## 1059

# Oxidation of Water by MnO<sub>4</sub><sup>-</sup> mediated by Thermally Activated Ruthenium Dioxide Hydrate

## Andrew Mills,\* Peter Douglas and Tom Russell

Department of Chemistry, University College of Swansea, Singleton Park, Swansea SA2 8PP, UK

The kinetics of oxidation of water to oxygen by  $MnO_4^-$ , mediated by thermally activated ruthenium dioxide hydrate, has been studied. The rate of catalysis is 0.8 order with respect to the surface concentration of  $MnO_4^-$  (which in turn appears to fit a Langmuir adsorption isotherm) and proportional to the catalyst concentration, but is independent of the concentration of manganese(II) ions. The catalysed reaction appears to have an activation energy of 50  $\pm$  1 kJ mol<sup>-1</sup>. These observed kinetics are readily rationalised using an electrochemical model in which the catalyst particles act as microelectrodes providing a medium for electron transfer between the highly irreversible oxidation of water to  $O_2$  and the highly irreversible reduction of  $MnO_4^-$  to  $Mn^{2^+}$ .

There are many inorganic redox reactions of the type (1) which, although thermodynamically feasible, do not normally proceed

$$n_1 \operatorname{Ox}^2 + n_2 \operatorname{Red}^1 \longrightarrow n_1 \operatorname{Red}^2 + n_2 \operatorname{Ox}^1$$
 (1)

at a discernible rate.<sup>1,2</sup> Many classic examples are to be found in the oxidation of water to oxygen by a suitably strong oxidising agent, Ox, *i.e.* as in equation (2). It is well recognised that

$$4Ox + 2H_2O \longrightarrow 4Red + 4H^+ + O_2$$
 (2)

reaction (2) does not proceed under ambient conditions using the following common strong oxidants (Ox) despite, in each case, a high thermodynamic feasibility:  $IO_4^-$ ,  $BrO_3^-$ ,  $MnO_4^$ or Ce<sup>IV.3</sup> Lack of reaction as in equation (2) has the advantage that aqueous acidic solutions of the above oxidants are stable over long periods of time and, therefore, often convenient for carrying out oxidation reactions other than (2). Indeed, the combination of high oxidation potential and aqueous solution stability has led to the widespread use of such oxidants in aqueous redox analytical chemistry.<sup>4</sup>

In some situations, however, the lack of reaction when thermodynamically feasible can be an undesirable feature. For example, a great deal of solar-energy research has been directed towards the development of efficient photosystems for the cleavage of water into hydrogen and oxygen. In such a system reaction (2) must occur at some stage using an oxidising agent which has been photogenerated directly or indirectly.<sup>5</sup> Thus, the recognised improbability of reaction (2) occurring in homogeneous solution for most oxidants poses a major problem to the development of an overall water-splitting system.

It is possible to facilitate many of the redox reactions described by reaction (1) through the use of a redox catalyst. As a consequence a considerable amount of research has been dedicated to finding a stable, active catalyst for reaction (2). Research carried out by our group has shown that this reaction, with  $Ox = Ce^{IV}$ , is mediated by a partially dehydrated form of ruthenium dioxide hydrate (*ca.* 10% H<sub>2</sub>O), which we have called 'thermally activated ruthenium dioxide hydrate', or RuO<sub>2</sub>·y·H<sub>2</sub>O\* for short [RuO<sub>2</sub>·y·H<sub>2</sub>O\* is prepared by annealing highly hydrated ruthenium dioxide hydrate (the usual form of this oxide hydrate available commercially;  $\ge 24\%$  H<sub>2</sub>O) in air (or nitrogen) for 5 h at 144 °C].<sup>6</sup> This material is one of the first highly reliable O<sub>2</sub> catalysts [*i.e.* for the oxidation of water

as in equation (2)] to be developed, however detailed studies of how it works have only just begun.<sup>3</sup> An important aspect of this work is the study of the effect model oxidants of different electrochemical reversibilities have on the kinetics of  $O_2$ catalysis. The more electrochemically reversible a redox couple is, the faster the exchange of the electrons between its oxidised and reduced forms occurs at the electrode (redox catalyst) in question, and the most marked examples of redox catalysis are usually when a highly irreversible reaction is coupled to a highly reversible reaction.<sup>3</sup> The results of such work are likely to be very useful in the development of efficient photochemical systems for water cleavage.

