Alkylidyne(carbaborane) Complexes of the Group 6 Metals. Part 5.¹ Protonation Studies on $[NEt_4][W(\equiv CC_6H_4OMe-2)-(CO)_2(\eta^5-C_2B_9H_9Me_2)]^{\dagger}$

John C. Jeffery, Sihai Li, David W. I. Sams and F. Gordon A. Stone *.b

^a School of Chemistry, The University, Bristol BS8 1TS, UK

^b Department of Chemistry, Baylor University, Waco, TX 76798-7348, USA

Dichloromethane solutions of $[NEt_4][W(\equiv CR)(CO)_2(\eta^5-C_2B_9H_9Me_2)]$ (R = C₆H₄OMe-2) at -78 °C on treatment with HBF₄-Et₂O in the presence of the substrates L = CO, PPh₃, PHPh₂, CNBu⁺ and PhC₂Ph afford the complexes $[W(CO)_2L_2\{\eta^5-C_2B_9H_8(CH_2R)Me_2\}]$ (L = CO, PHPh₂ or CNBu^t), $[W(CO)_3-W_2$ $(PPh_3){\eta^5-C_2B_9H_8(CH_2R)Me_2}$ and $[W(CO)(PhC_2Ph)_2{\eta^5-C_2B_9H_8(CH_2R)Me_2}]$ respectively. The corresponding protonation reaction employing dppm $(Ph_2PCH_2PPh_2)$ as the substrate yields $[W(CO)_2^{-1}]^{-1}$ $(dppm){\eta^{5}-C_{2}B_{9}H_{8}(CH_{2}R)Me_{2}}$ as the major product, together with small quantities $[W{CH(R)PPh_2CH_2PPh_2}(CO)_2(\eta^5-C_2B_9H_9Me_2)].$ The structure of $[W(CO)_3(PPh_3)\{\eta^5-C_2B_9H_8-$ (CH₂R)Me₂] has been established by X-ray diffraction. The tungsten atom is n⁵ co-ordinated by the *nido*icosahedral fragment $C_2B_9H_8(CH_2R)Me_2$. In the latter the exopolyhedral CH₂R group is bonded to the boron atom which is in the β position with respect to the two carbon atoms in the open pentagonal CCBBB face of the cage ligating the tungsten. The latter also carries three terminally bound CO groups and the PPh₃ ligand. Addition of aqueous HI to CH₂Cl₂ solutions of [NEt₄] [W(\equiv CR)(CO)₂(η^{5} -C₂B₉H₉Me₂)] affords the salt $[NEt_4][WI(CO)_3\{\eta^5-C_2B_9H_8(CH_2R)Me_2\}]$. In the latter there is a 2,1,8 arrangement for the nonboron vertices of the WC2B, icosahedron, in contrast with the closo-3,1,2-WC2B, structures of the other products. The NMR data (¹H, ¹³C-{¹H}, ¹¹B-{¹H} and ³¹P-{¹H}) for the new compounds are reported and discussed in relation to the molecular structures.

The isolobally mapped alkylidynetungsten compounds [W- $(\equiv CR)(CO)_2(\eta - C_5H_5)$] and $[Y][W(\equiv CR)(CO)_2(\eta^5 - C_2B_9H_9 - C_2B_9H_9)]$ Me_2] [Y = NEt₄, PPh₄, N(PPh₃)₂, etc.; R = aryl or alkyl] afford a variety of structurally different complexes upon protonation. The nature of these products depends on the acid used for protonation, the R group attached to the ligated carbon of the alkylidyne ligand, and upon whether the tungsten atom carries a C_5H_5 or a $C_2B_9H_9Me_2$ ligand.^{1.2} The effect of different R groups is illustrated by protonation studies on the species $[W(\equiv CR)(CO)_2(\eta - C_5H_5)](R = C_6H_4Me - 4 \text{ la or } C_6H_4OMe - 2$ 1b). Treatment of 1a with $HBF_4 \cdot Et_2O$ affords the μ -alkyneditungsten complex $[W_2(\mu-H){\mu-C_2(C_6H_4Me-4)_2}(CO)_4(\eta C_5H_5)_2$ [BF₄] 2^{2a} There is good evidence that this product forms via the intermediacy of $[W{=C(H)C_6H_4Me-4}(CO)_2(\eta C_5H_5$][BF₄] 3a. However, this alkylidenetungsten complex cannot be isolated.^{2a,3} In contrast, treatment of 1b with HBF_{4} ·Et₂O gives $[W{=C(H)C_{6}H_{4}OMe-2}(CO)_{2}(\eta-C_{5}H_{5})]$ -[BF₄] 3b, which is sufficiently stable to be characterised spectroscopically. Moreover, the alkylidene group in 3b can be captured by addition of PPh₃ to yield the ylide complex [$W{\sigma,\eta^2-CH(PPh_3)C_6H_4OMe-2}(CO)_2(\eta-C_5H_5)$][BF₄] 4.^{2b} Substituting *nido*- $\eta^5-C_2B_9H_9Me_2$ cage ligands for $\eta-C_5H_5$

Substituting *nido*- η^5 -C₂B₉H₉Me₂ cage ligands for η -C₅H₅ groups in alkylidynetungsten chemistry produces very different reactivity patterns. Thus treatment of [NEt₄][W(\equiv CC₆H₄Me-4)(CO)₂(η^5 -C₂B₉H₉Me₂)] **5a** with HBF₄·Et₂O gives [W-(CO)₄(η^5 -C₂B₉H₈(CH₂C₆H₄Me-4)Me₂)] **6a**, a product which very likely forms *via* the intermediacy of the complex [W{=C(H)C₆H₄Me-4}(CO)₂(η^5 -C₂B₉H₉Me₂)]. Insertion of the alkylidene group in the latter into a cage B-H bond, with addition at the tungsten centre of CO molecules from the solution, affords the final product **6a**.^{2c} The non-spectator role of the η^5 -C₂B₉H₉Me₂ ligand thus permits a reaction pathway not possible with the alkylidene complex 3a. Consequently, the latter reacts with its precursor 1a, present in the reaction mixtures, to yield the ditungsten salt 2.

In this paper we extend the scope of these studies by employing the species $[NEt_4][W(\equiv CC_6H_4OMe-2)(CO)_2(\eta^5-C_2B_9H_9Me_2)]$ 5b. These new experiments allow comparisons to be made with previous protonation reactions involving the reagents 1b and 5a.

