Macrocyclic Organometallics. Part 2.1 An organorhodium(III) Complex of a Macrocyclic Triamine \dagger

Katsuma Hiraki, *, ${ }^{a}$ Yoshio Fuchita, ${ }^{a}$ Yuji Ohta, ${ }^{a}$ Johji Tsutsumida ${ }^{a}$ and
Kenneth I. Hardcastle *,b
${ }^{\text {a }}$ Department of Industrial Chemistry, Faculty of Engineering, Nagasaki University, Bunkyo-machi, Nagasaki 852, Japan
${ }^{b}$ Department of Chemistry, California State University, Northridge, CA 91330, USA

Abstract

A novel macrocyclic organometallic, trans-dichloro(7-methyl-3,7,11-triazabicyclo[11.3.1]heptadeca$1(17), 13,15$-trien-17-yl)rhodium(III)-acetone (1/1), has been prepared from $\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and the corresponding macrocyclic triamine in refluxing 2-methoxyethanol. X-Ray structural analysis shows that the crystals are monoclinic, space group $P 2_{1} / c$, with $a=9.494(1), b=20.480(4), c=19.541$ (3) \AA, $\beta=113.75(1)^{\circ}, Z=8$ and $R=0.054$ for 5999 observed reflections. The complex has trans chloride ligands, and the metallated macrocyclic triamine serves as a CN_{3}-type quadridentate ligand. The $R h-C$ (17) bond is the shortest rhodium(III)-aryl bond so far reported.

Organo-cobalt and -rhodium complexes containing a macrocyclic quadridentate ligand have been investigated extensively in connection with the chemistry of vitamin $\mathrm{B}_{12.2}{ }^{2,3} \mathrm{~A}$ few organocobalt complexes which have an intramolecularly bridged methine-, ${ }^{4}$ methylene- ${ }^{5}$ or vinyl-metal bond ${ }^{6}$ have been reported. Previously, we reported ${ }^{1}$ the synthesis of [$\left.\mathrm{PdL}^{1}\right]$]. $\mathrm{ClO}_{4} \cdot \mathrm{H}_{2} \mathrm{O} \quad\left[\mathrm{L}^{1}=7\right.$-methyl-3,7,11-triazabicyclo[11.3.1]hepta-deca-1(17), 13,15-trien-17-y1] in which the macrocyclic triamine $\left(\mathrm{HL}^{1}\right)$ is deprotonated and metallated directly at aromatic carbon $\mathrm{C}(17)$ and serves as a CN_{3}-type quadridentate ligand. Recently, Markies et al. ${ }^{7}$ prepared organomagnesium compounds of type $\left[\mathrm{Mg}\left\{\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2}\right)-1,3\right\} \mathrm{X}\right]$ ($\mathrm{X}=\mathrm{C}_{6} \mathrm{H}_{5}$ or Br). Such macrocyclic organometallics, in which one carbon of a multidentate macrocycle is bonded directly to the metal, are very rare. They are interesting from the viewpoints of their unique structure and reactivity. In this paper we describe the preparation and X-ray crystal structure analysis of the new macrocyclic organometallic trans- $\left[\mathrm{Rh}\left(\mathrm{L}^{1}\right) \mathrm{Cl}_{2}\right]$. $\mathrm{Me}_{2} \mathrm{CO}$.

Results and Discussion

Reactions of the Macrocyclic Triamine with $\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$.The macrocyclic triamine HL^{1} was treated with $\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ in ethanol at room temperature to give an addition product, $\mathrm{RhCl}_{3}\left(\mathrm{HL}^{1}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}$ 1. Complex 1 was so poorly soluble in organic solvents that NMR data could not be obtained. On the basis of the poor solubility, $\mathbf{1}$ is suggested to have a bridge polymeric structure, involving co-ordination of the secondary amine moieties of HL^{1}. The macrocyclic triamine is not metallated.

The triamine HL^{1} reacted with $\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ in refluxing 2-methoxyethanol (at ca. $125^{\circ} \mathrm{C}$) to give yellowish orange powders. The powders were separated by chromatography on Wakogel C-200 to afford two yellowish orange solids, trans$\left[\mathrm{Rh}\left(\mathrm{L}^{1}\right) \mathrm{Cl}_{2}\right] \cdot 0.5 \mathrm{H}_{2} \mathrm{O} 2 \mathrm{a}$ and 3. The IR spectrum of 2a showed three strong bands at 1060,1040 and $980 \mathrm{~cm}^{-1}$, ascribable to aromatic in-plane deformations, and two bands at 780 and 750 cm^{-1}, assignable to aromatic out-of-plane bendings. Each set of

[^0]
$H L^{1}$
(i)

${ }^{2 a}$

Scheme 1 Synthesis of complex 2. (i) $\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$; (ii) acetone
bands indicates the presence of a 1,2,3-trisubstituted phenyl moiety.
The ${ }^{1} \mathrm{H}$ NMR spectrum of complex $\mathbf{2 a}$ exhibited a singlet at δ $2.67\left(3 \mathrm{H}, \mathrm{CH}_{3}\right)$, two doublets at $\delta 3.85$ and 4.27 (each 2 H , ${ }^{2} J_{A B}=12 \mathrm{~Hz}$, aryl- $-\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$) and a slightly broad singlet near δ $6.87\left(3 \mathrm{H}\right.$, aryl-H), lacking $\mathrm{H}(17)$. The ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum

Fig. 1 Structure of trans- $\left[\mathrm{Rh}\left(\mathrm{L}^{1}\right) \mathrm{Cl}_{2}\right]$ with the numbering scheme adopted. Molecule A is shown (see text)

