ and filtered. The filtrate was concentrated and chromatographed on silica plates using hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)$ as eluent. Yellow ($R_{\mathrm{f}} 0.9$, no $\mathrm{B}-\mathrm{H}$ by IR spectroscopy) and orange ($R_{\mathrm{f}} 0.7$, B-H containing) bands were collected, the latter obtained as a dark red solid from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and subsequently identified as [1-Ph-3-($\left.\eta-\mathrm{C}_{9} \mathrm{H}_{7}\right)-3,1,2-\mathrm{c}$ loso-

[^1]

Perspective and plan views of compound I (cage carbon atoms black)
$\mathrm{CoC}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}$] 2. Yield 10% (Found: C, 53.2; $\mathrm{H}, 5.70 . \mathrm{C}_{17} \mathrm{H}_{22}-$ $\mathrm{B}_{9} \mathrm{Co}$ requires C, $53.4 ; \mathrm{H}, 5.80 \%$); $v_{\text {max }} 2540 \mathrm{~cm}^{-1}$ (B-H). NMR: ${ }^{1}{ }^{1} \mathrm{~B}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 8.25(1 \mathrm{~B}), 2.34(1 \mathrm{~B}),-2.73$ [2B (coincident)], $-3.62(1 \mathrm{~B}),-6.32(1 \mathrm{~B}),-11.00(1 \mathrm{~B}),-16.74(1 \mathrm{~B})$ and $-17.72(1 \mathrm{~B})$; the ' H chemical shifts are presented and discussed in the text.
[1-CH $\mathrm{CH}_{2} \mathrm{OMe}-3-\left(\eta-\mathrm{C}_{9} \mathrm{H}_{7}\right)$-3,1,2-closo- $\left.\mathrm{CoC}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right]$ 3. Similarly, $\left[\mathrm{Co}(\mathrm{acac})_{3}\right], \mathrm{Tl}_{2}\left[7-\mathrm{CH}_{2} \mathrm{OMe}-7,8\right.$-nido- $\left.\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right]$ and $\mathrm{Li}\left[\mathrm{C}_{9} \mathrm{H}_{7}\right]$ (1.72 mmol of each) were allowed to react to afford, after work-up involving preparative TLC, $\left[1-\mathrm{CH}_{2} \mathrm{OMe}-3-(\eta-\right.$ $\mathrm{C}_{9} \mathrm{H}_{7}$)-3,1,2-closo- $\left.\mathrm{CoC}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right] 3$ as dark red microcrystals. Yield 5% (Found: C, $44.1 ; \mathrm{H}, 6.20 . \mathrm{C}_{13} \mathrm{H}_{22} \mathrm{~B}_{9} \mathrm{CoO}$ requires C , $44.5 ; \mathbf{H}, 6.35 \%$); $v_{\max } 2530 \mathrm{~cm}^{-1}(\mathrm{~B}-\mathrm{H})$. NMR: ${ }^{11} \mathrm{~B}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 8.69$ (1 B), 1.68 (1 B), $-2.65(1 \mathrm{~B}),-3.54(1 \mathrm{~B}),-4.58$ (1 B), -7.00 $(1 \mathrm{~B}),-12.46(1 \mathrm{~B}),-17.58(1 \mathrm{~B})$ and $-19.94(1 \mathrm{~B}):{ }^{1} \mathrm{H}, \delta 2.52$ $[\mathrm{s}, 1 \mathrm{H}, \mathrm{H}(2)], 3.53\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.61$ and $3.72\left(\mathrm{AB},{ }^{2} J_{\mathrm{HH}} 11,2 \mathrm{H}\right.$, $\left.-\mathrm{CH}_{2} \mathrm{O}\right], 5.66\left[\mathrm{~d}\right.$ of d (app. t), $\left.{ }^{3} J_{\mathrm{HH}} 3,3,1 \mathrm{H}, \mathrm{H}(32)\right], 6.39[\mathrm{~d}$, ${ }^{3} J_{\mathrm{HH}} 3 \mathrm{~Hz}, 2 \mathrm{H}$ (coincident), $\left.\mathrm{H}(31,32)\right]$ and $7.44-7.61[\mathrm{~m}, 4 \mathrm{H}$, H(35-38)].
$\left[1,2-\left(\mathrm{CH}_{2} \mathrm{OMe}\right)_{2}-3-\left(\eta-\mathrm{C}_{9} \mathrm{H}_{7}\right)-3,1,2-\right.$ closo $\left.-\mathrm{CoC}_{2} \mathrm{~B}_{9} \mathrm{H}_{9}\right]$ 4. The complex [Co(acac) ${ }_{3}$], $\mathrm{Tl}_{2}\left[7,8-\left(\mathrm{CH}_{2} \mathrm{OMe}\right)_{2}-7,8\right.$-nido- $\left.\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9}\right]$ and $\mathrm{Li}\left[\mathrm{C}_{9} \mathrm{H}_{7}\right]$ (0.86 mmol of each) were allowed to react together as described above, except that the reaction was judged to be complete after only 2.5 h , to afford, after work-up involving preparative TLC $\left[1,2-\left(\mathrm{CH}_{2} \mathrm{OMe}\right)_{2}-3-\left(\eta-\mathrm{C}_{9} \mathrm{H}_{7}\right)-3,1,2-\right.$ closo- $\left.\mathrm{CoC}_{2} \mathrm{~B}_{9} \mathrm{H}_{9}\right] 4$ as a dark red solid. Yield 12% (Found: C, 45.8; $\mathrm{H}, 6.60 . \mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~B}_{9} \mathrm{CoO}_{2}$ requires $\mathrm{C}, 45.7 ; \mathrm{H}, 6.65 \%$); $v_{\text {max }}$ $2540 \mathrm{~cm}^{-1}(\mathrm{~B}-\mathrm{H})$. NMR: $\left.{ }^{11} \mathrm{~B}-{ }^{2}{ }^{1} \mathrm{H}\right\}, \delta 8.93(1 \mathrm{~B}), 1.86(1 \mathrm{~B}),-1.65$ (2 B), -5.15 (2 B), -14.19 (2 B) and -17.89 (1 B): ${ }^{1} \mathrm{H}, \delta 3.17$ and $3.39\left(\mathrm{AB},{ }^{2} J_{\mathrm{HH}} 12,4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.34\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 5.70[\mathrm{t}$, $\left.{ }^{3} J_{\mathrm{HH}} 3,1 \mathrm{H}, \mathrm{H}(32)\right], 6.40\left[\mathrm{~d},{ }^{3} J_{\mathrm{HH}} 3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}(31,32)\right]$ and 7.51-7.58 [m, $4 \mathrm{H}, \mathrm{H}(35-38)]$.

Crystallographic Studies.-Diffraction-quality crystals of compounds $2-4$ were grown by diffusion of hexane into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions at 243 K .

