Tris(3,5-dimethylpyrazolyl)borato Molybdenum and Tungsten Nitrosyl Mentholates[†]

Andrzej Wlodarczyk,*[,]* Stefan S. Kurek,* Jean-Dominique F. Foulon,^b Tom A. Hamor^{*,b} and Jon A. McCleverty^{*,c}

^a Institute of Chemical Engineering and Physical Chemistry, Technical University of Krakow, 31-155 Krakow, Poland

^b School of Chemistry, University of Birmingham, PO Box, 363, Birmingham B15 2TT, UK

^c School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK

The complex $[M(NO)L^*X_2]$ $[L^* = tris(3,5-dimethylpyrazolyl)borate; M = Mo, X = CI or I; M = W, X = CI]$ reacted with (+)- and (-)-menthol (C₁₀H₁₉OH) affording diastereomeric mixtures of $[M(NO)L^*(X)-(OC_{10}H_{19})]$. These were separated by chromatography, and the structure of the diastereomer $[Mo(NO)L^*(CI)(\{(-)-OC_{10}H_{19})]$ determined crystallographically. The absolute configuration at the metal in this compound was determined to be *R*, and those of all other complexes $[M(NO)L^*(X)(OC_{10}H_{19})]$ related to it by comparison of their circular dichroism spectra.

We have long known that alcohols react with the prochiral molybdenum and tungsten nitrosyl dihalides $[M(NO)L^*X_2]$ $[M = Mo \text{ or } W, L^* = tris(3,5-dimethylpyrazolyl)borate, X = Cl \text{ or } I]$ affording a racemic mixture of enantiomeric monoalkoxides $[M(NO)L^*(X)(OR)]$.¹⁻³ Until recently we have not attempted to resolve these racemic mixtures, but our interest in obtaining pure enantiomers was stimulated because of the need to find a reliable route to chiral dipolar bimetallic species which might exhibit non-linear optical properties.

In designing materials capable of doubling the frequency of incident radiation a necessary feature is that the molecules comprising such a material contain a donor and an acceptor function separated by a polarisable bridge.⁴ We knew that the $\{M(NO)L^*\}$ moiety was very powerfully electronegative ^{1,5,6} and could constitute a useful acceptor fragment if suitable donors could be attached. A further requirement for materials to show second-order non-linear optical effects is that the crystals are polar and non-centrosymmetric. The production of a pure diastereomer based on the $[M(NO)L^*(X)(OR)]$ system (OR = mentholate) would afford a non-centrosymmetric crystal, but we could not be sure that such a species would also crystallise in a polar space group. Accordingly, molecular design in the context of optical non-linearity is still subject to the somewhat adventitious nature of crystallisation and so has to be underpinned by crystallographic studies.

In developing this work with mentholate complexes we had two goals: determination of the absolute configuration of a key complex and correlation of its circular dichroism (CD) spectrum with that of related monosaccharide species; and formation of a series of chiral alkoxides which might be relatively easy to isolate as pure diastereomers. So far as we can determine there are relatively few reports of mentholate complexes. Among the best characterised species so far described are the chiral tetrahedral clusters [MCo₂(CO)₆C(=O)-{(+)-OC₁₂H₁₉}] [M = Co(CO)₃, Mo(η -C₅H₅)(CO)₂ and related fragments],⁷ in fact carboxylato derivatives, and [Re₃(μ -Cl)₂(μ -OC₁₂H₁₉)₂(OC₁₂H₁₉)₅].⁸

In this paper we describe the synthesis of monomeric molyb-

Fig. 1 Enantiomeric relationships of chiral $[M(NO)L^*(X)Y](X = Cl, Y = mentholate)$ where the N_3 triangle represents the L* ligand

Fig. 2 The (-)-mentholate ligand

denum and tungsten nitrosyl mentholates, $[M(NO)L^*(X)-(OC_{10}H_{19})]$, the purification and isolation of some of the diastereomers, and the crystal, molecular structure and determination of the absolute configuration at the metal in one diastereomer of $[Mo(NO)L^*(Cl)(OC_{10}H_{19})]$. The enantiomeric relationships of the metal co-ordination sphere are shown in Fig. 1, and the mentholate ligand, together with appropriate atom numbering, in Fig. 2. The substitution of X in these compounds by donor moieties bridged by polarisable groups, thereby affording dipolar molecules of NLO potential, will be described in subsequent publications.

Experimental

The complexes $[M(NO)L^*X_2]$ (M = Mo, X = Cl or I; M = W, X = Cl) were prepared as described in the literature.⁹ All other reagents were used as received and all reactions were carried out in dry solvents under nitrogen. Proton NMR and IR spectra were obtained using JEOL GX270 and Perkin-Elmer

⁺ Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1992, Issue 1, pp. xx-xxv.

PE237 spectrometers, and elemental analyses were determined by the Microanalytical Laboratory of the School of Chemistry, University of Birmingham. The UV/VIS spectral measurements were made with a Shimadzu spectrophotometer, and preliminary optical rotation measurements were carried out in dichloromethane solution using a PE241 polarimeter. Circular dichroism spectra were obtained using a Jobin-Yvon CNRS Dichrographe III, dichloromethane solutions being measured under nitrogen.