Fig. 2 Side-view of molecule A in complex 2b

Table 1 Bond lengths (\AA) for complex 2b*

$\mathrm{Rh}(\mathrm{A})-\mathrm{Cl}(1 \mathrm{~A})$	2.351(2)	$\mathrm{Rh}(\mathrm{B})-\mathrm{Cl}(1 \mathrm{~B})$	2.352(2)
$\mathrm{Rh}(\mathrm{A})-\mathrm{Cl}(2 \mathrm{~A})$	2.350 (2)	$\mathrm{Rh}(\mathrm{B})-\mathrm{Cl}(2 \mathrm{~B})$	2.343(2)
$\mathrm{Rh}(\mathrm{A})-\mathrm{N}(3 \mathrm{~A})$	2.079(5)	$\mathrm{Rh}(\mathrm{B})-\mathrm{N}(3 \mathrm{~B})$	2.081(6)
$\mathrm{Rh}(\mathrm{A})-\mathrm{N}(7 \mathrm{~A})$	2.236(5)	$\mathrm{Rh}(\mathrm{B})-\mathrm{N}(7 \mathrm{~B})$	2.246 (5)
$\mathrm{Rh}(\mathrm{A})-\mathrm{N}(11 \mathrm{~A})$	2.085(6)	$\mathrm{Rh}(\mathrm{B})-\mathrm{N}(11 \mathrm{~B})$	2.079(5)
$\mathrm{Rh}(\mathrm{A})-\mathrm{C}(17 \mathrm{~A})$	1.894(7)	$\mathrm{Rh}(\mathrm{B})-\mathrm{C}(17 \mathrm{~B})$	1.892(5)
$\mathrm{N}(3 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	$1.500(8)$	$\mathrm{N}(3 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})$	1.498(10)
$\mathrm{N}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$	1.472(10)	$\mathrm{N}(3 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})$	1.483(10)
$\mathrm{N}(7 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})$	1.495(11)	N (7B)-C(6B)	1.514(11)
N (7A)-C(8A)	1.498(9)	$\mathrm{N}(7 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})$	1.483(11)
N(7A)-C(18A)	1.508(10)	N (7B)-C(18B)	1.488(10)
$\mathrm{N}(11 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$	1.475(8)	$\mathrm{N}(11 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})$	1.486(10)
$\mathrm{N}(11 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})$	1.493(10)	$\mathrm{N}(11 \mathrm{~B})-\mathrm{C}(12 \mathrm{~B})$	1.494(8)
$\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	1.481(13)	$\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})$	1.541(11)
$\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$	1.514(9)	$\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})$	1.508(13)
$\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})$	1.545(10)	$\mathrm{C}(5 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})$	1.535(13)
$\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})$	1.552(12)	$\mathrm{C}(8 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})$	1.558(12)
$\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$	1.495(11)	$\mathrm{C}(9 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})$	1.505(9)
$\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})$	1.549(11)	C(12B)-C(13B)	1.512(12)
$\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})$	1.381(11)	$\mathrm{C}(13 \mathrm{~B})-\mathrm{C}(14 \mathrm{~B})$	1.397(11)
C(14A)-C(15A)	1.381(12)	C(14B)-C(15B)	1.414(16)
$\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})$	1.427(16)	$\mathrm{C}(15 \mathrm{~B})-\mathrm{C}(16 \mathrm{~B})$	1.408(13)
C(1A)-C(16A)	1.384(11)	C(1B)-C(16B)	1.395(10)
$C(17 A)-C(1 A)$	1.416(10)	C(17B)-C(1B)	1.357(12)
C(17A)-C(13A)	1.348(13)	C(17B)-C(13B)	1.406(10)

* Numbers in parentheses are estimated standard deviations (e.s.d.s) in the least significant digits.
showed one doublet at $\delta 165.2$ [$\left.{ }^{2} J(\mathrm{CRh})=19.8 \mathrm{~Hz}, \mathrm{C}(17)\right]$ and eight singlets, implying that 2 a has C_{s} symmetry. These data indicate that the triamine is unambiguously metallated at $C(17)$, serving as a CN_{3}-type quadridentate ligand in a similar fashion to that in $\left[\mathrm{PdL}^{1}\right] \mathrm{ClO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}^{1}$ (Scheme 1). It is noted that HL^{1}, which has two secondary amine moieties [$\mathrm{N}(3)$ and $\mathrm{N}(11)]$, was

