Mechanism of the Two-electron Reduction of trans-Oxoaquaruthenium(Iv) to trans-Diaquaruthenium(II) \dagger

Chi-Keung Li, Chi-Ming Che,* Wai-Fong Tong and Ting-Fong Lai
Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong

Abstract

The kinetics and mechanism of the reduction of trans- $\left[R u^{\prime V} \mathrm{~L}(\mathrm{O})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ to trans- $\left(\mathrm{Ru} \text { "'L } \mathrm{L}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ ($L=6,7,8,9,10,11,17,18$-octahydro-6,10-dimethyl-5H-dibenzo[e,n][1,4,8,12]dioxadiazacyclopentadecine) in aqueous solution by cis - $\left[\mathrm{Ru}^{\prime \prime}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{isn})_{2}\right]^{2+}$ (isn $=$ isonicotinamide) and of trans$\left[R u^{\prime \prime \prime} \mathrm{L}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ to trans- $\left[\mathrm{Ru"L}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ by $\left[\mathrm{Ru}^{\prime \prime}\left(\mathrm{NH}_{3}\right)_{4}(\text { bipy })\right]^{2+}$ (bipy = 2,2'-bipyridine) have been studied. The reactive intermediates are trans- $\left[R u^{\prime V} L(O H)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{3+}$ and trans $-\left[R u^{\prime \prime \prime} \mathrm{L}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{3+}$ respectively. The rate constants k_{01} and k_{02} for the reduction of trans- $\left[\mathrm{Ru} \mathrm{u}^{\mathrm{V}} \mathrm{L}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{3+}$ and trans$\left[R u^{\prime \prime \prime} \mathrm{L}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{3+}$ have been obtained and can be correlated with the Marcus cross-relation. The estimated self-exchange rate constants of the trans $-\left[\mathrm{RuL}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{3+/ 2+}$ and trans $-\left[\mathrm{RuL}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{3+/ 2+}$ couples are 3.1×10^{-4} and $3.9 \times 10^{3} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ respectively. The complex trans $-\left[\mathrm{Ru} \mathrm{m}^{\mathrm{L}} \mathrm{L}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left[\mathrm{ClO}_{4}\right]_{2}$ has been characterised by X-ray crystallography: space group $P \overline{1}, a=11.108(2), b=11.683(1), c=$ 12.349(1) $\AA, \alpha=89.38(1), \beta=64.81(1), \gamma=71.44(1)^{\circ}$ and $Z=2$.

Oxoruthenium complexes are receiving attention because of their remarkable abilities in the stoichiometric and catalytic oxidation of organic substrates. ${ }^{1}$ There are ample examples in the literature illustrating that monooxoruthenium-(iv) and -(v), cis- and trans-dioxoruthenium-(vi) and and -(v) having different redox potentials can readily be prepared. ${ }^{1}$ Oxidation of substrates by these $\mathrm{Ru}=\mathrm{O}$ complexes proceeds through various pathways, such as oxygen-atom transfer ${ }^{2-4}$ and hydrogen ${ }^{5}$ and hydride abstraction. ${ }^{6}$

In an attempt to elucidate the various factors governing the reactivities of $\mathrm{Ru}=\mathrm{O}$ complexes in different oxidation states, we have begun a programme aiming at understanding the fourelectron oxidation of trans-diaquaruthenium(iI) to trans-dioxoruthenium(vi). Our previous work has established that transdioxoruthenium(V) undergoes rapid one-electron reduction to give trans-dioxoruthenium(v) which then rapidly disproportionates in aqueous solutions. ${ }^{7}$ The fast self-exchange rate constants of the redox couples trans- $\left[\mathrm{Ru}^{\mathrm{VI}}(\mathrm{tmc}) \mathrm{O}_{2}\right]^{2+}$-trans$\left[\mathrm{Ru}^{\mathrm{v}}(\mathrm{tmc}) \mathrm{O}_{2}\right]^{+}$and trans- $\left[\mathrm{Ru}^{\mathrm{v}}(\mathrm{tmc}) \mathrm{O}(\mathrm{OH})\right]^{2+}$-trans$\left[\mathrm{Ru}^{\mathrm{Iv}}(\mathrm{tmc}) \mathrm{O}(\mathrm{OH})\right]^{+} \quad(\mathrm{tmc}=1,4,8,11$-tetramethyl-1,4,8,11tetraazacyclotetradecane) indicate small kinetic barriers for the redox interconversion, thus accounting for the reversibility of the two-electron redox couple trans- $\left[\mathrm{Ru}^{\mathrm{VI}}(\mathrm{tmc}) \mathrm{O}_{2}\right]^{2+}$ trans $-\left[\mathrm{Ru}^{\text {IV }}(\mathrm{tmc}) \mathrm{O}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ in aqueous solution in cyclic voltammetric scans. ${ }^{8}$

It is well known that the redox couple $\mathrm{Ru}^{\mathrm{IV}}=\mathrm{O} / \mathrm{Ru}^{\mathrm{III}}-\mathrm{OH}$ is usually irreversible at high concentration of H^{+}and its reversibility can be strongly influenced by the nature and pretreatment of the electrode surface. ${ }^{9}$ As noted, ${ }^{9}$ the rate of oxidation of $\left[\mathrm{Ru}^{\mathrm{III}} \text { (terpy)(bipy) }(\mathrm{OH})\right]^{2+}$ (terpy $=2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}-$ terpyridine, bipy $=2,2^{\prime}$-bipyridine) to $\left[\mathrm{Ru}^{\text {IV }}(\text { terpy })(\text { bipy }) \mathrm{O}\right]^{2+}$ is slow at the electrode surface, being facilitated by the phenolic groups on the surface of a glassy carbon electrode. Our recent isolation of trans- $\left[\mathrm{Ru}^{i V} \mathrm{~L}(\mathrm{O})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left[\mathrm{ClO}_{4}\right]_{2}$ and trans- $\left[\mathrm{Ru}^{\mathrm{III}} \mathrm{L}\right.$ $\left.(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left[\mathrm{ClO}_{4}\right]_{2}{ }^{4 a} \quad(\mathrm{~L}=6,7,8,9,10,11,17,18$-octahydro-6,10-dimethyl-5H-dibenzo[$e, n][1,4,8,12]$ dioxadiazacyclopentadecine) has prompted us to examine the mechanism of the twoelectron reduction of $\mathrm{Ru}^{\mathrm{IV}}=\mathrm{O}$ to $\mathrm{Ru}^{\mathrm{II}}-\mathrm{OH}_{2}$. The results of a

[^0]kinetic study together with the X -ray structure of trans$\left[\mathrm{Ru}{ }^{\text {III }} \mathrm{L}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left[\mathrm{ClO}_{4}\right]_{2}$ are reported here.

Experimental

Instrumentation.-The UV/VIS spectra were recorded on a Shimadzu UV-240 spectrophotometer. Cyclic voltammetry was performed on a Princeton Applied Research (PAR) model 273 potentiostat. Kinetic measurements were made with a $\mathrm{Hi}-\mathrm{Tech}$ SF-51 stopped-flow module with a SU-40 spectrophotometric unit. The data collection process was controlled by an Apple IIe microcomputer via an ADS-1 interface unit, also from Hi -Tech.

Materials.-Water for kinetic studies was distilled twice from KMnO_{4}. Trifluoroacetic acid and trifluoromethanesulfonic acid were purified by distillation under a nitrogen atmosphere. Sodium trifluoroacetate (Aldrich) was recrystallized from ethanol and dried in a vacuum at $60^{\circ} \mathrm{C}$. The $\mathrm{D}_{2} \mathrm{O}(99.9 \% \mathrm{D}$, Aldrich) and $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}(99 \% \mathrm{D}$, Aldrich) were used as received.

