Alkylidyne(carbaborane) Complexes of the Group 6 Metals. Part 5. ${ }^{1}$ Protonation Studies on [NEt_{4}][W($\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{OMe}$-2)-$\left.(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right] \dagger$

John C. Jeffery, ${ }^{a}$ Sihai Li, ${ }^{a}$ David W. I. Sams ${ }^{a}$ and F. Gordon A. Stone ${ }^{*, b}$
${ }^{a}$ School of Chemistry, The University, Bristol BS8 1 TS, UK
${ }^{b}$ Department of Chemistry, Baylor University, Waco, TX 76798-7348, USA

Abstract

Dichloromethane solutions of $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{W}(\equiv \mathrm{CR})(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right]\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-2\right)$ at $-78^{\circ} \mathrm{C}$ on treatment with $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ in the presence of the substrates $\mathrm{L}=\mathrm{CO}, \mathrm{PPh}_{3}, \mathrm{PHPh}_{2}, \mathrm{CNBu}^{t}$ and $\mathrm{PhC}_{2} \mathrm{Ph}$ afford the complexes $\left[\mathrm{W}(\mathrm{CO})_{2} \mathrm{~L}_{2}\left\{\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{8}\left(\mathrm{CH}_{2} \mathrm{R}\right) \mathrm{Me}_{2}\right\}\right] \quad\left(\mathrm{L}=\mathrm{CO}, \mathrm{PHPh}_{2}\right.$ or $\left.\mathrm{CNBu}^{2}\right)$, $\left[\mathrm{W}(\mathrm{CO})_{3^{-}}\right.$ $\left.\left(\mathrm{PPh}_{3}\right)\left\{\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{8}\left(\mathrm{CH}_{2} \mathrm{R}\right) \mathrm{Me}_{2}\right\}\right]$ and $\left[\mathrm{W}(\mathrm{CO})\left(\mathrm{PhC}_{2} \mathrm{Ph}_{2}\left\{\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{8}\left(\mathrm{CH}_{2} \mathrm{R}\right) \mathrm{Me}_{2}\right\}\right]\right.$ respectively. The corresponding protonation reaction employing dppm ($\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}$) as the substrate yields $\left[\mathrm{W}(\mathrm{CO})_{2}-\right.$ (dppm) $\left.\left\{\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{3} \mathrm{H}_{8}\left(\mathrm{CH}_{2} \mathrm{R}\right) \mathrm{Me}_{2}\right\}\right]$ as the major product, together with small quantities of $\left[\mathrm{W}\left\{\mathrm{CH}(\mathrm{R}) \mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{PPh}\right\}(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right]$. The structure of $\left[\mathrm{W}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)\left\{\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{3^{-}}\right.\right.$ $\left.\left.\left(\mathrm{CH}_{2} \mathrm{R}\right) \mathrm{Me}_{2}\right\}\right]$ has been established by X -ray diffraction. The tungsten atom is $\eta^{5} \mathrm{co}$-ordinated by the nidoicosahedral fragment $\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{8}\left(\mathrm{CH}_{2} \mathrm{R}\right) \mathrm{Me}_{2}$. In the latter the exopolyhedral $\mathrm{CH}_{2} \mathrm{R}$ group is bonded to the boron atom which is in the β position with respect to the two carbon atoms in the open pentagonal $\widehat{C C B B B}$ face of the cage ligating the tungsten. The latter also carries three terminally bound CO groups and the PPh_{3} ligand. Addition of aqueous HI to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions of [NEt_{4}] [W $(\equiv \mathrm{CR})(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)$] affords the salt $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{WI}(\mathrm{CO})_{3}\left\{\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{8}\left(\mathrm{CH}_{2} \mathrm{R}\right) \mathrm{Me}_{2}\right\}\right]$. In the latter there is a $2,1,8$ arrangement for the nonboron vertices of the $\mathrm{WC}_{2} \mathrm{~B}_{9}$ icosahedron, in contrast with the closo-3,1,2-WC2 B_{9} structures of the other products. The NMR data (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\},{ }^{11} \mathrm{~B}-\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$) for the new compounds are reported and discussed in relation to the molecular structures.

The isolobally mapped alkylidynetungsten compounds [W$\left.(\equiv \mathrm{CR})(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ and $[\mathrm{Y}]\left[\mathrm{W}(\equiv \mathrm{CR})(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9}-\right.\right.$ $\left.\left.\mathrm{Me}_{2}\right)\right]\left[\mathrm{Y}=\mathrm{NEt}_{4}, \mathrm{PPh}_{4}, \mathrm{~N}\left(\mathrm{PPh}_{3}\right)_{2}\right.$, etc.; $\mathrm{R}=$ aryl or alkyl] afford a variety of structurally different complexes upon protonation. The nature of these products depends on the acid used for protonation, the R group attached to the ligated carbon of the alkylidyne ligand, and upon whether the tungsten atom carries a $\mathrm{C}_{5} \mathrm{H}_{5}$ or $\mathrm{CC}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}$ ligand. ${ }^{1.2}$ The effect of different R groups is illustrated by protonation studies on the species $\left[\mathrm{W}(\equiv \mathrm{CR})(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right.$ 1a or $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-2$ 1b). Treatment of $\mathbf{1 a}$ with $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ affords the μ-alkyneditungsten complex $\left[\mathrm{W}_{2}(\mu-\mathrm{H})\left\{\mu-\mathrm{C}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2}\right\}(\mathrm{CO})_{4}(\eta\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]\left[\mathrm{BF}_{4}\right]$ 2. ${ }^{2 a}$ There is good evidence that this product forms cia the intermediacy of $\left[\mathrm{W}\left\{=\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right\}(\mathrm{CO})_{2}(\eta\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left[\mathrm{BF}_{4}\right]$ 3a. However, this alkylidenetungsten complex cannot be isolated. ${ }^{2 a, 3}$ In contrast, treatment of $\mathbf{1 b}$ with $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ gives $\left[\mathrm{W}\left\{=\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-2\right\}(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$] $\left[\mathrm{BF}_{4}\right]$ 3b, which is sufficiently stable to be characterised spectroscopically. Moreover, the alkylidene group in $\mathbf{3 b}$ can be captured by addition of PPh_{3} to yield the ylide complex $\left[\mathrm{W}\left\{\sigma, \eta^{2}-\mathrm{CH}\left(\mathrm{PPh}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-2\right\}(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left[\mathrm{BF}_{4}\right] 4 .{ }^{2 b}$
Substituting nido- $\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}$ cage ligands for $\eta-\mathrm{C}_{5} \mathrm{H}_{5}$ groups in alkylidynetungsten chemistry produces very different reactivity patterns. Thus treatment of $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{W}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-\right.\right.$ 4) $(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)$] 5a with $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ gives [W(CO) $)_{4}\left\{\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{8}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{Me}_{2}\right.$ \} $] \mathbf{6 a}$, a product which very likely forms via the intermediacy of the complex $\left.\left[W_{i}=\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right\}(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathbf{B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right]$. Insertion of the alkylidene group in the latter into a cage $\mathbf{B}-\mathrm{H}$ bond, with addition at the tungsten centre of CO molecules from the solution, affords the final product 6a. ${ }^{2 c}$ The non-spectator role

[^0]of the $\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}$ ligand thus permits a reaction pathway not possible with the alkylidene complex 3a. Consequently, the latter reacts with its precursor 1a, present in the reaction mixtures, to yield the ditungsten salt 2.

In this paper we extend the scope of these studies by employing the species $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{W}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{OMe-}\right)(\mathrm{CO})_{2}\left(\eta^{5}-\right.\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right] \mathbf{5 b}$. These new experiments allow comparisons to be made with previous protonation reactions involving the reagents 1 b and 5 a .

Results and Discussion

Treatment of a CO-saturated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of compound $\mathbf{5 b}$ at $-78{ }^{\circ} \mathrm{C}$ with $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ affords the complex [$\mathrm{W}(\mathrm{CO})_{4}\left\{\eta^{5}\right.$ $\left.\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{8}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-2\right) \mathrm{Me}_{2}{ }^{1}\right] \mathbf{6 b}$, an analogue of $6 \mathrm{a}^{2{ }^{2}}{ }^{2}$ The same product is formed in the absence of CO , but in lower yield. Compound $\mathbf{6 b}$ was characterised by the data given in Tables 13. The NMR spectra of $\mathbf{6 a}$ and $\mathbf{6 b}$ are very similar, in accord with their closely related structures. Thus the ${ }^{1} \mathrm{H}$ NMR spectra show broad resonances at $\delta 2.28$ ($\mathbf{6 a}$) and 2.30 ($\mathbf{6 b}$) for the two protons of the BCH_{2} group, and in the ${ }^{11} \mathrm{~B}-\boldsymbol{}^{1} \mathbf{H}_{\}}^{\}}$NMR spectra this moiety gives rise to signals at $\delta 9.4$ (6a) and 8.6 (6b). As with 5a. the protonation of $\mathbf{5 b}$ proceeds very rapidly at -78 C and no intermediate alkylidenetungsten complex $\left[W_{i}=\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}\right.$ -$\left.\mathrm{Me}-2 ;(\mathrm{CO})_{n}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right]$ ($n=2$ or 3) was identified Indeed, it would be surprising if such intermediates could be isolated as they would readily add CO at the tungsten centre to provide a filled valence shell for the metal. However, in the synthesis of $\mathbf{6 b}$, addition of $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ to $\mathbf{5 b}$ resulted in an immediate colour change of the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions from orangered to green, but the latter colour rapidly disappeared as the reaction proceeded. The transient green species could well be an alkylidenetungsten complex akin to $\mathbf{3 b}$, with the $\eta-\mathrm{C}_{5} \mathrm{H}_{5}$ group replaced by $\eta^{5}-\mathrm{C}_{\mathbf{2}} \mathbf{B}_{\mathbf{9}} \mathbf{H}_{\mathbf{9}} \mathrm{Me}_{2}$ and neutral rather than cationic.

