Synthesis, Crystal Structure and Reactions of the Dimeric Organolithium Compound $\left[\left\{\left[(\mathrm{MeO}) \mathrm{Me}_{2} \mathrm{Si}_{3} \mathrm{CLi}\right\}_{2}\right] \dagger\right.$

Franklin I. Aigbirhio, Nabeel H. Buttrus, Colin Eaborn, * Sudha H. Gupta, Peter B. Hitchcock, J. David Smith and Alice C. Sullivan
School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 90J, UK

Abstract

Treatment of the compound $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{CCl}$ with ICl followed by $\mathrm{MeOH}-\mathrm{Et}_{3} \mathrm{~N}$ gave the methoxy-derivative $\left[(\mathrm{MeO}) \mathrm{Me}_{2} \mathrm{Si}_{3} \mathrm{CCl}\right.$. This reacted with LiBu at $-78^{\circ} \mathrm{C}$ to give $\left[(\mathrm{MeO}) \mathrm{Me}_{2} \mathrm{Si}\right]_{3} \mathrm{CLi} 3$, which was used to prepare the compounds $\mathrm{SiMe}_{2} \mathrm{X}\left\{\mathrm{C}\left[\mathrm{SiMe}_{2}(\mathrm{OMe})\right]_{3}\right\}\left(\mathrm{X}=\mathrm{H}, \mathrm{Cl}, \mathrm{OCOCF}_{3}\right.$ or NCO$)$ and $\mathrm{SiPh}_{2} \mathrm{H}\left\{\mathrm{C}\left[\mathrm{SiMe}_{2}-\right.\right.$ $\left.(\mathrm{OMe})]_{3}\right\}$. An X-ray diffraction study has shown that in the solid state the lithium compound $\mathbf{3}$ is dimeric, with the carbanionic fragments bound by two oxygen atoms to one lithium and by carbon and the third oxygen to the other. The $\mathrm{Li}-\mathrm{C}$ bond $\left[2.401(9) \AA\right.$] is longer than usual and the $\mathrm{C}-\mathrm{SiMe}_{2}(\mathrm{OMe})$ bonds [mean $1.805(4) \AA$] are short.

The organolithium reagents $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{CLi}$ and $\left(\mathrm{PhMe}_{2} \mathrm{Si}\right)_{3} \mathrm{CLi}$ have been used to synthesise a range of organometallic compounds having unusual structures and showing many novel reactions. ${ }^{1}$ As part of a study of the effects of other substituents at silicon on the chemistry of compounds of this general type we have utilised the reagents $\left[(\mathrm{MeO}) \mathrm{Me}_{2} \mathrm{Si}_{n}\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3-n} \mathrm{CLi} 1-3\right.$. The compound with $n=1$ has been discussed elsewhere; ${ }^{2-4}$ here we describe the synthesis and reactions of the compound with $n=3$ and give a full account of its structure which has so far been reported only briefly. ${ }^{5}$ A few experiments on the compound with $n=2$ are also described.

$$
\begin{array}{cc}
{\left[(\mathrm{MeO}) \mathrm{Me}_{2} \mathrm{Si}\right]\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{CLi}} & {\left[(\mathrm{MeO}) \mathrm{Me}_{2} \mathrm{Si}_{2}\left(\mathrm{Me}_{3} \mathrm{Si}\right) \mathrm{CLi}\right.} \\
\mathbf{1}
\end{array}
$$

$$
\left[(\mathrm{MeO}) \mathrm{Me}_{2} \mathrm{Si}_{3}{ }_{3} \mathrm{CLi}\right.
$$

3

Experimental

Schlenk-tube techniques were used for the manipulation of airand moisture-sensitive compounds. Solvents were dried by standard procedures. The NMR spectra from samples in CDCl_{3} were recorded at 90 or 360 MHz chemical shifts are relative to SiMe_{4} or CFCl_{3}. Mass spectra were obtained by electron impact at 70 eV (ca. $1 \times 10^{-17} \mathrm{~J}$): m / z values refer to ions with ${ }^{28} \mathrm{Si}$ and ${ }^{35} \mathrm{Cl}$ and relative intensities (in parentheses) to the strongest peak.

Chlorotris(methoxydimethylsilyl)methane 4 and Chlorobis(methoxydimethylsilyl)(trimethylsilyl)methane 5.-A large excess of $\mathrm{ICl}(54 \mathrm{~g}, 0.334 \mathrm{~mol})$ in $\mathrm{CCl}_{4}\left(20 \mathrm{~cm}^{3}\right)$ was added during 2 h to a solution of $\left(\mathrm{Me}_{3} \mathrm{Si}_{3}\right)_{3} \mathrm{CCl}^{6.7}(10 \mathrm{~g}, 0.036 \mathrm{~mol})$ in CCl_{4} $\left(48 \mathrm{~cm}^{3}\right.$) at $20^{\circ} \mathrm{C}$. The mixture was stirred for 2 h and a solution of $\mathrm{Et}_{3} \mathrm{~N}\left(14.8 \mathrm{~cm}^{3}, 0.108 \mathrm{~mol}\right)$ in $\mathrm{MeOH}\left(123 \mathrm{~cm}^{3}\right)$ was added. Stirring was continued for 72 h at $20^{\circ} \mathrm{C}$, then the solution was shaken with aqueous sodium metabisulfite and diethyl ether ($70 \mathrm{~cm}^{3}$) was added to the mixture. The organic layer was separated, washed thoroughly with water, and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed under vacuum to leave a pale yellow oil, which was heated at $60^{\circ} \mathrm{C}$ and 0.05 Torr to give a colourless