Results and Discussion

Treatment of a CO-saturated CH₂Cl₂ solution of compound 5b at -78 °C with HBF₄·Et₂O affords the complex [W(CO)₄{ η^{5} - $C_2B_9H_8(CH_2C_6H_4OMe-2)Me_2$] **6b**, an analogue of **6a**.^{2c} The same product is formed in the absence of CO, but in lower yield. Compound 6b was characterised by the data given in Tables 1-3. The NMR spectra of 6a and 6b are very similar, in accord with their closely related structures. Thus the ¹H NMR spectra show broad resonances at δ 2.28 (6a) and 2.30 (6b) for the two protons of the BCH₂ group, and in the ¹¹B-{¹H} NMR spectra this moiety gives rise to signals at δ 9.4 (6a) and 8.6 (6b). As with 5a, the protonation of **5b** proceeds very rapidly at -78 °C and no intermediate alkylidenetungsten complex $[W=C(H)C_6H_4O-$ Me-2; $(CO)_n(\eta^5-C_2B_9H_9Me_2)$] (n = 2 or 3) was identified. Indeed, it would be surprising if such intermediates could be isolated as they would readily add CO at the tungsten centre to provide a filled valence shell for the metal. However, in the synthesis of 6b, addition of HBF₄·Et₂O to 5b resulted in an immediate colour change of the CH2Cl2 solutions from orangered to green, but the latter colour rapidly disappeared as the reaction proceeded. The transient green species could well be an alkylidenetungsten complex akin to **3b**, with the η -C₅H₅ group replaced by η^5 -C₂B₉H₉Me₂ and neutral rather than cationic.

^{*} Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1992, Issue 1, pp. xx xxv.

Table 1 Analytical " and physical data for the tungsten complexes

			Viold		Analysis (%)		
Compound ^b		Colour	(%)	$v_{max}(CO)^{c}/cm^{-1}$	C	н	
6b	$[W(CO)_{4} \{\eta^{5} - C_{2}B_{9}H_{8}(CH_{2}R)Me_{2}\}]$	Yellow	58	2093vs, 2022s (sh), 1998vs (br)	33.4 (33.3)	4.2 (4.0)	
6d	$[W(CO)_2(PHPh_2)_2 \{\eta^5 - C_2 B_9 H_8(CH_2 R) Me_2\}]$	Yellow	55	1939s, 1853vs	51.2 (51.1)	5.4 (5.1)	
6e	$[W(CO)_2(CNBu^{i})_2 \{\eta^5 - C_2B_9H_8(CH_2R)Me_2\}]^d$	Pale yellow	27	° 1975vs, 1913vs	f 42.4 (42.0)	6.6 (6.0)	
7a	$[W(CO)_{3}(PPh_{3})\{\eta^{5}-C_{2}B_{9}H_{8}(CH_{2}R)Me_{2}\}]$	Yellow	58	2024vs, 1950s, 1924vs	48.6 (48.9)	4.6 (4.7)	
8a	$[W(CO)(PhC_2Ph)_2\{\eta^5-C_2B_9H_8(CH_2R)Me_2\}]$	Yellow	50	2070vs	57.4 (58.0)	5.5 (5.1)	
9	$[W(CO)_2(dppm){\eta^5 - C_2B_9H_8(CH_2R)Me_2}]$	Yellow	78	1959vs, 1874vs	51.1 (51.8)	5.2 (5.0)	
12b	$[\operatorname{NEt}_4][\operatorname{WI}(\operatorname{CO})_3 \{\eta^5 \cdot \operatorname{C}_2 \operatorname{B}_9 \operatorname{H}_8(\operatorname{CH}_2 \operatorname{R})\operatorname{Me}_2\}]^g$	Dark red	40	2008vs, 1914vs (br)	^h 34.9 (34.3)	6.3 (5.4)	

^{*a*} Calculated values are given in parentheses. ^{*b*} R = $C_6H_4OMe^{-2}$. ^{*c*} Measured in CH_2CI_2 . All complexes display a broad B- H absorption at *ca*. 2550 cm⁻¹. ^{*d*} Formed as a mixture of isomers, see text. ^{*c*} $v_{max}(NC)$ 2169s and 2137s cm⁻¹. ^{*f*} N, 3.9 (4.1%). ^{*g*} Complex has a 2,1,8-WC₂B₉ arrangement for the icosahedral fragment rather than the 3,1,2-WC₂B₉ structure present in all the other compounds reported (see text). ^{*h*} N, 1.6 (1.7%).

Table 2 Hydrogen-1 and carbon-13 NMR data " for the complexes

Compound	¹ Η ^{<i>b</i>} (δ)	¹³ C ^τ (δ)
6b	2.30 (s, br, 2 H, BCH ₂), 2.44 (s, 6 H, CMe), 3.73 (s,	209.4 [CO, J(WC) 115], 156.9, 135.0, 129.4, 125.3, 119.8, 109.2 (C ₆ H ₄), 69.3
	3 H, OMe), 6.68–7.04 (m, 4 H, C_6H_4)	(CMe), 54.6 (OMe), 33.3 (CMe), 28.3 (vbr, BCH ₂)
6d	2.20 [d, 6 H, CMe, J(PH) 3], 2.34 (s, br, 2 H,	231.1 [t, CO, J(PC) 23], 228.2 [t, CO, J(PC) 32], 157.0, 136.5, 134.5, 132.5,
	BCH ₂), 3.67 (s, 3 H, OMe), 6.63-7.01 (m, 4 H,	130.9 [d, J(PC) 12], 130.7, 128.7, 124.5, 119.3, 109.8 (C, H, and Ph), 62.5
	C_6H_4 , 7.27 [d, 2 H, PH, J(PH) 386], 7.33–7.82 (m,	(CMe), 55.1 (OMe), 29.1 (CMe), 25.0 (vbr, BCH ₃)
	20 H, Ph)	
6e ^{<i>d</i>}	^e 1.60 (s, 18 H, Bu ¹), 1.62 * (s, 18 H, Bu ¹), 2.25 (s, 6 H,	228.6, 221.8* (CO), 157.1, 157.0* (C ₆ H ₄), 148.2, 141.5* (CN), 137.1, 137.0*.
	CMe), 2.30* (s, 6 H, CMe), 2.20-2.40 (m, 2 H,	130.2*, 130.0, 124.4, 124.3*, 119.4, 109.7*, 109.5 (C, HA), 64.6 (CMe), 59.7
	BCH ₂), 3.71 (s, 3 H, OMe), 3.72* (s, 3 H, OMe),	(CMe ₃), 59.2* (CMe), 55.1* (OMe), 55.0* (CMe ₃), 54.9 (OMe), 32.6, 32.5*
	$6.58-6.97 (m, 4 H, C_6 H_4)$	(CMe), 30.7, 30.6* (CMe ₃), 26.8 (vbr, BCH ₃)
7a	1.94 (s, 2 H, BCH ₂), 1.98 (s, 6 H, CMe), 3.76 (s, 3 H,	222.1 [d, 2 × CO, J(PC) 30], 221.5 [d, CO, J(PC) 9], 156.7, 136.2, 133.9, 133.8.
	OMe), 6.68–6.96 (m, 4 H, C_6H_4), 7.51–7.68 (m, br,	131.7, 130.4, 128.8, 124.6, 119.2, 109.3 (C ₆ H ₄ and Ph), 66.4 (CMe), 54.5
	15 H, Ph)	(OMe), 31.0 (CMe), 26.8 (vbr, BCH ₂)
8a ^f	^e 1.31 (s, 3 H, CMe), 1.78, 2.04 [AB, 2 H, BCH ₂ ,	210.4 (CO), 185.7, 177.5, 172.5 (CPh), 156.4-108.5 (Ph, C ₆ H ₄), 68.7, 65.1
	J(HH) 13], 2.42 (s, 3 H, CMe), 3.31 (s, 3 H, OMe),	(CMe), 54.1 (OMe), 30.2, 27.1 (CMe), 27.0 (vbr, BCH ₂)
	6.59–8.37 (m, 24 H, C ₆ H ₄ , Ph)	
9	1.27 (s, br, 2 H, BCH ₂), 2.25 (s, br, 6 H, CMe), 3.61	" 232.9 (AXX', CO, N 32), 157.0, 136.9, 133.4, 131.7, 131.1, 130.7, 128.7, 124.4,
	(s, 3 H, OMe), 4.95 [d of t, 1 H, PCH ₂ P, J(PH) 11,	119.2, 109.7 (C ₆ H ₄ and Ph), 63.4 (CMe), 55.0 (OMe), 48.8 [t, PCH ₂ P, J(PC)]
	J(HH) 14], 5.26 [d of t, 1 H, PCH ₂ P, J(PH) 9,	28], 33.1 (CMe), 28.5 (vbr, BCH,)
	J(HH) 14], 6.55–6.94 (m, 4 H, C ₆ H ₄), 7.34–7.73 (m,	•
	20 H, Ph)	
12b	1.31 [t, br, 12 H, CH ₂ Me, J(HH) 7], 1.57 (s, 3 H,	^h 230.9, 222.0, 221.4 (CO), 157.5, 138.2, 130.5, 124.6, 119.8, 110.2 (C ₆ H ₄), 63.4
	CMe), 1.92 (s, 3 H, CMe), 2.31, 2.45 [AB, br, 2 H,	(CMe), 61.9 (br, CMe), 55.3 (OMe), 53.1 (CH ₂ Me), 32.8, 29.6 (CMe), 26.5
	BCH_2 , $J(HH)$ 10], 3.18 [q, 8 H, CH_2 Me, $J(HH)$ 7],	(vbr, BCH ₂), 7.9 (CH ₂ Me)
	$3.70 (s, 3 H, OMe), 6.69-6.95 (m, 4 H, C_6H_4)$	
" Chemical s	hifts (δ) in ppm, coupling constants (J) in Hz. ^b Mea	sured in CD ₂ Cl ₂ unless otherwise stated. Protons of BH groups display broad
unresolved s	ignals in the range $\delta ca2$ to $+3.$ Hydrogen-1 deco	upled chemical shifts, measured in $CDCl_3$ unless otherwise stated, are positive to