All crystallographic measurements were made at $185 \pm 1 \mathrm{~K}$ on an Enraf-Nonius CAD4 diffractometer equipped with Mo$\mathrm{K} * \mathrm{X}$-radiation, $\lambda=0.71069 \AA$, and a ULT-1 nitrogengas cooling device. Orientation matrix and unit-cell parameters by least-squares refinement of the setting angles of 25 high-angle reflections. Data collection in the range $1 \leqslant 0 \leqslant 25^{\circ}$ at variable speeds by $\omega-2 \theta$ scans in 96 steps with ω scan width $0.8+$ $0.34 \tan \theta$. One asymmetric fraction of data $(+h+k \pm l)$ was measured in each case, and for 2 only data with $(h+k)=2 n$.

Data from compound 2 were corrected for slight decay and all data reduced by CADABS. ${ }^{9}$ The cobalt positions were found by direct methods ${ }^{10}$ and those of all other atoms by iterative full-matrix least-squares refinement $/ \Delta F$ syntheses. ${ }^{11}$ After isotropic convergence an empirical absorption correction was applied. ${ }^{12}$ In the final stages of refinement reflections were weighted according to $w^{-1}=\sigma^{2}(F)+g F^{2}$. All non-hydrogen atoms were allowed anisotropic thermal motion. For 2, H atoms of the phenyl ring and indenyl ligand were set in idealised positions and cage H atoms refined with tied $\mathrm{C}-\mathrm{H} / \mathrm{B}-\mathrm{H}$ distances, $1.10(2) \AA$ at convergence; all H atoms in this structure
refined with a common isotropic thermal parameter. For 3 and 4 all H atoms freely refined with individual isotropic thermal parameters.

General crystallographic data, details of data collection and of structure refinement, are given in Table 1. Tables 2-4 list coordinates of refined atoms for compounds 2-4 respectively. Computer programs used in addition to those referenced above: CALC ${ }^{13}$ and EASYORTEP. ${ }^{14}$

Additional material available from the Cambridge Crystallographic Data Centre comprises H -atom coordinates, thermal parameters and remaining bond lengths and angles.

EHMO Calculations.-The EHMO calculations were performed on idealised models of compounds 1-4 varying x, the angle describing the conformation of the indenyl six-membered ring relative to the cage carbon atoms, ${ }^{1}$ using a local version of the program ICON 8^{15} and the modified Wolfsberg-Helmholtz formula. ${ }^{16}$ The $H_{i i}$ values for C, B and H and Slater exponents for all elements (double zeta for Co) were those inlaid in ICON 8, whilst $H_{i i}$ for Co were initially optimised by charge iteration (using nine valence shell ionisation energy functions) on model compound I in the cis-eclipsed conformation ($\alpha=0^{\circ}$), affording 3d $-12.075,4 \mathrm{~s}-9.128$ and $4 \mathrm{p}-5.515 \mathrm{eV}$. Table 5 details parameters used to construct the models.

Results and Discussion

Compounds 2-4, C-cage substituted derivatives of [$3-\left(\eta-\mathrm{C}_{9} \mathrm{H}_{7}\right.$)-3,1,2-closo- $\mathrm{CoC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}$] 1, have been synthesised by an analogous route to that which has previously afforded $\mathbf{1 ~}^{1}$ and $\left[3-\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)-3,1,2\right.$-closo $\left.-\mathrm{CoC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right] \cdot{ }^{2}$ Although yields of these new compounds, after work-up involving preparative TLC, are low ($5-15 \%$), all are afforded in high purity. The compounds are stable to air for long periods in solution, and indefinitely in the solid state.

Compounds 3 and 4 (the mono- and di-ether derivatives respectively) were characterised by microanalysis, IR and ${ }^{1} \mathrm{H}$, ${ }^{11} \mathrm{~B}$ and ${ }^{11} \mathrm{~B}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy. In the ${ }^{1} \mathrm{H}$ NMR spectra the CH_{2} group of the pendant ether function gives rise to an AB pattern with ${ }^{2} J_{\mathrm{HH}} 11$ (3) and 12 Hz (4). All resonances in the ${ }_{11}^{1} \mathrm{~B}$ NMR spectra show the expected doublet coupling, ${ }^{1} J_{\mathrm{BH}}$ $120-155 \mathrm{~Hz}$. Both the ${ }^{11} \mathrm{~B}$ and ${ }^{11} \mathrm{~B}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of 4 are consistent with time-averaged C_{s} molecular symmetry, and are unchanged on cooling to 185 K . In view of the preference for a molecular conformation which does not have mirror symmetry (see later), these spectra can only be interpreted in terms of facile rotation of the indenyl ligand about the metal-cage axis, even at low temperature. Note, however, that distinction cannot be made between full and partial rotation. It is likely that similar fluxionality occurs in 3 .

At 298 K the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 2 (the monophenyl derivative) contains resonances due to $\mathrm{H}(2)$ (δ 2.52) and seven indenyl protons, but only three phenyl protons. Owing to this anomaly the high-frequency region of the spectrum has been monitored as a function of decreasing temperature, the results of which are presented in Fig. 1. Table 6 lists ${ }^{1} \mathrm{H}$ assignments at 298 and 185 K . All except those of $\mathrm{H}(12)$, $\mathbf{H}(13), \mathbf{H}(15)$ and $\mathbf{H}(16)$ are based on a series of selective decoupling experiments carried out at $298 \mathrm{~K} ; \mathbf{H}(13)$ and $\mathbf{H}(15)$ were distinguished as a result of decoupling $\mathrm{H}(16)$ at 185 K , and there is one coincidence at $185 \mathrm{~K}, \delta$ cal. 7.3 , involving $\mathrm{H}(13)$ and $\mathrm{H}(14)$ (see Fig. 3 for atom labelling and preferred molecular conformation). Although $\mathrm{H}(12)$ and $\mathrm{H}(16)$ are not observed at 298 K , broad signals due to these two atoms begin to appear at 264 K , and by 223 K each has been resolved into a doublet. In addition, the signal due to $\mathrm{H}(13)$ and $\mathrm{H}(15)$ broadens at 264 K and is resolved into two distinct resonances at lower temperatures.
These observations are consistent with rapid rotation of the phenyl ring about the $\mathrm{C}(1)-\mathrm{C}(11)$ axis at room temperature becoming restricted on cooling. Moreover, as the temperature is

Table 1 Crystallographic data and details of data collection and structure refinement