Table 1 Analytical ${ }^{a}$ and physical data for the tungsten complexes

Compound ${ }^{\text {b }}$		$\begin{aligned} & \text { Yield } \\ & (\%) \end{aligned}$	$\nu_{\text {max }}(\mathrm{CO})^{c} / \mathrm{cm}^{-1}$	Analysis (\% ${ }_{0}$)	
	Colour			C	H
6b $\left[\mathrm{W}(\mathrm{CO})_{4}\left\{\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{8}\left(\mathrm{CH}_{2} \mathrm{R}\right) \mathrm{Me}_{2}\right\}\right]$	Yellow	58	2093vs, 2022s (sh), 1998vs (br)	33.4 (33.3)	4.2 (4.0)
6d [W(CO) $\left.2_{2}\left(\mathrm{PHPh}_{2}\right)_{2}\left\{\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{8}\left(\mathrm{CH}_{2} \mathrm{R}\right) \mathrm{Me}_{2}\right\}\right]$	Yellow	55	1939s, 1853vs	51.2 (51.1)	5.4 (5.1)
6e $\left[\mathrm{W}(\mathrm{CO})_{2}(\mathrm{CNBu})_{2}\left\{\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{8}\left(\mathrm{CH}_{2} \mathrm{R}\right) \mathrm{Me}_{2}\right\}\right]^{d}$	Pale yellow	27	- 1975vs, 1913vs	${ }^{5} 42.4$ (42.0)	6.6 (6.0)
7a [W(CO) ${ }^{\left.\left(\mathrm{PPh}_{3}\right)\left\{\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{8}\left(\mathrm{CH}_{2} \mathrm{R}\right) \mathrm{Me}_{2}\right\}\right]}$	Yellow	58	2024vs, 1950s, 1924vs	48.6 (48.9)	4.6 (4.7)
8a [W(CO) $\left.\left(\mathrm{PhC}_{2} \mathrm{Ph}\right)_{2}\left\{\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{8}\left(\mathrm{CH}_{2} \mathrm{R}\right) \mathrm{Me}_{2}\right\}\right]$	Yellow	50	2070 vs	57.4 (58.0)	5.5 (5.1)
$9 \quad\left[\mathrm{~W}(\mathrm{CO})_{2}(\mathrm{dppm})\left\{\eta^{3}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{8}\left(\mathrm{CH}_{2} \mathrm{R}\right) \mathrm{Me}_{2}\right\}\right]$	Yellow	78	1959vs, 1874vs	51.1 (51.8)	5.2 (5.0)
12 b [$\left.\mathrm{NEt}_{4}\right]\left[\mathrm{WI}(\mathrm{CO})_{3}\left\{\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{8}\left(\mathrm{CH}_{2} \mathrm{R}\right) \mathrm{Me}_{2}\right\}\right]^{9}$	Dark red	40	$2008 \mathrm{vs}, 1914 \mathrm{vs}$ (br)	${ }^{\text {h }} 34.9$ (34.3)	6.3 (5.4)

${ }^{a}$ Calculated values are given in parentheses. ${ }^{h} \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-2 .{ }^{c}$ Measured in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. All complexes display a broad B H absorption at ca. 2550 $\mathrm{cm}^{-1} .{ }^{d}$ Formed as a mixture of isomers, see text. ${ }^{e} v_{\max }(\mathrm{NC}) 2169 \mathrm{~s}$ and $2137 \mathrm{scm}{ }^{1} .{ }^{5} \mathrm{~N}, 3.9(4.1 \%){ }^{9}{ }^{9}$ Complex has a $2,1,8-\mathrm{WC}_{2} \mathrm{~B}_{9}$ arrangement for the icosahedral fragment rather than the $3,1,2-\mathrm{WC}_{2} \mathrm{~B}_{9}$ structure present in all the other compounds reported (see text). ${ }^{h} \mathrm{~N}, 1.6\left(1.7^{\circ}{ }_{\mathrm{G}}\right)$.

Table 2 Hydrogen-1 and carbon-13 NMR data " for the complexes

Compound	${ }^{1} \mathrm{H}^{b}(\delta)$
6b	2.30 (s, br, $2 \mathrm{H}, \mathrm{BCH}_{2}$), 2.44 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{CMe}$), 3.73 (s , $3 \mathrm{H}, \mathrm{OMe}), 6.68-7.04\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$
$6 d$	2.20 [d, $6 \mathrm{H}, \mathrm{CMe}, J(\mathrm{PH}) 3] .2 .34$ (s, br, 2 H , BCH_{2}), 3.67 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 6.63-7.01 (m, 4 H , $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 7.27[\mathrm{~d}, 2 \mathrm{H}, \mathrm{PH}, J(\mathrm{PH}) 386], 7.33-7.82(\mathrm{~m}$, $20 \mathrm{H}, \mathrm{Ph})$
$6 e^{d}$	${ }^{*} 1.60\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{Bu}^{\prime}\right), 1.62{ }^{*}\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{Bu}^{\prime}\right), 2.25(\mathrm{~s}, 6 \mathrm{H}$, CMe), 2.30* (s, $6 \mathrm{H}, \mathrm{CMe}$), 2.20-2.40 (m, 2 H , BCH_{2}), 3.71 (s, $3 \mathrm{H}, \mathrm{OMe}$), 3.72 * (s, $3 \mathrm{H}, \mathrm{OMe}$), 6.58-6.97 (m, $4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}$)
7a	1.94 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{BCH}_{2}$), 1.98 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{CMe}$), 3.76 ($\mathrm{s}, 3 \mathrm{H}$, OMe), 6.68-6.96 (m, $4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}$), 7.51-7.68 (m, br, $15 \mathrm{H}, \mathrm{Ph}$)
$8 \mathbf{a}^{5}$	1.31 (s, $3 \mathrm{H}, \mathrm{CMe}$), 1.78, 2.04 [AB, $2 \mathrm{H}, \mathrm{BCH}_{2}$, $J(\mathrm{HH}) 13], 2.42(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CMe}), 3.31$ (s, $3 \mathrm{H}, \mathrm{OMe}$), 6.59-8.37(m, $24 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{Ph}$)
9	1.27 (s, br, $2 \mathrm{H}, \mathrm{BCH}_{2}$), 2.25 (s, br, $6 \mathrm{H}, \mathrm{CMe}$), 3.61 (s, $3 \mathrm{H}, \mathrm{OMe}$), 4.95 [d of $\mathrm{t}, 1 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{P}, J(\mathrm{PH}) 11$, $J(\mathrm{HH}) 14], 5.26$ [d of $\mathrm{t}, 1 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{P}, J(\mathrm{PH}) 9$, $J(\mathrm{HH}) 14], 6.55-6.94\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.34-7.73(\mathrm{~m}$. $20 \mathrm{H}, \mathrm{Ph}$)
12b	$1.31\left[\mathrm{t}, \mathrm{br}, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{HH}) 7\right], 1.57(\mathrm{~s}, 3 \mathrm{H}$, CMe), 1.92 (s, $3 \mathrm{H}, \mathrm{CMe}$), 2.31, 2.45 [AB, br, 2 H , $\left.\mathrm{BCH}_{2}, J(\mathrm{HH}) 10\right], 3.18\left[\mathrm{q}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{HH}) 7\right]$, $3.70(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 6.69-6.95\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$