The compounds trans- $\left[\mathrm{Ru}^{\mathrm{IV}} \mathrm{L}(\mathrm{O})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left[\mathrm{ClO}_{4}\right]_{2}$, ${ }^{4 a}$ trans$\left[\mathrm{Ru}^{\mathrm{III}} \mathrm{L}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left[\mathrm{ClO}_{4}\right]_{2},{ }^{4 a}$ cis- $\left[\mathrm{Ru}^{1 \mathrm{II}}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{isn})_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2}$ (isn = isonicotinamide) ${ }^{10}$ and $\left[\mathrm{Ru}^{11}\left(\mathrm{NH}_{3}\right)_{4}\right.$ (bipy) $]\left[\mathrm{ClO}_{4}\right]_{2}{ }^{11}$ were prepared according to literature procedures.
X-Ray Crystal Structure of trans- $\left[\mathrm{Ru}^{111} \mathrm{~L}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ $\left[\mathrm{ClO}_{4}\right]_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$.-X-Ray diffraction data were collected on an Enraf-Nonius CAD-4 diffractometer with graphite-monochromated Mo-Kx radiation ($\lambda=0.71073 \AA$) at $23 \pm 1{ }^{\circ} \mathrm{C}$. The unit-cell dimensions were obtained from a least-squares fit of 25 reflections in the range $20<2 \theta<34^{\circ}$. The data were corrected for Lorentz polarization and absorption effects. The empirical absorption correction was based on (ψ) scans of six reflections with $80<\chi<90^{\circ}$. Three check reflections, monitored every 2 h , showed no significant variation in intensity. Crystal and structure determination data are summarized in Table 1. Atomic scattering factors were taken from ref. 12. Calculations were carried out on a MicroVax II computer using the Enraf-Nonius SDP programs.

The position of the ruthenium atom was obtained from a Patterson synthesis, and the rest of the non-hydrogen atoms were revealed from a subsequent Fourier map. After several cycles of full-matrix least-squares refinement the hydrogen atoms were revealed in a Fourier difference map, however in the structure-factor calculation only those of the hydroxy group,

Fig. 1 An ORTEP plot of trans- $\left[\mathrm{Ru}{ }^{\mathrm{III}} \mathrm{L}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ cation

Table 1 Crystal and structure determination data for $[\operatorname{RuL}(\mathrm{O})$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left[\mathrm{ClO}_{4}\right]_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$

M	711.49
Crystal system	Triclinic
Space group	PI (no. 2)
a / \AA	11.108(2)
b / \AA	11.683(1)
c / \AA	12.349(1)
$x /{ }^{\circ}$	89.38(1)
$\beta /{ }^{\circ}$	64.81(1)
$\gamma /^{\circ}$	71.44(1)
U / \AA^{3}	1360.2
Z	2
$F(000)$	730
$D_{\text {c }} / \mathrm{g} \mathrm{cm}^{-3}$	1.737
Crystal colour/shape	Yellow prism
Crystal dimensions/mm	$0.19 \times 0.19 \times 0.10$
μ / cm^{-1}	8.32
Transmission factors	0.924-0.999
Collection range	$\pm h, \pm k, \pm l ; 2 \theta_{\text {max }}=50^{\circ}$
Scan mode and speed/ ${ }^{\circ} \mathrm{min}^{-1}$	$\omega-2 \theta, 0.8-5.5$
Scan width/ ${ }^{\circ}$	$0.75+0.34 \tan \theta$
Background time	$0.5 \times$ scan time
No. of data collected	10094
No. of unique data	4774
No. of data used in refinement, m	$4089[I>1.5 \sigma(I)]$
$R_{\text {int }}$	0.016
No. of parameters refined, p	361
$R\left(F_{\mathrm{o}}\right)^{*}$	0.028
$R^{\prime}\left(F_{\mathrm{o}}\right)^{*}$	0.037
S^{*}	1.278
Maximum shift/error	0.06
Residual extrema in final difference map/e \AA^{-3}	$-0.54,+0.88$
$\begin{aligned} & R=\Sigma\| \| F_{\mathrm{o}}\left\|-\left\|F_{\mathrm{c}}\right\|\right\| / \Sigma\left\|F_{\mathrm{o}}\right\|, R^{\prime}=\left[\omega^{\prime}(\mid\right. \\ & F_{\mathrm{o}}^{2} /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+\left(0.04 F_{\mathrm{o}}^{2}\right)^{2}\right], S=[\Sigma, \end{aligned}$	$\begin{aligned} & \left.\left.\left\|F_{\mathrm{c}}\right\|\right)^{2} / \sum w \mid F_{\mathrm{o}}{ }^{2}\right]^{\frac{1}{2}} \text { with } w \\ & \left.\left.-\left\|\mathrm{F}_{\mathrm{c}}\right\|\right)^{2} /(m-p)\right]^{\frac{1}{1} .} \end{aligned}$

the methyl groups and the water molecules were taken while all the others were generated geometrically ($\mathrm{C}-\mathrm{H} 0.95 \AA$). All nonhydrogen atoms were refined anisotropically and the hydrogen atoms with assigned isotropic thermal parameters ($1.2 B_{\text {eq }}$ of the attached atom) were not refined.

Final agreement factors are shown in Table 1. Atomic coordinates of non-hydrogen atoms are given in Table 2, selected bond lengths and angles in Table 3.

Additional material available from the Cambridge Crystallographic Data Centre comprises H -atom coordinates, thermal parameters and remaining bond lengths and angles.

Reduction of trans- $\left[\mathrm{Ru}^{\mathrm{IV}} \mathrm{L}(\mathrm{O})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ by cis $-\left[\mathrm{Ru}^{\mathrm{II}}-\right.$ $\left.\left(\mathrm{NH}_{3}\right)_{4}(\text { isn })_{2}\right]^{2+}$.-The kinetics was followed by monitoring the disappearance of the metal-to-ligand charge-transfer (m.l.c.t.) band of cis- $\left.\left[\mathrm{Ru}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{4} \text { (isn }\right)_{2}\right]^{2+}$ at 478 nm under the conditions that the concentration of trans $-\left[\mathrm{Ru}^{I V} \mathrm{~L}(\mathrm{O})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ was in 50 -fold excess of the ruthenium(II) reductant $\left(\left[\mathrm{Ru}^{\mathrm{IV}}\right]=\right.$ $5 \times 10^{-4}-5 \times 10^{-3},\left[\mathrm{Ru}^{\mathrm{II}}\right]=1 \times 10^{-5}-1 \times 10^{-4} \mathrm{~mol} \mathrm{dm}{ }^{-3}$).

Pseudo-first-order rate constants $k_{\text {obs }}$ were obtained by nonlinear least-squares fit of absorbance A_{t} to time t according to the equation $\left(A_{t}-A_{\infty}\right)=\left(A_{0}-A_{\infty}\right) \exp \left(-k_{\text {obs }} t\right)$. Each kinetic run was repeated at least 10 times and the mean value of $k_{\text {obs }}$ was obtained. Second-order rate constants k_{2} were obtained from linear least-squares fit of $k_{\text {obs }}$ to $\left[\mathrm{Ru}^{\mathrm{IV}}\right]$.

Reduction of trans $-\left[\mathrm{Ru}^{\mathrm{II}} \mathrm{L}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ by $\left[\mathrm{Ru}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{4}{ }^{-}\right.$ (bipy) $]^{2+}$.-The reaction conditions and kinetic data treatment were the same as described above. The reaction was followed by monitoring the disappearance of the m.l.c.t. band of [Rull $\left(\mathrm{NH}_{3}\right)_{4}$ (bipy) $]^{2+}$ at 523 nm under the conditions that the concentration of trans- $\left[\mathrm{Ru}{ }^{1 I I} \mathrm{~L}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ was in 50 -fold excess of the ruthenium(iI) reductant $\left(\left[\mathrm{Ru}^{\text {III }}\right]=5 \times 10^{-4}\right.$ $5 \times 10^{-3} \cdot\left[\mathrm{Ru}^{11}\right]=1 \times 10^{-5}-1 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$).

Kinetic Isotopic Effect.-Several kinetic runs of the reduction of trans $-\left[\mathrm{Ru} \mathrm{u}^{\mathrm{IV}} \mathrm{L}(\mathrm{O})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ by cis- $\left[\mathrm{Ru}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{isn})_{2}\right]^{2+}$ and of trans- $\left[\mathrm{Ru} \mathrm{u}^{\mathrm{III}} \mathrm{L}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ by $\left[\mathrm{Ru}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{4}(\text { bipy })\right]^{2+}$ were carried out in $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}$ and $\mathrm{D}_{2} \mathrm{O}\left(\left[\mathrm{D}^{+}\right]=0.1-0.5, I=0.5\right.$ $\mathrm{mol} \mathrm{dm}{ }^{-3}$).