high frequency of SiMe₄. ^d Peaks due to the minor isomer are marked with an asterisk. However, some signals are obscured by those of major isomer. ^e Measured in CDCl₃. ^f Measured at -40 C. ^g N = |J(PC) + J(P'C)|. ^h Measured in CD₂Cl₂ CH₂Cl₂.

Table 3 Boron-11 and phosphorus-31 NMR data " for the complexes

Compound	¹¹ Β ^{<i>b</i>} (δ)	$^{31}\mathbf{P}^{c}(\delta)$
6b	8.6 (1 B, BCH ₂), -1.0 (1 B, BH), -2.8 (2 B, BH), -8.0 (5 B, BH)	
6d	7.4 (1 B, BCH ₂), -6.5 (3 B, BH), -9.0 (2 B, BH), -10.9 (3 B, BH)	15.2 [J(WP) 186]
6e	4 6.8 (1 B, BCH ₂), -6.0 (3 B, BH), -8.2 (2 B, BH), -11.2 (3 B, BH)	
7a	7.2 (1 B, BCH ₂), -4.0 (1 B, BH), -5.1 (2 B, BH), -8.7 (2 B, BH), -10.1 (3 B, BH)	11.1 [J(WP) 161]
8a	^d 9.88 (1 B, BCH ₂), -5.5 to -12.1 (br, 8 B, BH)	
9	7.0 (1 B, BCH ₂), -6.3 (5 B, BH), -10.1 (3 B, BH)	-33.2 [J(WP) 186]
10a °		52.2 [d, J(PP) 50, J(WP)
		213], 40.1 [d, J(PP) 50]
12b	3.7 (1 B, BCH ₂), -4.0 (2 B, BH), -5.3 (1 B, BH), -8.4 (1 B, BH), -10.4 (1 B, BH),	
	-11.1 (1 B, BH), -13.1 (1 B, BH), -16.3 (1 B, BH)	

^{*a*} Chemical shifts (δ) in ppm, coupling constants (*J*) in Hz, measurements in CD₂Cl₂ CH₂Cl₂ at ambient temperatures unless otherwise stated. ^{*b*} Hydrogen-1 decoupled, chemical shifts are positive to high frequency of BF₃·Et₂O (external). Signals ascribed to more than one boron nucleus may result from overlapping peaks, and do not necessarily indicate symmetry equivalence. ^c Hydrogen-1 decoupled, chemical shifts are positive to high frequency of 85°_a H₃PO₄ (external). ^{*d*} Measured in CDCl₃. ^{*c*} Compound formed as a mixture with **9**, see text.

Addition of $HBF_4 \cdot Et_2O$ to a CH_2Cl_2 solution containing complex **5b** and PPh₃ at -78 °C affords $[W(CO)_3(PPh_3){\eta^5-C_2B_9H_8(CH_2C_6H_4OMe-2)Me_2}]$ **7a**. As described below, the structure of this product was established by an X-ray diffraction

study. However, before discussing the crystallographic data, it is interesting to contrast the formation of the stable complex 7a with the earlier results obtained by protonating 5a in the presence of PPh₃.^{2c} This reaction affords compound 7b, an

analogue of 7a, but the former species is somewhat unstable, and its solution disproportionates to yield crystals of the bis(triphenylphosphine)tungsten complex **6c**. We observed no similar decomposition on the part of solutions of 7a. The reason

Fig. 1 Molecular structure of the compound $[W(CO)_3(PPh_3){\eta^5-C_2B_9H_8(CH_2C_6H_4OMe-2)Me_2}]$ 7a, showing the crystallographic labelling scheme

for the difference in stability of **7a** and **7b** is not clear at the present time.

The significant data from the X-ray diffraction study on compound 7a are given in Table 4, and the structure of the molecule is shown in Fig. 1. The tungsten atom is η^5 coordinated by the nido-icosahedral fragment C2B9H8(CH2C6- $H_4OMe-2)Me_2$. In the latter the $CH_2C_6H_4OMe-2$ group is attached to the boron atom which is in the β position with respect to the two carbon atoms in the open pentagonal CCBBB face of the cage. This structural feature is common to all of the many species that have now been synthesised containing $C_2B_9H_8(CH_2R)Me_2$ (R = alkyl or aryl) groups.^{2c,e,f,4} The tungsten atom is also ligated by three terminally bound CO molecules (W-C-O av. 177.5°) and the PPh₃ group. The various structural parameters for 7a are very similar to those obtained from the X-ray diffraction study of 6c.2c Thus for 7a the B(4)–C(40) separation [1.630(6) Å] is comparable with the corresponding B-CH₂C₆H₄Me-4 distance [1.65(2) Å] in compound 6c. The W-P bond lengths in 7a [2.572(1) Å] and in 6c [2.571(5) Å] are essentially identical.