${ }^{13} \mathrm{C}^{c}(\delta)$
209.4 [CO, J (WC) 115], 156.9, 135.0, 129.4, 125.3, $119.8,109.2\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 69.3$ (C Me), 54.6 (OMe), 33.3 (CMe), 28.3 ($\mathrm{vbr}, \mathrm{BCH}_{2}$)
231.1 [t, CO, $J(\mathrm{PC}) 23], 228.2$ [t, CO, $J(\mathrm{PC}) 32], 157.0,136.5,134.5,132.5$, 130.9 [$\mathrm{d}, J(\mathrm{PC}) 12], 130.7,128.7,124.5,119.3,109.8\left(\mathrm{C}_{6} \mathrm{H}_{4}\right.$ and Ph$), 62.5$ (CMe), 55.1 (OMe), 29.1 (CMc), 25.0 (vbr, BCH_{2})
228.6, 221.8* (CO), 157.1, 157.0* $\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 148.2,141.5^{*}(\mathrm{CN}), 137.1,137.0^{*}$, $130.2^{*}, 130.0,124.4,124.3^{*}, 119.4,109.7^{*}, 109.5\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 64.6(\mathrm{CMe}), 59.7$ $\left(\mathrm{CMe}_{3}\right), 59.2^{*}(\mathrm{CMe}), 55 . \mathrm{I}^{*}(\mathrm{OMe}), 55.0^{*}\left(\mathrm{CMe}_{3}\right), 54.9(\mathrm{OMe}), 32.6,32.5^{*}$ (CMe), 30.7, 30.6* $\left(\mathrm{CMe}_{3}\right), 26.8$ (vbr, BCH_{2})
222.1 [d, $2 \times \mathrm{CO}, J(\mathrm{PC}) 30$], 221.5 [d, CO, $J(\mathrm{PC}) 9], 156.7,136.2,133.9,133.8$, 131.7, 130.4, 128.8, 124.6, 119.2, $109.3\left(\mathrm{C}_{6} \mathrm{H}_{4}\right.$ and Ph$) .66 .4(\mathrm{C} \mathrm{Me}), 54.5$ (OMe), 31.0 (CMe), 26.8 (vbr, BCH_{2})
$210.4(\mathrm{CO}), 185.7,177.5,172.5(\mathrm{CPh}), 156.4108 .5\left(\mathrm{Ph} . \mathrm{C}_{6} \mathrm{H}_{4}\right), 68.7 .65 .1$ (CMe), 54.1 (OMe), 30.2, 27.1 (CMe), 27.0 (vbr, BCH_{2})
${ }^{4} 232.9$ (AXX', CO,N 32), 157.0, 136.9, 133.4, 131.7, 131.1, 130.7, 128.7, 124.4, 119.2, $109.7\left(\mathrm{C}_{6} \mathrm{H}_{4}\right.$ and Ph$), 63.4(\mathrm{CMe}), 55.0(\mathrm{OMc}) .48 .8\left[1, \mathrm{PCH}_{2} \mathrm{P}, J(\mathrm{PC})\right.$ 28], 33.1 (CMe), $28.5\left(\mathrm{vbr}, \mathrm{BCH}_{2}\right)$
${ }^{\text {h }} 230.9,222.0,221.4(\mathrm{CO}), 157.5,138.2,130.5,124.6,119.8,110.2\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 63.4$ (CMe), 61.9 (br, $C \mathrm{Me}$), 55.3 (OMe), 53.1 ($\mathrm{CH}_{2} \mathrm{Me}$), 32.8, 29.6 (CMe), 26.5 (vbr, BCH_{2}), $7.9\left(\mathrm{CH}_{2} \mathrm{Me}\right.$)
${ }^{a}$ Chemical shifts (δ) in ppm, coupling constants (J) in Hz . ${ }^{b}$ Measured in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ unless otherwise stated. Protons of BH groups display broad unresolved signals in the range $\delta c a .-2$ to +3 . ${ }^{\text {c }}$ Hydrogen-1 decoupled chemical shifts, measured in CDCl_{3} unless otherwise stated, are positive to high frequency of SiMe_{4}. ${ }^{\text {a }}$ Peaks due to the minor isomer are marked with an asterisk. However, some signals are obscured by those of major isomer. ${ }^{e}$ Measured in $\mathrm{CDCl}_{3} \cdot{ }^{f}$ Measured at $-40 \mathrm{C} \cdot{ }^{g} N=\left|J(\mathrm{PC})+J\left(\mathrm{P}^{\prime} \mathrm{C}\right)\right|{ }^{h}$ Measured in $\mathrm{CD}_{2} \mathrm{Cl}_{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Table 3 Boron-11 and phosphorus-31 NMR data ${ }^{\text {a }}$ for the complexes

Compound	${ }^{11} \mathrm{~B}^{\mathrm{b}}$ (δ)	${ }^{31} \mathrm{P}^{\text {c }}$ (δ)
6b	$8.6\left(1 \mathrm{~B}, \mathrm{BCH}_{2}\right),-1.0(1 \mathrm{~B}, \mathrm{BH}),-2.8(2 \mathrm{~B}, \mathrm{BH}),-8.0(5 \mathrm{~B}, \mathrm{BH})$	
$6 d$	$7.4\left(1 \mathrm{~B}, \mathrm{BCH}_{2}\right),-6.5(3 \mathrm{~B}, \mathrm{BH}),-9.0(2 \mathrm{~B}, \mathrm{BH}),-10.9(3 \mathrm{~B}, \mathrm{BH})$	15.2 [J(WP) 186]
6 e	${ }^{d} 6.8\left(1 \mathrm{~B}, \mathrm{BCH}_{2}\right),-6.0(3 \mathrm{~B}, \mathrm{BH}),-8.2(2 \mathrm{~B}, \mathrm{BH}),-11.2(3 \mathrm{~B}, \mathrm{BH})$	
7 a	$7.2\left(1 \mathrm{~B}, \mathrm{BCH}_{2}\right),-4.0(1 \mathrm{~B}, \mathrm{BH}),-5.1(2 \mathrm{~B}, \mathrm{BH}),-8.7(2 \mathrm{~B}, \mathrm{BH}),-10.1(3 \mathrm{~B}, \mathrm{BH})$	11.1 [J(WP) 161]
8 8	${ }^{d} 9.88\left(1 \mathrm{~B}, \mathrm{BCH}_{2}\right),-5.5$ to $-12.1(\mathrm{br}, 8 \mathrm{~B}, \mathrm{BH})$	
9	7.0 (1 B, BCH 2), $-6.3(5 \mathrm{~B}, \mathrm{BH}),-10.1(3 \mathrm{~B}, \mathrm{BH})$	-33.2 [J(WP) 186]
10a		52.2 [d. J(PP) 50. J (WP)
		213]. 40.1 [d. J (PP) 50]

${ }^{a}$ Chemical shifts (δ) in ppm, coupling constants (J) in Hz , measurements in $\mathrm{CD}_{2} \mathrm{Cl}_{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at ambient temperatures unless otherwise stated.
${ }^{b}$ Hydrogen-1 decoupled, chemical shifts are positive to high frequency of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ (external). Signals ascribed to more than one boron nucleus may result from overlapping peaks, and do not necessarily indicate symmetry equivalence. "Hydrogen-1 decoupled. chemical shifts are positive to high frequency of $85^{\circ}{ }_{0}{ }^{\circ} \mathrm{H}_{3} \mathrm{PO}_{4}$ (external). ${ }^{4}$ Measured in $\mathrm{CDCl}_{3} .{ }^{*}$ Compound formed as a mixture with 9 , see text.

Addition of $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution containing complex 5b and PPh_{3} at $-78{ }^{\circ} \mathrm{C}$ affords $\left[\mathrm{W}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)\left\{\eta^{5}\right.\right.$ $\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{8}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-2\right) \mathrm{Me}_{2}$ i] 7a. As described below, the structure of this product was established by an X-ray diffraction
study. However, before discussing the crystallographic data it is interesting to contrast the formation of the stable complex 7 a with the earlier results obtained by protonating 5a in the presence of PPh_{3}. ${ }^{2 c}$ This reaction affords compound 7b, an

R
1a $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ 1b $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe-2}$

$\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{OC})_{2} \mathrm{~W}=\mathrm{C}(\mathrm{H}) \mathrm{RR}^{2}\left[\mathrm{BF}_{4}\right]\right.$
R
3a $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$
3b $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe-2}$

5a $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ 5b $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-2$
 6a $\begin{array}{lll}\mathrm{R} & \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4 & \stackrel{\mathrm{C}}{\mathrm{CO}}\end{array}$
6b $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-2 \mathrm{CO}$
6c $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4 \quad \mathrm{PPh}_{3}$
6d $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-2 \mathrm{PHPh}_{2}$
6e $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-2 \mathrm{CNBu}^{\mathrm{t}}$
$6 f \quad \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4 \quad \mathrm{CNBu}^{\mathrm{t}}$
7 a
$7 \mathrm{~b} \quad \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$

Fig. 1 Molecular structure of the compound [W(CO) $\left(\mathrm{PPh}_{3}\right)\left\{\eta^{5}\right.$ $\left.\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{8}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-2\right) \mathrm{Me}_{2}^{\prime}{ }^{\prime}\right]$ 7a, showing the crystallographic labelling scheme
for the difference in stability of $7 \mathbf{a}$ and $\mathbf{7 b}$ is not clear at the present time.