	$\begin{aligned} & \mathrm{C}_{9} \mathrm{H}_{7} \mathrm{CoC}_{2} \mathrm{~B}_{9} \mathrm{H}_{10} \mathrm{Ph} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{C}_{9} \mathrm{H}_{7} \mathrm{CoC}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\left(\mathrm{CH}_{2} \mathrm{OMe}\right) \\ & 3 \end{aligned}$	$\underset{4}{\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{CoC}_{2} \mathrm{~B}_{9} \mathrm{H}_{9}\left(\mathrm{CH}_{2} \mathrm{OMe}\right)_{2}}$
Formula	$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~B}_{9} \mathrm{Co}$	$\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{~B}_{4} \mathrm{CoO}$	$\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~B}_{9} \mathrm{CoO}_{2}$
M	382.59	350.54	394.58
System	Monoclinic	Monoclinic	Monoclinic
Space group	C2/c	$P 2_{1} / \mathrm{c}$	$P 2,1 n$
a / \AA	17.732(11)	12.382(3)	10.927(4)
h / \AA	13.186(3)	8.914(5)	14.743(4)
c / \AA	17.739(7)	15.523(9)	11.789(6)
β	117.00(4)	103.60(4)	90.61(4)
(1) \AA^{3}	3695	1665	1899
7	8	4	4
$D_{\text {c }} / \mathrm{g} \mathrm{cm}^{3}$	1.375	1.398	1.380
$\mu(\mathrm{Mo}-\mathrm{K} x) / \mathrm{cm}^{1}$	9.22	10.21	9.06
$F(000)$	1568	700	816
θ^{\prime} (orientation)	12-16	14-16	14.16
Scan speed/ min^{-1}	0.79-2.35	0.79-2.35	0.82-2.06
Data collection time/h	99	85	89
Crystal decay (${ }_{0}{ }_{0}$)	8	None	None
Unique data	2768	2654	3094
Observed' data [$F \geqslant 2 \sigma(F)$]	2741	2651	3087
H Atoms	Aromatic H set in idealised positions; cage H refined with common $\mathrm{X}-\mathrm{H}$ distance	Freely refined	Freely refined
$U_{\mathrm{H}} \AA^{2}$	0.0434(23)	$0.021(5)-0.102(13)$	0.014(5)-0.078(11)
g	0.000303	0.002296	0.001416
No. of variables	276	305	348
R	0.0439	0.0269	0.0290
R^{\prime}	0.0525	0.0428	0.0488
S	1.293	0.832	1.169
Maximum, minimum residues/e \AA^{-3}	0.20, -0.20	0.24, -0.47	0.29, -0.57

Table 2 Coordinates of refined atoms for compound 2

Atom	x	y	$=$
C(1)	$0.24792(20)$	$0.32281(24)$	$0.28358(20)$
C(2)	$0.30718(21)$	$0.41553(25)$	$0.27690(20)$
Co(3)	$0.30772(3)$	$0.29205(3)$	$0.21093(3)$
$\mathrm{B}(4)$	$0.30644(25)$	$0.2129(3)$	$0.31007(24)$
$\mathrm{B}(5)$	$0.2886(3)$	$0.2831(3)$	$0.38692(24)$
$\mathrm{B}(6)$	$0.2879(3)$	$0.4125(3)$	$0.36373(24)$
$\mathrm{B}(7)$	$0.40671(25)$	$0.3778(3)$	$0.29732(25)$
$\mathrm{B}(8)$	$0.4104(3)$	$0.2461(3)$	$0.32195(25)$
$\mathrm{B}(9)$	$0.3906(3)$	$0.2356(3)$	$0.4118(3)$
$\mathrm{B}(10)$	$0.3789(3)$	$0.3601(3)$	$0.44467(25)$
$\mathrm{B}(11)$	$0.3872(3)$	$0.4469(3)$	$0.37312(25)$
$\mathrm{B}(12)$	$0.4530(3)$	$0.3386(3)$	$0.4047(3)$
$\mathrm{C}(11)$	$0.15309(20)$	$0.3286(3)$	$0.23316(19)$
$\mathrm{C}(12)$	$0.11082(22)$	$0.4201(3)$	$0.20741(21)$
$\mathrm{C}(13)$	$0.02383(24)$	$0.4232(4)$	$0.16288(22)$
$\mathrm{C}(14)$	$-0.02276(24)$	$0.3345(4)$	$0.14259(22)$
$\mathrm{C}(15)$	$0.01873(25)$	$0.2423(4)$	$0.16754(22)$
$\mathrm{C}(16)$	$0.10686(23)$	$0.2386(3)$	$0.21340(21)$
$\mathrm{C}(31)$	$0.35882(23)$	$0.2709(3)$	$0.13057(21)$
$\mathrm{C}(32)$	$0.31771(24)$	$0.1813(3)$	$0.13706(22)$
$\mathrm{C}(33)$	$0.23109(23)$	$0.2026(3)$	$0.10938(20)$
$\mathrm{C}(34)$	$0.21622(22)$	$0.3058(3)$	$0.08028(19)$
$\mathrm{C}(35)$	$0.1419(3)$	$0.3655(3)$	$0.04713(22)$
$\mathrm{C}(36)$	$0.1497(3)$	$0.4642(4)$	$0.02926(24)$
$\mathrm{C}(37)$	$0.2270(3)$	$0.5064(3)$	$0.0413(3)$
$\mathrm{C}(38)$	$0.3008(3)$	$0.4511(3)$	$0.07369(24)$
$\mathrm{C}(39)$	$0.29575(23)$	$0.3477(3)$	$0.09311(20)$

lowered, the resonances due to $\mathrm{H}(12)$ and $\mathrm{H}(35)$, marked * and \dagger respectively on Fig. 1, move to progressively lower frequency. This suggests that the restricted rotation of the phenyl group is enforced by a preferred conformation of the indenyl ligand (Fig. 3) such that $H(12)$ and $H(35)$ experience the magnetic anisotropy of the $\mathrm{C}(34)-\mathrm{C}(39)$ and $\mathrm{C}(11)-\mathrm{C}(16)$ ring systems respectively. Similarly, the resonance due to $\mathrm{H}(2)$ moves from δ 2.51 at 298 K to 2.39 at $264 \mathrm{~K}, 2.23$ at 223 K and 2.08 at 185 K as
it is progressively located under $\mathrm{C}(34)-\mathrm{C}(39)$. In summary, the conformation ultimately observed in the solid state (and shown to be electronically preferred, see later) is fully consistent with the limiting low-temperature solution structure.

Compounds 2-4 all afford excellent single crystals, and accurate diffraction data were collected from each at low temperature $(185 \pm 1 \mathrm{~K})$, primarily to determine the effects on molecular conformation of progressive cage-carbon substitution of 1. Fig. 2 presents perspective and plan views of 2, whilst those for 3 and 4 appear as Figs. 3 and 4 respectively. Table 7 compares selected interatomic distances for 2-4.

The reasons for the electronically preferred molecular conformations of compound 1 and the slipping distortions of both its indenyl and carbaborane ligands have been comprehensively discussed elsewhere ${ }^{1}$ and thus will not be restated in full here. Briefly, metal-carbaborane bonding is stronger to the facial boron atoms $[\mathrm{B}(4) \mathrm{B}(8) \mathrm{B}(7)]$ than to the facial carbon atoms $[\mathrm{C}(1) \mathrm{C}(2)]$ since the frontier molecular orbitals (MOs) of [7,8-nido- $\left.\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]^{2-}$ are localised on the former. ${ }^{4}$ At the same time, metal-indenyl bonding is stronger to the three-atom sequence $C(31) C(32) C(33)$ than to the ring-junction atoms $C(34) C(39)$ since the p_{π} atomic orbitals of these junction atoms are delocalised over the entire indenyl π system. Overall, therefore, the optimum molecular conformation is that in which strong metal-carbaborane bonding compensates for weak metal-indenyl bonding and vice versa, given the constraint of an overall staggered arrangement of metal-bonded five-membered rings, i.e. the cisoid conformation of 1. In 2-4 the introduction of bulky substituents at $C(1)$ and $C(2)$ could, therefore, give rise to competing electronic and steric effects.