The NMR data for compound **7a** (Tables 2 and 3) are in accord with the structure established by X-ray diffraction. Moreover, as expected, they are very similar to those for **7b**.^{2c} Thus **7a** shows diagnostic NMR resonances for the BCH₂ group [¹H, δ 1.94; ¹³C-{¹H}, δ 26.8; ¹¹B-{¹H}, δ 7.2], as does **7b** [¹H, δ 1.79; ¹³C-{¹H}, δ 31.5; ¹¹B-{¹H}, δ 7.2]. In the ³¹P-{¹H} NMR spectra of the two complexes resonances occur at δ 11.1 (**7a**) and 10.69 (**7b**), with ¹⁸³W-³¹P couplings of 161 and 165 Hz, respectively.

Protonation of the salt **5b** in the presence of PHPh₂ was next investigated. This reaction afforded the complex $[W(CO)_2 (PHPh_2)_2{\eta^5-C_2B_9H_8(CH_2C_6H_4OMe-2)Me_2}]$ **6d**. Data given in Tables 1–3 fully characterise this product. In the ¹³C-{¹H} NMR spectrum (Table 2) there are two resonances for nonequivalent CO groups and both signals are triplets, due to ³¹P-¹³C coupling with chemically equivalent PHPh₂ ligands. In the ³¹P-{¹H} NMR spectrum (Table 3) there is a singlet at δ 15.2 [J(WP) 186 Hz]. These data can be explained if the two PHPh₂ groups are transoid to one another in a structure similar to **7a**, with one phosphine ligand lying below B(3) and the other below B(5) (Fig. 1). In this arrangement one carbonyl ligand is *cis* to the BCH₂ fragment and the other transoid to it. This

2.572(1)	WC(1)	2.408(4)	W-C(2)	2.390(4)	W-B(3)	2.358(4)
2.443(4)	W-B(5)	2.380(3)	W-C(3)	1.999(4)	W-C(4)	1.990(4)
1.999(4)	PC(61)	1.846(5)	PC(71)	1.837(3)	PC(81)	1.850(4)
1.529(8)	C(1)-C(2)	1.664(6)	C(1) - B(5)	1.729(6)	C(2) - C(20)	1.526(5)
1.722(7)	B(3) - B(4)	1.814(5)	B(4) - B(5)	1.824(7)	B(4) - B(8)	1.789(6)
1.794(5)	B(4)-C(40)	1.630(6)	C(3) - O(3)	1.157(5)	C(4) - O(4)	1.147(6)
1.135(5)	C(40)-C(41)	1.505(5)	C(42)-O(40)	1.375(5)	O(40)-C(47)	1.410(9)
P-W-C(3)	73.2(1)	P-W-C(4)	74.5(1)	P-W-C(5)	119.8(1)	
C(1)-W-C(2)	40.6(1)	C(1) - W - B(3)	71.3(2)	C(1)-W-B(4)	73.1(1)	
B(3) - W - B(4)	44.4(1)	C(1) - W - B(5)	42.3(1)	C(3) - W - C(4)	111.0(1)	
C(3) - W - C(5)	73.3(2)	C(4) - W - C(5)	73.0(2)	W-P-C(61)	114.7(1)	
W - P - C(71)	114.2(1)	C(61) - P - C(71)	101.6(2)	W-P-C(81)	114.8(1)	
C(61) - P - C(81)	108.8(2)	C(71) - P - C(81)	101.0(2)	W-C(1)-C(10)	110.2(2)	
W-C(1)-C(2)	69.1(2)	C(10) - C(1) - C(2)	121.3(3)	W-C(1)-B(5)	68.0(2)	
C(10)-C(1)-B(5)	124.8(4)	C(2)-C(1)-B(5)	109.4(3)	W-C(2)-C(20)	110.1(2)	
W-C(2)-B(3)	67.8(2)	C(1)-C(2)-B(3)	110.3(3)	W-B(3)-C(2)	69.7(2)	
W-B(3)-B(4)	70.3(2)	C(2)-B(3)-B(4)	108.8(3)	W-B(4)-B(3)	65.4(2)	
W-B(4)-B(5)	66.0(2)	W-B(4)-C(40)	114.0(2)	B(3)-B(4)-C(40)	126.2(4)	
B(5)-B(4)-C(40)	127.3(3)	B(8)-B(4)-C(40)	116.2(3)	B(9)-B(4)-C(40)	116.7(3)	
W-B(5)-C(1)	69.7(2)	W-B(5)-B(4)	69.6(2)	C(1)-B(5)-B(4)	108.8(3)	
W-C(3)-O(3)	177.2(3)	W-C(4)-O(4)	176.5(4)	W-C(5)-O(5)	178.8(4)	
B(4)-C(40)-C(41)	116.4(3)	P-C(61)-C(62)	123.8(4)	P-C(61)-C(66)	118.0(3)	
	$\begin{array}{c} 2.572(1)\\ 2.443(4)\\ 1.999(4)\\ 1.529(8)\\ 1.722(7)\\ 1.794(5)\\ 1.135(5)\\ \end{array}$	$\begin{array}{ccccc} 2.572(1) & W-C(1) \\ 2.443(4) & W-B(5) \\ 1.999(4) & P-C(61) \\ 1.529(8) & C(1)-C(2) \\ 1.722(7) & B(3)-B(4) \\ 1.794(5) & B(4)-C(40) \\ 1.135(5) & C(40)-C(41) \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 4 Selected internuclear distances (Å) and angles (°) for $[W(CO)_3(PPh_3)\{\eta^5-C_2B_9H_8(CH_2C_6H_4OMe-2)Me_2\}]$ 7a, with estimated standard deviations in parentheses

interpretation assumes that the $W(CO)_2(PHPh_2)_2$ moiety does not rotate with respect to the cage.

It is interesting that protonation of complex **5b** in the presence of PHPh₂ yields a bis(phosphine)tungsten species whereas the corresponding reaction involving PPh₃, even with the latter in excess, yields a monophosphinetungsten complex. We assume that this is due to the lower steric requirements of the PHPh₂ group which facilitates addition of two molecules of this reagent to the above-mentioned electronically unsaturated intermediate $[W{=C(H)C_6H_4OMe-2}(CO)_2(\eta^5-C_2B_9H_9-Me_2)].$

Treatment of CH₂Cl₂ solutions containing a mixture of complex 5b and CNBut in 1:2 mol ratio with HBF₄.Et₂O gives $[W(CO)_2(CNBu^{t})_2\{\eta^5-C_2B_9H_8(CH_2C_6H_4OMe-2)Me_2\}] \quad \textbf{6e.}$ Examination of the ¹H and ¹³C-{¹H} NMR spectra of this product revealed that it is formed as an inseparable mixture of two isomers in ratio ca. 2:1, based on peak intensities in the ¹H spectrum. The isomers of 6e are assumed to correspond to cisoid and transoid arrangements of the CNBu^t ligands in the W(CO)₂(CNBu^t)₂ fragment, and in the structural formula shown only the transoid structure is depicted. The analogous compound 6f has been previously prepared by protonating the reagent 5a with HBF₄·Et₂O in the presence of CNBu^{1,24} Complex 6f also exists in solution as an equilibrating mixture of the isomers. Isolation of 6e and 6f reveals that the rod-like ligand CNBut can effectively replace two CO ligands in the compounds 6a and 6b whereas the more bulky PPh₃ formally replaces only one CO to yield the complexes 7. Examination of space-filling models of 7a, using data obtained from the X-ray study, reveals that the ligands are very crowded at the metal centre.