The significant data from the X-ray diffraction study on compound 7a are given in Table 4, and the structure of the molecule is shown in Fig. 1. The tungsten atom is η^{5} coordinated by the nido-icosahedral fragment $\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{8}\left(\mathrm{CH}_{2} \mathrm{C}_{6}\right.$ $\left.\mathrm{H}_{4} \mathrm{OMe}-2\right) \mathrm{Me}_{2}$. In the latter the $\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-2$ group is attached to the boron atom which is in the β position with respect to the two carbon atoms in the open pentagonal $\stackrel{C C B B B}{C B}$ face of the cage. This structural feature is common to all of the many species that have now been synthesised containing $\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{8}\left(\mathrm{CH}_{2} \mathrm{R}\right) \mathrm{Me}_{2}\left(\mathrm{R}=\right.$ alkyl or aryl) groups. ${ }^{2 c . e . f .4}$ The tungsten atom is also ligated by three terminally bound CO molecules (W-C-O av. 177.5) and the PPh_{3} group. The various structural parameters for 7 a are very similar to those obtained from the X-ray diffraction study of $\mathbf{6 c} .^{2 c}$ Thus for $7 \mathbf{7 a}$ the $B(4)-C(40)$ separation $[1.630(6) \AA]$ is comparable with the corresponding $\mathrm{B}-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ distance $[1.65(2) \AA$] in compound 6 c . The $\mathrm{W}-\mathrm{P}$ bond lengths in $7 \mathrm{a}[2.572(1) \AA]$ and in $\mathbf{6 c}$ [$2.571(5) \AA$] are essentially identical.

The NMR data for compound 7a (Tables 2 and 3) are in accord with the structure established by X-ray diffraction. Moreover, as expected, they are very similar to those for $\mathbf{7 b} .^{2 c}$ Thus 7a shows diagnostic NMR resonances for the BCH_{2} group $\left[{ }^{1} \mathrm{H}, \delta 1.94 ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}_{\}}, \delta 26.8 ;{ }^{11} \mathrm{~B}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 7.2\right]\right.$, as does $7 \mathbf{b}$ [${ }^{1} \mathrm{H}, \delta 1.79 ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}_{\}}, \delta 31.5 ;{ }^{11} \mathrm{~B}-\left\{{ }^{1} \mathrm{H}_{\}}, \delta 7.2\right]\right.$. In the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}_{\}}\right.$ NMR spectra of the two complexes resonances occur at $\delta 11.1$ (7a) and $10.69(7 b)$, with ${ }^{183} \mathrm{~W}-{ }^{31} \mathrm{P}$ couplings of 161 and 165 Hz , respectively.

Protonation of the salt $\mathbf{5 b}$ in the presence of PHPh_{2} was next investigated. This reaction afforded the complex $\left[\mathrm{W}(\mathrm{CO})_{2}-\right.$ $\left.\left(\mathrm{PHPh}_{2}\right)_{2}\left\{\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{8}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-2\right) \mathrm{Me}_{2}\right\}^{i}\right] 6$. Data given in Tables $1-3$ fully characterise this product. In the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (Table 2) there are two resonances for nonequivalent $C O$ groups and both signals are triplets, due to ${ }^{31} \mathrm{P}-{ }^{13} \mathrm{C}$ coupling with chemically equivalent PHPh_{2} ligands. In the ${ }^{31} \mathrm{P}_{-}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (Table 3) there is a singlet at δ 15.2 [$J(\mathrm{WP}) 186 \mathrm{~Hz}$]. These data can be explained if the two PHPh_{2} groups are transoid to one another in a structure similar to $7 \mathbf{a}$, with one phosphine ligand lying below $\mathrm{B}(3)$ and the other below $\mathrm{B}(5)$ (Fig. 1). In this arrangement one carbonyl ligand is cis to the BCH_{2} fragment and the other transoid to it. This
analogue of 7a, but the former species is somewhat unstable, and its solution disproportionates to yield crystals of the bis(triphenylphosphine)tungsten complex 6c. We observed no similar decomposition on the part of solutions of $7 \mathbf{a}$. The reason

Table 4 Selected internuclear distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[W(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)\left\{\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{8}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-2\right) \mathrm{Me}_{2}\right\}\right]$ 7a, with estimated standard deviations in parentheses

W-P	2.572(1)	W-C(1)	2.408(4)	W-C(2)	2.390(4)	W-B(3)	$2.358(4)$
W-B(4)	2.443(4)	W-B(5)	2.380(3)	W-C(3)	1.999(4)	W-C(4)	$1.990(4)$
W-C(5)	1.999(4)	$\mathrm{P}-\mathrm{C}(61)$	1.846(5)	P-C(71)	1.837(3)	$\mathrm{P}-\mathrm{C}(81)$	1.850(4)
$\mathrm{C}(1)-\mathrm{C}(10)$	1.529(8)	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.664(6)$	$\mathrm{C}(1)-\mathrm{B}(5)$	1.729(6)	$\mathrm{C}(2)-\mathrm{C}(20)$	$1.526(5)$
$\mathrm{C}(2)-\mathrm{B}(3)$	1.722(7)	$\mathrm{B}(3)-\mathrm{B}(4)$	1.814(5)	$\mathrm{B}(4)-\mathrm{B}(5)$	1.824(7)	$\mathrm{B}(4)-\mathrm{B}(8)$	1.789(6)
$\mathrm{B}(4)-\mathrm{B}(9)$	1.794(5)	$\mathrm{B}(4)-\mathrm{C}(40)$	$1.630(6)$	$\mathrm{C}(3)-\mathrm{O}(3)$	$1.157(5)$	$\mathrm{C}(4)-\mathrm{O}(4)$	1.147(6)
$\mathrm{C}(5)-\mathrm{O}(5)$	$1.135(5)$	$\mathrm{C}(40)-\mathrm{C}(41)$	1.505(5)	$\mathrm{C}(42)-\mathrm{O}(40)$	1.375(5)	$\mathrm{O}(40)-\mathrm{C}(47)$	1.410(9)
	P-W-C(3)	73.2(1)	P-W-C(4)	74.5(1)	P-W-C(5)	119.8(1)	
	$\mathrm{C}(1)-\mathrm{W}-\mathrm{C}(2)$	40.6(1)	$\mathrm{C}(1)-\mathrm{W}-\mathrm{B}(3)$	71.3(2)	$\mathrm{C}(1)-\mathrm{W}-\mathrm{B}(4)$	73.1(1)	
	$\mathrm{B}(3)-\mathrm{W}-\mathrm{B}(4)$	44.4(1)	$\mathrm{C}(1)-\mathrm{W}-\mathrm{B}(5)$	42.3(1)	$\mathrm{C}(3)-\mathrm{W}-\mathrm{C}(4)$	111.0(1)	
	$\mathrm{C}(3)-\mathrm{W}-\mathrm{C}(5)$	73.3(2)	$\mathrm{C}(4)-\mathrm{W}-\mathrm{C}(5)$	73.0(2)	W-P-C(61)	114.7(1)	
	W-P-C(71)	114.2(1)	$\mathrm{C}(61)-\mathrm{P}-\mathrm{C}(71)$	101.6(2)	W-P-C(81)	114.8(1)	
	C(61)-P-C(81)	108.8(2)	$\mathrm{C}(71)-\mathrm{P}-\mathrm{C}(81)$	101.0(2)	W-C(1)-C(10)	110.2(2)	
	$\mathrm{W}-\mathrm{C}(1)-\mathrm{C}(2)$	69.1(2)	$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(2)$	121.3(3)	W-C(1)-B(5)	68.0(2)	
	$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{B}(5)$	124.8(4)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{B}(5)$	109.4(3)	W-C(2)-C(20)	110.1(2)	
	$\mathrm{W}-\mathrm{C}(2)-\mathrm{B}(3)$	67.8(2)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{B}(3)$	110.3(3)	W-B(3)-C(2)	69.7(2)	
	$\mathrm{W}-\mathrm{B}(3)-\mathrm{B}(4)$	70.3(2)	$\mathrm{C}(2)-\mathrm{B}(3)-\mathrm{B}(4)$	108.8(3)	W-B(4)-B(3)	65.4(2)	
	$\mathrm{W}-\mathrm{B}(4)-\mathrm{B}(5)$	66.0(2)	W-B(4)-C(40)	114.0(2)	$\mathrm{B}(3)-\mathrm{B}(4)-\mathrm{C}(40)$	126.2(4)	
	$\mathrm{B}(5)-\mathrm{B}(4)-\mathrm{C}(40)$	127.3(3)	$\mathrm{B}(8)-\mathrm{B}(4)-\mathrm{C}(40)$	116.2(3)	$B(9)-B(4)-C(40)$	116.7(3)	
	$\mathrm{W}-\mathrm{B}(5)-\mathrm{C}(1)$	69.7(2)	W-B(5)-B(4)	69.6(2)	$\mathrm{C}(1)-\mathrm{B}(5)-\mathrm{B}(4)$	108.8(3)	
	W-C(3)-O(3)	177.2(3)	$\mathrm{W}-\mathrm{C}(4)-\mathrm{O}(4)$	176.5(4)	W-C(5)-O(5)	178.8(4)	
	$\mathrm{B}(4)-\mathrm{C}(40)-\mathrm{C}(41)$	116.4(3)	$\mathrm{P}-\mathrm{C}(61)-\mathrm{C}(62)$	123.8(4)	P-C(61)-C(66)	118.0(3)	

interpretation assumes that the $\mathrm{W}(\mathrm{CO})_{2}\left(\mathrm{PHPh}_{2}\right)_{2}$ moiety does not rotate with respect to the cage.