Table 2 Selected bond angles (") for complex 2b*

(2)	176.0(1)	$\mathrm{Cl}(1 \mathrm{~B})-\mathrm{Rh}(\mathrm{B})-\mathrm{Cl}(2 \mathrm{~B})$	176.6(1)
$\mathrm{Cl}(1 \mathrm{~A})-\mathrm{Rh}(\mathrm{A})-\mathrm{N}(3 \mathrm{~A})$	87.0(2)	$\mathrm{Cl}(1 \mathrm{~B})-\mathrm{Rh}(\mathrm{B})-\mathrm{N}(3 \mathrm{~B})$	87.6(2)
$\mathrm{Cl}(1 \mathrm{~A})-\mathrm{Rh}(\mathrm{A})-\mathrm{N}(7 \mathrm{~A})$	92.9(2)	$\mathrm{Cl}(1 \mathrm{~B})-\mathrm{Rh}(\mathrm{B})-\mathrm{N}(7 \mathrm{~B})$	92.6(2)
$\mathrm{Cl}(1 \mathrm{~A})-\mathrm{Rh}(\mathrm{A})-\mathrm{N}(11 \mathrm{~A})$	87.7(2)	$\mathrm{Cl}(1 \mathrm{~B})-\mathrm{Rh}(\mathrm{B})-\mathrm{N}(11 \mathrm{~B})$	87.3(2)
$\mathrm{Cl}(2 \mathrm{~A})-\mathrm{Rh}(\mathrm{A})-\mathrm{N}(3 \mathrm{~A})$	91.0(2)	$\mathrm{Cl}(2 \mathrm{~B})-\mathrm{Rh}(\mathrm{B})-\mathrm{N}(3 \mathrm{~B})$	93.3(2)
$\mathrm{Cl}(2 \mathrm{~A})-\mathrm{Rh}(\mathrm{A})-\mathrm{N}(7 \mathrm{~A})$	90.8(2)	$\mathrm{Cl}(2 \mathrm{~B})-\mathrm{Rh}(\mathrm{B})-\mathrm{N}(7 \mathrm{~B})$	90.6(2)
$\mathrm{Cl}(2 \mathrm{~A})-\mathrm{Rh}(\mathrm{A})-\mathrm{N}(11 \mathrm{~A})$	93.5(2)	$\mathrm{Cl}(2 \mathrm{~B})-\mathrm{Rh}(\mathrm{B})-\mathrm{N}(11 \mathrm{~B})$	91.0(2)
$\mathrm{C}(17 \mathrm{~A})-\mathrm{Rh}(\mathrm{A})-\mathrm{N}(3 \mathrm{~A})$	83.2(3)	$\mathrm{C}(17 \mathrm{~B})-\mathrm{Rh}(\mathrm{B})-\mathrm{N}(3 \mathrm{~B})$	$82.9(3)$
$\mathrm{C}(17 \mathrm{~A})-\mathrm{Rh}(\mathrm{A})-\mathrm{N}(11 \mathrm{~A})$	82.8(3)	$\mathrm{C}(17 \mathrm{~B})-\mathrm{Rh}(\mathrm{B})-\mathrm{N}(11 \mathrm{~B})$	83.0(3)
$\mathrm{N}(3 \mathrm{~A})-\mathrm{Rh}(\mathrm{A})-\mathrm{N}(7 \mathrm{~A})$	98.6(2)	$\mathrm{N}(3 \mathrm{~B})-\mathrm{Rh}(\mathrm{B})-\mathrm{N}(7 \mathrm{~B})$	95.7(2)
$\mathrm{N}(3 \mathrm{~A})-\mathrm{Rh}(\mathrm{A})-\mathrm{N}(11 \mathrm{~A})$	165.1(2)	$\mathrm{N}(3 \mathrm{~B})-\mathrm{Rh}(\mathrm{B})-\mathrm{N}(11 \mathrm{~B})$	165.2(2)
$\mathrm{N}(7 \mathrm{~A})-\mathrm{Rh}(\mathrm{A})-\mathrm{N}(11 \mathrm{~A})$	95.6(2)	$\mathrm{N}(7 \mathrm{~B})-\mathrm{Rh}(\mathrm{B})-\mathrm{N}(11 \mathrm{~B})$	98.4(2)
$\mathrm{Rh}(\mathrm{A})-\mathrm{N}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$	115.6(3)	$\mathrm{Rh}(\mathrm{B})-\mathrm{N}(3 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})$	113.9(5)
$\mathrm{N}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$	111.8(6)	$\mathrm{N}(3 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})$	111.1(8)
$\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})$	115.9(7)	$\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})$	$115.5(6)$
$\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{N}(7 \mathrm{~A})$	114.0(6)	$\mathrm{C}(5 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})-\mathrm{N}(7 \mathrm{~B})$	114.8(7)
$\mathrm{C}(6 \mathrm{~A})-\mathrm{N}(7 \mathrm{~A})-\mathrm{Rh}(\mathrm{A})$	109.3(4)	$\mathrm{C}(6 \mathrm{~B})-\mathrm{N}(7 \mathrm{~B})-\mathrm{Rh}(\mathrm{B})$	107.8(5)
$\mathrm{Rh}(\mathrm{A})-\mathrm{N}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})$	108.8(5)	$\mathrm{Rh}(\mathrm{B})-\mathrm{N}(7 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})$	108.4(4)
$\mathrm{N}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})$	113.8(6)	$\mathrm{N}(7 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})-\mathrm{N}(9 \mathrm{~B})$	114.3(6)
$\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$	116.7(6)	$\mathrm{C}(8 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})$	115.0(7)
$\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{N}(11 \mathrm{~A})$	111.5(6)	$\mathrm{C}(9 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})-\mathrm{N}(11 \mathrm{~B})$	111.7(6)
$\mathrm{C}(10 \mathrm{~A})-\mathrm{N}(11 \mathrm{~A})-\mathrm{Rh}(\mathrm{A})$	114.1(5)	$\mathrm{C}(10 \mathrm{~B})-\mathrm{N}(11 \mathrm{~B})-\mathrm{Rh}(\mathrm{B})$	115.1(4)
$\mathrm{Rh}(\mathrm{A})-\mathrm{C}(17 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$	$117.4(6)$	$\mathrm{Rh}(\mathrm{B})-\mathrm{C}(17 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})$	120.0(5)
$\mathbf{R h}(\mathrm{A})-\mathrm{C}(17 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})$	120.5(5)	$\mathrm{Rh}(\mathrm{B})-\mathrm{C}(17 \mathrm{~B})-\mathrm{C}(13 \mathrm{~B})$	118.1(6)
$\mathrm{Rh}(\mathrm{A})-\mathrm{N}(7 \mathrm{~A})-\mathrm{C}(18 \mathrm{~A})$	116.1(4)	$\mathrm{Rh}(\mathrm{B})-\mathrm{N}$ (7B)-C(18B)	116.3(5)