Addition of HBF₄·Et₂O to a CH₂Cl₂ solution containing complex **5b** and PhC=CPh in 1:2 mol ratio affords [W(CO)-(PhC₂Ph)₂{ η^5 -C₂B₉H₈(CH₂C₆H₄OMe-2)Me₂}] **8a**, data for which are given in Tables 1–3. This product is an analogue of compound **8b** obtained from **5a**, PhC=CPh, and HBF₄·Et₂O.^{2c} Formation of **8b** occurs via the intermediacy of a bis(alkyne)tungsten species **6g** which releases a CO molecule at low temperatures. In the synthesis of **8a** a transient intermediate, possibly **6h**, was detected by IR spectroscopy, displaying two CO stretching bands at 1988 and 2048 cm⁻¹. It is noteworthy that **6g** has CO absorptions at 1985 and 2045 cm⁻¹.

In the ${}^{13}C{}^{1}H$ NMR spectrum of complex 8a (Table 2) the resonances for the ligated carbon atoms of the alkyne occur in

the chemical shift range expected when alkynes are formally donating three electrons to a metal centre.⁵ A similar feature is observed in the spectrum of 8b, but this molecule exhibits dynamic behaviour corresponding to rotation of the PhC_2Ph groups, and only one broad resonance was observed at δ 178.2 in the room-temperature ¹³C-{¹H} NMR spectrum. With 8a it was possible to measure the spectrum at -40 °C when the asymmetry in the molecule is revealed by the observation of C Ph signals at δ 185.7, 177.5 and 172.5, and resonances for the non-equivalent cage CMe groups at δ 68.7, 65.1 (CMe) and 30.2, 27.1 (CMe). It is possible that the observation of three CPh peaks, rather than the four expected, is due to a coincidence of two of the signals. Like all the compounds reported herein, the ¹³C-{¹H} NMR signal for the BCH₂ group is very broad, occurring at δ 27.0. The broadness of these signals may be ascribed to the quadrupolar effect of the adjacent boron atom.

If the reagent **5b** is protonated with HBF₄·Et₂O in the presence of dppm (Ph₂PCH₂PPh₂) the complex [W-(CO)₂(dppm){ η^{5} -C₂B₉H₈(CH₂C₆H₄OMe-2)Me₂}] **9** is obtained, together with small amounts of a minor product isolated in quantities too small to allow full characterisation. However, it seems very probable that this minor species is

Me₂)] 10a, an analogue of the well characterised compound 10b, previously isolated by treating mixtures of 5a and dppm with HBF₄-Et₂O.^{2e} The structure of 10b has been established by X-ray diffraction. It displays in its IR spectrum CO bands at 1919 and 1828 cm⁻¹, and in its ³¹P-{¹H} NMR spectrum there are resonances at δ 51.3 [d, J(PP) 52, J(WP) 250] and 36.3 [d, J(PP) 52 Hz]. The corresponding data for 10a are: v_{max}(CO) at 1920 and 1830 cm⁻¹; ³¹P-{¹H}, δ 52.2 [d, J(PP) 50, J(WP) 213] and 40.1 [d, J(PP) 50 Hz].

Compound 10b is the major product formed from 5a, dppm and HBF₄·Et₂O, whereas 10a is the minor product obtained from mixtures of 5b and dppm, and the acid. Interestingly, complex 10a is closely mapped with

 $[\dot{W}_{CH(C_6H_4OMe-2)PPh_2CH_2PPh_2}(CO)_2(\eta-C_5H_5)][BF_4]$ 11. The latter has been obtained by adding HBF₄-Et₂O to a CH₂Cl₂ solution of **1b** and dppm.^{2b}

The structures of the species 10 and 11 implicate, following protonation, the initial formation of an alkylidene complex, the W=C(H)R group of which is then captured by addition of a tertiary phosphine to the ligated carbon. Such reactions are well

 $[[]W{CH(C_6H_4OMe-2)PPh_2CH_2PPh_2}(CO)_2(\eta^5-C_2B_9H_9-$

established in alkylidenemetal complex chemistry.⁶ However, when the tungsten atom carries an η^5 -C₂B₉H₉Me₂ ligand, addition of phosphine to the intermediate alkylidene species is in competition with insertion of the latter into a cage B–H bond. Formation of the complexes 7 and 9 shows that the latter process is more rapid than the former in the reactions affording these products. This is in contrast with the formation of the compounds 10.

Complex 9 is structurally related to the compounds [W- $(CO)_{2}L_{2}\{\eta^{5}-C_{2}B_{9}H_{8}(Et)Me_{2}\}\] [L_{2} = Me_{2}P(CH_{2})_{2}PMe_{2} \text{ or }$ Ph₂P(CH₂)₂PPh₂], prepared by treating CH₂Cl₂ solutions of $[NEt_4][W(\equiv CMe)(CO)_2(\eta^5-C_2B_9H_9Me_2)]$ at -78 °C with $HBF_4 \cdot Et_2O$ in the presence of the chelating phosphines.^{2e} In these reactions also, migration of the C(H)Me group from tungsten to the cage is more favourable than its capture by phosphine. As mentioned earlier, it was observed that during the synthesis of the compound 6b, immediately following addition of HBF4.Et2O to the orange-red solutions containing 5b, a green colour developed. Similar behaviour occurred during the preparation of 6d, 6e, 7a, 8a and 9. We suggest that the transient green colour is due to the alkylidenetungsten complex $[W{=C(H)C_6H_4OMe-2}(CO)_2(\eta^5-C_2B_9H_9Me_2)]$, which is very reactive due to the electronic unsaturation at the tungsten centre.