It is interesting that protonation of complex $\mathbf{5 b}$ in the presence of PHPh_{2} yields a bis(phosphine)tungsten species whereas the corresponding reaction involving PPh_{3}, even with the latter in excess, yields a monophosphinetungsten complex. We assume that this is due to the lower steric requirements of the PHPh_{2} group which facilitates addition of two molecules of this reagent to the above-mentioned electronically unsaturated intermediate $\quad\left[W\left\{=C(H) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-2\right\}(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9}-\right.\right.$ $\left.\mathrm{Me}_{2}\right)$].

Treatment of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions containing a mixture of complex 5 b and CNBu^{\prime} in $1: 2 \mathrm{~mol}$ ratio with $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ gives $\left[\mathrm{W}(\mathrm{CO})_{2}\left(\mathrm{CNBu}^{4}\right)_{2}\left\{\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{8}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-2\right) \mathrm{Me}_{2}\right\}\right]$ 6e. Examination of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of this product revealed that it is formed as an inseparable mixture of two isomers in ratio $c a .2: 1$, based on peak intensities in the ${ }^{1} \mathrm{H}$ spectrum. The isomers of 6 e are assumed to correspond to cisoid and transoid arrangements of the CNBu^{1} ligands in the $\mathrm{W}(\mathrm{CO})_{2}\left(\mathrm{CNBu}^{\prime}\right)_{2}$ fragment, and in the structural formula shown only the transoid structure is depicted. The analogous compound $6 f$ has been previously prepared by protonating the reagent 5a with $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ in the presence of CNBu^{1}. ${ }^{2 \mathrm{c}}$ Complex $\mathbf{6 f}$ also exists in solution as an equilibrating mixture of the isomers. Isolation of $6 \boldsymbol{e}$ and $\mathbf{6 f}$ reveals that the rod-like ligand CNBu' can effectively replace two CO ligands in the compounds $6 \mathbf{a}$ and 6 b whereas the more bulky PPh_{3} formally replaces only one CO to yield the complexes 7. Examination of space-filling models of $7 \mathbf{a}$, using data obtained from the X-ray study, reveals that the ligands are very crowded at the metal centre.

Addition of $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution containing complex $\mathbf{5 b}$ and $\mathrm{PhC} \equiv \mathrm{CPh}$ in 1:2 mol ratio affords [W(CO)($\left.\mathrm{PhC}_{2} \mathrm{Ph}\right)_{2}\left\{\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{8}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-2\right) \mathrm{Me}_{2}\right\}$] 8a, data for which are given in Tables 1-3. This product is an analogue of compound $\mathbf{8 b}$ obtained from $5 \mathrm{a}, \mathrm{PhC} \equiv \mathrm{CPh}$, and $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O} .{ }^{2 \mathrm{c}}$ Formation of $\mathbf{8 b}$ occurs via the intermediacy of a bis(alkyne)tungsten species 6 g which releases a CO molecule at low temperatures. In the synthesis of $8 \mathbf{8 a}$ a transient intermediate, possibly 6 h , was detected by IR spectroscopy, displaying two CO stretching bands at 1988 and $2048 \mathrm{~cm}^{-1}$. It is noteworthy that 6 g has CO absorptions at 1985 and $2045 \mathrm{~cm}^{-1}$.

In the ${ }^{13} \mathrm{C}-\left\{^{1} \mathbf{H}_{\}}\right.$NMR spectrum of complex $\mathbf{8 a}$ (Table 2) the resonances for the ligated carbon atoms of the alkyne occur in
the chemical shift range expected when alkynes are formally donating three electrons to a metal centre. ${ }^{5}$ A similar feature is observed in the spectrum of $\mathbf{8 b}$, but this molecule exhibits dynamic behaviour corresponding to rotation of the $\mathrm{Ph} C_{2} \mathrm{Ph}$ groups, and only one broad resonance was observed at $\delta 178.2$ in the room-temperature ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum. With 8a it was possible to measure the spectrum at $-40^{\circ} \mathrm{C}$ when the asymmetry in the molecule is revealed by the observation of $C \mathrm{Ph}$ signals at $\delta 185.7,177.5$ and 172.5 , and resonances for the non-equivalent cage CMe groups at $\delta 68.7,65.1(C \mathrm{Me})$ and 30.2, 27.1 (CMe). It is possible that the observation of three $C \mathrm{Ph}$ peaks, rather than the four expected, is due to a coincidence of two of the signals. Like all the compounds reported herein, the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR signal for the BCH_{2} group is very broad, occurring at $\delta 27.0$. The broadness of these signals may be ascribed to the quadrupolar effect of the adjacent boron atom.
If the reagent $\mathbf{5 b}$ is protonated with $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ in the presence of dppm $\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}\right)$ the complex [W-$\left.(\mathrm{CO})_{2}(\mathrm{dppm})\left\{\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{8}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-2\right) \mathrm{Me}_{2}\right\}\right] \mathbf{9}$ is obtained, together with small amounts of a minor product isolated in quantities too small to allow full characterisation. However, it seems very probable that this minor species is $\left[\mathrm{W}\left\{\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-2\right) \mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right\}(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9}\right.\right.$ Me_{2})] 10a, an analogue of the well characterised compound 10 b , previously isolated by treating mixtures of 5 a and dppm with $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$. ${ }^{2 e}$ The structure of $\mathbf{1 0 b}$ has been established by X-ray diffraction. It displays in its IR spectrum CO bands at 1919 and $1828 \mathrm{~cm}^{-1}$, and in its ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum there are resonances at $\delta 51.3$ [d, $J(\mathrm{PP}) 52, J(\mathrm{WP}) 250]$ and 36.3 [d, $J(\mathrm{PP}) 52 \mathrm{~Hz}$. The corresponding data for $\mathbf{1 0 a}$ are: $\mathrm{v}_{\text {max }}(\mathrm{CO})$ at 1920 and $1830 \mathrm{~cm}^{-1} ;{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 52.2$ [d, $\left.J(\mathrm{PP}) 50, J(\mathrm{WP}) 213\right]$ and $40.1[\mathrm{~d}, J(\mathrm{PP}) 50 \mathrm{~Hz}$.

Compound $\mathbf{1 0 b}$ is the major product formed from $\mathbf{5 a}, \mathrm{dppm}$ and $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$, whereas 10 a is the minor product obtained from mixtures of $\mathbf{5 b}$ and dppm, and the acid. Interestingly, complex 10a is closely mapped with
$\left[\mathrm{W}\left\{\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-2\right) \mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right\}(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left[\mathrm{BF}_{4}\right]$ 11. The latter has been obtained by adding $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $\mathbf{1 b}$ and dppm. ${ }^{2 b}$
The structures of the species 10 and 11 implicate, following protonation, the initial formation of an alkylidene complex, the $\mathrm{W}=\mathrm{C}(\mathrm{H}) \mathrm{R}$ group of which is then captured by addition of a tertiary phosphine to the ligated carbon. Such reactions are well

9

R
$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-2$ $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$

11

$Y \quad R$
12a $\quad \mathrm{PPh}_{4} \quad \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$
$12 \mathrm{~b} \quad \mathrm{NEt}_{4} \quad \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-2$

- $\mathrm{Cme} \quad$ OBH \oplus B
established in alkylidenemetal complex chemistry. ${ }^{6}$ However, when the tungsten atom carries an $\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}$ ligand, addition of phosphine to the intermediate alkylidene species is in competition with insertion of the latter into a cage $\mathrm{B}-\mathrm{H}$ bond. Formation of the complexes 7 and 9 shows that the latter process is more rapid than the former in the reactions affording these products. This is in contrast with the formation of the compounds 10 .

Complex 9 is structurally related to the compounds [W$(\mathrm{CO})_{2} \mathrm{~L}_{2}\left\{\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{8}\left(\mathrm{Ett}^{2} \mathrm{Me}_{2}\right\}\right]\left[\mathrm{L}_{2}=\mathrm{Me}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{PMe}_{2}\right.$ or $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{PPh}_{2}$], prepared by treating $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions of $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{W}(\equiv \mathrm{CMe})(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right]$ at $-78{ }^{\circ} \mathrm{C}$ with $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ in the presence of the chelating phosphines. ${ }^{2 e}$ In these reactions also, migration of the $\mathrm{C}(\mathrm{H}) \mathrm{Me}$ group from tungsten to the cage is more favourable than its capture by phosphine. As mentioned earlier, it was observed that during the synthesis of the compound $\mathbf{6 b}$, immediately following addition of $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ to the orange-red solutions containing $\mathbf{5 b}$, a green colour developed. Similar behaviour occurred during the preparation of $\mathbf{6 d}, \mathbf{6 e}, 7 \mathrm{a}, 8 \mathrm{a}$ and 9 . We suggest that the transient green colour is due to the alkylidenetungsten complex $\left[\mathrm{W}\left\{=\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-2\right\}(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right]$, which is very reactive due to the electronic unsaturation at the tungsten centre.