* Numbers in parentheses are e.s.d.s in the least significant digits.
easily metallated at $\mathrm{C}(17)$, in sharp contrast with the fact that secondary benzylamines were not orthometallated by $\mathrm{Li}_{2^{-}}$ $\left[\mathrm{PdCl}_{4}\right] .{ }^{8}$ Furthermore, some cyclometallated complexes of rhodium(III) were formed by direct reactions of $\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ with aryl-substituted nitrogen bases. ${ }^{9-11}$

The elemental analyses of the minor component, 3, were similar to the corresponding data for 2 a . The ${ }^{1} \mathrm{H}$ NMR spectrum showed two singlets at $\delta 2.60(2.4 \mathrm{H})$ and $2.67(0.6 \mathrm{H})$, assignable to N -methyl protons. The latter singlet coincided completely with the corresponding one of $\mathbf{2 a}$ (see above). These data indicate that 3 consisted of $2 a$ and its isomer, $\left[\mathrm{Rh}\left(\mathrm{L}^{1}\right)\right.$ $\left.\mathrm{Cl}_{2}\right] \cdot 0.5 \mathrm{H}_{2} \mathrm{O} 3 \mathrm{a}$, in a ratio of about $1: 4$. However, we failed to isolate the latter isomer in a pure state. Complex $3 \mathrm{3a}$ was tentatively ascribed to cis- $\left[\mathrm{Rh}\left(\mathrm{L}^{1}\right) \mathrm{Cl}_{2}\right] \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$. Blake et al. ${ }^{12}$ reported a cis-type iridium(III) complex $\left[\operatorname{IrCl}(\mathrm{H})\left(\mathrm{L}^{2}\right)\right] \mathrm{PF}_{6}$ containing a macrocyclic tetraamine, 7 -methyl-3,7,11,17-tetra-azabicyclo[11.3.1]heptadeca-1(17),13,15-triene (L^{2}).

Solid-state Structure of trans- $\left[\mathrm{Rh}\left(\mathrm{L}^{1}\right) \mathrm{Cl}_{2}\right] \cdot \mathrm{Me}_{2} \mathrm{CO} 2 \mathrm{bb}$.Complex 2a was recrystallized from acetone to give yellowish orange crystals of trans-[$\left.\mathrm{Rh}\left(\mathrm{L}^{1}\right) \mathrm{Cl}_{2}\right] \cdot \mathrm{Me}_{2} \mathrm{CO} 2 \mathrm{~b}$. The molecular geometry and atomic numbering scheme are shown in Fig. 1, bond lengths and selected bond angles in Tables 1 and 2, respectively. The whole structure of $\mathbf{2 b}$ is fairly similar to that of trans- $\left[\mathrm{Rh}\left(\mathrm{L}^{3}\right) \mathrm{Cl}_{2}\right]^{+} \quad \mathrm{L}^{3}=2,7,12$-trimethyl-3,7,11,17-tetraaza-bicyclo[11.3.1]heptadeca-1(17), 13,15 -triene), ${ }^{13}$ except for the $\mathrm{Rh}-\mathrm{C}(17)$ bond in place of the $\mathrm{Rh}-\mathrm{N}(17)$ bond and the two additional methyl groups at $\mathrm{C}(2)$ and $\mathrm{C}(12)$ in the latter complex.

There are two unique molecules both with a distortedoctahedral structure around the Rh atom and two transchlorine atoms. The Rh atom lies $0.026(1) \AA$ above the leastsquares plane defined by $\mathrm{C}(17)-\mathrm{N}(3)-\mathrm{N}(7)-\mathrm{N}(11)$ in molecule A, but $0.035(1) \AA$ below in molecule B . The side view of molecule A indicates that the zigzag $\mathrm{N}(3)-\mathrm{N}(7)-\mathrm{N}(11)$ chain is a little twisted (Fig. 2), although the molecule has C_{s} symmetry, as shown by NMR spectra in chloroform solution. We don't know why the Rh atoms lie at different positions in the two molecules and the chain is twisted; these may just have to do with the strain in the macrocyclic ring around the Rh atom. However, molecule B is omitted in Figs. 1 and 2 since the difference between A and B is small as a whole.

The geometry around the $\mathrm{Rh}-\mathrm{C}(17)-\mathrm{N}(3)-\mathrm{N}(11)$ moiety in