In compound 2 a single phenyl group is substituted at $\mathrm{C}(1)$. Fig. 2 clearly shows that the observed conformation of the indenyl six-membered ring is cisoid with respect to the cagecarbon atoms. Recall that this conformation is in full accord with the limiting low-temperature ${ }^{1} \mathrm{H}$ NMR spectrum of 2 . The phenyl substituent subtends an elevation angle at $C(1)$ of 21.6 [all geometrical calculations involving 1-4 are related to the lower pentagonal belt $B(5) B(6) B(11) B(12) B(9)$ which is, in

Table 3 Coordinates of refined atoms for compound 3

Atom	x	y	z	Atom	\boldsymbol{x}	y	z
$\mathrm{Co}(3)$	0.214 93(2)	-0.017 72(3)	$0.30020(1)$	B(12)	$0.33300(18)$	$-0.31684(24)$	$0.24012(15)$
C(31)	$0.18101(18)$	-0.044 48(25)	$0.42009(13)$	H(2)	0.398 8(17)	0.068(3)	$0.2851(13)$
C(32)	$0.01831(19)$	-0.01741(24)	0.354 88(14)	H(4)	0.064 6(18)	-0.074(3)	$0.1507(14)$
C(33)	$0.08871(15)$	0.123 53(23)	$0.31656(12)$	H(5)	0.197 1(19)	-0.077(3)	0.027 1(15)
C(34)	$0.19109(15)$	0.192 19(21)	$0.36155(11)$	H(6)	0.4120 (18)	0.035 8(23)	0.127 8(14)
C(35)	0.239 84(17)	0.334 45(22)	0.352 08(13)	H(7)	$0.3837(18)$	-0.184(3)	$0.3868(15)$
C(36)	$0.34140(18)$	$0.36584(24)$	0.405 37(14)	H(8)	0.151 2(17)	-0.308 3(25)	0.297 6(14)
C(37)	0.398 97(17)	$0.26021(25)$	0.468 09(13)	H(9)	0.1631 (21)	-0.369(3)	$0.1085(17)$
C(38)	0.356 23(16)	$0.12415(23)$	0.479 39(12)	$\mathrm{H}(10)$	0.392 7(20)	-0.301(3)	0.0929 (16)
C(39)	0.249 20(15)	$0.08687(22)$	$0.42636(11)$	H(11)	$0.5205(19)$	-0.172(3)	0.2650 (14)
C(11)	0.228 41(16)	$0.18760(21)$	0.149 05(13)	H(12)	0.3619 (17)	-0.433(3)	0.260 6(14)
O	$0.11566(11)$	0.229 62(16)	0.134 81(8)	H(31)	0.193 3(19)	-0.125(3)	0.448 7(15)
C(12)	0.054 65(22)	0.2130 (3)	0.045 58(16)	H(32)	0.026 9(21)	-0.070(3)	0.336 2(16)
C(1)	0.249 49(16)	0.024 41(19)	$0.18019(13)$	H(33)	0.033 6(17)	0.169 9(25)	0.266 5(14)
C(2)	0.358 72(17)	-0.012 65(20)	0.262 32(14)	H(35)	0.199 3(19)	0.406(3)	$0.3057(15)$
B(4)	$0.14978(17)$	-0.11117(23)	0.177 07(13)	H(36)	0.373 0(20)	0.463(3)	0.4020 (16)
B(5)	$0.23779(18)$	-0.11121(25)	$0.10079(14)$	H(37)	0.462 6(23)	0.289(3)	0.500 6(15)
$\mathrm{B}(6)$	$0.36955(17)$	-0.042 69(25)	0.154 94(14)	H(38)	0.3917 (21)	0.052(3)	$0.5179(16)$
B(7)	$0.34318(17)$	-0.17211(24)	0.319 85(14)	H(111)	$0.2501(16)$	0.196 9(24)	0.092 7(14)
$\mathrm{B}(8)$	$0.20901(17)$	-0.243 87(23)	0.264 93(14)	H(112)	0.2707 (17)	0.251(3)	$0.1963(13)$
B(9)	$0.21319(18)$	-0.280 2(3)	$0.15267(14)$	H(121)	0.079(3)	$0.144(4)$	0.016 8(21)
B(10)	0.348 65(18)	-0.2379(3)	0.138 99(15)	H(122)	-0.013 8(25)	0.212(3)	0.046 0(17)
B(11)	0.428 23(17)	-0.1680(3)	$0.24182(15)$	H(123)	0.065(3)	0.308(5)	0.017(3)