[^0]crystalline sublimate, $\left[(\mathrm{MeO}) \mathrm{Me}_{2} \mathrm{Si}_{3}{ }_{3} \mathrm{CCl}(6.0 \mathrm{~g}, 65 \%)\right.$, m.p. $72-74{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 38.5 ; \mathrm{H}, 8.6 . \mathrm{C}_{10} \mathrm{H}_{27} \mathrm{ClO}_{3} \mathrm{Si}_{3}$ requires C , $38.1 ; \mathrm{H}, 8.6 \%) ; \delta_{\mathrm{H}} 0.28\left(18 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right)$ and $3.47(9 \mathrm{H}, \mathrm{s}, \mathrm{OMe}) ; \delta_{\mathrm{C}}$ $-1.4\left(\mathrm{~s}, \mathrm{SiMe}_{2}\right)$ and $50.9(\mathrm{~s}, \mathrm{OMe}) ; m / z 299\left(10,[M-\mathrm{Me}]^{+}\right)$, 194(60, $\left.\left[M-\mathrm{SiMe}_{4} \mathrm{O}_{2}\right]^{+}\right), 179\left(10,\left[M-\mathrm{Me}-\mathrm{SiMe}_{4} \mathrm{O}_{2}\right]^{+}\right)$, 143 (10), 129 (10), 101 (20), 89 (70), 75 (25) and 59 (100%).
In one experiment carried out under seemingly identical conditions but on a smaller scale the main product was $\left[(\mathrm{MeO}) \mathrm{Me}_{2} \mathrm{Si}_{2}\left(\mathrm{Me}_{3} \mathrm{Si}\right) \mathrm{CCl} 5\right.$. A solution of $\mathrm{ICl}(13.6 \mathrm{~g})$ in CCl_{4} $\left(5 \mathrm{~cm}^{3}\right)$ was added during 30 min to $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{CCl}(2.5 \mathrm{~g})$ in CCl_{4} ($12 \mathrm{~cm}^{3}$). After $2 \mathrm{~h} \mathrm{Et}{ }_{3} \mathrm{~N}(0.025 \mathrm{~mol})$ in $\mathrm{MeOH}\left(30 \mathrm{~cm}^{3}\right)$ was added and the mixture was worked up as above. The product was shown by gas chromatography-mass spectrometry to consist of a $1: 9$ mixture ($1.2 \mathrm{~g}, 45 \%$) of compound 4 and compound 5 which was identified spectroscopically. $\delta_{\mathrm{H}} 0.20$ (9 $\left.\mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{Si}\right), 0.28\left(12 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e_{2} \mathrm{OMe}\right)$ and $3.47(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$; $m / z 298\left(5,[M]^{+}\right), 283\left(15,[M-M e]^{+}\right), 194$ (35, [M$\left.\left.\mathrm{SiMe}_{3} \mathrm{OMe}\right]^{+}\right), 179\left(10,\left[\mathrm{M}-\mathrm{Me}-\mathrm{Me}_{3} \mathrm{SiOMe}\right]^{+}\right), 89(90$, $\left[\mathrm{SiMe}_{2} \mathrm{OMe}\right]^{+}$) and 59 (100%).

Dimethyl $[$ tris(methoxydimethylsilyl)methyl $]$ silane 6.-A solution of $\mathrm{LiBu}^{\mathrm{n}}(7.95 \mathrm{mmol})$ in hexane ($3.2 \mathrm{~cm}^{3}$) was added to one of $\left[(\mathrm{MeO}) \mathrm{Me}_{2} \mathrm{Si}_{3} \mathrm{CCl} 4(2.00 \mathrm{~g}, 6.36 \mathrm{mmol})\right.$ in tetrahydrofuran (thf) ($20 \mathrm{~cm}^{3}$) at $-78^{\circ} \mathrm{C}$. The solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 10 min , then $\mathrm{SiMe}_{2} \mathrm{ClH}(0.75 \mathrm{~g}, 7.95 \mathrm{mmol})$ was added, and the mixture was allowed to warm to $-25^{\circ} \mathrm{C}$ during 2 h . Solvents and volatile materials were removed under vacuum and pentane was added to the residue. The mixture was filtered and solvent was evaporated from the filtrate to leave a white solid, which was sublimed ($100^{\circ} \mathrm{C}, 0.05$ Torr) to give $\left.\mathrm{SiMe}_{2} \mathrm{H}\left\{\mathrm{C}^{2} \mathrm{SiMe}_{2}(\mathrm{OMe})\right]_{3}\right\} 61.9 \mathrm{~g}(89 \%)$, m.p. $193{ }^{\circ} \mathrm{C}$ (Found: C, $43.0 ; \mathrm{H}, 10.0 . \mathrm{C}_{12} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}_{4}$ requires C, $42.6 ; \mathrm{H}, 10.0 \%$); δ_{H} $0.22\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Si} \mathrm{Me}_{2} \mathrm{OMe}\right), 0.23\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e_{2} \mathrm{H}\right), 3.34(9 \mathrm{H}, \mathrm{s}$, OMe), and $4.11(1 \mathrm{H}, \mathrm{m}, \mathrm{Si} H) ; \delta_{\mathrm{c}} 0.44\left(\mathrm{SiMe}_{2} \mathrm{H}\right), 1.56$ $\left(\mathrm{Si} M e_{2} \mathrm{OMe}\right), 9.16\left(\mathrm{CSi}_{3}\right)$ and $49.6(\mathrm{OMe}) ; \delta_{\mathrm{Si}}-17.8$ [d, ${ }^{1} J\left({ }^{29} \mathrm{Si}-\mathrm{H}\right) 186 \mathrm{~Hz}, \mathrm{SiMe}_{2} \mathrm{H}$) and 14.0 (s, $\mathrm{SiMe}_{2} \mathrm{OMe}$); $m / z 337$ ($10,\left[M-\mathrm{H}^{+}\right.$), $323\left(40,[M-\mathrm{Me}]^{+}\right), 233$ (65), 217 (55), 203 (60), 173 (20), 129 (15), 89 (50), 73 (35) and 59 (100%).