Table 3 Positional parameters and their e.s.d.s for complex $\mathbf{2 b}$

Atom	x	y	z	Atom	x	y	z
$\mathrm{Rh}(\mathrm{A})$	0.543 33(5)	$0.08079(2)$	$0.31518(3)$	$\mathrm{Rh}(\mathrm{B})$	$-0.02030(5)$	0.289 99(2)	0.237 76(3)
$\mathrm{Cl}(1 \mathrm{~A})$	0.515 8(2)	$0.19233(7)$	0.284 14(9)	$\mathrm{Cl}(1 \mathrm{~B})$	0.026 8(2)	$0.18877(8)$	0.299 82(9)
$\mathrm{Cl}(2 \mathrm{~A})$	0.5558 (2)	-0.032 09(8)	0.338 5(1)	$\mathrm{Cl}(2 \mathrm{~B})$	-0.079 2(2)	0.387 92(8)	0.170 09(9)
C(1A)	0.273 3(8)	$0.0510(4)$	$0.1867(4)$	C(1B)	-0.035 6(8)	0.219 8(4)	0.110 4(4)
C(2A)	0.2123 (8)	$0.0519(4)$	0.245 5(4)	C(2B)	$0.1305(8)$	0.2460 (5)	0.139 5(4)
N(3A)	0.323 8(5)	0.0853 (3)	0.314 3(3)	N(3B)	0.174 5(5)	0.273 3(3)	0.216 5(3)
C(4A)	0.3113 (7)	0.064 1(4)	0.383 6(4)	C(4B)	0.277 6(7)	0.330 7(4)	0.2308 (5)
C(5A)	0.424 5(8)	0.099 6(4)	$0.4514(4)$	C(5B)	0.337 7(8)	0.3511 (4)	$0.3117(5)$
C(6A)	0.5931 (8)	0.075 9(4)	0.4805 (4)	C(6B)	$0.2228(8)$	0.3879 (4)	0.3347 (5)
N(7A)	0.679 3(6)	0.1010 (3)	0.436 6(3)	N(7B)	0.102 2(6)	0.345 3(3)	0.344 7(3)
C(8A)	0.826 2(8)	0.062 8(4)	0.462 5(4)	C(8B)	-0.0089(9)	0.390 7(4)	0.355 4(4)
C(9A)	0.923 2(7)	0.075 8(4)	0.416 2(4)	C(9B)	-0.159 7(8)	0.357 6(4)	0.3515 (4)
C(10A)	0.867 6(7)	0.045 2(4)	0.340 4(4)	C(10B)	-0.278 2(7)	0.3451 (4)	0.273 7(4)
N (11A)	0.7321 (5)	$0.0797(3)$	0.286 3(3)	N(11B)	-0.2380(5)	0.287 3(3)	0.239 2(3)
C(12A)	0.687 4(9)	0.055 2(5)	0.208 4(4)	C(12B)	$-0.3540(7)$	0.273 7(4)	0.1619 (4)
C(13A)	$0.5098(9)$	0.052 2(4)	0.167 8(4)	C(13B)	-0.278 9(8)	0.233 8(4)	0.1207 (4)
C(14A)	0.431(1)	$0.0367(5)$	0.093 2(5)	C(14B)	-0.351(1)	0.192 5(4)	0.059 6(5)
C(15A)	0.273(1)	0.0301 (5)	0.0650 (5)	C(15B)	-0.262(1)	0.164 4(5)	0.0241 (5)
C(16A)	0.191(1)	0.036 9(4)	0.1118 (5)	C(16B)	-0.104(1)	0.178 5(4)	0.049 1(4)
C(17A)	0.434 4(8)	0.059 9(3)	$0.2128(4)$	C(17B)	-0.1193(7)	0.244 0(3)	$0.1469(3)$
C(18A)	0.718(1)	$0.1716(4)$	0.457 6(4)	C(18B)	0.176 (1)	0.305 3(4)	0.413 6(5)

complex 2 b is comparable with the $\mathrm{Rh}-\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{N}(2)$ one in $\left[\mathrm{RhCl}_{2}\left\{\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CH}_{2} \mathrm{NMe}_{2}\right)_{2}-2,6\right\}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] 4^{14}$ or [RhMe $\left.\left\{\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CH}_{2} \mathrm{NMe}_{2}\right)_{2}-2,6\right\} \mathrm{I}\right]$ 5. ${ }^{15}$ The $\mathrm{Rh}-\mathrm{N}(3)$ and $\mathrm{Rh}-\mathrm{N}(11)$ bonds (2.079 and $2.085 \AA$) of $\mathbf{2 b}$ are slightly shorter than the $\mathrm{Rh}-\mathrm{N}$ bonds (2.118 and $2.160 \AA$) in 4^{14} and $5 .^{15}$ It is noteworthy that the $\mathrm{Rh}-\mathrm{C}(17)$ bonds (1.892 and $1.894 \AA$) in $\mathbf{2 b}$ are the shortest of all the rhodium(iII)-aryl bonds encountered so far. ${ }^{14-17}$ This is possibly a combined result of the strong trans influence of the aryl group and the effect of the macrocyclic ligand. Accordingly, the Rh atom is displaced to the $\mathrm{C}(17)$ side from the centre of the octahedral structure, and the $\mathrm{Rh}-\mathrm{N}(7)$ bond is long in comparison with both the two other $\mathrm{Rh}-\mathrm{N}$ bonds in 2 b and the $\mathrm{Rh}-\mathrm{N}$ bonds in $4,4^{14} 5^{15}$ and $\left[\mathrm{RhCl}_{2}(\mathrm{tmc})\right] \mathrm{PF}_{6} \quad(\mathrm{tmc}=1,4,8,11$-tetramethyl-1,4,8,11-tetraazacyclotetradecane). ${ }^{18}$ The long $\mathrm{Rh}-\mathrm{N}(7)$ bond causes somewhat large $\mathrm{Rh}-\mathrm{N}(3)-\mathrm{C}(4), \mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6), \mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(7)$, $N(7)-C(8)-C(9), C(8)-C(9)-C(10)$ and $C(10)-N(11)-R h$ angles in the two six-membered chelates. The other characteristic feature of 2 b is that the $\mathrm{Rh}-\mathrm{N}(7)-\mathrm{C}(18)$ angle is larger than the normal angle $\left(109^{\circ}\right)$ for a tetrahedral structure. This is probably associated with the steric interaction between the N-methyl group and the $\mathrm{Cl}(1)$ atom.