Products and Stoichiometry.-The stoichiometries of the reactions were determined by measuring the UV/VIS spectrum of the ruthenium products after the reaction and by spectrophotometric redox titrations of trans- $\left[\mathrm{Ru}^{\mathrm{IV}} \mathrm{L}(\mathrm{O})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ with cis- $\left[\mathrm{Ru}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{isn})_{2}\right]^{2+}$ and trans- $\left[\mathrm{Ru}^{\mathrm{III}} \mathrm{L}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ with cis $-\left[\mathrm{Ru}^{\text {II }}\left(\mathrm{NH}_{3}\right)_{4} \text { (bipy) }\right]^{2+}$.

Results

Fig. 1 depicts an ORTEP plot of the trans- $\left[\mathrm{Ru} \mathrm{u}^{\mathrm{III}} \mathrm{L}(\mathrm{OH})\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ cation with atomic numbering scheme. Comparison of this with the structure of $\operatorname{trans}-\left[\mathrm{Ru}{ }^{\mathrm{IV}} \mathrm{L}(\mathrm{O})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ reported earlier ${ }^{4 a}$ shows that the conformation and dimensions of these two cations and the $\mathrm{Ru}-\mathrm{N}(\mathrm{L})$ and $\mathrm{Ru}-\mathrm{O}(\mathrm{L})$ distances are very similar with only difference in the $\mathrm{Ru} \mathrm{u}^{\text {III }}-\mathrm{OH}[1.905(2) \AA]$ and $\mathrm{Ru}^{\mathrm{IV}}=\mathrm{O}[1.739(2) \AA]$ bonds. ${ }^{4 a}$ Such a large difference is undoubtedly due to the difference in the extent of $p_{\pi}(O)-d_{\pi}$ interaction, which is more pronounced in $R u^{I V}=O$ than in $\mathrm{Ru}{ }^{\text {III }}-\mathrm{OH}$. The $\mathrm{Ru}-\mathrm{OH}_{2}$ distance of $2.102(2) \AA$ in trans$\left[\mathrm{Ru}^{\mathrm{III}} \mathrm{L}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ is slightly shorter than that in trans$\left[\mathrm{Ru}^{\mathrm{IV}} \mathrm{L}(\mathrm{O})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}[2.199(3) \AA],{ }^{4 a}$ reflecting the greater trans effect of O^{2-} over OH^{-}. The average of the $\mathrm{Ru}-\mathrm{OH}$ and $\mathrm{Ru}-\mathrm{OH}_{2}$ distances is $2.003 \AA$ which is comparable to that of $2.007 \AA$ reported by Meyer and co-workers ${ }^{13}$ for the related trans $-\left[\mathrm{Ru}^{\mathrm{III}}(\text { bipy })_{2}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$.
The pH dependence of E° for the oxo-aqua-Ru-L system has been reported previously. ${ }^{4 a}$ In this work we have extended the studies at $\mathrm{pH} 0.3-3.0\left(I=0.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right)$. Cyclic voltammetric scans under this condition revealed that the E° of the trans$\left[\mathrm{RuL}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{3+12+}$ couple is $0.66 \pm 0.01 \mathrm{~V}$ vs. saturated calomel electrode (SCE) which appears to be insensitive to $\left[\mathrm{H}^{+}\right]$ from 0.5 to $1.0 \mathrm{~mol} \mathrm{dm}{ }^{-3}$. The E° for the trans-[RuL$\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{3+/ 2+}$ couple is similarly estimated to be $0.33 \pm 0.01 \mathrm{~V}$ vs. SCE.
In the presence of an excess of trans- $\left[\mathrm{Ru}^{1 \mathrm{~V}} \mathrm{~L}(\mathrm{O})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ and in an aqueous acidic medium, cis- $\left[\mathrm{Ru}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{isn})_{2}\right]^{2+}$ was quantitatively oxidized to $\mathrm{Ru} \mathrm{u}^{\mathrm{III}}$. The decay of the ruthenium(il) reductant, monitored at 478 nm , was first order. The experimental results are fit very well by the equation $\left(A_{t}-A_{x}\right)=\left(A_{0}-A_{x}\right) \exp \left(-k_{\text {obs }} t\right)$ and second-order rate constants k_{2} were obtained from a linear least-squares fit of $k_{\text {obs }}$ vs. $\left[\mathrm{Ru}^{\mathrm{IV}}\right]_{\mathrm{T}} \quad\left\{\left[\mathrm{Ru}^{\mathrm{IV}}\right]_{\mathrm{T}}=\right.$ total concentration of ru thenium(Iv) species in the solution?. The rate law of the reaction is as in equation (1) where $k_{\mathrm{obs}}=k_{2}\left[\mathrm{Ru}^{\mathrm{IV}}\right]_{\mathrm{T}}$.

$$
\begin{equation*}
-\mathrm{d}\left[\mathrm{R} \mathbf{u}^{\mathrm{Iv}}\right] / \mathrm{dt}=k_{2}\left[\mathrm{Ru}^{\mathrm{IV}}\right]_{\mathrm{r}}\left[\mathrm{R} \mathrm{u}^{\mathrm{II}}\right] \tag{1}
\end{equation*}
$$

Spectrophotometric titration indicated a stoichiometry of $1: 1$ [equation (2)].

Table 2 Fractional coordinates of non-hydrogen atoms and their estimated standard deviations (e.s.d.s) for $\left[\mathrm{RuL}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left[\mathrm{ClO}_{4}\right]_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$

Atom	x	y	z	Atom	x	y	z
Ru	0.047 74(2)	0.187 29(2)	0.323 51(2)	C(14)	-0.177 8(3)	-0.1070(3)	0.192 3(3)
O(1)	$-0.0910(2)$	0.355 2(2)	0.433 2(2)	C(15)	-0.292 7(3)	-0.0179(3)	0.2781 (3)
O(2)	-0.1309(2)	$0.2112(2)$	0.287 2(2)	$\mathrm{C}(16)$	-0.2817(3)	0.090 4(3)	0.312 6(3)
O(3)	0.113 5(2)	0.294 5(2)	$0.1845(2)$	C(17)	-0.151 4(3)	0.1050 (3)	0.258 0(2)
O(4)	-0.040 3(2)	$0.1065(2)$	0.453 0(2)	C(18)	-0.255 3(3)	0.3019 (3)	0.384 0(3)
N(1)	0.2040 (2)	0.1868 (2)	0.378 0(2)	C(19)	-0.2123(3)	0.403 6(3)	0.4068 (3)
$\mathrm{N}(2)$	0.175 6(2)	0.0261 (2)	0.1990 (2)	C(20)	0.220 6(3)	0.1023 (3)	$0.4665(2)$
C(1)	-0.103 3(3)	0.3729 9(2)	0.550 5(2)	C(21)	0.1830 (3)	-0.090 9(3)	$0.2515(2)$
C(2)	-0.229 7(3)	0.4042 (3)	0.653 4(3)	$\mathrm{Cl}(1)$	0.428 15(7)	$0.30885(7)$	0.662 85(7)
C(3)	-0.228 2(3)	0.4181 (3)	0.7640 (3)	$\mathrm{Cl}(2)$	-0.382 21(8)	0.341 74(8)	0.115 64(7)
C(4)	-0.101 8(3)	0.400 0(3)	0.769 9(3)	$\mathrm{O}(11)$	0.459 6(2)	0.4151 (2)	0.626 5(3)
C(5)	0.0237 (3)	0.3667 (3)	0.6647 (3)	$\mathrm{O}(12)$	0.306 3(3)	0.338 9(3)	0.778 2(3)
C(6)	0.0258 (3)	$0.3525(2)$	0.553 3(2)	O(13)	0.3959 (3)	0.2611 (3)	0.577 7(3)
C(7)	0.1617 (2)	0.3158 (2)	0.437 5(2)	$\mathrm{O}(14)$	0.547 7(3)	0.222 2(3)	0.6661 (3)
C(8)	0.346 3(3)	0.159 6(3)	0.272 0(2)	$\mathrm{O}(21)$	-0.406 7(4)	0.462 9(3)	0.0825 (3)
C(9)	0.4020 (3)	0.037 0(3)	$0.1961(3)$	$\mathrm{O}(22)$	-0.2389(3)	0.295 3(3)	0.0953 (3)
$\mathrm{C}(10)$	0.324 6(3)	0.023 2(3)	0.124 6(3)	$\mathrm{O}(23)$	-0.473 9(3)	0.349 4(3)	0.2398 (2)
$\mathrm{C}(11)$	0.1115 (3)	0.0288 (3)	0.112 1(2)	$\mathrm{O}(24)$	-0.404 4(3)	0.2687 74)	0.043 5(3)
$\mathrm{C}(12)$	-0.032 2(3)	0.015 3(3)	0.170 3(2)	$\mathrm{O}(5)$	0.3559 9(3)	0.2897 (3)	0.002 6(2)
C(13)	-0.0472(3)	-0.0914(3)	0.138 6(3)	O(6)	0.0618 (3)	0.578 8(3)	0.906 6(3)