The results of a detailed study of the kinetics of reaction (2), with  $Ox = Ce^{IV}$  as our model oxidant, were readily interpreted using an electrochemical model in which the redox catalyst particles of  $RuO_2 \cdot yH_2O^*$  were considered to act as microelectrodes mediating electron transfer between a Nernstian reduction reaction ( $Ce^{IV} \longrightarrow Ce^{III}$ ) and an irreversible oxidation reaction of  $MnO_4^-$  to  $Mn^{2+}$ , unlike that of  $Ce^{IV}$  to  $Ce^{III}$ , is known to be a highly irreversible process.<sup>8</sup> Thus, in this paper we examine an alternative electrochemical model of oxygen catalysis through a kinetic study of reaction (2), mediated by  $RuO_2 \cdot yH_2O^*$ , using the highly coloured, multioxidising oxidant  $MnO_4^-$  as our model. To our knowledge no detailed kinetic study of oxygen catalysis using a multioxidising oxidant has been reported previously.

#### Experimental

*Materials.*—The catalyst  $RuO_2 \cdot yH_2O^*$  was prepared from highly hydrated ruthenium dioxide hydrate obtained from Johnson Matthey.<sup>6</sup> All other chemicals were obtained from BDH in AnalaR form. All water used in the preparation of solutions was doubly distilled and deionised.

Methods.—The experimental system used to monitor the reduction of the oxidant  $MnO_4^-$  and concomitant evolution of  $O_2$  as a function of time has been described previously.<sup>9</sup> Each stock solution of KMnO<sub>4</sub> used (6.5 × 10<sup>-3</sup> mol dm<sup>-3</sup>) was made up in 1 mol dm<sup>-3</sup> HClO<sub>4</sub>, unless stated otherwise. The concentration of the stock catalyst dispersion was, typically, 15 µg cm<sup>-3</sup> made up in 1 mol dm<sup>-3</sup> HClO<sub>4</sub>.

In a typical experiment  $65 \text{ cm}^3$  of the stock catalyst dispersion were placed in the reaction vessel and nitrogen purged for 20



**Fig. 1** Schematic illustration of the relevant current vs. voltage curves for the redox couples  $Ox^1$ -Red<sup>1</sup> and  $Ox^2$ -Red<sup>2</sup> with the redox catalyst as the working electrode. The electrochemical model of redox catalysis assumes that at any time t during catalysis the redox catalyst is poised at a mixture potential,  $E_{mix,r}$  so that  $i_{a,t} = -i_{c,t} = i_{mix,t}$ . In the MnO<sub>4</sub><sup>-</sup>-H<sub>2</sub>O system it is assumed that  $i_{mix,t}$  lies in the Tafel region of both current vs. voltage curves

min; the reaction vessel comprised a thermostatted quartz cell  $(30 \pm 0.05$  °C) with an oxygen membrane polarographic detector incorporated into its base. The kinetic run was started by injecting into the catalyst dispersion in the reaction vessel a small volume (typically 1.0 cm<sup>3</sup>) of the oxidant stock solution. Spectrophotometric monitoring of the oxidant concentration was achieved using an optical system comprising light source, reaction vessel, monochromator, amplifier and microcomputer; the cell path length was always 3.2 cm. The absorbance vs. time profile was recorded, stored and subsequently analysed using an Achimedes BBC microcomputer. The concentration of dissolved  $O_2$  in the reaction vessel was monitored as a function of time using the membrane detector. The number-average particle size in a stock dispersion of RuO2·yH2O\* was determined as 6.10 µm by dynamic light scattering (Malvern Mastersizer).