General Procedures for the Synthesis of $[M(NO)L^*(X)-(OC_{10}H_{19})]$ (M = Mo, X = Cl or I: M = W, X = Cl).—The complex $[M(NO)L^*X_2]$ (0.5 g; M = Mo, X = Cl or I; M = W, X = Cl) was dissolved in toluene (100 cm³) and an excess (ca. 25%) of (+)- or (-)-menthol and NEt₃ (0.5 cm³) were added. The mixture was stirred and refluxed until the full colour of the product had developed (M = Mo, X = Cl, blue; X = I, green; M = W, X = Cl, purple). The mixture was then cooled to -10 °C, filtered and the filtrate evaporated in vacuo. The residue was redissolved in dichloromethane and chromatographed on silica gel using dichloromethane-light petroleum (b.p. 40-60 °C) affording a mixture of diastereomers. The diastereomers were separated, where possible, using a long silica gel column and the same eluent. The diastereomer eluting first from the column was denoted D1 and the second D2. Small aliquots were collected and checked by thin-layer chromatography (TLC), and those containing one nearly pure isomer

Table 1 Reactions of $[M(NO)L^*X_2]$ with (+)- and (-)-menthol

$[M(NO)L^*X_2]$

X	Menthol	Ratio D1: D2; a comments
I	(-)	2:1
Ι	(+)	5:1
Cl	(-)	16:1, crystals isolated ^b
Cl	(+)	12:1
Cl	(-)	Mostly D2 as prisms, with small amounts of D1 as needles ^{b,c}
Cl Cl	(-) (-)	Nearly pure $\mathbf{D2}^{b}$ 2.5:1 ^b
	X I Cl Cl Cl Cl Cl Cl	$ \begin{array}{ccc} X & \text{Menthol} \\ I & (-) \\ I & (+) \\ CI & (-) \\ CI & (+) \\ CI & (-) \\ CI & (-) \\ CI & (-) \\ CI & (-) \\ \end{array} $

^a Ratios established by NMR spectroscopy. ^b Relative ratios obtained by manipulation of reaction conditions/work-up procedure to obtain one diastereomer preferentially; reactions 3 and 5, and 6 and 7. ^c Isomer D1 identified spectroscopically and confirmed by comparison of X-ray powder diffraction data with those for crystals of the material whose structure has been determined. were combined, the solvent evaporated *in vacuo* and the residue recrystallised from dichloromethane-hexane mixtures, affording the complexes as blue ({MoCl}), green ({MoI}) or purple ({WCl}) microcrystals. Repeated attempts to purify the diastereomers led to decomposition on the column, so complete purification was not always possible. The percentage composition of the mixture of **D1** and **D2** was determined by ¹H NMR spectroscopy, particularly using the double doublets due to the methyl signals of the Prⁱ group (Table 1). The reactions attempted are listed in Table 1.

Crystallography of $[Mo(NO)L^*(CI)\{(-)-OC_{10}H_{19}\}]$.--Crystal data. C₂₅H₄₁BClMoN₇O₂, $M_r = 613.8$, orthorhombic, space group $P2_12_12_1$, a = 10.464(8), b = 16.893(10), c = 17.086(7) Å, U = 3020 Å³, Z = 4, $D_c = 1.350$ g cm⁻³, F(000) = 1280, μ (Mo-K α) = 0.542 mm⁻¹, $\lambda = 0.710$ 69 Å.

A dark blue crystal $(0.3 \times 0.2 \times 0.2 \text{ mm})$, obtained by reaction of $[Mo(NO)L^*Cl_2]$ with (-)-menthol and isolated as

Table 3 Selected bond lengths (Å) and angles (°) with e.s.d.s in parentheses and torsion angles (°). E.s.d.s for torsion angles are $ca. 1.0^{\circ}$

Mo-Cl	2.369(1)	Mo-N(4)	2.159(4)
Mo-O(2)	1.875(3)	Mo-N(6)	2.220(4)
Mo-N(1)	1.765(5)	O(1) - N(1)	1.194(6)
Mo-N(2)	2.237(4)	O(2)-C(16)	1.437(5)
Cl-Mo-O(2)	102.2(1)	N(2)-Mo-N(4)	85.7(2)
Cl-Mo-N(1)	91.5(2)	Cl-Mo-N(6)	85.1(1)
O(2)-Mo-N(1)	97.9(2)	O(2)-Mo-N(6)	164.5(1)
Cl-Mo-N(2)	87.4(1)	N(1)-Mo-N(6)	95.6(2)
O(2)-Mo-N(2)	81.5(1)	N(2)-Mo-N(6)	85.2(1)
N(1)-Mo-N(2)	178.6(2)	N(4)-Mo-N(6)	77.0(1)
Cl-Mo-N(4)	161.3(1)	Mo-O(2)-C(16)	137.1(3)
O(2)-Mo-N(4)	94.0(2)	Mo-N(1)-O(1)	174.1(5)
N(1)-Mo-N(4)	95.6(2)		
N(1)-Mo-O(2)-C(16)	- 7.7	
Ma	-O(2)-C(16)-C(17)	115.4	
Mo	-O(2)-C(16)-C(21)	-124.0	
O()	2)-C(16)-C(17)-C(18)	173.7	
O (2)-C(16)-C(21)-C(20)	-176.3	
C(2	23)-C(22)-C(17)-C(16)) - 69.6	
C(2	23)-C(22)-C(17)-C(18)	53.8	
C(2	24)-C(22)-C(17)-C(16)) 163.7	
C(2	24)-C(22)-C(17)-C(18)	-72.9	
C	22)-C(17)-C(16)-C(21)) -178.0	
C	22)-C(17)-C(18)-C(19)) 177.4	
C	25)-C(20)-C(19)-C(18)	- 177.0	
C	25)-C(20)-C(21)-C(16)	177.6	