Table 4 Coordinates of refined atoms for compound 4

Atom	x	y	$=$	Atom	x	y	z
Co(3)	$1.03917(2)$	0.187 42(1)	$0.20390(2)$	H(4)	$1.1681(18)$	$0.3418(14)$	$0.1782(17)$
C(31)	$1.17834(17)$	$0.13323(13)$	$0.11320(16)$	H(5)	$1.0207(19)$	0.4601 (16)	$0.2931(18)$
C(32)	$1.09570(19)$	$0.17652(14)$	$0.03835(17)$	H(6)	$0.7935(18)$	0.3731 (14)	$0.3379(16)$
C(33)	0.979 08(17)	$0.13553(12)$	$0.04881(15)$	H(7)	0.984 9(17)	0.0921 (13)	$0.3925(16)$
C(34)	$0.99084(16)$	$0.06041(12)$	$0.12568(14)$	H(8)	1.244(3)	$0.1985(17)$	0.346 (3)
C(35)	$0.90647(17)$	-0.005 15(13)	$0.16455(16)$	H(9)	$1.2145(20)$	$0.3690(15)$	0.4285 (19)
C(36)	$0.94663(19)$	$-0.06859(13)$	$0.24057(17)$	H(10)	0.975 3(19)	$0.3979(15)$	0.523 3(18)
C(37)	$1.07049(19)$	$-0.07015(13)$	$0.28023(17)$	H(11)	$0.8364(20)$	$0.2239(16)$	0.5041 (19)
C(38)	$1.15387(18)$	-0.008 48(13)	$0.24561(16)$	H(12)	$1.1019(20)$	$0.2198(16)$	$0.5512(20)$
C(39)	$1.11507(16)$	0.059 36(12)	$0.16642(15)$	H(31)	$1.2548(22)$	$0.1506(17)$	0.128 4(19)
C(1)	$0.95974(17)$	$0.31065(10)$	$0.22592(16)$	H(32)	$1.1161(19)$	$0.2264(16)$	$-0.0045(20)$
C(2)	$0.89459(15)$	$0.22661(11)$	$0.30056(14)$	H(33)	$0.9025(22)$	0.149 9(16)	$-0.0006(20)$
C(11)	$0.90199(18)$	$0.34627(13)$	$0.11653(16)$	H(35)	0.823 7(22)	-0.016 7(17)	$0.1324(21)$
O(11)	$0.84941(15)$	0.432 46(9)	$0.13319(11)$	H(36)	0.8930 (24)	-0.1213(19)	$0.2578(21)$
C(111)	$0.80252(25)$	$0.46988(16)$	0.031 07(20)	H(37)	1.098 4(18)	-0.125 8(15)	$0.3263(18)$
C(21)	$0.77673(17)$	$0.18077(12)$	$0.25982(17)$	H(38)	$1.2379(22)$	$-0.0080(16)$	0.268 6(19)
$\mathrm{O}(21)$	$0.67370(11)$	$0.21609(10)$	$0.31514(12)$	H(111)	0.837 6(20)	$0.3028(14)$	$0.0842(19)$
C(211)	$0.56552(19)$	$0.16704(17)$	$0.28552(20)$	H(112)	0.968 6(22)	$0.3492(17)$	$0.0506(21)$
B(4)	$1.11761(20)$	$0.31003(13)$	$0.24596(19)$	H(211)	$0.7818(19)$	$0.1095(16)$	0.272 6(18)
B(5)	$1.02049(19)$	$0.38972(14)$	$0.31622(17)$	H(212)	$0.7680(21)$	$0.1835(13)$	$0.1831(22)$
B(6)	0.879 38(19)	$0.33667(14)$	$0.34785(17)$	H(1A)	0.859(3)	$0.4720(20)$	-0.026(3)
B(7)	$1.00636(19)$	$0.16531(15)$	0.372 84(17)	H(1B)	0.743(3)	$0.4308(24)$	0.004(3)
B(8)	$1.15091(18)$	$0.22000(14)$	0.344 42(17)	H(1C)	$0.7842(23)$	$0.5297(20)$	0.045 2(21)
B(9)	$1.13831(20)$	0.333 62(15)	$0.39383(19)$	H(2A)	$0.5745(25)$	0.0973 (20)	$0.3120(24)$
B(10)	$0.99178(19)$	0.349 39(15)	0.455 67(18)	H(2B)	0.509(3)	$0.1963(18)$	$0.3142(25)$
B(11)	$0.91015(18)$	$0.24561(14)$	$0.44174(16)$	H(2C)	0.5481 (23)	$0.1727(20)$	0.210(3)
B(12)	$1.07009(19)$	0.243 42(14)	$0.47158(17)$				

general, less deformed from planarity than the upper $\mathrm{C}_{2} \mathrm{~B}_{3}$ face $\left.{ }^{4}\right]$, and it is significant that $\mathrm{H}(35)$ is only $2.82 \AA$ from the best (least-squares) plane through the $\mathrm{C}(11)-\mathrm{C}(16)$ ring. In addition, the phenyl group is twisted by ca. 9.0° about the $\mathrm{C}(1)-\mathrm{C}(11)$ bond such that $\mathrm{C}(16)$ is at a higher elevation than $\mathrm{C}(12)$. Presumably this twist is the result of reduction of close non-bonded contacts $\mathrm{H}(16) \cdots \mathrm{H}(4)$ and $\mathrm{H}(12) \cdots \mathrm{H}(2)$, $2.12(4)$ and $2.22(3) \AA$ respectively, in the observed structure. The best plane through the indenyl ligand makes a dihedral angle of ca. 7.4° with the lower B_{5} belt, but this overall angle includes both a sideways twist of ca. $5.1^{\circ}[\mathrm{C}(35)$ more elevated than $C(38)]$ and an upward tilt of $c a .4 .7^{\circ}[C(36)$ more elevated than $\mathrm{C}(34)$], both of which are attributable to the presence of the
phenyl substituent on $\mathrm{C}(1)$ (equivalent twist and tilt angles in unsubstituted 1 are ca. 3.7 and ca. 0.6 respectively).

Table 8 summarises the essential slip and fold parameters ${ }^{1.4}$ for compounds 1-4. In each molecule the metal-bonded $\mathrm{C}_{2} \mathrm{~B}_{3}$ face of the carbaborane ligand is envelope folded across the $B(4) \cdots B(7)$ vector in the same sense, and, as expected, there is no substantial slip of the d^{6} metal atom across this face. In contrast, the cobalt atom is consistently and significantly further from $C(34)$ and $C(39)$ than from $C(31), C(32)$ and $C(33)$, resulting in Δ^{h} parameters of the order of $0.1 \AA$. The indenyl ligands are still, however, formally η^{5}-bonded to metal, of. $\Delta^{\mathrm{h}} c a$. $0.7-0.8 \AA$ for formally η^{3}-indenyl ligands. ${ }^{17}$ Partial localisation of double-bond character in the $\mathrm{C}(35)-\mathrm{C}(36)$ and $\mathrm{C}(37)-\mathrm{C}(38)$
connectivities of all three compounds is apparent from the data given in Table 7.

In compound 3 a single $\mathrm{CH}_{2} \mathrm{OMe}$ group is substituted at

Fig. 1 High-frequency region of the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 2 at various temperatures. Resonances due to $\mathrm{H}(12)$ and $\mathrm{H}(35)$ are marked * and \dagger respectively

C(1). Again, the observed molecular conformation is cisoid (Fig. 3). Unexpectedly the ether oxygen atom lies above the metalbonded $\mathrm{C}_{2} \mathrm{~B}_{3}$ carbaborane face, but this may be traced to an intramolecular interligand hydrogen bond $[\mathrm{O}(1) \cdots \mathrm{H}(33)$ 2.544(22) \AA; $\mathrm{H}(33) \cdots \mathrm{O}(1)-\mathrm{C}(11) 112.7(5), \mathrm{H}(33) \cdots \mathrm{O}(1)-$ $\left.\mathrm{C}(12) 122.7(5)^{\circ}\right]$. The indenyl ligand in 3 is twisted and tilted similarly to that in 2 (ca. 6.5 and 5.4° respectively) making an overall dihedral angle of $c a .8 .1^{\circ}$ with the reference B_{5} plane. The closest H (ether) $\cdots \mathrm{H}$ (indenyl) contact in 3 is $2.51(3) \AA$, between $\mathrm{H}(112)$ and $\mathrm{H}(35)$.