## **Electrochemical Model**

In the many examples of redox catalysis the catalyst appears simply to provide a medium through which electron transfer from one redox couple to another can occur. This electrochemical approach to redox catalysis allows the kinetics of catalysis to be predicted from the current *vs.* voltage curves for the two contributing couples provided the two redox couples act independently of each other (the Wagner–Traud additivity principle).<sup>1</sup>

In this model of catalysis of the general reaction (1), at any time t during the course of catalysis the catalyst adopts a mixture potential,  $E_{mix,t}$ , at which the cathodic current,  $i_{c,t}$ , due to the reduction of  $Ox^2$  is exactly balanced by the anodic current,  $i_{a,t}$ , due to the oxidation of Red<sup>1</sup>. Although the net current is zero, the numerical magnitude of each component current is the same and is called the mixture current,  $i_{mix,t}$ [equation (3)]. In our specific study of the catalysis of reaction

$$i_{\min,t} = i_{a,t} = -i_{c,t}$$
 (3)

(2), with  $Ox^2 = MnO_4^-$ , by particles of  $RuO_2 \cdot yH_2O^*$  dispersed in solution, at any time *t* during catalysis the particles can be envisaged as acting as a collection of microelectrodes, each poised at  $E_{mix,t}$ .

The current vs. voltage curve for the oxidation of Red<sup>1</sup> to  $Ox^1$ , where Red<sup>1</sup> = H<sub>2</sub>O and  $Ox^1 = O_2$ , is, for most materials including RuO<sub>2</sub> macroanodes,<sup>10</sup> adequately described by a Tafel-type equation, *i.e.* (4) where  $\alpha_1$ , is the transfer coefficient

$$i_{a} = i_{01} \exp(\alpha_{1} F \eta_{1} / RT)$$
(4)

and  $\eta_1$  is the overpotential. The overpotential is given by equation (5) where  $E_1$  is the equilibrium potential for the Ox<sup>1</sup>-

$$\eta_1 = E_{\rm mix} - E_1 \tag{5}$$

Red<sup>1</sup> couple. The stoichiometric electrode process of any given redox couple can be written as in equation (6) where  $S_j$ 

$$v_{a}S_{a} + v_{b}S_{b} + \dots + v_{j}S_{j} + ne^{-} = 0$$
 (6)

represents the formula of species j and where the stoichiometric coefficients,  $v_{j}$ , are positive for oxidants and negative for reductants. In the presence of an excess of inert supporting electrolyte the corresponding Nernst equation for the equilibrium potential, E, is then (7).

$$E = E^{\circ} + (RT/nF)\Sigma v_i \ln(c_i) \tag{7}$$

In our work, the concomitant reduction of  $Ox^2$  to Red<sup>2</sup> is the reaction  $MnO_4^- \longrightarrow Mn^{2+}$  which, from previous electrochemical studies, is likely to be a highly irreversible process.<sup>2,8</sup> As a result, the corresponding current vs. voltage curve should be given by a Tafel-type expression (8). The exchange current

$$i_{\rm c} = i_{02} \exp(-\alpha_2 F \eta_2 / RT)$$
 (8)

densities,  $i_{01}$  and  $i_{02}$ , are given by expressions (9) and (10)

$$\ln(i_{01}) = \ln(i_{001}) + (\theta_1 + \alpha_1 v_1/n_1) \ln[\text{Red}^1] \quad (9)$$

$$\ln(i_{01}) = \ln(i_{002}) + (\theta_2 - \alpha_2 v_2/n_2) \ln[\text{Red}^2] \quad (10)$$

where  $\theta_1$  and  $\theta_2$  are, respectively, the electrochemical reaction orders of Red<sup>1</sup> and Ox<sup>2</sup> in the anodic and cathodic processes occurring on the surface of the redox catalyst. The terms  $i_{001}$ and  $i_{002}$  are the standard exchange current densities for the couples Ox<sup>1</sup>-Red<sup>1</sup> and Ox<sup>2</sup>-Red<sup>2</sup>, respectively.