Table 3 Selected bond lengths (\AA) and angles (${ }^{\circ}$) with e.s.d.s in parentheses

$\mathrm{Ru}-\mathrm{O}(1)$	$2.102(2)$	$\mathrm{Ru}-\mathrm{O}(4)$	$1.904(2)$
$\mathrm{Ru}-\mathrm{O}(2)$	$2.148(2)$	$\mathrm{Ru}-\mathrm{N}(1)$	$2.110(3)$
$\mathrm{Ru}-\mathrm{O}(3)$	$2.126(3)$	$\mathrm{Ru}-\mathrm{N}(2)$	$2.105(2)$
$\mathrm{O}(1)-\mathrm{Ru}-\mathrm{O}(2)$	$80.22(8)$	$\mathrm{O}(2)-\mathrm{Ru} \mathrm{N}(2)$	$93.90(9)$
$\mathrm{O}(1)-\mathrm{Ru}-\mathrm{O}(3)$	$85.16(7)$	$\mathrm{O}(3)-\mathrm{Ru}-\mathrm{O}(4)$	$171.12(7)$
$\mathrm{O}(1)-\mathrm{Ru}(\mathrm{O}(4)$	$88.82(7)$	$\mathrm{O}(3)-\mathrm{Ru}(1)$	$93.25(9)$
$\mathrm{O}(1)-\mathrm{Ru}-\mathrm{N}(1)$	$91.47(8)$	$\mathrm{O}(3)-\mathrm{Ru}-\mathrm{N}(2)$	$90.71(8)$
$\mathrm{O}(1)-\mathrm{Ru}-\mathrm{N}(2)$	$172.97(9)$	$\mathrm{O}(4)-\mathrm{Ru}-\mathrm{N}(1)$	$93.4(1)$
$\mathrm{O}(2)-\mathrm{Ru}-\mathrm{O}(3)$	$86.94(9)$	$\mathrm{O}(4)-\mathrm{Ru}-\mathrm{N}(2)$	$94.61(8)$
$\mathrm{O}(2)-\mathrm{Ru}-\mathrm{O}(4)$	$85.60(8)$	$\mathrm{N}(1)-\mathrm{Ru} \mathrm{N}(2)$	$94.44(9)$
$\mathrm{O}(2)-\mathrm{Ru}-\mathrm{N}(1)$	$171.65(7)$		

Table 4 Representative second-order rate constants for the reduction of trans- $\left[\mathrm{Ru}^{1 \mathrm{~V}} \mathrm{~L}(\mathrm{O})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ by cis- $\left[\mathrm{Ru}^{11}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{isn})_{2}\right]^{2+}$ at 298 K and $I=0.50 \mathrm{~mol} \mathrm{dm}^{-3}$

	$\left[\mathrm{H}^{+}\right] / \mathrm{mol} \mathrm{dm}^{-3}$	$10^{2} k_{2} / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$
	0.05	3.50 ± 0.20
	0.10	3.97 ± 0.24
	0.15	4.90 ± 0.27
	0.20	5.25 ± 0.32
	0.30	5.53 ± 0.34
	0.40	5.76 ± 0.39
	$0.60 \quad 1.40$	$2.20 \quad 3.00$
	$10\left[\mathrm{H}^{+}\right] / \mathrm{mol} \mathrm{dm}^{-3}$	

Fig. 2 Plot of k_{2} r.s. $\left[\mathrm{H}^{+}\right]$for the reduction of $\operatorname{trans}-\left[\mathrm{Ru}^{\mathrm{Iv}} \mathrm{L}\right.$ $\left.(\mathrm{O})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ at $298 \mathrm{~K}\left(I=0.5 \mathrm{~mol} \mathrm{dm}^{-3}\right)$

$$
\begin{array}{r}
\text { trans- }\left[\mathrm{Ru}^{\mathrm{IV}} \mathrm{~L}(\mathrm{O})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}+\left[\mathrm{Ru}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{isn})_{2}\right]^{2+}+ \\
\mathrm{H}^{+} \longrightarrow \text { trans- }\left[\mathrm{Ru}^{\mathrm{III}} \mathrm{~L}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}+ \\
{\left[\mathrm{Ru}^{\mathrm{III}}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{isn})_{2}\right]^{3+}} \tag{2}
\end{array}
$$

The effect of $\left[\mathrm{H}^{+}\right]$on k_{2} has been investigated and the results are listed in Table 4. A plot of k_{2} against [$\left.\mathrm{H}^{+}\right]$($\left[\mathrm{H}^{+}\right]=0.05-$ $0.5, I=0.5 \mathrm{~mol} \mathrm{dm}^{-3}$) at 298 K is shown in Fig. 2. The kinetic data are consistent with Scheme 1, where protonation of trans$\left[\mathrm{Ru}^{\mathrm{IV}} \mathrm{L}(\mathrm{O})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ occurs prior to electron transfer.

$$
\operatorname{trans}-\left[\mathrm{Ru}^{\mathrm{IV}} \mathrm{~L}(\mathrm{O})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}+\mathrm{H}^{+} \stackrel{\kappa_{\mathrm{r}_{1}}}{\rightleftharpoons} \underset{\operatorname{trans}-\left[\mathrm{Ru}^{\mathrm{IV}} \mathrm{~L}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{3+}}{\rightleftharpoons}
$$

```
\(\operatorname{trans}-\left[\mathrm{Ru}^{\mathrm{IV}} \mathrm{L}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{3+}+\left[\mathrm{Ru}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{isn})_{2}\right]^{2+} \xrightarrow{k_{\mathrm{e} 1}}\)
```

$$
\begin{equation*}
\operatorname{trans}-\left[\mathrm{Ru}^{\mathrm{II} \mathrm{\prime}} \mathrm{~L}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}+\left[\mathrm{Ru}^{\mathrm{II} \mathrm{\prime}}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{isn})_{2}\right]^{3+} \tag{4}
\end{equation*}
$$

Scheme 1

In general, the rate of protonation [equation (3)] is diffusioncontrolled. With this pre-equilibrium assumption, the rate law can be formulated as in equation (5). However, a pathway in
which protonation occurs after electron transfer cannot be completely ruled out (Scheme 2).

$$
\begin{align*}
& \operatorname{trans}-\left[\mathrm{Ru}^{\text {IV }}(\mathrm{O})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}+\left[\mathrm{Ru}^{\prime \prime \prime}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{isn})_{2}\right]^{2+} \longrightarrow \\
& \operatorname{trans}-\left[\mathrm{Ru}^{\prime \prime \prime} \mathrm{L}(\mathrm{O})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}+\left[\mathrm{Ru}^{\prime \prime \prime \prime}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{isn})_{2}\right]^{3+} \tag{6}\\
& \operatorname{trans}-\left[\mathrm{Ru}^{\text {I' }} \mathrm{L}(\mathrm{O})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}+\mathrm{H}^{+} \underset{\operatorname{trans}-}{\rightleftharpoons}\left[\mathrm{Ru}^{\text {III }} \mathrm{L}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}
\end{align*}
$$