The final Fourier difference map shows only a little electron density between the molecules, in a sort of channel, but we could not identify an acetone unit.

Experimental

The cyclic triamine HL^{\prime} was prepared according to the literature. ${ }^{1}$ The other procedures were almost the same as described previously. ${ }^{19}$

Reaction of HL^{1} with $\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ at Room Temperature.An ethanol solution ($6 \mathrm{~cm}^{3}$) containing $\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.22 \mathrm{~g})$ and $\mathrm{HL}^{1}(0.28 \mathrm{~g})$ was stirred at room temperature for 7 h . A small amount of a dark brown precipitate was filtered off. The resulting solution was evaporated to dryness to give a dark violet solid $\mathrm{RhCl}_{3}\left(\mathrm{HL}^{1}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}$ 1. Yield 81%, m.p. $216^{\circ} \mathrm{C}$ (Found: C, 36.7; H, 5.9; N, 7.7. $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Rh}$ requires C, 36.6; H, 5.9; N, 8.5\%). IR(KBr)/ $\mathrm{cm}^{-1}: \mathrm{v}(\mathrm{NH})$ and $v(\mathrm{OH})$ 3440s (br), $v\left(\mathrm{CH}_{2}\right) 2940 \mathrm{~s}$, $v($ aromatic ring) $1605 \mathrm{~s}, 1590 \mathrm{~m}$, $\delta\left(\mathrm{CH}_{2}\right)$ and $\delta\left(\mathrm{CH}_{3}\right) 1450 \mathrm{~s}, 1380 \mathrm{~m}$, $\delta($ aromatic in-plane deformation) $1150 \mathrm{~m}, 1110 \mathrm{~m}, 1040 \mathrm{~m}, \pi($ aromatic out-of-plane bending) $800 \mathrm{~m}, 695 \mathrm{~m}$ and $\rho\left[\left(\mathrm{CH}_{2}\right)_{3}\right.$ rocking $] 740 \mathrm{~m}$.

Preparation of $\left[\mathrm{Rh}\left(\mathrm{L}^{1}\right) \mathrm{Cl}_{2}\right] \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$.-A red-brown suspen-
sion ($60 \mathrm{~cm}^{3}$) of 2-methoxyethanol containing HL^{1} (3.63 mmol) and $\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.48 \mathrm{~g})$ was refluxed for 9 h . A small amount of a black precipitate was filtered off. The resulting solution was evacuated to dryness with a rotary evaporator. The residue was washed with water ($10 \mathrm{~cm}^{3}$) three times to afford 0.44 g of a yellowish orange powder, the crude complex $\left[\mathrm{Rh}\left(\mathrm{L}^{1}\right) \mathrm{Cl}_{2}\right]$. $0.5 \mathrm{H}_{2} \mathrm{O}$. This was chromatographed on a column of Wakogel C-200 (13 $\times 260 \mathrm{~mm}$). The first yellow band eluted with dichloromethane was dried under vacuum to give a yellowish orange solid, $\left[\mathrm{Rh}\left(\mathrm{L}^{1}\right) \mathrm{Cl}_{2}\right] \cdot 0.5 \mathrm{H}_{2} \mathrm{O} 3$ 3. Yield 8% (Found: $\mathrm{C}, 42.3$; $\mathrm{H}, 5.8 ; \mathrm{N}, 9.4 . \mathrm{C}_{15} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{0.5} \mathrm{Rh}$ requires $\mathrm{C}, 42.0 ; \mathrm{H}, 5.9 ; \mathrm{N}$, 9.8%). ${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 293 \mathrm{~K}, 100 \mathrm{MHz}\right): \delta 1.52\left(\mathrm{H}_{2} \mathrm{O}\right), 1.8-$ 2.2 (br, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, 4 \mathrm{H}\right), 2.60\left(\mathrm{~s}, \mathrm{CH}_{3}, 2.4 \mathrm{H}\right), 2.67\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$, 0.6 H), 2.4-3.4 (br, $\mathrm{NCH}_{2}, 8 \mathrm{H}$), 3.7-4.4 (br, aryl- $\left.\mathrm{CH}_{2}, 4 \mathrm{H}\right)$ and $6.86\left(\mathrm{br}, \mathrm{C}_{6} \mathrm{H}_{3}, 3 \mathrm{H}\right)$.