Table 2 Fractional atomic coordinates ($\times 10^5$ for Mo, $\times 10^4$ for others) with estimated standard deviations (e.s.d.s) in parentheses for $[Mo(NO)L^*(CI)\{(-)-OC_{10}H_{19}\}]$

Atom	x	У	Ζ	Atom	x	У	Ζ
Мо	-1928(3)	13 703(2)	25 559(2)	C(8)	-2 054(6)	40(4)	690(4)
Cl	1 245(1)	1 972(1)	3 447(1)	C(9)	-991(5)	354(4)	324(3)
O(1)	-1060(5)	290(3)	3 808(3)	C(10)	-612(7)	279(5)	-520(4)
O(2)	-1598(2)	2 059(2)	2 592(2)	C(11)	2 277(6)	82(5)	3 427(4)
N(1)	-714(5)	693(3)	3 275(3)	C(12)	2 376(4)	248(3)	2 569(4)
N(2)	469(4)	2 251(2)	1 667(2)	C(13)	3 358(5)	55(4)	2 056(4)
N(3)	980(4)	2 007(3)	974(2)	C(14)	3 016(5)	340(3)	1 338(4)
N(4)	-923(4)	708(3)	1 572(2)	C(15)	3 743(6)	303(5)	576(4)
N(5)	-315(4)	756(3)	856(2)	C(16)	-2833(4)	2 076(3)	2 9 5 9 (3)
N(6)	1 486(4)	663(2)	2 179(2)	C(17)	-2885(4)	2 759(3)	3 539(3)
N(7)	1 889(4)	702(3)	1 417(2)	C(18)	-4254(5)	2 828(4)	3 858(3)
B	1 051(5)	1 1 2 6 (4)	798(3)	C(19)	-5219(5)	2 942(4)	3 194(3)
C(1)	70(6)	3 540(3)	2 328(4)	C(20)	- 5 168(4)	2 267(3)	2 605(3)
C(2)	531(5)	3 050(3)	1 666(3)	C(21)	-3 799(4)	2 182(3)	2 299(3)
C(3)	1 081(6)	3 304(4)	970(3)	C(22)	-1872(5)	2 682(4)	4 206(3)
C(4)	1 356(6)	2 640(4)	553(3)	C(23)	-2147(7)	2 010(5)	4 779(3)
C(5)	2 046(10)	2 560(5)	-222(4)	C(24)	-1 682(7)	3 466(4)	4 634(4)
C(6)	-2873(6)	34(4)	2 126(4)	C(25)	-6 085(5)	2 406(5)	1 921(4)
C(7)	-1 967(5)	253(3)	1 468(4)				

Table 4	Elemental analytical data	obtained from	mentholate complexes	s, [M(NO)L*X(O	$C_{10}H_{19}$
---------	---------------------------	---------------	----------------------	----------------	----------------

Complex		Found		Calc.					
М	х	Ligand	c	н	N	C	н	N	Reaction *
Мо	Cl	$(-)-OC_{10}H_{19}$	49.0	6.8	15.7	48.9	6.7	16.0	3
Мо	Cl	$(+)-OC_{10}H_{19}$	48.4	6.7	15.9				4
Мо	I	$(+)-OC_{10}H_{19}$	42.8	5.7	13.6	42.6	5.9	13.9	2
Mo	I	$(-)-OC_{10}H_{19}$	42.3	6.0	13.6				1
W	Cl	$(-)-OC_{10}H_{19}$	42.9	5.7	14.2	42.8	5.9	14.0	6
W	C1	$(-)-OC_{10}H_{19}$	42.9	5.8	14.2				7

D1 referred to in Table 1, was mounted on an Enraf-Nonius CAD-4 diffractometer; cell dimensions and intensities were measured by $\omega - 2\theta$ scans with graphite-monochromated Mo-K α radiation. 4722 Reflections were scanned in the range 2 < θ < 24°, index range h - 11 to +11, k 0–19, l 0–19, and of these 3961 having $l > 2.5\sigma(l)$ were considered observed and used in the analysis. Bijvoet pairs were not merged. Three standard reflections measured every 2 h shows no significant variation in intensity.