Scheme 2
Electrochemically, we have not been able to locate the $\mathrm{Ru}^{\mathrm{IV}}=\mathrm{O} / \mathrm{Ru}^{\text {III }}=\mathrm{O}$ couple. The $E^{\text {of }}$ of the reaction $\left[\mathrm{Ru}^{\text {IV }} \mathrm{L}\right.$ $\left.(\mathrm{O})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}+\mathrm{e}^{-} \longrightarrow\left[\mathrm{Ru} \mathrm{u}^{\mathrm{III}} \mathrm{L}(\mathrm{O})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}$should occur at a very negative potential because $\mathrm{Ru}^{111}=\mathrm{O}$ is such an unfavour-

$$
\begin{align*}
& K_{\mathrm{p}_{1}}=\frac{\left[\mathrm{Ru}^{\mathrm{IV}} \mathrm{~L}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{3+}}{\left[\mathrm{H}^{+}\right]\left[\mathrm{Ru}^{\mathrm{IV}} \mathrm{~L}(\mathrm{O})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}} \\
& -\frac{\mathrm{d}\left[\mathrm{Ru}^{\mathrm{II}}\right]}{\mathrm{d} t}=\frac{K_{\mathrm{p},} k_{\mathrm{e} 1}\left[\mathrm{Ru}^{\mathrm{I}}\right]\left[\mathrm{Ru}^{\mathrm{Iv}}\right]_{\mathrm{T}}\left[\mathrm{H}^{+}\right]}{1+K_{\mathrm{p},}\left[\mathrm{H}^{+}\right]} \\
& k_{\mathrm{obs}}=\frac{K_{\mathrm{p}_{\mathrm{p}}} \mathrm{k}_{\mathrm{e},}\left[\mathrm{Ru}^{\mathrm{IV}}\right]_{\mathrm{T}}\left[\mathrm{H}^{+}\right]}{1+K_{\mathrm{p},[}\left[\mathrm{H}^{+}\right]} \\
& k_{2}=\frac{K_{\mathrm{p}_{1}} k_{\mathrm{e}_{\mathrm{e}}}\left[\mathrm{H}^{+}\right]}{1+K_{\mathrm{p}_{1}}\left[\mathrm{H}^{+}\right]} \tag{5}
\end{align*}
$$

Table 5 Temperature dependence of $k_{\mathrm{e} 1}$ for reduction of trans$\left[\mathrm{Ru}^{\mathrm{IV}} \mathrm{L}(\mathrm{O})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ by cis- $\left[\mathrm{Ru}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{isn})_{2}\right]^{2+}\left(I=0.5 \mathrm{~mol} \mathrm{dm}^{-3}\right)$

T / K	$k_{\mathrm{e} 1} / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$
289.5 ± 0.1	399 ± 15
298.0 ± 0.1	641 ± 26
298.0 ± 0.1	$534 \pm 21^{*}$
307.7 ± 0.1	881 ± 19
316.8 ± 0.1	1284 ± 74

* Reaction was carried out in $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}-\mathrm{D}_{2} \mathrm{O}$.

Table 6 Representative second-order rate constants for the reduction of trans- $\left[\mathrm{Ru}{ }^{\text {III }} \mathrm{L}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ by $\left[\mathrm{Ru}^{\text {II }}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{bipy})\right]^{2+}$ at different $\left[\mathrm{H}^{+}\right]\left(I=0.2 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right)$ at 298 K

$\left[\mathrm{H}^{+}\right] / \mathrm{mol} \mathrm{dm}^{-3}$	$10^{-4} \mathrm{k}_{2} / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$
0.01	0.61 ± 0.02
0.02	1.27 ± 0.05
0.03	1.85 ± 0.11
0.04	2.35 ± 0.16
0.06	3.21 ± 0.20
0.08	3.93 ± 0.26
0.10	4.69 ± 0.32
0.12	5.52 ± 0.34
0.15	6.15 ± 0.44
0.18	6.36 ± 0.42
0.20	6.50 ± 0.45

Fig. 3 Eyring plot for the reduction of $\operatorname{trans}-\left[\mathrm{Ru}^{\mathrm{IV}} \mathrm{L}(\mathrm{O})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ by cis-[Ru" $\left.\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{isn})_{2}\right]^{2+}$

Fig. 4 Plot of k_{2} vs. $\left[\mathrm{H}^{+}\right]$for the reduction of $\operatorname{trans}-\left[\mathrm{Ru}{ }^{111} \mathrm{~L}(\mathrm{OH})\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ at $298 \mathrm{~K}\left(I=0.2 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right)$
able geometry for Ru ${ }^{\text {III }}$. Our electrochemical study ${ }^{14}$ showed that trans $-\left[\mathrm{Ru}^{\mathrm{IV}} \mathrm{L}(\mathrm{O})(\mathrm{MeCN})\right]^{2+}$ undergoes an irreversible reduction at potential of $-1.45 \mathrm{~V} v s . \mathrm{Ag}-\mathrm{AgNO}_{3}$ in acetonitrile. Thus, although the reduction of $\operatorname{trans}-\left[\mathrm{Ru}^{\mathrm{IV}} \mathrm{L}(\mathrm{O})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ to trans $-\left[\mathrm{Ru}^{\mathrm{III}} \mathrm{L}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ by $\left[\mathrm{Ru}^{\text {Il }}\left(\mathrm{NH}_{3}\right)_{4}(\text { isn })_{2}\right]^{2+}$ is an overall downhill reaction at $\mathrm{pH} \leqslant 7$, reaction (6) in Scheme 2 should be thermodynamically uphill by at least 0.26 V . Of course, such a reaction could be driven to the product side by subsequent protonation of trans- $\left[\mathrm{Ru}^{\text {III }} \mathrm{L}(\mathrm{O})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}$. In this

Table 7 Temperature dependence of $k_{\mathrm{e} 2}$ for the reduction of trans$\left[\mathrm{Ru}{ }^{\text {II }} \mathrm{L}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ by $\left[\mathrm{Ru}^{\text {II }}\left(\mathrm{NH}_{3}\right)_{4}(\text { bipy })\right]^{2+}\left(I=0.2 \mathrm{~mol} \mathrm{dm}^{-3}\right)$

T / K	$10^{-4} k_{\mathrm{e} 2} / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$
287.0 ± 0.1	7.7 ± 0.4
298.0 ± 0.1	9.8 ± 0.5
298.0 ± 0.1	$9.0 \pm 0.5^{*}$
307.0 ± 0.1	11.7 ± 0.6
318.0 ± 0.1	13.4 ± 0.7

* Reaction carried out in $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}-\mathrm{D}_{2} \mathrm{O}$.
sense, the endergonic reaction is driven by a strongly exergonic subsequent reaction. If the reduction follows Scheme 2 , $\left[\mathrm{Ru}^{\mathrm{III}}-\right.$ $\left.\left(\mathrm{NH}_{3}\right)_{4}(\text { isn })_{2}\right]^{3+}$, once generated, will also be reduced back to $\left[\mathrm{Ru}^{\text {II }}\left(\mathrm{NH}_{3}\right)_{4}(\text { isn })_{2}\right]^{2+}$. Reaction (6) may not be a true equilibrium and the disappearance of $\left[\mathrm{Ru}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{isn})_{2}\right]^{2+}$ will not follow a simple first-order decay. In this work, a clean firstorder decay of $\left.\left[\mathrm{Ru}^{11}\left(\mathrm{NH}_{3}\right)_{4} \text { (isn }\right)_{2}\right]^{2+}$ was observed. Under our experimental conditions $\left(\left[\mathrm{H}^{+}\right]=0.1-0.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right)$ and given the fact that the $\mathrm{p} K_{\mathrm{a}}$ value of trans- $\left[\mathrm{Ru}^{\mathrm{IV}} \mathrm{L}(\mathrm{O})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ has been found to be 1.32 (see later), the major ruthenium species in the solution is trans- $\left[\mathrm{Ru}^{\mathrm{IV}} \mathrm{L}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{3+}$. By cyclic voltammetry, the E° of the reversible trans $-\left[\mathrm{Ru}^{\mathrm{IV}} \mathrm{L}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{3+}$ trans $-\left[\mathrm{Ru}{ }^{\text {III }} \mathrm{L}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ couple has been estimated to be $0.66 \pm 0.01 \mathrm{~V}$ vs. SCE. Thus reaction (4) is a downhill reaction with a ΔG° of $-4.6 \mathrm{kcal} \mathrm{mol}^{-1}$. Hence, it is unlikely that under our reaction conditions the reduction follows Scheme 2.

A non-linear least-squares fit of the kinetic data at $I=0.5$ mol dm ${ }^{-3}$ and 298 K (Fig. 2) according to equation (5) leads to $k_{\mathrm{e} 1}=641 \pm 26 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ and $K_{\mathrm{p}_{1}}=20.9 \pm 1.6 \mathrm{dm}^{3}$ $\mathrm{mol}^{-1}\left(\mathrm{p} K_{\mathrm{a}}=1.32 \pm 0.20\right)$.