The spectroscopic data for complex 9 are in complete accord with its formulation. The presence of the $BCH_2C_6H_4OMe-2$ group is clearly revealed by diagnostic peaks in the ¹H, ¹³C-{¹H}, and ¹¹B-{¹H} NMR spectra (Tables 2 and 3). The ³¹P-

{¹H} NMR spectrum displays a single resonance at $\delta - 33.2$, the magnitude of the observed ¹⁸³W-³¹P coupling (186 Hz) being in accord with the phosphorus nuclei being bound to the tungsten. The appearance of a singlet signal indicates the presence of equivalent phosphorus atoms. Moreover, the ¹H and ¹³C-{¹H} NMR spectra reveal that the cage CMe groups are also equivalent. In the latter spectrum these fragments give rise to resonances at δ 63.4 (*C*Me) and 33.1 (*CMe*). These data imply that the molecule has a plane of symmetry through the W atom, the BCH₂ group, and the midpoint of the cage C-C connectivity, with the PPh₂ groups lying on either side of this plane. The aforementioned compounds [W(CO)₂L₂{ $\eta^5-C_2B_9-H_8(Et)Me_2$] have NMR spectra (¹H, ¹³C-{¹H}, ¹¹B-{¹H} and ³¹P-{¹H}) very similar to those of **9**, except for differences due to the presence of a PCH₂P fragment in the latter and P(CH₂)₂P fragments in the former.^{2e}

It was mentioned in the introduction that the nature of the products obtained by protonating the salts [Y][W(=CR)- $(CO)_2(\eta^5-C_2B_9H_9Me_2)$] depended on the acid used. Thus whereas 5a, and HBF₄·Et₂O afford the neutral compound 6a, treatment of $[PPh_4][W(\equiv CC_6H_4Me-4)(CO)_2(\eta^5-C_2B_9H_9-$ Me₂)] with aqueous HI yields the salt [PPh₄][WI(CO)₃{ η^{5} -C₂B₉H₈(CH₂C₆H₄Me-4)Me₂}] 12a.^{2f,7} Moreover, in the latter there is no connectivity between the carbon atoms of the cage, which adopts with the tungsten atom a $closo-2,1,8-WC_2B_9$ icosahedral structure. This is in contrast with 6a, and the other complexes described above, all of which have a closo-3,1,2- WC_2B_9 arrangement for the 12-atom core. During the work described herein the reagent 5b was treated with aqueous HI. The product isolated was $[NEt_4][WI(CO)_3 \{\eta^5 C_2B_9H_8(CH_2C_6H_4OMe-2)Me_2$] 12b, analogous to 12a with a 2,1,8 arrangement for the non-boron vertices of the WC_2B_9 icosahedron. The salt 12b was fully characterised by the data listed in Tables 1-3. An interesting and useful diagnostic tool for distinguishing between 3,1,2- and 2,1,8-WC₂B₉ polytopal isomers is based on their ${}^{13}C{}^{1}H$ NMR spectra.^{1,2f} For the 3,1,2-WC₂B₉ species the resonances for the cage carbons are sharp signals, with either one or two peaks appearing, depending on the overall molecular symmetry. For the 2,1,8- WC_2B_9 isomers the carbons are non-equivalent, and there are two resonances, but crucially one signal is broad. The latter may be assigned to the carbon lying in the second pentagonal CB₄ ring lying above the W atom, the broadening of the signal being due to the connectivity with five ¹¹B nuclei. Compound 12b is no exception. In the ¹³C-{¹H} NMR spectrum the two cage C Me signals occur at δ 63.4 and 61.9, with the former peak sharp and the latter broad.

Like all the new compounds reported herein, in the ¹¹B-{¹H} NMR spectrum of **12b** there is a diagnostic resonance (δ 3.7) for the BCH₂ fragment. These signals remain as singlets in fully coupled ¹¹B spectra, indicating that they are not due to BH groups.

It is evident from the results described in this paper that the products obtained by protonating the salt **5b** in the presence of donor molecules are in general structurally similar to the compounds obtained from **5a** in similar reactions. However, some differences in reactivity patterns and relative product stability were observed in reactions of the reagents **5** with PPh₃, PhC=CPh, and dppm.

Experimental

The instrumentation used for the spectroscopic measurements, and the experimental techniques employed have been described in previous Parts of this series.^{1,2b-f} Chromatography columns used were *ca*. 20 cm long and 3 cm in diameter, unless otherwise stated, and were packed with alumina (Aldrich, Brockmann Activity III). The tetrafluoroboric acid was an 85°_{o} solution of HBF₄·Et₂O in Et₂O, as supplied by Aldrich Chemicals.

The reagent **5b** was prepared from $[W(\equiv CC_6H_4OMe-2)-(O_2CCF_3)(CO)_2(py)_2]$ (py = pyridine),^{2b} Na₂[C₂B₉H₉Me₂]

and [NEt₄]Cl as follows. A solution of Na₂[C₂B₉H₉Me₂] was obtained by refluxing in thf (tetrahydrofuran) (10 cm³) [NHMe₃][C₂B₉H₁₀Me₂] (0.60 g, 2.7 mmol)⁸ with NaH (0.55 g, 13.8 mmol, from a 60% dispersion in mineral oil). This solution was decanted, and added to a thf (20 cm³) solution of [W-(\equiv CC₆H₄OMe-2)(O₂CCF₃)(CO)₂(py)₂] (1.60 g, 2.50 mmol). After stirring the mixture for *ca*. 4 h, [NEt₄]Cl·H₂O (0.70 g, 3.80 mmol) was added, and the stirring was continued for 30 min. The mixture was then filtered through a short Celite plug (2 × 5 cm), after which solvent was removed *in vacuo* from the resulting solution. The residue was dissolved in CH₂Cl₂ (20 cm³) and

Table 5 Crystallographic data for compound 7a^a

Crystal dimensions/mm	$0.15 \times 0.60 \times 0.40$
Formula	
	C 3311 38 D 9 O 41 W
	810.8
Crystal colour, shape	Yellow cubes
Crystal system	Triclinic
Space group	ΡĪ
a/Å	10.947(3)
b/Å	11.522(2)
c/\mathbf{A}	15.764(4)
x /*	68.74(2)
$\beta/2$	69.94(2)
γ/*	89.03(2)
U/Å ³	1727(1)
Z	2
$D_c/\mathrm{g}~\mathrm{cm}^{-3}$	1.56
μ (Mo-Kx)/cm ⁻¹	35.0
F(000)	804
TK	293
No. of unique reflections	6453
No. of observed reflections $[F_0 \ge 5F_0]$	5587
$R(R')^{h}$	0.022 (0.024)
Final difference map features (maximum, minimum)/e Å ⁻³	0.49, -0.73