The structure was determined by Patterson and Fourier methods and refined by least squares using anisotropic thermal parameters for the non-hydrogen atoms. Hydrogen atoms were placed in calculated positions riding on their respective bonded atoms and only their isotropic thermal parameters were refined. Weights, $w = 1/[\sigma^2(F) + 0.0025F^2]$, were used in the leastsquares refinement. The calculations were terminated when all shift/e.s.d. ratios were < 0.1:1 and R = 0.034, R' = 0.047 for 3961 observed reflections. The residual electron density in the final difference map was within the range ± 0.8 e Å⁻³. The inverse structure gave R = 0.036, R' = 0.050. The absolute configuration depicted in Fig. 3 is thus established¹⁰ at better than the 99.5% probability level from consideration of anomalous scattering effects, in agreement with the known absolute configuration of the (-)-menthol used in the preparation of the complex.[†]

Complex neutral-atom scattering factors were employed. Computations were carried out on the University of Birmingham IBM 3090 computer and on the Amdahl 5890 at the Manchester Computing Centre with the SHELXS 86¹¹ and SHELX 76¹² packages. The molecular diagram was drawn using PLUTO.¹³ Final atomic coordinates are listed in Table 2. Selected bond lengths and angles are given in Table 3.

Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom coordinates, thermal parameters and remaining bond lengths and angles.

Results and Discussion

Reaction of $[M(NO)L^*X_2]$ (M = Mo, X = Cl or I; M = W, X = Cl) with an excess of (+)- or (-)-menthol, in the presence of triethylamine to facilitate elimination of HX, afforded mixtures of the desired diastereomeric monomentholates $[M(NO)L^*(X)(OC_{10}H_{19})]$ as green (M = Mo, X = I), blue (M = Mo, X = I) or purple (M = W, X = Cl) solids. Our attempts to separate the diastereomers by column chromatography were only partially successful, although mixtures containing no less than 60% of one component were invariably

Fig. 3 View of $[Mo(NO)L^*(Cl)(OC_{10}H_{19})]$, hydrogen atoms being omitted for clarity

obtained. The species eluted first from the column we have labelled **D1** and that appearing second **D2**. The experiments carried out are described in the Experimental section (Table 1; analytical data in Table 4). In two cases we were able to obtain virtually pure diastereomers, *viz.* in reaction 5 between $[Mo(NO)L^*Cl_2]$ and (-)-menthol, giving predominantly the **D2** form as well formed prisms, and in reaction 6 between $[W(NO)L^*Cl_2]$ and (-)-menthol, giving the practically pure **D2** form also. We were also able to obtain needle-like crystals of **D1** from reaction 5, in spite of the predominance of **D2**, and these crystals were subsequently used in our X-ray crystallographic studies (see below). The relative ratios of the **D1** and **D2** forms in each reaction system were determined by ¹H NMR spectroscopy (see below).

The IR spectra of the complexes (Table 5) exhibited absorptions characteristic of tris(3,5-dimethylpyrazolyl)borate, particularly v(BH) at *ca.* 2210 cm⁻¹, and the NO stretching frequency occurred in the expected regions, between 1660 and 1680 cm⁻¹ for the molybdenum species and at 1625 cm⁻¹ for the tungsten species. These values are typical of monoalkoxides of this class of compound.^{1-3,14}

The ¹H NMR spectra were characteristic of each diastereomer isolated (Table 5). Assignments were made of the mentholate resonances with the assistance of spin decoupling and the labelling scheme is shown in Fig. 2. Of the mentholate signals, that due to H(1a) is shifted significantly to low field in

[†] Additional supports for the assignment comes from comparison of selected Bijvoet pairs. Considering Bijvoet pairs for which the ratios $F_{obs}(hkl)/F_{obs}(\hbar kl)$ and $F_{cale}(hkl)/F_{cale}(\hbar kl)$ are both either <0.95 or >1.05:1, in ten such pairs randomly selected, these ratios are all consistent with the assigned configuration.