The $k_{\mathrm{e} 1}$ values for the reduction of trans- $\left[\mathrm{Ru} \mathrm{u}^{\mathrm{IV}} \mathrm{L}(\mathrm{O})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ at different temperatures are listed in Table 5. The ΔH^{\ddagger} and ΔS^{\ddagger} values found from a plot of $\ln \left(k_{\mathrm{e}} / T\right)$ against $1 / T$ (Fig. 3) are $7.1 \pm 0.5 \mathrm{kcal} \mathrm{mol}^{-1}$ and $-22 \pm 2 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$ respectively.
A kinetic isotopic effect of 1.2 was found for the reduction of trans- $\left[\mathrm{Ru}^{\mathrm{IV}} \mathrm{L}(\mathrm{O})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ at $I=0.5 \mathrm{~mol} \mathrm{dm}^{-3}$ and 298 K .

For the reduction of trans- $\left[\mathrm{Ru} \mathrm{u}^{\mathrm{II}} \mathrm{L}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ by $\left[\mathrm{Ru}^{\text {II }}\left(\mathrm{NH}_{3}\right)_{4} \text { (bipy) }\right]^{2+}$, the decay of the ruthenium(iI) reductant is also first order. The rate law is as in equation (8).

$$
\begin{equation*}
-\mathrm{d}\left[\mathrm{Ru}^{\mathrm{II}}\right] / \mathrm{d} t=k_{2}\left[\mathrm{Ru}^{\mathrm{II}}\right]\left[\mathrm{Ru}^{\mathrm{II}}\right] \tag{8}
\end{equation*}
$$

where $k_{\mathrm{obs}}=k_{2}\left[\mathrm{Ru}^{\mathrm{III}}\right]$. Spectrophotometric titration at 0.1 mol dm^{-3} in $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ indicated a stoichiometry of $1: 1$, in accordance with equation (9).

$$
\begin{aligned}
& \text { trans }-\left[\mathrm{Ru}^{\mathrm{III}} \mathrm{~L}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}+\left[\mathrm{Ru}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{4}(\text { bipy })\right]^{2+}+\mathrm{H}^{+} \\
& \longrightarrow \text { trans }-\left[\mathrm{Ru}^{11} \mathrm{~L}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}+\left[\mathrm{Ru}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{4}(\text { bipy })\right]^{3+}
\end{aligned}
$$

The k_{2} values obtained at different $\left[\mathrm{H}^{+}\right]\left(I=0.2 \mathrm{~mol} \mathrm{dm}^{-3}\right.$, 298 K) are listed in Table 6 and a plot of $k_{2} \mathrm{vs}$. $\left[\mathrm{H}^{+}\right]$is shown in Fig. 4. The results are consistent with Scheme 3 where k_{2} is

$$
\operatorname{trans}-\left[\mathrm{Ru}^{\mathrm{HI}} \mathrm{~L}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}+\mathrm{H}^{+} \stackrel{\kappa_{\mathrm{r}_{2}}}{\rightleftharpoons}{\operatorname{trans}-\left[\mathrm{Ru}^{\mathrm{I} \mathrm{\prime} \mathrm{\prime}} \mathrm{~L}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{3+}}_{\rightleftharpoons}
$$

trans- $\left[\mathrm{Ru}^{\text {III }} \mathrm{L}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{3+}+\left[\mathrm{Ru}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{4}(\text { bipy })\right]^{2+} \xrightarrow{k_{c 2}}$

$$
\begin{equation*}
\operatorname{trans}-\left[\mathrm{Ru}^{\prime \prime} \mathrm{L}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}+\left[\mathrm{Ru}^{\prime \prime \prime}\left(\mathrm{NH}_{3}\right)_{4}(\text { bipy })\right]^{3+} \tag{11}
\end{equation*}
$$

Scheme 3

given by expression (12). A non-linear least-squares fit of the kinetic data (Fig. 4) according to equation (12) gave the

Table 8 Summary of kinetic rate data for the calculation of self-exchange rate constants for the $\mathrm{Ru}^{\mathrm{IV}}-\mathrm{Ru}^{\text {III }}$ and $\mathrm{Ru}^{\text {III }}-\mathrm{Ru}^{\text {II }}$ couples

	$E / \mathrm{V} v s$ NHE	K_{12}	k_{12}	k_{22}	k_{11}
Couple			$\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$		
$\left[\mathrm{RuL}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{3+12+}$	0.90	2.4×10^{3}	6.4×10^{-2}	7.7×10^{5}	3.1×10^{4}
$\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{isn})_{2}\right]^{3+12+}$	0.70				
$\left[\mathrm{RuL}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{3+12+}$	0.57	3.22	9.8×10^{4}		3.9×10^{3}
$\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{4} \text { (bipy) }\right]^{3+/ 2+}$	0.54			7.7×10^{5}	

Table 9 Comparison of $\Delta G_{\text {in }}{ }^{*}$ and the self-exchange rate constant for the electron-exchange reaction of $R u^{I I I}-\mathrm{Ru}^{\text {II }}$ and $\mathrm{Ru}^{\mathrm{IV}}-\mathrm{Ru}^{\text {III }}$ couples at $25^{\circ} \mathrm{C}$

Exchange reaction	$2 r_{\text {A }}{ }^{a} / \AA$	$2 r_{\mathrm{B}}{ }^{\text {a }}$ /	$\Delta G_{\text {in }}{ }^{b}$ kcal mol^{-1}	$\begin{aligned} & k_{\text {self }} / \mathrm{dm}^{3} \\ & \mathrm{~mol}^{-1} \end{aligned}$
$\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+/ 2+}$	6.6		6.82	4.7×10^{3}
$\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{py})\right]^{3+/ 2+}$	7.6		5.92	1.1×10^{3}
$\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{4}(\text { bipy })\right]^{3+/ 2+}$	8.8		5.11	7.7×10^{5}
$\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{2} \text { (bipy) }{ }_{2}\right]^{3+/ 2+}$	11.2		4.02	8.4×10^{7}
$\left[\mathrm{RuL}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{3+/ 2+}$	7.76	7.94	5.74	3.9×10^{3}
$\left[\mathrm{RuL}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{3+/ 2+}$	7.74	7.76	5.81	3.1×10^{-4}

${ }^{a}$ Calculated from equation (16). ${ }^{b}$ Calculated from equation (15).

Fig. 5 Eyring plot for the reduction of trans- $\left[\mathrm{Ru}{ }^{\mathrm{II}} \mathrm{L}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ by $\left[\mathrm{Ru}^{\text {II }}\left(\mathrm{NH}_{3}\right)_{4}(\text { bipy })\right]^{2+}$

$$
\begin{equation*}
k_{2}=\frac{k_{\mathrm{e} 2} K_{\mathbf{p}_{2}}\left[\mathrm{H}^{+}\right]}{1+K_{\mathbf{p}_{2}}\left[\mathrm{H}^{+}\right]} \tag{12}
\end{equation*}
$$

respective $k_{\mathrm{e} 2}$ and $K_{\mathrm{p}_{2}}$ values $(9.8 \pm 0.5) \times 10^{4} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ and $9.6 \pm 0.8 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$. The $k_{\mathrm{e} 2}$ values at different temperatures are summarized in Table 7. From the Eyring plot of $\ln \left(k_{\mathrm{e} 2} / T\right)$ against $1 / T$ (Fig. 5), the ΔH^{\ddagger} and ΔS^{\ddagger} for the reduction reaction are $2.8 \pm 0.2 \mathrm{kcal} \mathrm{mol}^{-1}$ and $-26 \pm 3 \mathrm{cal}$ $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$ respectively. A kinetic isotopic effect of 1.1 was obtained.

From the results of the reduction of trans- $\left[\mathrm{Ru}^{\mathrm{IV}} \mathrm{L}(\mathrm{O})\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ and trans- $\left[\mathrm{Ru}^{\text {III }} \mathrm{L}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ by the one-electron reductants, the mechanism for the reduction of $R u^{\text {IV }}$ to $R u^{\text {II }}$ of the Ru -L-oxo-aqua system can be summarized as Scheme 1 followed by Scheme 3.