Chlorodimethyl[tris(methoxydimethylsilyl)methyl]silane 7.(a) A solution of $\left[(\mathrm{MeO}) \mathrm{Me}_{2} \mathrm{Si}_{3} \mathrm{CCl} 4(3.0 \mathrm{~g}, 9.55 \mathrm{mmol})\right.$ in thf ($30 \mathrm{~cm}^{3}$) was treated with $\mathrm{LiBu}^{\mathrm{n}}(12 \mathrm{mmol})$ in hexane $\left(4.8 \mathrm{~cm}^{3}\right.$) at $-78{ }^{\circ} \mathrm{C}$ as described above. After $10 \mathrm{~min} \mathrm{SiMe}{ }_{2} \mathrm{Cl}_{2}\left(1.45 \mathrm{~cm}^{3}\right.$, $12 \mathrm{mmol})$ was added and the mixture allowed to warm to $20^{\circ} \mathrm{C}$ during 2 h , then filtered. Solvent was removed from the filtrate and the residue sublimed $\left(60^{\circ} \mathrm{C}, 0.05\right.$ Torr) to give colourless

Scheme $1 \quad \mathrm{R}=\left[(\mathrm{MeO}) \mathrm{Me}_{2} \mathrm{Si}_{3} \mathrm{C}\right.$. (i) ICl , then $\mathrm{MeOH}-\mathrm{Et}_{3} \mathrm{~N}$; (ii) $\mathrm{LiBu}^{\mathrm{n}},-78^{\circ} \mathrm{C}$; (iii) $\mathrm{SiPh}_{2} \mathrm{ClH}$; (iv) AgNCO ; (v) $\mathrm{SiMe}_{2} \mathrm{Cl}_{2}$: (vi) $\mathrm{AgOCOCF}_{3}$; (vii) PCl_{5}; (viii) $\mathrm{SiMe}_{2} \mathrm{ClH}$
crystals of $\mathrm{SiMe}_{2} \mathrm{Cl}\left\{\mathrm{C}\left[\mathrm{SiMe}_{2}(\mathrm{OMe})\right]_{3}\right\} 7(1.7 \mathrm{~g}, 44 \%$), m.p. $198^{\circ} \mathrm{C}$ (Found: C, 38.6; H, 8.95. $\mathrm{C}_{12} \mathrm{H}_{33} \mathrm{ClO}_{3} \mathrm{Si}_{4}$ requires C, $38.7 ; \mathrm{H}, 8.9 \%$); $\delta_{\mathrm{H}} 0.33$ ($18 \mathrm{H}, \mathrm{s}, \mathrm{Si}_{2} \mathrm{Ce}_{2} \mathrm{OMe}$), $0.54(6 \mathrm{H}, \mathrm{s}$, $\mathrm{SiMe}_{2} \mathrm{Cl}$) and $3.40(9 \mathrm{H}, \mathrm{s}, \mathrm{OMe}) ; m / z 357$ ($60, \mathrm{H}^{\left.(M-\mathrm{Me}]^{+}\right) \text {, }}$ 342 (5) and 237 (100%).
(b) A solution of $\left.\mathrm{SiMe}_{2} \mathrm{H}\left\{\mathrm{C}_{2} \mathrm{SiMe}_{2}(\mathrm{OMe})\right]_{3}\right\} 6(0.10 \mathrm{~g}, 0.27$ $\mathrm{mmol})$ in $\mathrm{CCl}_{4}\left(5 \mathrm{~cm}^{3}\right)$ was stirred with $\mathrm{PCl}_{5}(0.11 \mathrm{~g}, 0.54 \mathrm{mmol})$ for 30 min at $20^{\circ} \mathrm{C}$. The solvent was removed under vacuum and the residue was extracted with pentane. The extract was filtered and solvent was evaporated from the filtrate to leave a white solid, which was sublimed and shown to be $\mathrm{SiMe}_{2} \mathrm{Cl}\left\{\mathrm{C}\left[\mathrm{SiMe}_{2}-\right.\right.$ $\left.(\mathrm{OMe})]_{3}\right\}(0.09 \mathrm{~g}, 90 \%)$, with properties identical with those given above.

Dimethyl(trifluoroacetoxy)[tris(methoxydimethylsilyl)methyl $]$ silane 8.-A solution of $\mathrm{SiMe}_{2} \mathrm{H}\left\{\mathrm{C}\left[\mathrm{SiMe}_{2}(\mathrm{OMe})\right]_{3}\right\} 5$ ($0.10 \mathrm{~g}, 0.30 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was stirred with $\mathrm{AgOCOCF}_{3}(0.073 \mathrm{~g}, 0.33 \mathrm{mmol})$ at $20^{\circ} \mathrm{C}$ for 30 min . The mixture was filtered and solvent was removed from the filtrate under vacuum. The residue was sublimed ($75^{\circ} \mathrm{C}, 0.05 \mathrm{Torr}$) to give white crystals of $\mathrm{SiMe}_{2}\left(\mathrm{OCOCF}_{3}\right)\left\{\mathrm{C}_{\left.\left[\mathrm{SiMe}_{2}(\mathrm{OMe})\right]_{3}\right\}(0.10}\right.$ $\mathrm{g}, 80 \%$), m.p. $63-65^{\circ} \mathrm{C}$ (Found: C, 37.7; H, 7.4. $\mathrm{C}_{14} \mathrm{H}_{33} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{Si}_{4}$ requires $\mathrm{C}, 37.3 ; \mathrm{H}, 7.3 \%$); $\delta_{\mathrm{H}} 0.27\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e_{2} \mathrm{OMe}\right.$), 0.55 (6 $\mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2} \mathrm{OCOCF}_{3}$), and $3.34(9 \mathrm{H}, \mathrm{s}, \mathrm{OMe}) ; \delta_{\mathrm{F}}-76.4$; $m / z 435\left(100,[M-\mathrm{Me}]^{+}\right)$and 421 (30). Compound 4 was also made in 74% yield from the reaction between $\mathrm{SiMe}_{2} \mathrm{Cl}\left\{\mathrm{C}\left(\mathrm{SiMe}_{2}-\right.\right.$ (OMe) $\left.]_{3}\right\}$ and $\mathrm{AgOCOCF}_{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $20^{\circ} \mathrm{C}$.