The spectroscopic data for complex 9 are in complete accord with its formulation. The presence of the $\mathrm{BCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-2$ group is clearly revealed by diagnostic peaks in the ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ $\left\{{ }^{1} \mathrm{H}\right\}$, and ${ }^{11}{ }^{1} \mathrm{~B}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra (Tables 2 and 3). The ${ }^{31} \mathrm{P}$ -
$\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum displays a single resonance at $\delta-33.2$, the magnitude of the observed ${ }^{183} \mathrm{~W}-{ }^{31} \mathrm{P}$ coupling (186 Hz) being in accord with the phosphorus nuclei being bound to the tungsten. The appearance of a singlet signal indicates the presence of equivalent phosphorus atoms. Moreover, the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra reveal that the cage CMe groups are also equivalent. In the latter spectrum these fragments give rise to resonances at $\delta 63.4(\mathrm{CMe})$ and 33.1 (CMe). These data imply that the molecule has a plane of symmetry through the W atom, the BCH_{2} group, and the midpoint of the cage $\mathrm{C}-\mathrm{C}$ connectivity, with the PPh_{2} groups lying on either side of this plane. The aforementioned compounds [W(CO) $2_{2} \mathrm{~L}_{2}\left\{\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9}-\right.$ $\left.\left.\mathrm{H}_{8}(\mathrm{Et}) \mathrm{Me}_{2}\right\}\right]$ have NMR spectra $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\},{ }^{11} \mathrm{~B}-\left\{{ }^{1} \mathrm{H}\right\}\right.$ and $\left.{ }_{31}{ }^{8} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}\right)$ very similar to those of 9 , except for differences due to the presence of a $\mathrm{PCH}_{2} \mathrm{P}$ fragment in the latter and $\mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{P}$ fragments in the former. ${ }^{2 e}$

It was mentioned in the introduction that the nature of the products obtained by protonating the salts $[\mathrm{Y}][\mathrm{W}(\equiv \mathrm{CR})$ -$\left.(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right]$ depended on the acid used. Thus whereas 5 a , and $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ afford the neutral compound $\mathbf{6 a}$, treatment of $\left[\mathrm{PPh}_{4}\right]\left[\mathrm{W}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9}-\right.\right.$ $\left.\left.\mathrm{Me}_{2}\right)\right]$ with aqueous HI yields the salt $\left[\mathrm{PPh}_{4}\right]\left[\mathrm{WI}(\mathrm{CO})_{3}\left\{\eta^{5}\right.\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{8}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{Me}_{2}\right\}\right]$ 12a. ${ }^{25.7}$ Moreover, in the latter there is no connectivity between the carbon atoms of the cage, which adopts with the tungsten atom a closo- $2,1,8-\mathrm{WC}_{2} \mathbf{B}_{9}$ icosahedral structure. This is in contrast with 6a, and the other complexes described above, all of which have a closo-3,1,2$\mathrm{WC}_{2} \mathrm{~B}_{9}$ arrangement for the 12 -atom core. During the work described herein the reagent $\mathbf{5 b}$ was treated with aqueous HI . The product isolated was $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{WI}(\mathrm{CO})_{3}\left\{\eta^{5}\right.\right.$ $\left.\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{8}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-2\right) \mathrm{Me}_{2}\right\}$ '] 12b, analogous to 12a with a $2,1,8$ arrangement for the non-boron vertices of the $W_{2} \mathbf{B}_{9}$ icosahedron. The salt 12b was fully characterised by the data listed in Tables 1-3. An interesting and useful diagnostic tool for distinguishing between $3,1,2$ and $2,1,8-\mathrm{WC}_{2} \mathrm{~B}_{9}$ polytopal isomers is based on their ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra. ${ }^{1.25}$ For the $3,1,2-\mathrm{WC}_{2} \mathrm{~B}_{9}$ species the resonances for the cage carbons are sharp signals, with either one or two peaks appearing, depending on the overall molecular symmetry. For the $2,1,8$ $\mathrm{WC}_{2} \mathrm{~B}_{9}$ isomers the carbons are non-equivalent, and there are two resonances, but crucially one signal is broad. The latter may be assigned to the carbon lying in the second pentagonal CB_{4} ring lying above the W atom, the broadening of the signal being due to the connectivity with five ${ }^{11} \mathrm{~B}$ nuclei. Compound $\mathbf{1 2 b}$ is no exception. In the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum the two cage C Me signals occur at $\delta 63.4$ and 61.9 , with the former peak sharp and the latter broad.

Like all the new compounds reported herein, in the $\left.{ }^{11} \mathrm{~B}-{ }^{1} \mathrm{H} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 2 b}$ there is a diagnostic resonance ($\delta 3.7$) for the BCH_{2} fragment. These signals remain as singlets in fully coupled ${ }^{11} \mathrm{~B}$ spectra, indicating that they are not due to BH groups.
It is evident from the results described in this paper that the products obtained by protonating the salt $5 \mathbf{b}$ in the presence of donor molecules are in general structurally similar to the compounds obtained from $\mathbf{5 a}$ in similar reactions. However, some differences in reactivity patterns and relative product stability were observed in reactions of the reagents 5 with PPh_{3}, $\mathrm{PhC} \equiv \mathrm{CPh}$, and dppm.

Experimental

The instrumentation used for the spectroscopic measurements, and the experimental techniques employed have been described in previous Parts of this series. ${ }^{1.2 h-f}$ Chromatography columns used were $c a .20 \mathrm{~cm}$ long and 3 cm in diameter, unless otherwise stated, and were packed with alumina (Aldrich. Brockmann Activity III). The tetrafluoroboric acid was an $85^{\circ}{ }_{0}$, solution of $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ in $\mathrm{Et}_{2} \mathrm{O}$, as supplied by Aldrich Chemicals.
The reagent $5 \mathbf{b}$ was prepared from $\left[\mathrm{W}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{OMe}-2\right)\right.$ $\left.\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)(\mathrm{CO})_{2}(\mathrm{py})_{2}\right]$ (py $=$ pyridine), ${ }^{2 b} \mathrm{Na}_{2}\left[\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right]$
and [$\left.\mathrm{NEt}_{4}\right] \mathrm{Cl}$ as follows. A solution of $\mathrm{Na}_{2}\left[\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right]$ was obtained by refluxing in thf (tetrahydrofuran) ($10 \mathrm{~cm}^{3}$) $\left[\mathrm{NHMe}_{3}\right]\left[\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10} \mathrm{Me}_{2}\right](0.60 \mathrm{~g}, 2.7 \mathrm{mmol})^{8}$ with $\mathrm{NaH}(0.55$ g. 13.8 mmol , from a 60% dispersion in mineral oil). This solution was decanted, and added to a thf ($20 \mathrm{~cm}^{3}$) solution of [W$\left.\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{OMe}-2\right)\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)(\mathrm{CO})_{2}(\mathrm{py})_{2}\right](1.60 \mathrm{~g}, 2.50 \mathrm{mmol})$. After stirring the mixture for $c a .4 \mathrm{~h},\left[\mathrm{NEt}_{4}\right] \mathrm{Cl} \cdot \mathrm{H}_{2} \mathrm{O}(0.70 \mathrm{~g}, 3.80$ mmol) was added, and the stirring was continued for 30 min . The mixture was then filtered through a short Celite plug (2×5 cm), after which solvent was removed in vacuo from the resulting solution. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ and