^a Data collected on a Siemens R3m/V four-circle diffractometer operating in the Wyckoff ω -scan mode in the range $5 \le 2\theta \le 50^{\circ}$; graphite monochromated Mo-Kx X-radiation, $\lambda = 0.710$ 69 Å. Refinement was by full-matrix least squares with a weighting scheme of the form $w^{-1} = [\sigma^2(F_o) + g|F_o|^2]$ with g = 0.0008; $\sigma^2(F_o)$ is the variance in F_o due to counting statistics and g was chosen so as to minimise variation in $\Sigma w(|F_o| - |F_c|)^2$ with $|F_o|$. ^b $R = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$, $R' = \Sigma w^4 ||F_o| - |F_c|| \cdot \Sigma w^4 ||F_o|$. chromatographed at -20 °C. Elution with CH₂Cl₂-Et₂O (3:1) afforded an orange eluate. Solvent was removed *in vacuo*, and the residue was crystallised from CH₂Cl₂-Et₂O (20 cm³, 1:4) to give salmon-pink *microcrystals* of [NEt₄][W(=CC₆H₄OMe-2)(CO)₂(η^{5} -C₂B₉H₉Me₂)] **5b** (1.34 g, 81%), after washing the product with Et₂O (10 cm³) and drying *in vacuo* (Found: C, 40.6; H, 6.8; N, 2.4. C₂₂H₄₂B₉NO₃W requires C, 40.7; H, 6.5; N, 2.2%), v_{max}(CO) at 1962vs and 1879vs cm⁻¹ in CH₂Cl₂. NMR (in CD₂Cl₂): ¹H, δ 1.23 [t, br, 12 H, CH₂Me, J(HH) 7], 2.08 (s, 6 H, CMe), 3.10 [q, 8 H, CH₂Me, J(HH) 7], 3.88 (s, 3 H, OMe) and 6.79–7.47 (m, 4 H, C₆H₄); ¹³C-{¹H}, δ 292.9 [C=W, J(WC) 204], 227.8 [CO, J(WC) 185], 158.7, 140.6, 131.0, 129.2, 120.6, 111.9 (C₆H₄), 62.0 (br, C Me), 56.3 (OMe), 53.0 (CH₂Me), 29.9 (CMe) and 7.7 (CH₂Me).

Protonation Studies using HBF₄·Et₂O.—(i) A CH₂Cl₂ (15 cm³) solution of compound **5b** (0.20 g, 0.31 mmol) at -78 °C was saturated with CO gas for *ca*. 5 min. The introduction of CO was continued during addition of HBF₄·Et₂O (40 µl, 0.30 mmol). The mixture instantly changed colour from orange-red to green, and as it was warmed slowly to room temperature under the CO atmosphere the colour further changed to brown. Solvent was removed *in vacuo*, the residue was dissolved in CH₂Cl₂-hexane (10 cm³, 1:1), and the resulting solution was chromatographed at -20 °C. Elution with the same solvent mixture gave a pale yellow eluate. Solvent was removed *in vacuo*, and the residue was crystallised from CH₂Cl₂-hexane (5 cm³, 1:4) to give yellow *microcrystals* of [W(CO)₄{η⁵-C₂B₉H₈-(CH₂C₆H₄OMe-2)Me₂] **6b** (0.104 g).

(*ii*) A CH₂Cl₂ (10 cm³) solution of complex **5b** (0.10 g, 0.15 mmol) and PHPh₂ (0.26 mmol, 2.0 cm³ of a 0.13 mol dm⁻³ solution in CH₂Cl₂) at -78 °C was treated with HBF₄•Et₂O (20 µl, 0.15 mmol). The solution turned green, and upon warming slowly to room temperature became brown. Solvent was removed *in vacuo*, and the residue was dissolved in CH₂Cl₂-hexane (10 cm³, 1:1) and chromatographed. Elution with the same solvent mixture afforded a pale yellow eluate. Removal of solvent *in vacuo* and crystallisation of the residue from CH₂Cl₂-hexane (5 cm³, 1:4) gave yellow *microcrystals* of [W(CO)₂-(PHPh₂)₂{η⁵-C₂B₉H₈(CH₂C₆H₄OMe-2)Me₂}] **6d** (0.076 g).

(*iii*) In a similar experiment a CH_2Cl_2 (10 cm³) solution containing complex **5b** (0.10 g, 0.15 mmol) and $CNBu^t$ (20 µl, 0.18 mmol) at -78 C was treated with HBF₄·Et₂O (20 µl, 0.15

Table 6 Atom positional parameters (fractional coordinates, $\times 10^4$) with estimated standard deviations in parentheses for complex 7a

Atom	X	у	Ξ	Atom	х	у	Z
w	2259(1)	2252(1)	1652(1)	Р	1292(1)	4034(1)	2185(1)
C(1)	2793(3)	813(3)	2986(3)	C(10)	3762(4)	1488(4)	3210(3)
C(2)	3280(3)	378(3)	2036(3)	C(20)	4715(4)	627(4)	1361(3)
B(3)	1979(4)	202(3)	1697(3)	B (4)	508(4)	495(3)	2533(3)
B(5)	1134(4)	943(3)	3318(3)	B(6)	3098(5)	- 736(4)	3186(3)
B(7)	2595(5)	-1124(4)	2370(3)	B (8)	886(4)	- 1075(4)	2718(3)
B(9)	360(4)	- 594(4)	3724(3)	B (10)	1749(5)	-363(4)	3991(3)
B(11)	1584(5)	-1621(4)	3629(3)	C(3)	3771(4)	3490(3)	1322(3)
O(3)	4679(3)	4173(3)	1122(3)	C(4)	1160(4)	2996(3)	859(3)
O(4)	553(3)	3389(3)	376(2)	C(5)	3376(4)	2634(4)	257(3)
O(5)	3992(3)	2848(3)	- 539(2)	C(40)	- 854(3)	820(3)	2343(3)
C(41)	- 1967(3)	-230(3)	2862(3)	C(42)	-2147(4)	-1052(3)	2435(3)
C(43)	-3149(4)	-2054(4)	2948(4)	C(44)	- 3977(5)	-2226(5)	3857(4)
C(45)	-3858(5)	-1412(5)	4301(4)	C(46)	-2849(4)	-428(5)	3790(3)
O(40)	-1295(3)	805(3)	1499(2)	C(47)	-1598(6)	-1450(5)	975(4)
C(61)	1898(4)	4330(3)	3055(3)	C(62)	1389(5)	3668(4)	4048(3)
C(63)	1934(6)	3888(5)	4658(4)	C(64)	2977(6)	4798(5)	4279(4)
C(65)	3505(5)	5453(5)	3302(4)	C(66)	2982(4)	5225(4)	2679(3)
C(71)	1696(3)	5586(3)	1188(3)	C(72)	2337(3)	5774(3)	221(3)
C(73)	2528(4)	6969(3)	-503(3)	C(74)	2085(4)	7969(3)	-248(3)
C(75)	1467(4)	7794(3)	714(3)	C(76)	1259(4)	6605(3)	1436(3)
C(81)	-520(3)	3892(3)	2663(3)	C(82)	-1269(4)	3132(4)	3604(3)
C(83)	-2639(4)	3035(5)	3924(3)	C(84)	-3247(4)	3706(5)	3303(4)
C(85)	-2497(5)	4432(5)	2355(4)	C(86)	-1137(4)	4531(4)	2037(3)

mmol) to give pale yellow *microcrystals* of $[W(CO)_2(CN-Bu')_2\{\eta^5-C_2B_9H_8(CH_2C_6H_4OMe-2)Me_2\}]$ **6e** (0.029 g). (*iv*) The compound $[W(CO)_3(PPh_3)\{\eta^5-C_2B_9H_8(CH_2C_6-Me_3)(M$

(*iv*) The compound $[W(CO)_3(PPh_3){\eta^5-C_2B_9H_8(CH_2C_6-H_4OMe-2)Me_2}]$ **7a** (0.072 g) was similarly obtained by addition of HBF₄·Et₂O (20 µl, 0.15 mmol) to a CH₂Cl₂ (10 cm³) solution containing **5b** (0.10 g, 0.15 mmol) and PPh₃ (0.050 g, 0.19 mmol) at -78 °C.