In contrast to the cisoid conformations of compounds $\mathbf{1 - 3}$, the key feature of the structure of 4 , which contains two C substituted $\mathrm{CH}_{2} \mathrm{OMe}$ groups, is that the ring-junction atoms of the indenyl ligand are rotated by $c a .72^{\circ}$ from their positions in $1-3$ to lie above $B(7)$ (Fig. 4). Electronically this is the second best staggered conformation of $1,{ }^{1}$ and presumably it arises in 4 as the result of steric crowding between the upwardly directed ether functions and the indenyl six-membered ring. It is of interest that in the recently reported compound $\left[\left(\eta-\mathrm{C}_{9} \mathrm{H}_{7}\right) \mathrm{Fe}-\right.$ $\left.\left(\mathrm{Et}_{2} \mathrm{C}_{2} \mathrm{~B}_{4} \mathrm{H}_{4}\right) \mathrm{Ni}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right]$, ${ }^{18}$ in which the ethyl substituents on the eight-membered carbadimetallaborane are not substantially inclined towards the indenyl ligand, the indenyl-cage conformation appears to be cis. In 4 both ether oxygen atoms lie

Table 5 Parameters used in EHMO calculations

Parameter	Value	Parameter	Value
B-B	$1.75 \AA$	B-C	$1.75 \AA$
C-C(cage)	$1.75 \AA$	C-C(hydrocarbon)	$1.40 \AA$
Co-C	$2.05 \AA$	Co-B	$2.05 \AA$
B-H	$1.20 \AA$	C-H(cage)	$1.20 \AA$
C-H(hydrocarbon)	$1.08 \AA$	C-C(methyl)	$1.54 \AA$
Co-C-C-H(methyl)	0°	Co-C-C-H(phenyl)	90°

x is the dihedral angle [centre of $\mathrm{C}(34)-\mathrm{C}(39)$ bond]-[centroid of $\mathrm{C}(31) \mathrm{C}(32) \mathrm{C}(33) \mathrm{C}(34) \mathrm{C}(39)$ ring]-[centroid of $\mathrm{C}(1) \mathrm{C}(2) \mathrm{B}(7) \mathrm{B}(8) \mathrm{B}(4)$ ring]-[centre of $\mathrm{C}(1)-\mathrm{C}(2)$ bond], where 0° is cis-eclipsed, 180° is transstaggered, and 72° has $C(34)$ eclipsing $C(2)$. Ether groups modelled by CH_{3}. Thus models I and II are idealised representations of compounds 1 and 2 respectively, whilst III and IV, 1-Me-3-($\left.\eta-\mathrm{C}_{9} \mathrm{H}_{7}\right)-3,1,2$-closo$\mathrm{CoC}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}$ and $1,2-\mathrm{Me}_{2}-3-\left(\eta-\mathrm{C}_{9} \mathrm{H}_{7}\right)-3,1,2-\operatorname{coso} 0-\mathrm{CoC}_{2} \mathrm{~B}_{9} \mathrm{H}_{9}$, are models for 3 and 4 respectively.

Fig. 2 Perspective and plan views of [1-Ph-3-($\left.\eta-\mathrm{C}_{9} \mathrm{H}_{7}\right)-3,1,2-\mathrm{clos}\left(0-\mathrm{CoC}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right]$ 2, illustrating the numbering system for non- H atoms. Thermal ellipsoids are drawn at the 50% probability level except for H atoms which have an artificial radius of $0.1 \AA$ for clarity

Fig. 3 Perspective and plan views of [1-($\left.\left.\mathrm{CH}_{2} \mathrm{OMe}\right)-3-\left(\eta-\mathrm{C}_{9} \mathrm{H}_{7}\right)-3,1,2-\mathrm{c} / \mathrm{oso}-\mathrm{CoC}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right]$ 3, with thermal ellipsoids drawn as in Fig. 2

Fig. 4 Perspective and plan views of [1,2-($\left.\mathrm{CH}_{2} \mathrm{OMe}\right)_{2}-3-\left(\eta-\mathrm{C}_{9} \mathrm{H}_{7}\right)-3,1,2-\operatorname{coso}\left(-\mathrm{CoC}_{2} \mathrm{~B}_{9} \mathrm{H}_{9}\right] 4$
below the metal-bonded $\mathrm{C}_{2} \mathrm{~B}_{3}$ face, as the result of which both sets of methylene hydrogen atoms are directed upwards. Closest H (ether) $\cdots \mathrm{H}$ (indenyl) contacts are $\mathrm{H}(112) \cdots \mathrm{H}(32) 2.51$ (3) and $\mathbf{H}(211) \cdots \mathbf{H}(35) 2.53(3) \AA$, consistent with the observation that the indenyl ligand in 4 is substantially twisted (ca. 6.7°), but barely tilted (ca. 1.4).

The observed conformational preferences in compounds 2-4 are broadly supported by the results of EHMO calculations on the model compounds II-IV, constructed as detailed in Table 5. In Fig. 5 we present plots of relative energy versus a for I IV drawn to a common scale. Although the plot for I (model of 1)
appears essentially flat when drawn with the vertical scale adopted in Fig. 5 we have previously ${ }^{1}$ analysed in detail all its minima and maxima, the former occurring when the conformation between the two five-membered rings bonded to the metal is staggered ($x=36,108$ and 180), the latter when it is eclipsed ($x=0,72$ and 144). Moreover, we have fully discussed the preference for the global minimum ($x=36$) in terms of optimum metal-ligand bonding, and have shown that this conformation is observed experimentally in the structure of $1 .{ }^{1}$

Our purpose in undertaking EHMO calculations on II-IV
was two-fold: first to determine whether the conformations observed crystallographically were predicted to be energetically favourable, and secondly to establish some rough idea of the relative heights of the barriers to full rotation of the indenyl ligand in compounds 2-4, particularly in view of the interesting low-temperature NMR results already discussed. Fig. 5 clearly shows that the potential-energy plots for II-IV each consist of undulating valleys and a single large maximum. The frequency of undulation in the valleys is $c a .72^{\circ}$, corresponding to a series of staggered-eclipsed-staggered-eclipsed, etc., conformations in which there is little or no intramolecular crowding. As indicated by the arrows, the experimentally determined con-

Table 6 Chemical shifts and assignments in the high-frequency region of the ${ }^{1} \mathrm{H}$ NMR spectra of compound 2 at 298 and 185 K

	δ	
	298 K	185 K
H(31)	6.30	6.40
H(33)	5.79	5.85
H(34)	5.26	5.23
H(35)	6.04	5.66
H(36)	7.28	7.26
H(37)	7.46	7.44
H(38)	7.50	7.55
H(13)		ca. 7.3
H(14) $\}$	7.3-7.4	ca. 7.3
H(15)		7.40
H(12)	-	6.34
H(16)	-	7.68

formations each occur on or near the valley floor. Conversely, the global maxima for II-IV occur at conformations corresponding to maximum indenyl \cdot. (cage substituent) crowding, in the case of monosubstituted II and III at $x=324^{\circ}$ and in disubstituted IV at $\alpha=0^{\circ}$.