Complex		ID 4	'H NMR data ^b			
	M۴	x	- IR" v _{NO} /cm ⁻¹	δ ^d	Relative area	Assignment
D1	Mo ^e	Cl	1660	5.94	dt	H(1a), J = 10.0 and 3.5
				5.89	1s]	
				5.81	1s >	$Me_2C_3HN_2$
				5.76	1s	
				2.52	3s	
				2.50	38	
				2.30	30	$(CH_3)_2C_3HN_2$
				2.30	35	
				2.33	35	
				ca. 2.5	1m	CHMe ₂ , overlapping with above signals, confirmed by spin de- coupling
				1.75–1.00 ca. 1.6	8m	H(2a), H(3a), H(3e), H(4a), H(4e), H(6a), H(6e) H(5a), confirmed by spin decoupling
				1.09	3d	$CH(CH_3)_2, J = 6.8$
				0.89	3d	
				0.87	3d	$CH_3, J = 6.2$
D2	Mo ^f	Cl		5.86	1s]	
				5.82	1s >	$Me_2C_3HN_2$
				5.74	Is J	$x_{1}(1) = x_{1}(x_{1}) = x_{1}(x_{1}) = x_{1}(1) = x_{1}(x_{1}) = x_{1}(1) = x_{1}(1)$
				5.64	lat	$H(1a), J(H^{-}-H^{-}) = 10.4, J(H^{-}-H^{-}) = 4.0$
				3.07	20)	H (00)
				2.32	36	
				2.39	38	
				2.38	35	$(CH_3)_2C_3HN_2$
				2.35	38	
				2.33	38	
				1.73	3m	H(5a), H(3e), H(4e)
				1.63	1m	CHMe ₂
				1.39	2m	H(6a), H(2a)
				1.11	2m	H(3a), H(4a), peaks overlapping with signals from methyl group below
				1.07	3d	$CH_3, J = 6.4$
				0.69	3d	$CH(CH_3)_2, J = 7.0$
DI	M - 4		1(75	0.60	30 1-)	
DI	IVIO *	I	1075	5.83		Me C HN
				5.79	15	
				5.85	ldt	$H(1a), J(H^{1a}-H^{6a}) = 10.3, J(H^{1a}-H^{6c}) = 4.6$
				2.53	3s]	
				2.45	3s	
				2.43	3s >	$(CH_3)_2C_3HN_2$
				2.41	3s	
				2.36	3s J	
				2.32	3s	CUD(
				<i>ca.</i> 2.5 1.90–1.00	lm 8m	$CH Me_{2}$, overlapped by above signals H(2a), H(3a), H(3e), H(4a), H(4e), H(5a), H(6a), H(6e)
				1.00	34	$CH(CH_3)_2, J = 7.0$
				0.82	3d	$C11_3, 5 = 0.4$
D2	Mo [*]	I		5.82	15]	
		-		5.80	2s	$Me_2C_3HN_2$
				5.04	Idi	H(1a), J = 11.1 and 4.9
				2.53	3s]	
				2.433	3s	
				2.427	6d }	$(CH_3)_2C_3HN_2$
				2.37	3s	
				2.34	35	
				2.14 100 100	1u 8m	H(2a) H(3a) H(3e) H(4a) H(4e) H(5a) H(6a) and CHMe
				1.90-1.00	3d	$CH_{2} J = 6.4$
				0.67	3d	$CH(CH_3)_2, J = 6.9$
				0.55	3d	
D1	$\mathbf{W}^{i,j}$	Cl	1625	5.92	1s]	M- C UN
				5.82	2s ∫	$Me_2 C_3 \pi N_2$
				5.76	1m	H(1a)
				2.62	3s]	
				2.60	3s	
				2.40	3s >	$(CH_3)_2C_3NH_2$
				2.37	OS 20	
				2.31	<i>38 J</i>	

 Table 5
 Infrared and ¹H NMR spectral data obtained from $[M(NO)L^*(X)(OC_{10}H_{19})]$

Table 5 (continued)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Comple	×		ID a	¹ H NMR da	ita ^b	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		M٢	x	$\sim 1 \text{K}^{-1}$ $\nu_{\text{NO}}/\text{cm}^{-1}$	δ ^{<i>d</i>}	Relative area	Assignment
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					3.54	1m	CHMe,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					1.80-0.90	8m	H(2a), H(3a), H(3e), H(4a), H(4e), H(5a), H(6a), H(6e)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					1.12	3d	$CH(CH_3)_2, J = 7.0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					0.90	3d	(), L,
D2 W ⁱ Cl 1625 5.89 ls 5.83 ls 5.80 ls 5.41 ldt $H(1a), J(H^{1a}-H^{6a+2a}) = 10.6, J(H^{1a}-H^{1e}) = 4.6$ 3.06 lm 2.60 3s 2.58 3s 2.40 3s 2.38 3s 2.33 3s 1.70 3m $H(5a), H(4e), H(3e)$ 1.70 3m $H(5a), H(4e), H(3e)$ 1.56 lm $CHMe_2$ 1.31 2m $H(2a), H(6a)$ 1.55 3d $CH_3, J = 6.2$ 1.00 2m $H(3a), Packs overlapping with above signals, and poor resolved 0.69 3d 0.57 3d CH(CH_3)_2, J = 7.0$					0.85	3d	$CH_{3}, J = 6.6$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	D2	Wi	Cl	1625	5.89	1s)	5.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					5.83	1s >	Me ₁ C ₁ HN ₃
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					5.80	1s	2 3 3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					5.41	1dt	$H(1a), J(H^{1a}-H^{6a+2a}) = 10.6, J(H^{1a}-H^{1e}) = 4.6$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					3.06	1m	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					2.60	3s]	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					2.58	3s	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					2.40	35	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					2.38	3s ($(CH_3)_2C_3HN_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					2.37	38	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					2.33	38	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					1.70	3m	H(5a), H(4e), H(3e)
1.31 2m H(2a), $H(6a)$ 1.05 3d $CH_3, J = 6.2$ 1.00 2m H(3a), H(4a), peaks overlapping with above signals, and pooresolved 0.69 3d 0.57 3d $CH(CH_3)_2, J = 7.0$					1.56	1m	CH Me ₁
1.05 3d $CH_3, J = 6.2$ 1.00 2m $H(3a), H(4a), peaks overlapping with above signals, and pooresolved 0.69 3d 0.57 3d CH_3, J = 7.0$					1.31	2m	H(2a), H(6a)
1.002mH(3a), H(4a), peaks overlapping with above signals, and pooresolved0.693d $CH(CH_3)_2, J = 7.0$					1.05	3d	$CH_{3}, J = 6.2$
$\begin{array}{ccc} 0.69 & 3d \\ 0.57 & 3d \end{array} \right\} \qquad CH(CH_3)_2, J = 7.0$					1.00	2m	H(3a), H(4a), peaks overlapping with above signals, and poorly resolved
0.57 $3d$ $CH(CH_3)_2, J = 7.0$					0.69	3d)	
					0.57	3d	$CH(CH_3)_2, J = 7.0$

^a In KBr discs. ^b Spectra of **D2** isomers normally obtained by subtraction of that of **D1** (when pure; *J* in Hz). ^c **D1** and **D2** refer to first and second eluates obtained in chromatographic separation of diastereomers: the spectra of the **D2** forms are usually the minor component of any mixture of diastereomers. ^d In CDCl₃ at 270 MHz. ^e From reaction 3. ^f From reaction 5 (cubes). ^g From reaction 2. ^h From reaction 1. ⁱ From reaction 6. ^j By subtraction of the **D2** eluate.