The second yellow fraction was eluted with an additional portion of dichloromethane and evacuated to dryness to give yellowish orange crystals of trans-[Rh($\left.\left.\mathrm{L}^{1}\right) \mathrm{Cl}_{2}\right] \cdot 0.5 \mathrm{H}_{2} \mathrm{O} \quad 2 \mathrm{a}$. Yield 52% m.p. $294{ }^{\circ} \mathrm{C}$ (Found: C, 41.6; H, 5.6; N, 9.3. $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{0.5} \mathrm{Rh}$ requires $\mathrm{C}, 42.0 ; \mathrm{H}, 5.9 ; \mathrm{N}, 9.8 \%$). IR(KBr)/ $\mathrm{cm}^{-1}: v(\mathrm{NH}) 3240 \mathrm{~s}, \mathrm{v}($ aromatic CH$) 3030 \mathrm{w}, \mathrm{v}\left(\mathrm{CH}_{2}\right)$ $2920 \mathrm{~s}, 2840 \mathrm{~m}$, v(aromatic ring) $1570 \mathrm{~m}, 1560 \mathrm{w}, \delta\left(\mathrm{CH}_{2}\right) 1470 \mathrm{~s}$, $1430 \mathrm{~s}, \delta\left(\mathrm{CH}_{3}\right) 1455 \mathrm{~s}, 1340 \mathrm{~m}, \delta$ (aromatic in-plane deformation) $1060 \mathrm{~s}, 1040 \mathrm{~s}, 980 \mathrm{~s} ; \pi$ (aromatic out-of-plane bending) 780 m , 750 s and $\rho\left[\left(\mathrm{CH}_{2}\right)_{3}\right.$ rocking $] 720 \mathrm{~m}$. NMR $\left(\mathrm{CDCl}_{3}, 293 \mathrm{~K}\right):{ }^{1} \mathrm{H}$ $(100 \mathrm{MHz}), \delta 1.50\left(\mathrm{H}_{2} \mathrm{O}\right), 1.6-2.2\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, 4 \mathrm{H}\right), 2.3-$ $2.9\left(\mathrm{~m}, \mathrm{NCH}_{2}, 4 \mathrm{H}\right), 2.67\left(\mathrm{~s}, \mathrm{CH}_{3}, 3 \mathrm{H}\right), 3.0-3.4\left(\mathrm{~m}, \mathrm{NCH}_{2}, 4 \mathrm{H}\right)$, $3.85\left(\mathrm{~d},{ }^{2} J_{\mathrm{AB}}=12\right.$, aryl- $\left.\mathrm{CH}_{\mathrm{A}}, 2 \mathrm{H}\right), 4.27\left(\mathrm{~d},{ }^{2} J_{\mathrm{AB}}=12\right.$, aryl$\left.\mathrm{CH}_{\mathrm{B}}, 2 \mathrm{H}\right), 4.5(\mathrm{br}, \mathrm{NH}, 2 \mathrm{H})$ and $6.87\left(\mathrm{br} \mathrm{s}, \mathrm{C}_{6} \mathrm{H}_{3}, 3 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ $\left\{{ }^{1} \mathrm{H}\right\}(22.628 \mathrm{MHz}), \delta 26.7\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, 2 \mathrm{C}\right), 45.8$ (s, $\left.\mathrm{CH}_{3}\right), 52.1\left(\mathrm{~s}\right.$, aryl- $\left.\mathrm{CH}_{2}, 2 \mathrm{C}\right), 61.2\left(\mathrm{~s}, \mathrm{NCH}_{2}, 2 \mathrm{C}\right)$ and $61.9(\mathrm{~s}$, $\left.\mathrm{NCH}_{2}, 2 \mathrm{C}\right), 119.5$ [s, C(14) and C(16), 2 C], 122.7 [s, C(15)], $142.2[\mathrm{~s}, \mathrm{C}(1)$ and $\mathrm{C}(13), 2 \mathrm{C}]$ and $165\left[\mathrm{~d},{ }^{1} J(\mathrm{CRh})=19.8 \mathrm{~Hz}\right.$, C(17)].

Complex 2a was recrystallized by gentle evaporation of the concentrated acetone solution to afford yellowish orange crystals of trans- $\left[\mathrm{Rh}\left(\mathrm{L}^{1}\right) \mathrm{Cl}_{2}\right] \cdot \mathrm{Me}_{2} \mathrm{CO} \mathbf{2 b}$ (Found: C, 44.5; H, 6.2; $\mathrm{N}, 8.6 . \mathrm{C}_{18} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{ORh}$ requires $\mathrm{C}, 45.2 ; \mathrm{H}, 6.3 ; \mathrm{N}, 8.8^{\circ}{ }_{0}$). IR $(\mathrm{KBr}) / \mathrm{cm}^{-1}: v(\mathrm{C}=\mathrm{O}) 1705$ vs and $\delta\left(\mathrm{CH}_{3}\right) 1370$ s; other bands almost the same as those of 2 a .

Crystal Structure Determination of Complex 2b.-A yellowish orange rectangular crystal of complex $\mathbf{2 b}$ with approximate dimensions $0.30 \times 0.52 \times 0.60 \mathrm{~mm}$ was mounted on a glass fibre and placed in a goniometer head on an Enraf-Nonius CAD4 computer-controlled κ axis diffractometer equipped
with a graphite monochromator and $\mathrm{Mo}-\mathrm{K} \boldsymbol{\alpha}$ radiation ($\lambda=$ $0.71073 \AA$).

The unit-cell parameters and an orientation matrix for data collection were obtained by autoindexing and least-squares refinement of 22 reflections in the range $7<\theta<10^{\circ}$.

Crystal data. $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{ORh}$, monoclinic, space group $P 2_{1} / c, \quad a=9.494(1), \quad b=20.480(4), \quad c=19.541(3) \AA \AA, \quad \beta=$ $113.75(1)^{\circ}, U=3478(2) \AA^{3}, Z=8, D_{\mathrm{c}}=1.66 \mathrm{~g} \mathrm{~cm}^{-3}$ and $\mu=$ $12.8 \mathrm{~cm}^{-1}$. The space group was determined from the extinctions and subsequent least-squares refinement. A total of 7197 unique reflections were collected at a temperature of $25 \pm 1{ }^{\circ} \mathrm{C}$ using the ω-scan technique to a maximum 2θ angle of 60.0°.

Data reduction. As a check on the crystal and electronic stability, three representative reflections were measured every 120 min . A linear decay correction was applied to the data. Lorentz and polarization corrections and an empirical absorption correction based on a series of ψ scans were made. Relative transmission coefficients ranged from 0.757 to 0.999 with an average value of 0.940 .