Discussion

In this work the one-electron reduction of $\mathrm{H}_{2} \mathrm{O}-\mathrm{Ru}^{1 \mathrm{~V}}=\mathrm{O}$ to $\mathrm{H}_{2} \mathrm{O}-\mathrm{Ru}^{\mathrm{III}}-\mathrm{OH}$ and of $\mathrm{H}_{2} \mathrm{O}-\mathrm{Ru}^{\text {III }}-\mathrm{OH}$ to $\mathrm{H}_{2} \mathrm{O}-\mathrm{Ru}^{\mathrm{II}}-\mathrm{OH}_{2}$ at high $\left[\mathrm{H}^{+}\right]$involves prior protonation with the intermediates being trans- $\left[\mathrm{Ru}^{\mathrm{IV}} \mathrm{L}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{3+}$ and trans- $\left[\mathrm{Ru}^{\text {II }} \mathrm{L}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{3+}$. Since the protonated forms are involved in the reactions, the question arises as to what type of redox reactions are involved since a proton can serve as a bridge for the two reactants through intermolecular hydrogen bonding in the transition state. However the small kinetic isotopic effects of 1.2 [equation (4)] and 1.1 [equation (11)] suggest that \mathbf{H}-atom transfer is
unimportant in the rate-determining step. Furthermore, the activation parameters for these two reactions are similar to those found in other outer-sphere one-electron-transfer reactions. ${ }^{11.15}$ The larger ΔH^{\ddagger} for the reduction of trans$\left[\mathrm{Ru}^{1 \mathrm{~V}} \mathrm{~L}(\mathrm{O})\left(\mathrm{H}_{2} \mathrm{O}\right]^{2+}\right.$ is in agreement with the slower selfexchange rate constant of the $\mathrm{Ru}^{\mathrm{IV}}=\mathrm{OH} / \mathrm{Ru}^{\text {III }}-\mathrm{OH}$ couple as described later.

Assuming a simple adiabatic outer-sphere electron-transfer mechanism, values for the self-exchange rate constants of the $R u^{\mathrm{IV}}-\mathrm{R} \mathrm{u}^{\mathrm{III}}$ and $\mathrm{R} \mathrm{u}^{\mathrm{II}}-\mathrm{R} \mathrm{u}^{\mathrm{II}}$ couples can be estimated by the well known Marcus cross-relation (13) in which k_{12} is the rate

$$
\begin{gather*}
k_{12}=\left(k_{11} k_{22} K_{12} f_{12}\right)^{\frac{1}{2}} \tag{13}\\
\ln f_{12}=\frac{\ln K_{12}}{4 \ln \left(k_{11} k_{22} / Z^{2}\right)} \tag{14}
\end{gather*}
$$

constant for the cross reaction, k_{11} and k_{22} are the exchange rate constants of the reactants, K_{12} is the equilibrium constant for the cross reaction and $Z=1 \times 10^{11} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1} .{ }^{16.17}$ The E° of the trans $-\left[\mathrm{Ru}^{\mathrm{IV}} \mathrm{L}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)^{3+}\right.$-trans $-\left[\mathrm{Ru}{ }^{\mathrm{III}} \mathrm{L}(\mathrm{OH})-\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ and trans $-\left[\mathrm{Ru}{ }^{\text {III }} \mathrm{L}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{3+}-$ trans $-\left[\mathrm{Ru} \mathrm{u}^{\mathrm{LI}} \mathrm{L}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ couples are 0.66 and 0.33 V vs. SCE respectively at an ionic strength of $0.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}$. The E° values for the ruthenium(iI) reductants have also been redetermined at the pH range at which the kinetic experiments were performed. Table 8 summarizes the kinetic data and the E° values for the calculation of self-exchange rate constants. The self-exchange rate constant of the trans $-\left[\mathrm{Ru}(\mathrm{L})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{3+12+}$ couple $\{$ refer to the reaction trans- $\left[\mathrm{Ru}^{\text {III }} \mathrm{L}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{3+}+\mathrm{e}^{-} \longrightarrow$ trans$\left.\left[\mathrm{Ru} \mathrm{u}^{\mathrm{II}} \mathrm{L}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}\right\}$ is $3.9 \times 10^{3} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$. This value is comparable to that of $4.3 \times 10^{3} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ for $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+12+}{ }^{11}$ but considerably smaller than the values ${ }^{11}$ for $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{py})\right]^{3+12+}(\mathrm{py}=$ pyridine $)\left(1.1 \times 10^{5}\right.$ $\left.\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}\right),\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{4}(\text { bipy })\right]^{3+/ 2+}\left(7.7 \times 10^{5} \mathrm{dm}^{3} \mathrm{~mol}^{-1}\right.$ s^{-1}) and $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{2}(\text { bipy })_{2}\right]^{3+/ 2+}\left(8.4 \times 10^{7} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}\right)$. A direct comparison between the trans- $\left[\mathrm{RuL}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{3+/ 2+}$ and $\left[\mathrm{Ru}\left(\mathrm{OH}_{2}\right)_{6}\right]^{3+12+}$ couples $\left(60 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}\right)^{18}$ revealed that the latter has a much smaller self-exchange rate constant. This may be due to the smaller outer-sphere reorganization energy for the former couple. The outer-sphere reorganization energy for the reaction trans $-\left[\mathrm{Ru}{ }^{\text {III }} \mathrm{L}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{3+}+\mathrm{e}^{-} \longrightarrow$ trans$\left[\mathrm{Ru}^{1 \mathrm{I}} \mathrm{L}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ [equation (15)] has been estimated using

$$
\begin{array}{r}
\Delta G_{\text {out }}^{*}=\frac{1}{4} \mathrm{e}^{2}\left[\left(1 / \eta^{2}\right)-\left(1 / D_{\mathrm{s}}\right)\right]\left[\left(1 / 2 r_{\mathrm{A}}\right)+\right. \\
\left.\left(1 / 2 r_{\mathrm{B}}\right)-\left(1 / r_{\mathrm{AB}}\right)\right] \tag{15}
\end{array}
$$

crystal data for trans- $\left[\mathrm{Ru} \mathrm{u}^{\mathrm{III}} \mathrm{L}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left[\mathrm{ClO}_{4}\right]_{2}$ and trans$\left[\mathrm{Ru}^{11} \mathrm{~L}\left(\mathrm{NH}_{3}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2} .{ }^{19}$ Here η and $D_{\text {s }}$ are the refractive index and static dielectric constant of the solvent respectively, $r_{A B}$ is the separation of the metal centres in the activated complex (assumed equal to $r_{\mathrm{A}}+r_{\mathrm{B}}$) and r_{A} and r_{B} are the radii of the two reactants. The $\mathrm{Ru}^{\mathrm{II}}-\mathrm{OH}_{2}$ bond distance was assumed to be $2.1 \AA \AA^{20}$ Since equation (15) is for spherical reactants, we have calculated the radii equivalent to spheres of equal volume using the relation (16) where $d_{i}(i=1,2,3)$ are the diameters along the three axes of the reactant. The outer-sphere

$$
\begin{equation*}
r=\frac{1}{2}\left(d_{1} d_{2} d_{3}\right)^{\frac{1}{4}} \tag{16}
\end{equation*}
$$

reorganization energies for some $\mathrm{Ru}^{111}-\mathrm{Ru}^{11}$ couples are listed in Table 9. A value of $5.74 \mathrm{kcal} \mathrm{mol}^{-1}$ is estimated for the trans$\left[\mathrm{RuL}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{3+/ 2+}$ couple, which is smaller than those of 6.82 and $5.92 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ for $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+12+}$ and $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}^{-}\right.$ (py) $]^{3+/ 2+}$ respectively. ${ }^{11}$ Usually a smaller reorganization energy means a faster self-exchange rate, but the trans$\left[\mathrm{RuL}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{3+12+}$ couple has a smaller self-exchange rate constant than those for $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+/ 2+}$ and $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5^{-}}\right.$ (py) $]^{3+12+}$. This could be due to a larger inner-sphere reorganization energy. Previous work also suggested that the redox couple $\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+/ 2+}$ has a larger inner-sphere reorganization energy than that of $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+12+} .{ }^{18}$ This has been attributed to a smaller change in metal-ligand bond distances: $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+/ 2+}, \Delta\left(\mathrm{Ru}-\mathrm{NH}_{3}\right), 0.04 \AA ;^{21}\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+/ 2+}$, $\Delta\left(\mathrm{Ru}-\mathrm{OH}_{2}\right) \approx 0.1 \AA .{ }^{20}$