Isocyanatodimethyl[tris(methoxydimethylsilyl)methyl]silane 9.-A solution of $\mathrm{SiMe}_{2} \mathrm{Cl}\left\{\mathrm{C}\left[\mathrm{SiMe}_{2}(\mathrm{OMe})\right]_{3}\right\}$ ($10.1 \mathrm{~g}, 0.27$ $\mathrm{mmol})$ in anhydrous $\mathrm{MeCN}\left(10 \mathrm{~cm}^{3}\right)$ was stirred with freshly prepared dry AgOCN for 2 h at $20^{\circ} \mathrm{C}$. The mixture was filtered and solvent evaporated from the filtrate to leave a solid which was sublimed to give white crystals of $\mathrm{SiMe}_{2}(\mathrm{NCO})\left\{\mathrm{C}^{2} \mathrm{SiMe}_{2}{ }^{-}\right.$ (OMe) $\left.]_{3}\right\}\left(0.08 \mathrm{~g}, 85 \%\right.$), m.p. $169^{\circ} \mathrm{C}$ (Found: C, $41.6 ; \mathrm{H}, 8.9 ; \mathrm{N}$, 3.4. $\mathrm{C}_{13} \mathrm{H}_{33} \mathrm{NO}_{4} \mathrm{Si}_{4}$ requires C, 41.2; $\mathrm{H}, 8.7, \mathrm{~N}, 3.7 \%$); $v(\mathrm{NCO})$ at $2280 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 0.27\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e_{2} \mathrm{OMe}\right), 0.37(6 \mathrm{H}, \mathrm{s}$, $\mathrm{SiMe}_{2} \mathrm{NCO}$) and 3.39 ($9 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$). In one experiment in which the MeCN contained traces of water the product was the silanol $\mathrm{SiMe}_{2}(\mathrm{OH})\left\{\mathrm{C}\left[\mathrm{SiMe}_{2}(\mathrm{OMe})\right]_{3}\right\}$ identified by mass spectroscopy: $m / z 339$ ($100,[M-\mathrm{Me}]^{+}$), 234 (5, [M$\left.\left.\mathrm{SiMe}_{4} \mathrm{O}_{2}\right]^{+}\right)$and $219\left(10 \%\right.$, $\left.\left[M-\mathrm{Me}-\mathrm{SiMe}_{4} \mathrm{O}_{2}\right]^{+}\right)$.

Diphenyl[tris(methoxydimethylsilyl)methyl]silane 10.-A solution of LiBu ${ }^{\mathrm{n}}(5 \mathrm{mmol})$ in hexane ($2 \mathrm{~cm}^{3}$) was added to
$\left[(\mathrm{MeO}) \mathrm{Me}_{2} \mathrm{Si}_{3} \mathrm{CCl}(1.5 \mathrm{~g}, 4.8 \mathrm{mmol})\right.$ in thf $\left(15 \mathrm{~cm}^{3}\right)$ at $-78{ }^{\circ} \mathrm{C}$. The solution was stirred at $-78^{\circ} \mathrm{C}$ for 10 min , then $\mathrm{SiPh}_{2} \mathrm{ClH}$ $(1.0 \mathrm{~g}, 5.0 \mathrm{mmol})$ was added. The mixture was allowed to warm to $20^{\circ} \mathrm{C}$ overnight. Volatile materials were then removed under vacuum and the white residue was extracted with pentane. The extract was filtered, and solvent was evaporated under vacuum to leave a white solid, which was recrystallised from pentane to give $\mathrm{SiPh}_{2} \mathrm{H}\left\{\mathrm{C}\left[\mathrm{SiMe}_{2}(\mathrm{OMe})\right]_{3}\right\} \quad 10(1.4 \mathrm{~g}, 65 \%$), m.p. 132$134{ }^{\circ} \mathrm{C}$ (Found: C, $57.0 ; \mathrm{H}, 8.3 . \mathrm{C}_{22} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Si}_{4}$ requires C, $57.1 ; \mathrm{H}$, 8.3%); $\delta_{\mathrm{H}} 0.07\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Si} \mathrm{Me}_{2} \mathrm{OMe}\right), 3.39(9 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$ and 7.1-8.1 ($10 \mathrm{H}, \mathrm{m}, \mathrm{SiPh}_{2} \mathrm{H}$). The crystal structure of this compound has been described elsewhere. ${ }^{8}$

[Bis(methoxydimethylsilyl)(trimethylsilyl)methyl]chloro-

 dimethylsilane 11.-A mixture of $\left[(\mathrm{MeO}) \mathrm{Me}_{2} \mathrm{Si}_{2}\right]_{2}\left(\mathrm{Me}_{3} \mathrm{Si}\right) \mathrm{CCl}$ (90%) and $\left[(\mathrm{MeO}) \mathrm{Me}_{2} \mathrm{Si}_{3}{ }_{3} \mathrm{CCl}(10 \%)(1.0 \mathrm{~g})\right.$ in thf $\left(30 \mathrm{~cm}^{3}\right)$, made as described above, was treated with $\mathrm{LiBu}^{n}(5 \mathrm{mmol})$ in hexane $\left(2.0 \mathrm{~cm}^{3}\right)$ at $-78{ }^{\circ} \mathrm{C}$. The solution was stirred for 10 min at $-78^{\circ} \mathrm{C}$, then $\mathrm{SiMe}_{2} \mathrm{Cl}_{2}\left(0.60 \mathrm{~cm}^{3}, 5 \mathrm{mmol}\right)$ was added and the mixture allowed to warm to $20^{\circ} \mathrm{C}$ during 2 h and filtered. Solvent was evaporated from the filtrate to give a white solid, which was sublimed ($60^{\circ} \mathrm{C}, 0.05$ Torr) and shown by ${ }^{1} \mathrm{H}$ NMR and mass spectroscopy to be $\mathrm{SiMe}_{2} \mathrm{Cl}\left\{\mathrm{C}\left(\mathrm{SiMe}_{3}\right)\left[\mathrm{SiMe}_{2}{ }^{-}\right.\right.$ $\left.(\mathrm{OMe})]_{2}\right\} 11 ;\left\{\delta_{\mathrm{H}} 0.28\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 0.36\left(12 \mathrm{H}, \mathrm{s}, \mathrm{Si}_{2} \mathrm{Se}_{2} \mathrm{OMe}\right.\right.$), $0.62\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2} \mathrm{Cl}\right)$ and $3.47(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}) ; m / z 356$ (40 , $[M]^{+}$), $341\left(38,[M-\mathrm{Me}]^{+}\right), 325\left(20,[M-\mathrm{OMe}]^{+}\right), 237$ $\left(100,\left[M-\mathrm{Me}-\mathrm{SiMe}_{4} \mathrm{O}\right]^{+}\right), 221$ ($67,\left[M-\mathrm{Me}-\mathrm{SiMe}_{4}{ }^{-}\right.$ $\left.\left.\mathrm{O}_{2}\right]^{+}\right), 89\left(30,\left[\mathrm{SiMe}_{2} \mathrm{OMe}\right]^{+}\right)$and $\left.59(63 \%)\right\}$ containing 5% of compound 7 .The Lithium Reagent $\left[(\mathrm{MeO}) \mathrm{Me}_{2} \mathrm{Si}_{3} \mathrm{CLi}\right.$ 3.--The isolation of compound 3 has been described: ${ }^{5} \delta_{\mathrm{C}}\left(\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}\right) 3.7\left(\mathrm{Me}_{2} \mathrm{Si}\right)$ and $49.8(\mathrm{OMe}) ; \boldsymbol{\delta}_{\mathrm{si}} 13.9$.