Structure solution and refinement. The structure was solved with SHELXS 86^{20} using the Patterson heavy-atom method which revealed the positions of six atoms. The remaining atoms were located in successive Fourier difference syntheses and leastsquare refinements. Hydrogen atoms were not included in the calculations. Anomalous dispersion effects were included in $F_{\mathrm{c}} ;{ }^{21}$ the values for Δf^{\prime} and $\Delta f^{\prime \prime}$ were those of Cromer. ${ }^{22}$ Only 5999 reflections having $F_{0}>3.0 \sigma\left(F_{0}\right)$ were used in the refinements. The final cycle of least squares included 379 variables and converged with a maximum parameter shift e.s.d. of 0.00 and agreement factors of $R 0.0540$ and $R^{\prime} 0.0612$, respectively. The standard deviation of an observation of unit weight was 2.39 . The largest peak in the final Fourier difference map had a height of $0.53 \mathrm{e}^{\AA^{-3}}$ with an estimated error based on ΔF of $0.12{ }^{23}$ Plots of $\boldsymbol{\Sigma} \cdot\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$ versus $\left|F_{\mathrm{o}}\right|$, the reflection order in data collection, $\sin \theta / \lambda$, and various classes of indices showed no unusual trends. Scattering factors were taken from Cromer and Waber. ${ }^{24}$ All calculations were performed on a MicroVAX II computer using SDP/VAX. ${ }^{25}$ The final atomic coordinates are given in Table 3.

Additional material available from the Cambridge Crystallographic Data Centre comprises thermal parameters and remaining bond lengths and angles.

Acknowledgements

The authors are grateful to Professor Tetsuo Uechi of Kyusyu University for his co-operation in the computer calculations and thank Shoei Chemical Industry for financial support.

References

1 Part 1, K. Hiraki, J. Tsutsumida and Y. Fuchita, Chem. Lett., 1986, 337.

2 J. M. Pratt, Inorganic Chemistry of Vitamin B_{12}, Academic Press, London, 1972.
3 R. D. W. Kemmitt and D. R. Russell, Comprehensive Organometallic Chemistry, eds. G. Wilkinson and F. G. A. Stone, Pergamon, Oxford, 1982, vol. 5, pp. 80-131 and refs. therein; R. P. Hughes, Comprehensive Organometallic Chemistry, pp. 387-392 and refs. therein.
4 A. W. Johnson, D. Ward, P. Batten, A. L. Hamilton, G. Shelton and C. M. Elson, J. Chem. Soc., Perkin Trans. 1, 1975, 2076.

5 H. Flohr, W. Pannhorst and J. Retey, Angew. Chem., Int. Ed. Engl., 1976, 15, 561.
6 M. C. Weiss, G. C. Gorden and V. L. Goedken, J. Am. Chem. Soc., 1979, 101, 857.
7 P. R. Markies, T. Nomoto, O. S. Akkerman, F. Brickelhaupt, W. J. J. Smeets and A. L. Spek, Angew. Chem., Int. Ed. Engl., 1988, 27, 1084.
8 A. C. Cope and E. C. Friendrich, J. Am. Chem. Soc., 1968, 90, 909.
9 M. Nonoyama and K. Yamazaki, Inorg. Nucl. Chem. Letl., 1971, 7, 943.

10 H. Onoue and I. Moritani, J. Organomet. Chem., 1972, 44, 189.
11 M. Nonoyama, J. Organomet. Chem., 1975, 86, 263.
12 A. J. Blake, T. I. Hyde and M. Schröder, J. Chem. Soc., Dalton Trans., 1988, 1165.
13 A. J. Blake, T. I. Hyde, R. S. E. Smith and M. Schröder, J. Chem. Soc., Chem. Commun., 1986, 334.
14 A. A. H. van der Zeijden, G. van Koten, R. Luijk, K. Vrieze, C. Slob, H. Krabbendam and A. L. Spek, Inorg. Chem., 1988, 27, 1014.

15 A. A. H. van der Zeijden, G. van Koten, J. M. Ernsting, C. J. Elsevier, B. Krijnen and C. H. Stam, J. Chem. Soc., Dalton Trans., 1989, 317.

16 R. J. Hoare and O. S. Mills, J. Chem. Soc., Dalton Trans., 1972, 2141.
17 C. Nemeh, C. Jensen, E. Binamira-Soviaga and W. C. Kaska, Organometallics, 1983, 2, 1442.
18 A. J. Blake, G. Reid and M. Schröder, J. Chem. Soc., Dalton Trans., 1988, 1561.
19 K. Hiraki, Y. Fuchita, H. Nakaya and S. Takakura, Bull. Chem. Soc. Jpn., 1979, 52, 2531
20 G. M. Sheldrick, SHELXS 86, Program for Crystal Structure Solution, University of Göttingen, 1986.
21 J. A. Ibers and W. C. Hamilton, Acta Crystallogr., 1964, 17, 781.
22 D. T. Cromer, International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4, Table 2.3.1.
23 D. W. J. Cruickshank, Acta Crystallogr., 1949, 2, 154.
24 D. T. Cromer and J. T. Waber, International Tables for X-Ray. Crystallography, Kynoch Press, Birmingham, 1974, vol. 4, Table 2.2B.

25 B. A. Frenz, Enraf-Nonius CAD 4 SDP, A Real-time System for Concurrent X-Ray Data Collection and Crystal Structure Determination, in Computing in Crystallography, eds. H. Schenk, R. OlthofHazelkamp, H. van Konigsveld and G. C. Bassi, Delft University Press, Delft, 1978, pp. 64-71.

Received 6th August 1991; Paper 1/04108H

[^0]: + Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1992, Issue 1, pp. xx-xxv.