Table 6 UV/VIS spectral data obtained from $[M(NO)L^*(X)-(OC_{10}H_{19})]$ (M = Mo, X = Cl or I; M = W, X = Cl) in CH₂Cl₂

Complex	λ_{max}/nm , ($\epsilon/dm^3 mol^{-1} cm^{-1}$)
$ [Mo(NO)L^{*}(Cl)(OC_{10}H_{19})]^{a} [Mo(NO)L^{*}(I)(OC_{10}H_{19})]^{b} [W(NO)L^{*}(Cl)(OC_{10}H_{19})]^{c} $	560 (220) 300 (10 400) 600 (250) 323 (8800) 517 (180) ca. 260 (sh) (18 000)

^a From reaction 3. ^b From reaction 2. ^c From reaction 6.

Fig. 4 CD spectra of $[M(NO)L^{*}(X)(OC_{10}H_{19})]$: (a) D1-[Mo-(NO)L^{*}(Cl){(-)-OC_{10}H_{19}}], structure determined; (b) D2-[Mo(NO)-L^{*}(Cl){(-)-OC_{10}H_{19}}], from reaction 5; (c) D1-[Mo(NO)L^{*}(I){(+)-(OC_{10}H_{19}]}], from reaction 2; (d) D1-[Mo(NO)L^{*}(Cl){(+)-OC_{10}H_{19}}], from reaction 4

comparison with that in the uncomplexed alcohol because of the powerful electronegative influence of the $\{M(NO)L^*(X)\}$

group, an effect which has been described before.¹⁻³ The position of this signal is unique for each diastereomer, e.g. occurring as a doublet of triplets at δ 5.94 for the D1 form of [Mo(NO)L*Cl(OC₁₀H₁₉)] and at higher field (δ 5.64) for the D2 form. The same shift of this signal to higher field is observed for the D2 diastereomer of the iodo complex and in its tungsten chloride analogue. Similar upfield shifts for the D2 relative to the D1 isomers were observed for the protons of the Prⁱ group, whereas the opposite effect was found for methyl signals and for H(6e). These shifts, especially those of the double doublets of the methyl signals of the Prⁱ group, were particularly useful when attempting to determine the relative percentages of each diastereomer in a given mixture in solution. In all complexes the protons attached to C(4) [C(3), C(8) and C(13) in Fig. 3] in the pyrazolyl rings appeared as three singlets, consistent with the overall lack of symmetry in these six-co-ordinate species.

The electronic spectra of the complexes were recorded in the visible region in dichloromethane (Table 6). The circular dichroism spectra of the products obtained from reactions 3-5 were recorded in dichloromethane (Fig. 4). A CD spectrum was also obtained of the product of the diastereomeric mixture isolated from reaction 2. It can be noted that the CD spectrum of the product of reactions 4 and 5, the former containing in excess of 90% of D1-[Mo(NO)L*(Cl){(+)-OC₁₀H₁₉}] and the latter essentially pure D2-[Mo(NO)L*(Cl){(-)-OC₁₀H₁₉}], are almost identical and therefore these complexes presumably have the same absolute configuration at the Mo atom. However, the CD spectrum of the product from reaction 3, which contains 94% of D1-[Mo(NO) $L^{*}(Cl)\{(-)-OC_{10}H_{19}\}$], indicates the metal has the opposite absolute configuration to that in the other two species. The CD spectrum of $[Mo(NO)L^*(I)\{(+)\}]$ $OC_{10}H_{19}$ (from reaction 2), which contains 83% of the D1 form, indicates that this species has the same absolute configuration as D1-[Mo(NO)L*(Cl){(+)-OC₁₀H₁₉}] and D2- $[Mo(NO)L^{*}(Cl)\{(-)-OC_{10}H_{19}\}].$

We were able to detect epimerisation only during reaction 3, but the conditions were not reproducible, and the interconversion of the diastereomers is being further investigated. Thus, so far, reliable evidence for the epimerisation of the diastereomers is lacking.

In order to relate the CD spectra reported above to the absolute configuration of each compound isolated we have determined the structure of D1-[Mo(NO)L*(Cl){(-)-OC₁₀-H₁₉}] by X-ray crystallography. Selected bond lengths, angles and torsion angles are listed in Table 2. A stereoscopic view of the molecule is shown in Fig. 3 which also indicates the crystallographic atomic numbering scheme (this corresponds to **B** in Fig. 1).