(v) Similarly, the reagents **5b** (0.10 g, 0.15 mmol) and PhC=CPh (0.055 g, 0.31 mmol) in CH₂Cl₂ (10 cm³) at -78 °C were treated with HBF₄·Et₂O (20 µl, 0.15 mmol). The IR spectrum of the product mixture showed v_{max} (CO) bands at 1988 and 2048 cm⁻¹ attributed to compound **6h** (see Discussion). After column chromatography, as in (*ii*) above, the crude product was crystallised from CH₂Cl₂-hexane (5 cm³, 1:4) at -50 °C, and then washed with cold hexane (3 cm³, -10 °C) to give yellow *microcrystals* of [W(CO)(PhC=CPh)₂-{ η^{5} -C₂B₉H₈(CH₂C₆H₄OMe-2)Me₂}] **8a** (0.065 g).

(vi) Following a similar procedure to that used for the synthesis of **6d**, a mixture of the reagents **5b** (0.10 g, 0.15 mmol) and dppm (0.060 g, 0.16 mmol) in CH₂Ci₂ at room temperature gave, after addition of HBF₄-Et₂O (20 μ l, 0.15 mmol), yellow *microcrystals* of [W(CO)₂(dppm){ η^{5} -C₂B₉-H₈(CH₂C₆H₄OMe-2)Me₂]**9** (0.109 g). The synthesis of **9** was accompanied by the formation of a minor product formulated

as $[\dot{W}{CH(C_6H_4OMe-2)PPh_2CH_2\dot{P}Ph_2}(CO)_2(\eta^5-C_2B_9H_9-Me_2)]$ 10a (see Discussion).

Protonation with Aqueous HI.—A CH_2Cl_2 (10 cm³) solution of compound **5b** (0.10 g, 0.15 mmol) was treated at room temperature with HI (57% aqueous solution, 0.10 cm³, 0.70 mmol). The mixture initially turned green, and then became brown. After stirring for 30 min, solvent was removed *in vacuo*, the residue was dissolved in CH_2Cl_2 (5 cm³), and the solution obtained was chromatographed at -30 °C on a short column (4 cm in length). Elution with $CH_2Cl_2-Et_2O$ (3:1) removed a trace of a purple eluate which was discarded. The second fraction, orange-red, was collected and solvent was removed *in vacuo*. The residue was crystallised from CH_2Cl_2 -hexane (5 cm³, 1:4), and the oily product was washed with Et_2O (10 cm³) and dried *in vacuo* to afford dark red *microcrystals* of [NEt₄]-[WI(CO)₃{ η^5 -C₂B₉H₈(CH₂C₆H₄OMe-2)Me₂}] **12b** (0.049 g).

Crystal Structure Determination and Refinement.—Crystals of compound 7a were obtained from CH_2Cl_2 -hexane (1:5) as yellow cubes. Data are given in Table 5. The structure was solved by conventional heavy-atom methods, and successive Fourier difference syntheses were used to locate all the non-hydrogen atoms, as well as the hydrogens bonded to cage boron atoms. Other hydrogen atoms were included in calculated positions (C–H 0.96 Å), and all hydrogen atoms were given fixed isotropic thermal parameters ($U_{iso} = 0.08$ Å²). Nonhydrogen atoms were refined anisotropically. All computations were performed on a DEC μ -Vax II computer using the SHELXTL PLUS system of programs.⁹ Scattering factors with corrections for anomalous dispersion are inlaid in the programs. Atom coordinates are given in Table 6.

Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom coordinates, thermal parameters and remaining bond lengths and angles.

Acknowledgements

We thank the British Council and the State Education Commission of the People's Republic of China for a Sino-British Friendship Scholarship (to S. L.) and the Robert A. Welch Foundation for support (to S. L. and F. G. A. S.).

References

- 1 Part 4, S. A. Brew and F. G. A. Stone, J. Chem. Soc., Dalton Trans., preceding paper.
- 2 (a) J. A. K. Howard, J. C. Jeffery, J. C. V. Laurie, I. Moore, F. G. A. Stone and A. Stringer, *Inorg. Chim. Acta*, 1985, **100**, 23; (b) J. A. K. Howard, J. C. Jeffery, S. Li and F. G. A. Stone, *J. Chem. Soc., Dalton Trans.*, 1992, 627; (c) S. A. Brew, D. D. Devore, P. D. Jenkins, M. U. Pilotti and F. G. A. Stone, *J. Chem. Soc., Dalton Trans.*, 1992, 393; (d) J. C. Jeffery, S. Li and F. G. A. Stone, *J. Chem. Soc., Dalton Trans.*, 1992, 635; (e) S. A. Brew, P. D. Jenkins, J. C. Jeffery and F. G. A. Stone, *J. Chem. Soc., Dalton Trans.*, 1992, 635; (e) S. A. Brew, P. D. Jenkins, J. C. Jeffery and F. G. A. Stone, *J. Chem. Soc., Dalton Trans.*, 1992, 635; (e) S. A. Brew, P. D. Jenkins, J. C. Jeffery and F. G. A. Stone, *J. Chem. Soc., Dalton Trans.*, 1992, 635; (e) S. A. Brew, P. D. Jenkins, J. C. Jeffery, N. Carr, J. C. Jeffery, M. U. Pilotti and F. G. A. Stone, *J. Am. Chem. Soc.*, 1992, in the press.
- 3 K. E. Garrett, J. B. Sheridan, D. B. Pourreau, W. C. Feng, G. L. Geoffroy, D. L. Staley and A. L. Rheingold, J. Am. Chem. Soc., 1989, 111, 8383.
- 4 M. J. Attfield, J. A. K. Howard, A. N. de M. Jelfs, C. M. Nunn and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1987, 2219; S. A. Brew, S. J. Dossett, J. C. Jeffery and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1990, 3709; S. A. Brew, N. Carr, M. D. Mortimer and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1991, 811.
- 5 J. L. Templeton, Adv. Organomet. Chem., 1989, 29, 1.
- H. Fischer, E. O. Fischer, C. G. Kreiter and H. Werner, *Chem. Ber.*, 1974, **107**, 2459; H. Werner and H. Rascher, *Inorg. Chim. Acta*, 1968, **2**, 181; E. O. Fischer, *Adv. Organomet. Chem.*, 1976, **14**, 1.
- 7 S. A. Brew, J. C. Jeffery, M. U. Pilotti and F. G. A. Stone, J. Am. Chem. Soc., 1990, 112, 6148.
- 8 M. F. Hawthorne, D. C. Young, P. M. Garrett, D. A. Owen, S. G. Schwerin, F. N. Tebbe and P. A. Wegner, J. Am. Chem. Soc., 1968, 90, 862.
- 9 G. M. Sheldrick, SHELXTL PLUS programs for use with the Siemens R3m/V X-ray system.

Received 4th September 1991; Paper 1/04595D