Spiro<sup>11</sup> has considered this particular electrochemical model of redox catalysis, schematically illustrated in Fig. 1, and shown that the mixture current at any time t during the reaction will be given by equation (11) where  $r_1$  and  $r_2$  are defined in (12).

$$i_{\text{mix},t} = i_{001} r_2 \, i_{002} r_1 [\text{Red}^1] \theta_1 r_2 [\text{Ox}^2] \theta_2 r_1 \\ \exp[\alpha_2 r_1 F(E_2^\circ - E_1^\circ) / RT] \quad (11)$$

$$r_1 = \alpha_1/(\alpha_1 + \alpha_2); r_2 = \alpha_2/(\alpha_1 + \alpha_2)$$
 (12)

In the case of reaction (2), equation (11) reduces to (13) where

$$i_{\min,t} = K_1 i_{001} r_2 \cdot i_{002} r_1 \cdot [Ox^2] \theta_2 r_1 exp[\alpha_2 r_1 F(E_2^{\circ} - E_1^{\circ})/RT] \quad (13)$$

 $K_1 = [H_2O]\theta_1r_2 = \text{constant.}$  From equation (13) it can be seen that one of the interesting features of this particular model is that the product concentrations play no role in the forward kinetics. Such kinetics are very different to those observed for reaction (2) mediated by  $\text{RuO}_2 \cdot yH_2O^*$  using  $\text{Ce}^{IV}$  (in 0.5 mol dm<sup>-3</sup> H<sub>2</sub>SO<sub>4</sub>) as the oxidant. In this latter case one of the



Fig. 2 Results arising from a typical kinetic run in which the reaction conditions, directly after mixing, were:  $[MnO_4^{-1}] = 10^{-4} \text{ mol } dm^{-3}$ ,  $[RuO_2 \cdot yH_2O^*] = 15 \,\mu\text{g cm}^{-3}$ ,  $[HCIO_4] = 1 \,\text{mol } dm^{-3}$  and  $t = 30 \,^{\circ}\text{C}$ . (a) Absorption spectrum of  $MnO_4^{-1}$  vs. time (at 0, 15, 30, 45, 60, 90 and 120 min from top to bottom; all recorded in a 1 cm cell). (b) Absorbance due to  $MnO_4^{-1}$  (at 527 nm) and concomitant  $[O_2]$  evolved (overall dioxygen yield = 80%) as a function of time observed for an identical kinetic run to that in (a) carried out in the reaction vessel of our experimental system; path length 3.2 cm [although in this trace over 480 points were recorded, the black dots included refer to absorbances predicted from the spectral changes recorded in (a)]. (c) Plot of (Absorbance of  $MnO_4^{-1}^{0.2}$  vs. time over three half-lives of the kinetic data illustrated in (b). A least-squares analysis revealed: number of points (n) = 480, gradient (m) = -(8.1 \pm 0.01) \times 10^{-5} (absorbance units)<sup>0.2</sup> s<sup>-1</sup>, intercept (c) = 0.938  $\pm 0.004$  (absorbance units)<sup>0.2</sup> and correlation coefficient (r) = 0.999 84

products, Ce<sup>III</sup>, had a marked inhibitory effect on the rate of catalysis.

Results

The  $MnO_4^{-}-Mn^{2+}$  couple (14) has a formal redox potential

$$MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O \quad (14)$$

 $E^{\circ}(MnO_4^{-}-Mn^{2^+})$  of 1.51 V vs. normal hydrogen electrode (NHE) at pH 0.<sup>2</sup> Thus, as indicated earlier, at pH 0,  $MnO_4^{-}$  is thermodynamically able to oxidise water to oxygen [equation (15)] since  $E^{\circ}(O_2-H_2O) = 1.23$  V vs. NHE. Although aqueous

$$4MnO_4^- + 12H^+ \longrightarrow 4Mn^{2+} + 6H_2O + 5O_2$$
 (15)

solutions (acidic, neutral or alkaline) of  $MnO_4^-$  are intrinsically unstable, their decomposition under ambient conditions is usually very slow (*i.e.*  $t_{\pm}$  > many weeks) in the absence of bright sunlight; the latter can promote the decomposition of even the most pure  $MnO_4^-$  solution.<sup>4</sup>