Crystallography.-Crystal data. $\mathrm{C}_{20} \mathrm{H}_{54} \mathrm{Li}_{2} \mathrm{O}_{6} \mathrm{Si}_{6} 3, M=$ 573.1, orthorhombic, space group Cmca, $a=15.588$ (2), $b=$ $12.852(1), c=17.503(3) \AA, U=3506.5 \AA^{3}, Z=4, D_{c}=1.09 \mathrm{~g}$ $\mathrm{cm}^{-3}, \quad F(000)=1248$, monochromated Mo-K α radiation, $\lambda=0.71069 \AA, \mu=2.6 \mathrm{~cm}^{-1}$.

Structure determination. Data were measured on an EnrafNonius CAD4 diffractometer with a crystal of size $0.3 \times$ $0.25 \times 0.2 \mathrm{~mm}$. Intensities for $+h+k+l$ reflections with $2<\theta<25^{\circ}$ were measured by a $\theta-2 \theta$ scan with width $\Delta \theta=$ $(0.8+0.35 \tan \theta)^{\circ}$. Two standard reflections showed no significant variation. Data were corrected for Lorentz and polarisation effects but not for absorption: 1599 reflections with $\left|F^{2}\right|>\sigma(F)^{2}$ were used in the structure analysis.

The data, collected with the unit cell $a=17.503(3), b=$ 12.852(1), $c=15.588(3) \AA$, were consistent with space group $A b a 2$ or $A b a m$. The structure was solved in space group $A b a 2$ by direct methods using MULTAN ${ }^{9}$ but it was found to have a mirror plane, the space group was thus assumed to be Abam and transformed to the standard setting Cmca for full-matrix leastsquares refinement using anisotropic thermal parameters for non-hydrogen atoms. Hydrogen atoms were found in a difference map and included with isotropic thermal parameters. Refinement converged at $R=0.048, R^{\prime}=0.055$ with $w=$ $1 / \sigma^{2}(F)$.

A PDP 11/34 computer and the Enraf-Nonius structure determination package were used in the structure solution and refinement. Scattering factors were taken from ref. 10. Final atom coordinates are given in Table 1, and bond lengths and angles in Table 2. The molecule is shown in Fig. 1.

Additional material available from the Cambridge Crystallographic Data Centre comprises H -atom coordinates and thermal parameters. Structure factor tables are available from P.B.H.

Results and Discussion

The synthesis and reactions of the organolithium compound 3

Fig. 1 Structure of the dimer $\left[\left\{\left[(\mathrm{MeO}) \mathrm{Me}_{2} \mathrm{Si}_{3} \mathrm{CLi}_{2}\right] \mathbf{1 2}\right.\right.$

Table 1 Fractional atomic coordinates ($\times 10^{4}$) for compound 3 with estimated standard deviations (e.s.d.s) in parentheses

Atom	x	y	z
$\mathrm{Si}(1)$	$985(1)$	$635(1)$	$1279(1)$
$\mathrm{Si}(2)$	0	$2560(1)$	$700(1)$
$\mathrm{O}(1)$	$936(1)$	$-646(2)$	$1091(1)$
$\mathrm{O}(2)$	0	$2594(3)$	$-246(2)$
$\mathrm{C}(1)$	0	$1180(3)$	$923(2)$
$\mathrm{C}(2)$	$1176(3)$	$749(4)$	$2340(2)$
$\mathrm{C}(3)$	$1997(2)$	$1076(4)$	$812(3)$
$\mathrm{C}(4)$	$1527(3)$	$-1373(3)$	$1409(3)$
$\mathrm{C}(5)$	$929(4)$	$3355(3)$	$999(4)$
$\mathrm{C}(6)$	0	$3549(5)$	$-686(4)$
Li	0	$-1075(6)$	$446(4)$

Table 2 Intramolecular distances (\AA) and angles $\left({ }^{\circ}\right)$ for compound 3 with e.s.d.s in parentheses