Table 5 Crystallographic data for compound 7a ${ }^{a}$

Crystal dimensions/mm	$0.15 \times 0.60 \times 0.40$				
Formula	$\mathrm{C}_{33} \mathrm{H}_{38} \mathrm{~B}_{9} \mathrm{O}_{4} \mathrm{PW}$				
M	810.8				
Crystal colour, shape	Yellow cubes				
Crystal system	Triclinic				
Space group	PT				
$a_{i} \AA$	10.947(3)				
$b i \AA$	11.522(2)				
$\cdots \AA$	15.764(4)				
x	68.74(2)				
β	69.94(2)				
γ	89.03(2)				
$U \AA^{3}$	1727(1)				
Z	2				
$D_{\text {c }} / \mathrm{g} \mathrm{cm}^{3}$	1.56				
$\mu\left(\right.$ Mo-Kx $/ \mathrm{cm}^{1}$	35.0				
$F(000)$	804				
TK	293				
No. of unique reflections	6453				
No. of observed reflections [$\left.F_{\mathrm{o}} \geqslant 5 F_{\mathrm{o}}\right]$	5587				
$R\left(R^{\prime}\right)^{\text {b }}$	0.022 (0.024)				
Final difference map features (maximum, minimum) $\mathrm{e}^{\AA^{-3}}$	0.49, -0.73				
" Data collected on a Siemens R3m/V four-circle diffractometer operating in the Wyckoff ω-scan mode in the range $5 \leqslant 2 \theta \leqslant 50^{\circ}$; graphite monochromated Mo-Kx X-radiation, $\bar{\lambda}=0.71069 \AA$. Refinement was by full-matrix least squares with a weighting scheme of the form $w^{-1}=$ $\left[\sigma^{2}\left(F_{\mathrm{o}}\right)+g\left\|F_{\mathrm{o}}\right\|^{2}\right]$ with $g=0.0008 ; \sigma^{2}\left(F_{\mathrm{o}}\right)$ is the variance in F_{o} due to counting statistics and g was chosen so as to minimise variation in $\Sigma w\left(\left\|F_{\mathrm{o}}\right\|-\left\|F_{\mathrm{c}}\right\|\right)^{2}$ with $\left\|F_{\mathrm{o}}\right\|^{b} R=\Sigma\left\\|F_{\mathrm{o}}\left\|-\left\|F_{\mathrm{c}}\left\\|/ \Sigma\left\|F_{\mathrm{o}}\right\|, R^{\prime}=\Sigma_{w^{2}}{ }^{\mathrm{t}}\right\\| F_{\mathrm{o}}\right\|-\right.\right.$ $\left.\left\|F_{c} \\| \Sigma_{w^{\frac{1}{2}}}\right\| F_{0} \right\rvert\,$.					

chromatographed at $-20{ }^{\circ} \mathrm{C}$. Elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ (3:1) afforded an orange eluate. Solvent was removed in vacuo, and the residue was crystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}\left(20 \mathrm{~cm}^{3}, 1: 4\right)$ to give salmon-pink microcrystals of $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{W}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right.\right.$ 2) $\left.(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right] \mathbf{5 b}(1.34 \mathrm{~g}, 81 \%)$, after washing the product with $\mathrm{Et}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3}\right)$ and drying in vacuo (Found: C , 40.6; $\mathrm{H}, 6.8 ; \mathrm{N}, 2.4 . \mathrm{C}_{22} \mathrm{H}_{42} \mathrm{~B}_{9} \mathrm{NO}_{3} \mathrm{~W}$ requires $\mathrm{C}, 40.7 ; \mathrm{H}, 6.5 ; \mathrm{N}$, $2.2 \%), v_{\max }(\mathrm{CO})$ at 1962 vs and $1879 \mathrm{vs} \mathrm{cm}^{-1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. NMR (in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): ${ }^{1} \mathrm{H}, \delta 1.23\left[\mathrm{t}, \mathrm{br}, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{HH}) 7\right], 2.08(\mathrm{~s}, 6$ H, CMe), $3.10\left[\mathrm{q}, 8 \mathrm{H}, \mathrm{C} \mathrm{H}_{2} \mathrm{Me}, \mathrm{J}(\mathrm{HH}) 7\right], 3.88$ (s, $3 \mathrm{H}, \mathrm{OMe}$) and 6.79-7.47 (m, $\left.4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}_{5}^{\prime}, \delta 292.9[\mathrm{C} \equiv \mathrm{W}, J(\mathrm{WC})\right.$ 204], 227.8 [CO,$J(\mathrm{WC}) 185], 158.7,140.6,131.0,129.2,120.6$, $111.9\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 62.0(\mathrm{br}, C \mathrm{Me}), 56.3(\mathrm{OMe}), 53.0\left(\mathrm{CH}_{2} \mathrm{Me}\right), 29.9$ (CMe) and $7.7\left(\mathrm{CH}_{2} \mathrm{Me}\right)$.

Protonation Studies using $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$.-(i) $\mathrm{A} \mathrm{CH}_{2} \mathrm{Cl}_{2}(15$ cm^{3}) solution of compound $5 \mathbf{b}(0.20 \mathrm{~g}, 0.31 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$ was saturated with CO gas for ca. 5 min . The introduction of CO was continued during addition of $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}(40 \mu \mathrm{l}, 0.30$ mmol). The mixture instantly changed colour from orange-red to green, and as it was warmed slowly to room temperature under the CO atmosphere the colour further changed to brown. Solvent was removed in vacuo, the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane ($10 \mathrm{~cm}^{3}, 1: 1$), and the resulting solution was chromatographed at $-20^{\circ} \mathrm{C}$. Elution with the same solvent mixture gave a pale yellow eluate. Solvent was removed in vacuo, and the residue was crystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane (5 $\left.\mathrm{cm}^{3}, 1: 4\right)$ to give yellow microcrystals of $\left[\mathrm{W}(\mathrm{CO})_{4}\left\{\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{8}{ }^{-}\right.\right.$ ($\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-2$) $\left.\left.\mathrm{Me}_{2}\right\}_{3}\right] \mathbf{6 b}(0.104 \mathrm{~g})$.
(ii) $\mathrm{A} \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ solution of complex $5 \mathbf{b}(0.10 \mathrm{~g}, 0.15$ mmol) and $\mathrm{PHPh}_{2}\left(0.26 \mathrm{mmol}, 2.0 \mathrm{~cm}^{3}\right.$ of a $0.13 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) at $-78^{\circ} \mathrm{C}$ was treated with $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ ($20 \mu \mathrm{l}, 0.15 \mathrm{mmol}$). The solution turned green, and upon warming slowly to room temperature became brown. Solvent was removed in vacuo, and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{-}$ hexane $\left(10 \mathrm{~cm}^{3}, 1: 1\right)$ and chromatographed. Elution with the same solvent mixture afforded a pale yellow eluate. Removal of solvent in vacuo and crystallisation of the residue from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ hexane ($5 \mathrm{~cm}^{3}, 1: 4$) gave yellow microcrystals of [W(CO) 2^{-} $\left.\left(\mathrm{PHPh}_{2}\right)_{2}\left\{\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{8}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-2\right) \mathrm{Me}_{2}\right\}\right] \mathbf{6 d}(0.076 \mathrm{~g})$.
(iii) In a similar experiment a $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ solution containing complex $5 \mathbf{b}(0.10 \mathrm{~g}, 0.15 \mathrm{mmol})$ and $\mathrm{CNBu}^{\mathrm{t}}(20 \mu \mathrm{I}$, $0.18 \mathrm{mmol})$ at -78 C was treated with $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}(20 \mu \mathrm{l}, 0.15$

Table 6 Atom positional parameters (fractional coordinates, $\times 10^{4}$) with estimated standard deviations in parentheses for complex 7 a

Atom	x	1.	z	Atom	x	y	2
W	2259(1)	2252(1)	1652(1)	P	1292(1)	4034(1)	2185(1)
C(1)	2793(3)	813(3)	2986(3)	C(10)	3762(4)	1488(4)	3210(3)
$\mathrm{C}(2)$	3280(3)	378(3)	2036(3)	C(20)	4715(4)	627(4)	1361(3)
B(3)	1979(4)	202(3)	1697(3)	B(4)	508(4)	495(3)	2533(3)
B(5)	1134(4)	943(3)	3318(3)	B(6)	3098(5)	-736(4)	3186(3)
$\mathrm{B}(7)$	2595(5)	-1124(4)	2370(3)	B(8)	886(4)	-- 1075(4)	2718(3)
$\mathrm{B}(9)$	360(4)	-594(4)	3724(3)	B(10)	1749(5)	-363(4)	3991(3)
B(11)	1584(5)	-1621(4)	3629(3)	C(3)	3771(4)	3490(3)	1322(3)
$\mathrm{O}(3)$	4679(3)	4173(3)	1122(3)	C(4)	1160(4)	2996(3)	859(3)
$\mathrm{O}(4)$	553(3)	3389(3)	376(2)	C(5)	3376(4)	2634(4)	257(3)
$\mathrm{O}(5)$	3992(3)	2848(3)	-539(2)	C(40)	-854(3)	820(3)	2343(3)
C(41)	- 1967(3)	-230(3)	2862(3)	$\mathrm{C}(42)$	-2147(4)	- 1052(3)	2435(3)
C(43)	-3149(4)	-2054(4)	2948(4)	C(44)	-3977(5)	-2226(5)	3857(4)
C(45)	-3858(5)	-1412(5)	4301(4)	C(46)	-2849(4)	-428(5)	3790(3)
$\mathrm{O}(40)$	- 1295(3)	--805(3)	1499(2)	C(47)	- 1598(6)	-1450(5)	975(4)
C(61)	1898(4)	4330 (3)	3055(3)	C(62)	1389(5)	3668(4)	4048(3)
C(63)	1934(6)	3888(5)	4658(4)	C(64)	2977(6)	4798(5)	4279(4)
C(65)	3505(5)	5453(5)	3302(4)	C (66)	2982(4)	5225(4)	2679(3)
C(71)	1696(3)	5586(3)	1188(3)	C(72)	2337(3)	5774(3)	221(3)
$\mathrm{C}(73)$	2528(4)	6969(3)	-503(3)	C (74)	2085(4)	7969(3)	-248(3)
$\mathrm{C}(75)$	1467(4)	7794(3)	714(3)	C (76)	1259(4)	6605(3)	1436(3)
$C(81)$	-520(3)	3892(3)	2663(3)	$\mathrm{C}(82)$	- 1269(4)	3132(4)	3604(3)
$\mathrm{C}(83)$	-2639(4)	3035(5)	3924(3)	C(84)	- 3247(4)	3706(5)	3303(4)
C(85)	-2497(5)	4432(5)	2355(4)	C(86)	-1137(4)	4531(4)	2037(3)