Fig. 5 Relative energy versus x, the angle of rotation of the indenyl ligand about the $\mathbf{M}-\mathrm{B}(10)$ axis, for models I-IV drawn to a common scale. Arrows indicate the experimentally determined conformations

Table 7 Comparison of selected internuclear distances (\AA) and interbond angles (${ }^{\circ}$) in compounds 2-4

	2	3	4		2	3	4
$\mathrm{C}(1)-\mathrm{C}(2)$	1.651(5)	1.659(3)	1.6822(24)	$\mathrm{B}(6)-\mathrm{B}(10)$	1.744(6)	1.768(3)	1.768(3)
$\mathrm{C}(1)-\mathrm{Co}(3)$	2.047(3)	2.0420 (19)	$2.0313(18)$	$\mathrm{B}(6)-\mathrm{B}(11)$	1.752(6)	$1.770(3)$	1.770(3)
$\mathrm{C}(1)-\mathrm{B}(4)$	1.719(5)	1.720(3)	1.739(3)	$\mathrm{B}(7)-\mathrm{B}(8)$	$1.785(6)$	1.797(3)	1.808(3)
$\mathrm{C}(1)-\mathrm{B}(5)$	1.719(5)	1.708(3)	$1.708(3)$	$\mathrm{B}(7)-\mathrm{B}(11)$	$1.783(6)$	$1.783(3)$	1.785(3)
$\mathrm{C}(1)-\mathrm{B}(6)$	1.734(5)	1.731(3)	$1.735(3)$	$\mathrm{B}(7)-\mathrm{B}(12)$	$1.775(6)$	$1.772(3)$	1.774(3)
$\mathrm{C}(2)-\mathrm{Co}(3)$	2.008(4)	2.0025(20)	2.0412(16)	$\mathrm{B}(8)-\mathrm{B}(9)$	1.787(6)	$1.785(3)$	1.779(3)
$\mathrm{C}(2)-\mathrm{B}(6)$	1.724(5)	1.724(3)	1.724(3)	$\mathrm{B}(8)-\mathrm{B}(12)$	1.791(6)	$1.791(3)$	1.782(3)
$\mathrm{C}(2)-\mathrm{B}(7)$	1.707(6)	1.713(3)	1.736 (3)	$\mathrm{B}(9)-\mathrm{B}(10)$	$1.785(6)$	$1.780(3)$	1.782(3)
$\mathrm{C}(2)-\mathrm{B}(11)$	1.702(6)	1.699 (3)	$1.694(3)$	$\mathrm{B}(9)-\mathrm{B}(12)$	1.791(6)	1.790 (3)	1.783(3)
$\mathrm{Co}(3)-\mathrm{B}(4)$	2.054(4)	2.0671(21)	2.0589(21)	$\mathrm{B}(10)-\mathrm{B}(11)$	1.764(6)	1.780 (3)	$1.778(3)$
$\mathrm{Co}(3)-\mathrm{B}(7)$	2.065(4)	2.0690(22)	2.0534(21)	$\mathrm{B}(10)-\mathrm{B}(12)$	$1.776(6)$	1.772 (3)	1.790 (3)
$\mathrm{Co}(3)-\mathrm{B}(8)$	2.075(4)	2.0856(21)	$2.1031(20)$	$\mathrm{B}(11)-\mathrm{B}(12)$	$1.766(6)$	$1.771(3)$	1.779(3)
$\mathrm{Co}(3)-\mathrm{C}(33)$	2.064(4)	$2.0685(19)$	2.0818(18)	$\mathrm{C}(33)-\mathrm{C}(32)$	$1.412(5)$	$1.402(3)$	1.417(3)
$\mathrm{Co}(3)-\mathrm{C}(32)$	2.023(4)	2.0294(22)	$2.0596(21)$	C(33)-C(34)	$1.436(5)$	1.433(3)	1.4359(25)
$\mathrm{Co}(3)-\mathrm{C}(31)$	2.026(4)	2.0161(22)	2.0319(19)	$\mathrm{C}(32)-\mathrm{C}(31)$	1.420(5)	$1.421(3)$	1.409(3)
$\mathrm{Co}(3)-\mathrm{C}(39)$	$2.133(4)$	$2.1198(19)$	$2.1107(18)$	$\mathrm{C}(31)-\mathrm{C}(39)$	1.429(5)	1.433 (3)	$1.438(3)$
$\mathrm{Co}(3)-\mathrm{C}(34)$	$2.150(4)$	$2.1511(18)$	$2.1506(17)$	$\mathrm{C}(39)-\mathrm{C}(38)$	$1.419(6)$	1.425 (3)	$1.429(3)$
$\mathrm{B}(4)-\mathrm{B}(5)$	1.790(6)	1.788(3)	1.792(3)	$\mathrm{C}(39)-\mathrm{C}(34)$	1.434(5)	1.439(3)	1.4352(25)
$\mathrm{B}(4)-\mathrm{B}(8)$	1.811(6)	1.824(3)	$1.798(3)$	$\mathrm{C}(38)-\mathrm{C}(37)$	1.375 (7)	1.351(3)	1.353(3)
$\mathrm{B}(4)-\mathrm{B}(9)$	1.769(6)	$1.780(3)$	1.790 (3)	$\mathrm{C}(37)-\mathrm{C}(36)$	1.404 (7)	1.420(3)	1.427(3)
$B(5)-\mathrm{B}(6)$	1.754(6)	1.760 (3)	$1.772(3)$	$\mathrm{C}(36)-\mathrm{C}(35)$	1.361(7)	$1.362(3)$	1.365 (3)
$B(5)-\mathrm{B}(9)$	1.770(6)	$1.768(3)$	1.776(3)	C(35)-C(34)	1.414(6)	1.427 (3)	$1.415(3)$
$\mathrm{B}(5)-\mathrm{B}(10)$	1.776 (6)	$1.769(3)$	1.779(3)				
$\mathrm{C}(1)-\mathrm{Co}(3)-\mathrm{C}(2)$	48.04(14)	48.43(8)	48.79(7)	C(33)-C(34)-C(35)	131.4(3)	$132.58(17)$	132.59(17)
$\mathrm{C}(2)-\mathrm{Co}(3)-\mathrm{B}(7)$	49.52(16)	49.74(8)	50.16(7)	$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(39)$	107.6(3)	107.56(16)	107.31(15)
$\mathrm{B}(7)-\mathrm{Co}(3)-\mathrm{B}(8)$	51.08(17)	51.26(8)	51.55(8)	$\mathrm{C}(39)-\mathrm{C}(34)-\mathrm{C}(35)$	121.0(3)	$119.85(17)$	120.09(16)
$\mathrm{B}(8)-\mathrm{Co}(3)-\mathrm{B}(4)$	52.05(17)	52.10 (8)	51.17(8)	$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(36)$	117,1(4)	118.20(19)	118.34(17)
$\mathrm{B}(4)-\mathrm{Co}(3)-\mathrm{C}(1)$	49.55(15)	49.49(8)	$50.31(8)$	$\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{C}(37)$	122.6(5)	121.55(20)	121.56(18)
$\mathrm{C}(31)-\mathrm{Co}(3)-\mathrm{C}(32)$	41.06(15)	41.12(9)	40.27(8)	$\mathrm{C}(36)-\mathrm{C}(37)-\mathrm{C}(38)$	122.1(5)	$122.38(20)$	121.97(18)
$\mathrm{C}(32)-\mathrm{Co}(3)-\mathrm{C}(33)$	40.41(15)	40.00(8)	40.01(8)	$\mathrm{C}(37)-\mathrm{C}(38)-\mathrm{C}(39)$	$117.2(4)$	118.28(18)	118.10(18)
$\mathrm{C}(33)-\mathrm{Co}(3)-\mathrm{C}(34)$	39.79(14)	39.64(7)	39.62(7)	$\mathrm{C}(38)-\mathrm{C}(39)-\mathrm{C}(31)$	132.2(4)	133.04 (18)	132.40(17)
$\mathrm{C}(34)-\mathrm{Co}(3)-\mathrm{C}(39)$	39.11(14)	39.37(7)	$39.35(7)$	C(38)-C(39)-C(34)	119.9(3)	119.73 (17)	119.94(16)
$\mathrm{C}(39)-\mathrm{Co}(3)-\mathrm{C}(31)$	40.11(15)	40.46(8)	40.56(7)	$\mathrm{C}(31)-\mathrm{C}(39)-\mathrm{C}(34)$	107.8(3)	107.20(16)	107.66(15)
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	108.9(3)	108.77(19)	108.87(17)	$\mathrm{C}(39)-\mathrm{C}(31)-\mathrm{C}(32)$	107.8(3)	107.99(18)	107.97(16)
$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)$	107.8(3)	108.33(17)	108.02(16)				