$\mathrm{Si}(1)-\mathrm{O}(1)$	$1.680(2)$	$\mathrm{Si}(1)-\mathrm{C}(1)$	$1.799(2)$
$\mathrm{Si}(1)-\mathrm{C}(3)$	$1.865(4)$	$\mathrm{Si}(1)-\mathrm{C}(2)$	$1.887(4)$
$\mathrm{Si}(2)-\mathrm{O}(2)$	$1.655(4)$	$\mathrm{Si}(2)-\mathrm{C}(1)$	$1.816(4)$
$\mathrm{Si}(2)-\mathrm{C}(5)$	$1.848(5)$	$\mathrm{O}(1)-\mathrm{C}(4)$	$1.426(5)$
$\mathrm{O}(2)-\mathrm{Li}$	$1.983(9)$	$\mathrm{O}(1)-\mathrm{Li}$	$1.925(6)$
$\mathrm{C}(1)-\mathrm{Li}^{\prime \prime}$	$2.401(9)$	$\mathrm{O}(2)-\mathrm{C}(6)$	$1.449(7)$
$\mathrm{O}(1)-\mathrm{Si}(1)-\mathrm{C}(1)$	$106.0(2)$	$\mathrm{O}(1)-\mathrm{Si}(1)-\mathrm{C}(2)$	$106.0(2)$
$\mathrm{O}(1)-\mathrm{Si}(1)-\mathrm{C}(3)$	$104.5(2)$	$\mathrm{C}(1)-\mathrm{Si}(1)-\mathrm{C}(2)$	$116.4(2)$
$\mathrm{C}(1)-\mathrm{Si}(1)-\mathrm{C}(3)$	$116.9(2)$	$\mathrm{C}(2)-\mathrm{Si}(1)-\mathrm{C}(3)$	$105.9(2)$
$\mathrm{O}(2)-\mathrm{Si}(2)-\mathrm{C}(1)$	$103.9(2)$	$\mathrm{O}(2)-\mathrm{Si}(2)-\mathrm{C}(5)$	$105.6(2)$
$\mathrm{C}(1)-\mathrm{Si}(2)-\mathrm{C}(5)$	$118.6(2)$	$\mathrm{C}(5)-\mathrm{Si}(2)-\mathrm{C}\left(5^{\prime}\right)$	$103.2(2)$
$\mathrm{Si}(1)-\mathrm{O}(1)-\mathrm{C}(4)$	$122.5(2)$	$\mathrm{Si}(1)-\mathrm{O}(1)-\mathrm{Li}$	$115.5(3)$
$\mathrm{C}(4)-\mathrm{O}(1)-\mathrm{Li}$	$122.0(3)$	$\mathrm{Si}(2)-\mathrm{O}(2)-\mathrm{C}(6)$	$123.6(4)$
$\mathrm{Si}(2)-\mathrm{O}(2)-\mathrm{Li}^{\prime \prime}$	$98.7(3)$	$\mathrm{C}(6)-\mathrm{O}(2)-\mathrm{Li}^{\prime \prime}$	$137.7(4)$
$\mathrm{Si}(1)-\mathrm{C}(1)-\mathrm{Si}\left(1^{\prime}\right)$	$117.2(2)$	$\mathrm{Si}(1)-\mathrm{C}(1)-\mathrm{Si}(2)$	$117.1(1)$
$\mathrm{Si}(1)-\mathrm{C}(1)-\mathrm{Li}$	$108.9(2)$	$\mathrm{Si}(2)-\mathrm{C}(1)-\mathrm{Li}^{\prime \prime}$	$80.8(2)$
$\mathrm{O}(1)-\mathrm{Li}-\mathrm{O}\left(1^{\prime}\right)$	$98.5(4)$	$\mathrm{O}(1)-\mathrm{Li}-\mathrm{O}\left(2^{\prime \prime}\right)$	$112.7(3)$
$\mathrm{O}(1)-\mathrm{Li}-\mathrm{C}\left(1^{\prime \prime}\right)$	$127.0(2)$	$\mathrm{O}(2)-\mathrm{Li} \mathrm{Li}^{\prime \prime}-\mathrm{C}(1)$	$76.6(3)$

Single, double and triple primes here and in Fig. 1 indicate symmetryrelated positions at $\bar{x}, y, z ; \bar{x}, \bar{y}, \bar{z}$, and x, \bar{y}, \bar{z} respectively.
are summarised in Scheme 1. Compound 4 was made in fair yield from $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{CCl}{ }^{6,7}$ by treatment first with a large excess of ICl and then with $\mathrm{MeOH}-\mathrm{Et}_{3} \mathrm{~N}$. The intermediate $\left(\mathrm{ClMe}_{2^{-}}\right.$ $\mathrm{Si})_{3} \mathrm{CCl}$ was not isolated, though it was clear from experiments in NMR tubes that it was formed via a series of partially chlorinated compounds. In most cases the final product was solely $\left(\mathrm{ClMe}_{2} \mathrm{Si}\right)_{3} \mathrm{CCl}$ but on one occasion, for unknown reasons, the main product was $\left[(\mathrm{MeO}) \mathrm{Me}_{2} \mathrm{Si}_{2}\right]_{2}\left(\mathrm{Me}_{3} \mathrm{Si}\right) \mathrm{CCl} 5$. Attempts to isolate pure 5 were unsuccessful.

Compound 4 was metallated with butyllithium in the usual way ${ }^{11}$ to give the reagent 3 , which was used in situ at $-78{ }^{\circ} \mathrm{C}$ to make the organosilanes 6,7 and 10 . The hydride 6 was converted into the chloride 7 almost quantitatively by treatment with a two-fold excess of phosphorus(v) chloride. The trifluoroethanoate 8 was obtained in high yield from both the chloride 7 and the hydride 6 . These substitutions are facilitated by powerful anchimeric assistance from γ-OMe groups, and the effect is so great that even hydride may be readily displaced from silicon by treatment with silver salts, as found earlier for reactions of $\mathrm{SiMe}_{2} \mathrm{H}\left\{\mathrm{C}\left(\mathrm{SiMe}_{3}\right)_{2}\left[\mathrm{SiMe}_{2}(\mathrm{OMe})\right]\right\}{ }^{3}$ The reaction between 7 and silver cyanate in MeCN gave the isocyanate 9. It is likely that the initial product was the isomeric cyanate which rearranged to the thermodynamically more stable isocyanate, ${ }^{12}$ but an attempt to detect the cyanate by monitoring the reaction at $0^{\circ} \mathrm{C}$ by NMR spectroscopy was unsuccessful. When the MeCN contained traces of water the product was the silanol $\mathrm{SiMe}_{2}(\mathrm{OH})\left\{\mathrm{C}\left[\mathrm{SiMe}_{2}(\mathrm{OMe})\right]_{3}\right\}$. It was shown previously that cyanate is an exceedingly good leaving group from silicon and that silanols can be conveniently made by treatment of halides with AgOCN in incompletely dried solvents. ${ }^{13}$