The co-ordination about molybdenum is essentially octahedral, maximum angular deviation 18.7° [angle Cl-Mo-N(4) 161.3(1)], mean deviation 7.4° . The angles agree quite closely with those found in crystal structures of analogous compounds. Thus corresponding angles at molybdenum in the isopropoxo $[Mo(NO){HB(3,5-Me_2-4-ClC_3N_2)_3}Cl(OPr^i)]^{1}$ derivative differ by only an average of 1.1° with a maximum difference of 2.3°. The Mo-N(pyrazolyl) bond lengths also follow the pattern observed previously.^{1,5,15} The bond *trans* to the nitrosyl substituent is the longest of these, which may be attributed ¹⁵ to the *trans* influence of the strongly π -accepting nitrosyl group, whereas the bond *trans* to the chlorine atom is the shortest, reflecting the near single-bond character of molybdenumhalogen bonding. The high degree of π character of the Mo-N(nitrosyl) bonding results in this bond being by far the shortest of the molybdenum-nitrogen bonds (see Table 3), its length falling well within the range of values (1.744-1.804 Å) reported previously.^{1,3,5,15,16} The Mo-Cl length [2.369(1) Å] is very slightly shorter than the lengths, $2.380(2)^{1}$ and 2.408(2)Å,¹⁶ observed in analogous structures.

The shortness of the Mo-O(2) bond, 1.875(3) Å, implies¹ significant $p_{\pi}-d_{\pi}$ donation from oxygen to molybdenum. The large, $137.1(3)^{\circ}$ Mo-O(2)-C(16) angle is consistent with π bonding. In comparable structures Mo-O lengths of 1.863(7),¹ 1.886(12),⁵ 1.900(4),³ and 1.908(4) Å³ have been reported and the corresponding angles at oxygen range from 129.5 to 133.4°. Steric factors may, however, contribute to the large angle at O(2), as this would increase the N(1) \cdots C(16) non-bonded distance, which at the observed value of 3.266(6) Å is close to the sum of the van der Waals radii¹⁷ of nitrogen and carbon (3.25 Å). The relatively large O(2)-Mo-N(1) angle of 97.9(2)° also has the effect of increasing this distance. The near-eclipsed conformation of the N(1)-Mo-O(2)-C(16) moiety [torsion angle $-8(1)^{\circ}$, which is the primary factor in the N(1) \cdots C(16) steric interaction, is, however, energetically favourable in facilitating³ the p_x-d_x ligand-metal interaction. Similarly small N(nitrosyl)-Mo-O-C torsion angles are invariably found ^{1,3,5} in this type of complex. Eclipsed conformations are also found¹⁵ in amido complexes. The chloro substituent is effectively removed from steric interaction with the mentholate residue by the large, 102.2(1)°, Cl(1)-Mo-O(2) angle.

The mentholate ring adopts the normal, slightly flattened, cyclohexane chair conformation, ring torsion angles $54.9-58.0^{\circ}$. All substituents are equatorial. Pertinent torsion angles are listed in Table 3. The pyrazolyl rings are essentially planar and make dihedral angles of 114.7, 118.6 and 126.7° with one another. As has been noted previously $^{3.5,16}$ in analogous structures, the smallest of these angles is between the pair of rings [N(4),N(5),C(7)–(9) and N(6),N(7),C(12)–(14)] encompassing the relatively small nitrosyl group, while the largest angle is between the pair of rings encompassing the bulkiest substituent, here the mentholate residue. The absolute configuration of the mentholate ligand itself was found to be 1R-2S-5R (1 referring to the C atom bonded to oxygen, 2 to the C bonded to the Prⁱ group and 5 to the C atom bound to Me).

According to the rules for assigning absolute configuration,¹⁸ and from the structural arrangements established around the central metal atom, the diastereomer D1-[Mo(NO)L*(Cl){(-)-OC₁₀H₁₉}] has the absolute configuration *R* at the metal atom. Accordingly, from a consideration of the CD spectral data, we may deduce that the configurations at the central metal atom in D1-[Mo(NO)L*(Cl){(+)-OC₁₀H₁₉}], D2-[Mo(NO)L*(Cl)-{(-)-OC₁₀H₁₉}] and D1-[Mo(NO)L*(I){(+)-OC₁₀H₁₉}] are the same, whereas that in D1-[Mo(NO)L*(Cl){(-)-OC₁₀-H₁₉}] is the opposite. Further, although we did not obtain a CD spectrum of D2-[W(NO)L*(Cl){(-)-OC₁₀H₁₉}], we believe that the absolute configuration of the tungsten atom will be identical to that in D2-[Mo(NO)L*(Cl){(-)-OC₁₀H₁₉}], *i.e. S.*

In conclusion, we have shown that is possible to detect enantiomers derived from $[M(NO)L^*(X)(OR)]$ and to separate some of the diastereomers derived from the mentholates virtually pure. Kurtz powder tests of $R-[Mo(NO)L^{*}(Cl)\{(+) OC_{10}H_{19}$], undertaken to establish whether the mentholates species exhibited non-linear optical activity as solids, revealed ¹⁹ a secondary harmonic generator efficiency of 0.074 times that of the standard urea.[†] Such a low efficiency is not surprising since the mentholate is not a strongly polarisable donor even though {Mo(NO)L*(Cl)} is a powerful acceptor, and the molecule does not crystallise in a polar (non-centrosymmetric) space group. It should be possible, however, to substitute X by more powerful electron-donor substituents based on ferrocene, thereby affording species potentially capable of generating second-order non-linear optical effects, and some of our efforts in this direction have been described.19,20