$\mathrm{mmol})$ to give pale yellow microcrystals of $\left[\mathrm{W}(\mathrm{CO})_{2}(\mathrm{CN}-\right.$ $\left.\left.\mathrm{Bu}^{\mathrm{t}}\right)_{2}\left\{\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{8}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-2\right) \mathrm{Me}_{2}\right\}\right] \mathbf{6 e}(0.029 \mathrm{~g})$.
(iv) The compound [$\mathrm{W}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)\left\{\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{8}\left(\mathrm{CH}_{2} \mathrm{C}_{6}\right.\right.$ $\left.\left.\left.\mathrm{H}_{4} \mathrm{OMe}-2\right) \mathrm{Me}_{2}\right\}\right] \quad 7 \mathrm{a}(0.072 \mathrm{~g})$ was similarly obtained by addition of $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}(20 \mu \mathrm{l}, 0.15 \mathrm{mmol})$ to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ solution containing 5b $(0.10 \mathrm{~g}, 0.15 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(0.050 \mathrm{~g}$, 0.19 mmol) at $-78^{\circ} \mathrm{C}$.
(v) Similarly, the reagents 5 b $(0.10 \mathrm{~g}, 0.15 \mathrm{mmol})$ and $\mathrm{PhC} \equiv \mathrm{CPh}(0.055 \mathrm{~g}, 0.31 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ were treated with $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}(20 \mu \mathrm{l}, 0.15 \mathrm{mmol})$. The IR spectrum of the product mixture showed $v_{\max }(\mathrm{CO})$ bands at 1988 and $2048 \mathrm{~cm}^{-1}$ attributed to compound 6h (see Discussion). After column chromatography, as in (ii) above, the crude product was crystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane $\left(5 \mathrm{~cm}^{3}\right.$, $1: 4)$ at $-50^{\circ} \mathrm{C}$, and then washed with cold hexane ($3 \mathrm{~cm}^{3}$, $-10 \mathrm{C})$ to give yellow microcrystals of $\left[\mathrm{W}(\mathrm{CO})(\mathrm{PhC} \equiv \mathrm{CPh})_{2}-\right.$ $\left.\left\{\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{8}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-2\right) \mathrm{Me}_{2}\right\}\right] \mathbf{8 a}(0.065 \mathrm{~g})$.
(vi) Following a similar procedure to that used for the synthesis of $6 \mathbf{d}$, a mixture of the reagents $5 \mathbf{b}(0.10 \mathrm{~g}, 0.15$ $\mathrm{mmol})$ and $\mathrm{dppm}(0.060 \mathrm{~g}, 0.16 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{C}_{2}$ at room temperature gave, after addition of $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}(20 \mu \mathrm{l}, 0.15$ $\mathrm{mmol})$, yellow microcrystals of $\left[\mathrm{W}(\mathrm{CO})_{2}(\mathrm{dppm})\left\{\eta^{5}-\mathrm{C}_{2} \mathbf{B}_{9}-\right.\right.$ $\mathrm{H}_{8}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-2\right) \mathrm{Me}_{2}$!] $9(0.109 \mathrm{~g})$. The synthesis of 9 was accompanied by the formation of a minor product formulated
 $\left.\mathrm{Me}_{2}\right)$] 10a (see Discussion).

Protonation with Aqueous HI -- $\mathrm{A} \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ solution of compound $5 \mathbf{b}(0.10 \mathrm{~g}, 0.15 \mathrm{mmol})$ was treated at room temperature with $\mathrm{HI}\left(57 \%\right.$ aqueous solution, $0.10 \mathrm{~cm}^{3}, 0.70$ $\mathrm{mmol})$. The mixture initially turned green, and then became brown. After stirring for 30 min , solvent was removed in vacuo, the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$, and the solution obtained was chromatographed at $-30^{\circ} \mathrm{C}$ on a short column (4 cm in length). Elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ (3:1) removed a trace of a purple eluate which was discarded. The second fraction, orange-red, was collected and solvent was removed in cacuo. The residue was crystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane (5 $\left.\mathrm{cm}^{3}, 1: 4\right)$, and the oily product was washed with $\mathrm{Et}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3}\right)$ and dried in vacuo to afford dark red microcrystals of [NEt_{4}]-$\left[\mathrm{WI}(\mathrm{CO})_{3}\left\{\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{8}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-2\right) \mathrm{Me}_{2}\right\}\right] \mathbf{1 2 b}(0.049 \mathrm{~g})$.

Crystal Structure Determination and Refinement.-Crystals of compound 7 a were obtained from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane (1:5) as yellow cubes. Data are given in Table 5. The structure was solved by conventional heavy-atom methods, and successive Fourier difference syntheses were used to locate all the non-hydrogen atoms, as well as the hydrogens bonded to cage boron atoms. Other hydrogen atoms were included in calculated
positions ($\mathrm{C}-\mathrm{H} 0.96 \AA$), and all hydrogen atoms were given fixed isotropic thermal parameters ($U_{\text {iso }}=0.08 \AA^{2}$). Nonhydrogen atoms were refined anisotropically. All computations were performed on a DEC μ-Vax II computer using the SHELXTL PLUS system of programs. ${ }^{9}$ Scattering factors with corrections for anomalous dispersion are inlaid in the programs. Atom coordinates are given in Table 6.
Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom coordinates, thermal parameters and remaining bond lengths and angles.

Acknowledgements

We thank the British Council and the State Education Commission of the People's Republic of China for a SinoBritish Friendship Scholarship (to S. L.) and the Robert A. Welch Foundation for support (to S. L. and F. G. A. S.)

References

1 Part 4, S. A. Brew and F. G. A. Stone, J. Chem. Soc., Dalton Trans. preceding paper.
2 (a) J. A. K. Howard, J. C. Jeffery, J. C. V. Laurie, I. Moore, F. G. A Stone and A. Stringer, Inorg. Chim. Acta, 1985, 100, 23; (h) J. A. K. Howard, J. C. Jeffery, S. Li and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1992, 627; (c) S. A. Brew, D. D. Devore, P. D. Jenkins, M. U Pilotti and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1992, 393; (d) J. C. Jeffery, S. Li and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1992, 635; (e) S. A. Brew, P. D. Jenkins, J. C. Jeffery and F. G. A. Stone J. Chem. Soc., Dalton Trans., 1992, 401; (f) S. A. Brew, N. Carr, J. C. Jeffery, M. U. Pilotti and F. G. A. Stone, J. Am. Chem. Soc., 1992, in the press.
3 K. E. Garrett, J. B. Sheridan, D. B. Pourreau, W. C. Feng, G. L. Geoffroy, D. L. Staley and A. L. Rheingold. J. Am. Chem. Soc., 1989. 111, 8383.
4 M. J. Attfield, J. A. K. Howard, A. N. de M. Jelfs, C. M. Nunn and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1987, 2219, S. A. Brew S. J. Dossett, J. C. Jeffery and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1990, 3709; S. A. Brew, N. Carr, M. D. Mortimer and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1991, 811.
5 J. L. Templeton, Adr. Organomet. Chem.. 1989, 29, 1
6 H. Fischer, E. O. Fischer, C. G. Kreiter and H. Werner, Chem. Ber. 1974, 107, 2459; H. Werner and H. Rascher, Inorg. Chim. Acta, 1968. 2, 181; E. O. Fischer, Adr. Organomet. Chem., 1976. 14, 1.
7 S. A. Brew, J. C. Jeffery, M. U. Pilotti and F. G. A. Stone, J. Am. Chem. Soc., 1990, 112, 6148.
8 M. F. Hawthorne, D. C. Young. P. M. Garrett. D. A. Owen, S. G Schwerin, F. N. Tebbe and P. A. Wegner, J. Am. Chem. Soc., 1968, 90, 862.

9 G. M. Sheldrick, SHELXTL PLUS programs for use with the Siemens R3m/V X-ray system.

Received 4th September 1991; Paper 1/04595D

[^0]: + Supplementary data availahle: see Instructions for Authors, J. Chem. Soc., Dalion Trans., 1992. Issue 1, pp. xx xxv.