In a typical experiment a kinetic run was carried out in a 1 cm cell, using initial concentrations (i.e. directly after mixing at t = 0) of MnO<sub>4</sub><sup>-</sup> and RuO<sub>2</sub>·yH<sub>2</sub>O\* of 10<sup>-4</sup> mol dm<sup>-3</sup> and 15  $\mu$ g cm<sup>-3</sup>, respectively, and the resulting changes in the visible absorption spectrum of  $MnO_4^-$  as a function of time are illustrated in Fig. 2(a). For an identical kinetic run carried out in the reaction vessel of our experimental system, Fig. 2(b) illustrates the observed change of absorbance due to  $Mn\Omega_a$ monitored at 527 nm  $[\epsilon(MnO_4^{-}) = 2343 \text{ dm}^3 \text{ mol}^{-1} \text{ cm}^{-1}]$ and dissolved oxygen concentration (where 100% O<sub>2</sub> yield =  $[O_2] = 1.25 \times 10^{-4} \text{ mol dm}^{-3}$ ; in this experiment  $O_2$  yield = 80%) as a function of time. Unless stated otherwise, in this and all subsequent kinetic runs the kinetics of dioxygen generation matched those for  $MnO_4^-$  reduction, with typical overall  $O_2$ yields of 75–80%. Repeat injections of  $MnO_4^-$  into the same catalyst dispersion gave the same yields, *i.e.* 75–80%. We believe that the other ca. 20% of oxidising equivalents is also used to oxidise water to  $O_2$  via reaction (15), but that 100% yields of  $O_2$ are not observed due to the slow nature of the kinetics which allows time for some partitioning of the O<sub>2</sub> between the aqueous phase (where the  $O_2$  is detected) and the small head space present in the system.

It was further observed that the kinetics of  $MnO_4^-$  reduction was unaltered by the initial concentration of  $Mn^{2+}$  present even with manganese(II) concentrations up to ten times that of the initial  $MnO_4^-$ . Unless stated otherwise, in this and all other kinetic runs described in this paper the kinetics of  $MnO_4^$ reduction were fitted excellently over three half-lives (correlation coefficient r typically > 0.9990) by assuming that the rate of reaction depends upon  $[MnO_4^-]^{0.8}$  (the uncertainty in the order of the kinetics of  $MnO_4^-$  reduction with respect to  $[MnO_4^-]$  is ca. 0.05); this is illustrated in Fig. 2(c) via a plot of  $[MnO_4^-]^{0.2}$  vs. t using the data shown in Fig. 2(b). The gradient (m) of the straight line in Fig. 2(c) is a measure of the rate constant for the catalysed reaction which we shall refer to as  $k_{0.8}$ , where  $k_{0.8} = -m$  in (absorbance units)<sup>0.2</sup> s<sup>-1</sup>.

The evolution of  $O_2$  via reaction (15) mediated by  $RuO_2 \cdot yH_2O^*$  was confirmed as being near stoichiometric from the membrane detector data [see Fig. 2(b) for example]. The concomitant generation of a stoichiometric quantity of  $Mn^{2+}$  was confirmed by filtering off the redox catalyst at the end of the reaction, oxidising the  $Mn^{2+}$  to  $MnO_4^-$  in the filtrate using a two-fold excess of solid sodium bismuthate, filtering off the excess of sodium bismuthate and recording the absorbance spectrum of the final filtrate; in all cases the latter was identical to that of the initial  $MnO_4^-$  solution.

Using all other experimental conditions the same as before, the initial rate of reaction (15) mediated by  $\text{RuO}_{2^{+}y}\text{H}_2\text{O}^*$  at 30 °C was studied as a function of  $[\text{MnO}_4^-]$  over the range 0– 1.7 × 10<sup>-3</sup> mol dm<sup>-3</sup>. Fig. 3 illustrates a plot of initial rate  $R_i$ vs.  $[\text{MnO}_4^-]$ . As suggested by these results it was also noted that throughout the course of reaction at low  $[\text{MnO}_4^-]$  (*i.e.*  $\leq 10^{-4}$  mol dm<sup>-3</sup>) the order in  $[\text{MnO}_4^-]$  was 0.8, whereas at  $[\text{MnO}_4^-]$  significantly greater than 10<sup>-3</sup> mol dm<sup>-3</sup> the rate of