To our knowledge, there are no prior self-exchange rate data for $\mathrm{Ru}^{1 \mathrm{IV}}-\mathrm{Ru}^{\text {III }}$ couples. In this work, the self-exchange rate constants for the trans- $\left[\mathrm{RuL}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{3+/ 2+}$ couple is $3.1 \times 10^{-4} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$. Such a slow self-exchange rate is consistent with the higher $\Delta H^{\text {t }}$ obtained for the reduction of trans $-\left[\mathrm{Ru}^{1 \mathrm{~V}} \mathrm{~L}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{3+12+}$ than that for the reduction of trans $-\left[\mathrm{RuL}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{3+/ 2+}$. From crystal data for trans $-\left[\mathrm{Ru}^{\mathrm{IV}}-\right.$ $\left.\mathrm{L}(\mathrm{O})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left[\mathrm{ClO}_{4}\right]_{2}^{4 a}$ and trans- $\left[\mathrm{RuIII} \mathrm{L}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left[\mathrm{ClO}_{4}\right]_{2}$, an outer-sphere reorganization energy of $5.81 \mathrm{kcal} \mathrm{mol}^{-1}$ is estimated from equations (15) and (16) for the reduction of trans $-\left[\mathrm{Ru}^{\mathrm{IV}} \mathrm{L}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{3+}$ to $\operatorname{trans}-\left[\mathrm{Ru} \mathrm{u}^{\mathrm{II}} \mathrm{L}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$, which is comparable to the value of $5.74 \mathrm{kcal} \mathrm{mol}^{-1}$ for the reduction of trans- $\left[\mathrm{Ru}{ }^{1 I \prime} \mathrm{~L}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{3+}$ to trans- $\left[\mathrm{Ru}{ }^{11} \mathrm{~L}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$. The X-ray structures of trans- $\left[\mathrm{Ru}^{\mathrm{IV}} \mathrm{L}(\mathrm{O})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ and trans$\left[\mathrm{Ru}^{1 \mathrm{II}} \mathrm{L}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ show a large difference in bond length between the $\mathrm{Ru}^{\mathrm{IV}^{\mathrm{V}}}=\mathrm{O}(1.739 \AA)^{4 a}$ and $\mathrm{Ru} \mathrm{u}^{\mathrm{II}}-\mathrm{OH}(1.904 \AA)$ group. Although quantitative values for the $\Delta G_{\text {in }}{ }^{\text {t }}$ cannot be obtained as the $\mathrm{Ru}^{i v}=\mathrm{OH}$ bond length has not been determined by X -ray crystallography, the extremely slow self-exchange rate for the trans- $\left[\mathrm{RuL}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{3+/ 2+}$ couple suggests a large FrankCondon barrier associated with the reduction of $\mathrm{Ru}^{\mathrm{Iv}}=\mathrm{OH}$ to
$\mathrm{Ru}^{\text {III }}-\mathrm{OH}$ and hence $\mathrm{Ru}^{\mathrm{lv}}=\mathrm{OH}$ should be formulated as a double bond and may have a comparable bond distance to $\mathrm{Ru}^{\mathrm{IV}}=\mathrm{O}$.

Conclusion

The oxidation of trans-diaquaruthenium(II) to trans-dioxoruthenium(VI) in an aqueous acidic medium proceeds through five steps (Scheme 4). Kinetic studies revealed that the most difficult part lies in the oxidation of $\mathrm{Ru}^{\text {III }}$ to $\mathrm{Ru}^{\mathrm{IV}}$, which has the largest reorganization energy. This accounts for the fact that in cyclic voltammetric scans the $\mathrm{Ru}^{\mathrm{IV}}-\mathrm{Ru}^{\mathrm{II}}$ couple is usually irreversible at high $\left[\mathrm{H}^{+}\right]$. The design of new oxoruthenium(Iv) complexes with higher $\mathrm{Ru}^{\mathrm{IV}}-\mathrm{Ru}^{\mathrm{II}}$ self-exchange rate constants is the subject of our future research in this area.

Acknowledgements

We thank the University and Polytechnic Granting Committee, the Croucher Foundation and University of Hong Kong for support.

References

1 W. P. Griffith, Transition Met. Chem., 1990, 15, 251.
2 J. C. Dobson, W. K. Seok and T. J. Meyer, Inorg. Chem., 1986, 25, 1513; B. A. Moyer, B. K. Sipe and T. J. Meyer, Inorg. Chem., 1981, 20, 1475; L. Roecker, J. C. Dobson, W. J. Vining and T. J. Meyer, Inorg. Chem., 1987, 26, 779.
3 S. Perrier, T. C. Lau and J. K. Kochi, Inorg. Chem., 1990, 29, 4190 ; J. T. Groves and R. Quinn, J. Am. Chem. Soc., 1985, 107, 5790; C. L. Bailey and R. S. Drago, J. Chem. Soc., Chem. Commun., 1987, 179.
4 (a) C. M. Che, W. T. Tang, W. T. Wong and T. F. Lai, J. Am. Chem. Soc., 1989, 111,9048 ; (b) C. Ho, W. H. Leung and C. M. Che, J. Chem. Soc., Dalton Trans., 1991, 2933.
5 L. Roecker and T. J. Meyer, J. Am. Chem. Soc., 1987, 109, 746; M. S. Thompson and T. J. Meyer, J. Am. Chem. Soc., 1982, 104, 5070; C. M. Che, C. Ho and T. C. Lau, J. Chem. Soc., Dalıon Trans., 1991, 1259; C. M. Che, W. T. Tang, K. Y. Wong and C. K. Li, J. Chem. Soc., Dalton Trans., 1991, 3277.
6 R. A. Binstead, B. A. Moyer, G. J. Samuels and T. J. Meyer, J. Am. Chem. Soc., 1981, 103, 2897; R. A. Binstead and T. J. Meyer, J. Am. Chem. Soc., 1987, 109, 3287; C. M. Che, W. H. Leung, C. K. Li and C. K. Poon, J. Chem. Soc., Dalton Trans., 1991, 379.

7 C. M. Che, K. Lau, T. C. Lau and C. K. Poon, J. Am. Chem. Soc., 1990, 112, 5176.
8 C. M. Che, K. Y. Wong and F. C. Anson, J. Electroanal. Chem., Interfacial Electrochem., 1987, 226, 211.
9 R. C. McHatton and F. C. Anson, Inorg. Chem., 1984, 23, 3935; G. E. Cabaniss, A. A. Diamantis, W. R. Murphy, jun., R. W. Linton and T. J. Meyer, J. Am. Chem. Soc., 1985, 107, 1845.

10 R. G. Gaunder and H. Taube, Inorg. Chem., 1970, 9, 2627.
11 G. M. Brown and N. Sutin, J. Am. Chem. Soc., 1979, 101, 883.
12 International Tables for X-Ray Crystallography; Kynoch Press, Birmingham, 1974, vol. 4, pp. 72, 149.
13 B. Durham, S. R. Wilson, D. J. Hodgson and T. J. Meyer, J. Am. Chem. Soc., 1980, 102, 600.
14 W. T. Tang, Ph.D. Thesis, University of Hong Kong, 1989.
15 G. M. Brown, H. J. Krentzien, M. Abe and H. Taube, Inorg. Chem., 1979, 18, 3374.
16 R. A. Marcus, J. Chem. Phys., 1956, 24, 4966; 1965, 43, 679.
17 R. A. Marcus, J. Phys. Chem., 1963, 67, 853; 1968, 72, 891.
18 W. Böttcher, G. M. Brown and N. Sutin, Inorg. Chem., 1979, 6, 1447.
19 W. F. Tong, unpublished work.
20 P. Bernhard, H.-B. Burgi, J. Hauser, H. Lehmann and A. Ludi, Inorg. Chem., 1982, 21. 3936.
21 H. C. Stynes and J. A. Ibers, Inorg. Chem., 1971, 10, 2304.

Received 17th September 1991; Paper 1/04800G

[^0]: \dagger Supplementary data available: see Instructions for Authors, J. Chem. Soc., Datton Trans., 1992, Issue 1, pp. xx-xxv.
 Non-SI unit employed: cal $=4.184 \mathrm{~J}$.