Table 8 Slip and foli parameters ${ }^{a}$ for compounds 1-4

	$\mathbf{1}^{b}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\varphi^{p} /^{\prime}$	0.49	0.42	0.46	1.23
$\theta^{p} /^{\prime}$	2.35	1.73	2.36	2.37
Δ^{p} / \AA	0.028	0.035	0.026	0.013
Δ^{h} / \AA	0.089	0.118	0.114	0.082

${ }^{a}$ For definition see refs. 1 and $4 .{ }^{b} \alpha$ Form, see ref. 1.

For models III and IV the height of the potential barriers appears to be proportional to the number of ether substituents. However, it is clear that the greatest barrier to indenyl rotation (ca. 10 eV) is calculated for the monophenyl model II. Although this theoretical barrier is almost certainly overestimated relative to the experimental barrier in the real molecule 2 (since a simple rigid-rotor model is used in the calculations) it may nevertheless be highly significant that the solution fluctionality of 2 may be arrested by cooling, whilst that of 4 has not been.

Acknowledgements

We thank the Department of Education for Northern Ireland for support (to Z. G. L.) and the Callery Chemical Company for a generous gift of decaborane.

References

1 Part 1, D. E. Smith and A. J. Welch, Organometallics, 1986, 5, 760.
2 M. F. Hawthorne, D. C. Young, T. D. Andrews, D. V. Howe, R. L. Pilling, A. D. Pitts, M. Reintjes, L. F. Warren and P. A. Wegner, J. Anr. Chem. Soc., 1968, 90, 879.

3 See, for example, R. M. Wing, J. Am. Chem. Soc., 1970, 92, 1187; C. Glidewell, J. Organomet. Chem., 1975, 102, 339; D. M. P. Mingos and M. I. Forsyth, J. Organomet. Chem., 1978, 146, C37; H. M. Colquhoun, T. J. Greenhough and M. G. H. Wallbridge, J. Chem. Soc., Dalton Trans., 1978, 303 and refs. therein.

4 D. M. P. Mingos, M. I. Forsyth and A. J. Welch, J. Chem. Soc., Dalton Trans., 1978, 1363.
5 See, for example, C. White and R. J. Mawby, Inorg. Chim. Acta, 1970, 4, 441 ; S. R. Allen, P. K. Baker, S. G. Barnes, M. Bottrill, M. Green, A. G. Orpen, I. D. Williams and A. J. Welch, J. Chem. Soc., Dalton Trans., 1983, 927; M. E. Rerek and F. Basolo, J. Am. Chem. Soc., 1984, 106, 5908; L.-N. Ji, M. E. Rerek and F. Basolo, Organometallics, 1984, 3, 740; J. W. Faller, R. H. Crabtree and A. Habib, Organometallics, 1985, 4, 929; N. N. Turaki, J. M. Huggins and L. Lebioda, Inorg. Chem., 1988, 27, 424; S. A. Westcott, A. K. Kakkar, G. Stringer, N. J. Taylor and T. B. Marder, J. Organomet. Chem., 1990, 394, 777, and refs therein.
6 B. D. Reid and A. J. Welch, unpublished work.
7 K. F. Shaw and A. J. Welch, Polyhedron, in the press.
8 H. M. Colquhoun, T. J. Greenhough and M. G. H. Wallbridge, J. Chem. Soc., Chem. Commun., 1977, 737; P. Jutzi, D. Wegener and M. B. Hursthouse, Chem. Ber., 1991, 124, 295.

9 CADABS, R. O. Gould and D. E. Smith, University of Edinburgh, 1986.

10 SHELX86, G. M. Sheldrick, University of Göttingen, 1986.
11 SHELX76, G. M. Sheldrick, University of Cambridge, 1976.
12 DIFABS, N. G. Walker and D. Stuart, Acta Crystallogr., Sect. A, 1983, 39, 158.
13 CALC, R. O. Gould and P. Taylor, University of Edinburgh, 1986.
14 EASYORTEP, P. D. Mallinson and K. W. Muir, J. Appl. Crystallogr., 1985, 18, 51.
15 ICON8, J. Howell, A. Rossi, D. Wallace, K. Haraki and R. Hoffmann, Quantum Chemistry Program Exchange, University of Indiana, 1977, no. 344.
16 J. H. Ammeter, H.-B. Burgi, J. C. Thibeault and R. Hoffmann, J. Am. Chem. Soc., 1978, 100, 3686.
17 A. W. Nesmeyanov, N. A. Ustynyuk, L. G. Makarova, V. G. Andrianov, Yu. T. Struchov, S. Andrae, Yu. A. Ustynyuk and S. G. Malyugina, J. Organomet. Chem., 1978, 159, 189; J. S. Merola, R.-T. Kacmarcik and D. Van Engen, J. Am. Chem. Soc., 1986, 108, 329; T. C. Forschner, A. R. Cutler and R. K. Kullnig, Organometallics, 1987, 6, 889.
18 A. Fessenbecker, M. Stephen, R. N. Grimes, H. Pritzkow, U. Zenneck and W. Siebert, J. Am. Chem. Soc., 1991, 113, 3061.

Received 2nd July 1991; Paper 1/03312C

[^0]: + Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dallon Trans., 1992, Issue 1, pp. xx-xxv.
 Non-SI unit employed: $\mathrm{eV} \approx 1.60 \times 10^{-19} \mathrm{~J}$.

[^1]: \ddagger These three compounds are written as $2: 1$ salts but may ultimately prove to be better represented as $1: 1$ salts in which one Tl^{+}is (albeit weakly) associated with the carbaborane dianion. ${ }^{\circ}$