Acknowledgements

We are grateful to the SERC and the University of Birmingham for partial support of this work, to Politechnika Krakowska for leave of absence on numerous occasions for A. W. and S. S. K., to the Ecole Nationale Superieure de Chimie de Montpellier and British Council for financial assistance to J.-D. F. F. and for travel funds for A. W. and S. S. K., Malcolm Tolley for assistance with NMR spectra, Professor R. D. Gillard and Dr. P. Williams of the University of Cardiff for help in obtaining CD spectra, and Dr. J. A. K. Howard of the University of Bristol for advice concerning crystallographic studies. One of us (J. A. McC.) is especially grateful to Professor G. Huttner of the Anorganisch-Chemisches Institut der Universität Heidelberg for providing the opportunity to complete work on this topic.

References

- 1 J. A. McCleverty, D. Seddon, N. A. Bailey and N. W. Walker, J. Chem. Soc., Dalton Trans., 1976, 898.
- 2 G. Denti, J. A. McCleverty and A. Wlodarczyk, J. Chem. Soc., Dalton Trans., 1981, 2021.
- 3 J. A. McCleverty, A. E. Rae, I. Wolochowicz, N. A. Bailey and J. M. A. Smith, J. Chem. Soc., Dalton Trans., 1982, 951.
- 4 Non Linear Optical Properties of Organic Molecules and Crystals, eds. D. S. Chemla and J. Zyss, Academic Press, New York, 1987, vols. 1 and 2; C. Fouquey, J.-M. Lehn and J. Malthete, J. Chem. Soc., Chem. Commun., 1987, 1424.
- 5 C. J. Jones, J. A. McCleverty, B. D. Neaves, S. J. Reynolds, H. Adams, N. A. Bailey and G. Denti, J. Chem. Soc., Dalton Trans., 1986, 733.
- 6 C. G. Young, M. Minelli, J. H. Enemark, W. Hussain, C. J. Jones and J. A. McCleverty, J. Chem. Soc., Dalton Trans., 1987, 619; N. Al Obaidi, D. Clague, M. Chaudhury, C. J. Jones, J. A. McCleverty, B. D. Neaves, J. C. Pearson and S. S. Salam, J. Chem. Soc., Dalton Trans., 1987, 1733; N. Al Obaidi, A. J. Edwards, C. J. Jones, J. A. McCleverty, B. D. Neaves, F. E. Mabbs and D. Collison, J. Chem. Soc., Dalton Trans., 1989, 127.
- 7 D. T. Clark, K. A. Sutin and M. J. McGlinchey, *Organometallics*, 1989, 8, 155.
- 8 A. C. C. Wong, G. Wilkinson, B. Hussain, M. Motevalli and M. B. Hursthouse, *Polyhedron*, 1988, 7, 1363.

[†] We are grateful to Professor D. Bloor of the Applied Physics Group, School of Engineering and Applied Science, University of Durham, and to Drs. P. V. Kolinsky and R. J. Jones and GEC, Hirst Research Centre, Wembley, for assistance with these measurements.

- 9 S. J. Reynolds, C. F. Smith, C. J. Jones and J. A. McCleverty, Inorg. Synth., 1985, 23, 4; S. Trofimenko, J. Am. Chem. Soc., 1967, 89, 3904; 1969, 91, 588.
- 10 W. C. Hamilton, Acta Crystallogr., 1965, 18, 502.
- 11 G. M. Sheldrick, SHELXS 86, Program for the Solution of Crystal Structures, University of Göttingen, 1987.
- 12 G. M. Sheldrick, SHELX 76, Program for Crystal Structure Determination, University of Cambridge, 1976.
- 13 W. D. S. Motherwell and W. Clegg, PLUTO 88, Program for Plotting Crystal and Molecular Structures, Cambridge Structural Database System, Users Manual, 1988.
- 14 J. A. McCleverty, *Chem. Soc. Rev.*, 1983, **12**, 331. 15 J. A. McCleverty, A. E. Rae, I. Wolochowicz, N. A. Bailey and J. M. A. Smith, J. Chem. Soc., Dalton Trans., 1982, 429.
- 16 N. Al Obaidi, T. A. Hamor, C. J. Jones, J. A. McCleverty and K. Paxton, J. Chem. Soc., Dalton Trans., 1987, 2653.
- 17 A. Bondi, J. Phys. Chem., 1964, 68, 441.
- 18 T. E. Sloan, Top. Stereochem., 1981, 12, 1.
- 19 B. J. Coe, C. J. Jones, J. A. McCleverty, D. Bloor, P. V. Kolinsky and
- R. J. Jones, J. Chem. Soc., Chem. Commun., 1989, 1485.
 B. J. Coe, S. S. Kurek, N. M. Rowley, J.-D. Foulon, T. A. Hamor, M. E. Harman, M. B. Hursthouse, C. J. Jones, J. A. McCleverty and D. Bloor, Chemtronics, 1991, 5, 23.

Received 5th July 1991; Paper 1/03379D