The chloride 5 , containing 10% of 4 , was metallated with butyllithium in the same way as 4 and the products used in situ to make the chlorosilane 11 contaminated with 7 (Scheme 2).

$$
\left[(\mathrm { MeO }) \mathrm { Me } _ { 2 } \mathrm { Si } _ { 2 } (\mathrm { Me } _ { 3 } \mathrm { Si }) \mathrm { CCl } \xrightarrow { (i) } \left[(\mathrm{MeO}) \mathrm{Me}_{2} \mathrm{Si}_{2}\left(\mathrm{Me}_{3} \mathrm{Si}\right) \mathrm{CLi} \xrightarrow{(i i)}\right.\right.
$$

$$
5
$$

2
$\mathrm{SiMe}_{2} \mathrm{Cl}\left\{\mathrm{C}\left(\mathrm{SiMe}_{3}\right)\left[\mathrm{SiMe}_{2}(\mathrm{OMe})\right]_{2}\right\}$
Scheme 2 (i) LiBu ; (ii) $\mathrm{SiMe}_{2} \mathrm{Cl}_{2}$
The lithium reagent 3 was normally used as prepared in hexane-thf. The species in solution are not known, but when the solvent was evaporated a colourless, air-sensitive solid was isolated and recrystallised from toluene. This solid was free from donor solvents and from toluene and contained the dimeric species, shown in Fig. 1. Each $\left[(\mathrm{MeO}) \mathrm{Me}_{2} \mathrm{Si}\right]_{3} \mathrm{C}$ group is bound to one lithium through carbon $C(1)$ and an oxygen $O(2)$ of a β-OMe group and to the other lithium through the oxygen atoms of the two other β-OMe groups. The resulting dimer 12 has point symmetry $C_{2 h}$ with the two four-membered rings $\mathrm{C}(1) \mathrm{Si}(2) \mathrm{O}(2) \mathrm{Li}^{\prime \prime}$ and $\mathrm{C}\left(1^{\prime \prime}\right) \mathrm{Si}\left(2^{\prime \prime}\right) \mathrm{O}\left(2^{\prime \prime}\right) \mathrm{Li}$ and their exocyclic carbon atoms $C(6)$ and $C\left(6^{\prime \prime}\right)$ coplanar and the perpendicular two-fold axis passing through the centre of inversion midway between Li and $\mathrm{Li}^{\prime \prime}$. The cage structure $\mathbf{1 2}$ is, as far as we are aware, unprecedented in organolithium chemistry, though fourmembered chelate rings obtained by co-ordination through a β-OMe group are found in the tetramers $13,{ }^{14} 14,{ }^{15}$ and $15{ }^{16}$ and in the dimers $16,{ }^{17,18}$ which are linked by further $\mathrm{Li}-\mathrm{C}$ interactions to tetramers both in the crystal and in solution.

Strain in the chelate rings is shown by the small angles at lithium [76.3(3)], carbon [80.8(2)] and at the planar oxygen $\left[98.7(3)^{\circ}\right]$, and by the $\mathrm{Li}-\mathrm{O}\left(2^{\prime \prime}\right)$ distance $[1.983(9) \AA]$ which is significantly longer than the $\mathrm{Li}-\mathrm{O}(1)$ and $\mathrm{Li}-\mathrm{O}\left(1^{\prime}\right)$ separations between monomer units $[1.925(6) \AA]$. The $\mathrm{Li}-\mathrm{O}\left(2^{\prime \prime}\right)$ distance in 12 is longer than the corresponding distances in the chelate rings of compounds $13-16$. The $\mathrm{Li}-\mathrm{O}(1)$ bond length is at the lower end of the range (1.91-2.01 \AA) normally found in organolithium reagents, ${ }^{19}$ though it is significantly longer than that $[1.85(2) ~ \AA]$ in $\left(\mathrm{PhMe}_{2} \mathrm{Si}\right)_{3} \mathrm{CLi}($ thf $) \mathbf{1 7}$, in which the lithium is essentially two-co-ordinate.

In contrast, the $\mathrm{Li}-\mathrm{C}$ bond in compound $\mathbf{1 2}$ [2.401(9) \AA] is at the upper end of the observed range: ${ }^{19} c f .2 .12(2) \AA$ in 17, $2.291(6) \AA$ in solvent-free $\left[\left\{\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{CLi}\right\}_{2}\right]$ 18, ${ }^{20}$ and 2.18-2.36 \AA in 13-16 in which each lithium interacts with three carbon neighbours. Indeed, the $\mathrm{Li}-\mathrm{C}$ distance in 12 is similar to that between lithium and the ipso-C of a phenyl group in 17 [2.40(2) $\AA]$, and to that between lithium and the γ-carbon in 18 [2.466(6) $\AA] .{ }^{20}$ The fact that the $\mathrm{Li}-\mathrm{C}$ bond is much longer than usual suggests that the carbon atom may have substantial carbanionic

Some methyl groups omitted
12

$13 \mathrm{R}^{\prime}=\mathrm{H}$
$14 \mathrm{R}^{\prime}=\mathrm{Me}$
In 13-15 only one alkyl group of the tetramer is shown

17

18
character and is consistent with the conclusion from $a b$ initio calculations that carbanions are strongly stabilised by adjacent SiH_{3} groups. ${ }^{21,22}$

In compounds in which the $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{C}$ group is attached to Si, B or $\mathrm{P}, \mathrm{C}-\mathrm{SiMe}_{3}$ bond lengths of $1.90-1.95 \AA$ are observed but in compounds in which the $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{C}$ group is attached to a metal the $\mathrm{C}-\mathrm{SiMe}_{3}$ bonds are somewhat shorter [cf. mean 1.855(3) \AA in 18]. There is commonly also a shortening of Si-C bonds when silicon is attached to oxygen. Thus $\mathrm{C}-\mathrm{SiMe}_{2}(\mathrm{OMe})$ bonds are typically $1.85-1.88 \AA \AA^{8,23} \operatorname{In} 12$, in which C is attached to a metal and Si to oxygen, both effects are apparent. Even so the $\mathrm{C}-\mathrm{SiMe}_{2}(\mathrm{OMe})$ bonds in 12 [mean $1.805(4) \AA$] seem exceptionally short. To the extent that the $\mathrm{C}(1)$ atom has carbanionic character there may be shortening of the bonds as a consequence of negative hyperconjugation and $(p \rightarrow d)_{\pi}$ interaction, with the former probably the more important. Calculations predict an $\mathrm{Si}-\mathrm{C}$ bond length of $1.814 \AA$ for $\left[\mathrm{H}_{3} \mathrm{Si}-\mathrm{CH}_{2}\right]^{-}$compared with $1.855 \AA$ for the bond in $\mathrm{H}_{3} \mathrm{Si}-\mathrm{CH}_{2} \mathrm{Li}^{21}{ }^{21}$
The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 3 in toluene at $25^{\circ} \mathrm{C}$ each show only two signals, from the methyl groups attached to silicon and oxygen, instead of the four expected from the crystal structure. The ${ }^{29} \mathrm{Si}$ NMR spectrum shows only one
signal. Either the dimers dissociate in solution or there is rapid exchange between inter- and intra-molecularly bridging (MeO)SiMe_{2} groups on the NMR time-scale for all three nuclei. We have not made a full variable-temperature study or molecularweight measurements.

Acknowledgements

We thank the SERC for support and the Iraqi Government for a scholarship (to N. H. B.).

References

1 C. Eaborn, P. B. Hitchcock, J. D. Smith and A. C. Sullivan, J. Chem. Soc., Chem. Commun., 1983, 827, 1390.
2 C. Eaborn and D. E. Reed, J. Chem. Soc., Perkin Trans. 2, 1985, 1687.
3 A. I. Al-Wassil, C. Eaborn and M. N. Romanelli, J. Chem. Soc., Perkin Trans. 2, 1986, 1363.
4 F. I. Aigbirhio, S. S. Al-Juaid, C. Eaborn, A. Habtemariam, P. B. Hitchcock and J. D. Smith, J. Organomet. Chem., 1991, 405, 149.
5 N. H. Buttrus, C. Eaborn, S. H. Gupta, P. B. Hitchcock, J. D. Smith and A. C. Sullivan, J. Chem. Soc., Chem. Commun., 1986, 1043.
6 D. Seyferth, E. M. Hanson and F. M. Armbrecht, J. Organomet. Chem., 1970, 23, 361; M. A. Cook, C. Eaborn, A. E. Jukes and D. R. M. Walton, J. Organomet. Chem., 1970, 24, 529.

7 S. S. Al-Juaid, S. M. Dhaher, C. Eaborn, P. B. Hitchcock, C. A. McGeary and J. D. Smith, J. Organomet. Chem., 1989, 366, 39.
8 F. I. Aigbirhio, S. S. Al-Juaid, C. Eaborn, P. B. Hitchcock and P. D. Lickiss, J. Chem. Soc., Perkin Trans. 2, 1991, 1407.
9 G. Germain, P. Main and M. M. Woolfson, Acta Crystallogr., Sect. $A, 1971,27,360$.
10 International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4.
11 N. Wiberg, G. Preiner and O. Schieda, Chem. Ber., 1981, 114, 2087.
12 C. Eaborn, P. D. Lickiss, G. Marquina-Chidsey and E. Y. Thorli, J. Chem. Soc., Chem. Commun., 1982, 1326.

13 C. Eaborn, Y. Y. El-Kaddar and P. D. Lickiss, J. Chem. Soc., Chem. Commun., 1983, 1450.
14 G. W. Klumpp, P. J. A. Geurink, N. J. R. van E. Hommes, F. J. J. de Kanter, M. Vos and A. L. Spek, Recl. Trav. Chim. Pays-Bas, 1986, 105, 398.
15 A. L. Spek, A. J. M. Duisenberg, G. W. Klumpp and P. J. A. Geurink, Acta Crystallogr., Sect. C, 1984, 40, 372.
16 S. Harder, J. Boersma, L. Brandsma, G. P. M. van Mier and J. A. Kanters, J. Organomet. Chem., 1989, 364, 1.
17 H. Dietrich, W. Mahdi and W. Storck, J. Organomet. Chem., 1988, 349, 1.
18 S. Harder, J. Boersma, L. Brandsma, A. van Heteren, J. A. Kanters, W. Bauer and P. v. R. Schleyer, J. Am. Chem. Soc., 1988, 110, 7802.

19 W. N. Setzer and P. v. R. Schleyer, Adv. Organometallic Chem., 1985, 24, 353.
20 W. Hiller, M. Layh and W. Uhl, Angew. Chem., Int. Ed. Engl., 1991, 30, 324.
21 P. v. R. Schleyer, T. Clark, A. J. Kos, G. W. Spitznagel, C. Rohde, D. Arad, K. N. Houk and N. G. Rondan, J. Am. Chem. Soc., 1984, 106, 6466.

22 B. T. Luke, J. A. Pople, M.-B. Krogh-Jespersen, Y. Apeloig, J. Chandrasekhar and P. v. R. Schleyer, J. Am. Chem. Soc., 1986, 108, 260.

23 N. H. Buttrus, C. Eaborn, P. B. Hitchcock, P. D. Lickiss and S. T. Najim, J. Chem. Soc., Perkin Trans. 2, 1987, 891, 1753.

Received 27th August 1991; Paper 1/04459A

[^0]: † Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1992, Issue 1, pp. xx-xxv.
 Non-SI unit employed: Torr $\approx 133 \mathrm{~Pa}$.