**Fig. 3** Initial rate of reduction of  $MnO_4^-$  ( $MnO_4^-$  absorbance units at 470 nm per s) vs. [ $MnO_4^-$ ], with [ $RuO_2 \cdot yH_2O^*$ ] = 15 µg cm<sup>-3</sup>, [ $HCIO_4$ ] = 1 mol dm<sup>-3</sup> and 30 °C



**Fig. 4** Plot of  $k_{0.8}$  [in (MnO<sub>4</sub><sup>-</sup> absorbance units at 527 nm)<sup>0.2</sup> s<sup>-1</sup>] vs. [RuO<sub>2</sub>·yH<sub>2</sub>O<sup>\*</sup>]; reaction conditions as for Fig. 3, with [MnO<sub>4</sub><sup>-</sup>] = 10<sup>-4</sup> mol dm<sup>-3</sup>. The results of a least-squares analysis are as follows: n = 7,  $m = (6.1 \pm 0.2) \times 10^{-3}$  (MnO<sub>4</sub><sup>-</sup> absorbance units at 527 nm)<sup>0.2</sup> s<sup>-1</sup> per mg cm<sup>-3</sup>,  $c = -(0.21 \pm 0.22) \times 10^{-4}$  (MnO<sub>4</sub><sup>-</sup> absorbance units at 527 nm)<sup>0.2</sup> s<sup>-1</sup> and r = 0.9974. % refers to the observed yields of O<sub>2</sub>

 $MnO_4^-$  reduction was independent of  $[MnO_4^-]$ , *i.e.* zero order.

Using all other reaction conditions as above, the kinetics of reaction (15) mediated by  $\text{RuO}_2 \cdot yH_2O^*$  was studied as a function of  $[\text{RuO}_2 \cdot yH_2O^*]$ , over the wide range 0–215 µg cm<sup>-3</sup>. In all cases the order in  $[\text{MnO}_4^-]$  was 0.8 and Fig. 4 illustrates the apparent direct relationship between  $k_{0.8}$  and  $[\text{RuO}_2 \cdot yH_2O]$ .

A series of experiments were carried out in which the kinetics of reaction (15) mediated by  $RuO_2 \cdot yH_2O^*$ , set at a concentration of 15 µg cm<sup>-3</sup>, was studied as a function of temperature over the range 12.5–56 °C, using an initial  $[MnO_4^-] = 10^{-4}$  mol dm<sup>-3</sup>. Fig. 5(*a*) illustrates the resulting absorbance vs. time decays and Fig. 5(*b*) an Arrhenius plot in the form of  $ln(k_{0.8})$  vs.  $T^{-1}$  from which an activation energy of  $50 \pm 1$  kJ mol<sup>-1</sup> was calculated. The latter appears to be a reasonable value for an activation-controlled reaction and clearly different from the value of 15–19 kJ mol<sup>-1</sup> typically associated with diffusion-controlled reactions.<sup>12</sup>

Although reaction (15) mediated by  $RuO_2 \cdot yH_2O^*$  proceeds at a measurable rate if carried out in a reaction medium of 1 mol dm<sup>-3</sup> HClO<sub>4</sub>, the rate is *ca*. six times slower in 1 mol dm<sup>-3</sup> H<sub>2</sub>SO<sub>4</sub>. The inhibitory effect of H<sub>2</sub>SO<sub>4</sub> was investigated further through a study of the kinetics of reaction (15), mediated by  $RuO_2 \cdot yH_2O^*$  (75 µg cm<sup>-3</sup>), as a function of [HSO<sub>4</sub><sup>-</sup>]. In all the runs made the kinetics of MnO<sub>4</sub><sup>-</sup> reduction appeared to exhibit an order of 0.8 in [MnO<sub>4</sub><sup>-</sup>], unchanged by the presence of Mn<sup>2+</sup> ions and with an overall high yield of O<sub>2</sub> (typically 75–80%). An important aspect of this work is the equilibrium



**Fig. 5** Kinetic study of reaction (15) as a function of temperature; all other conditions as for Fig. 3. (a) Relative absorbance at 527 nm vs. time profiles for (from top to bottom) 12.5, 26, 35.5, 45.5 and 56 °C; a relative absorbance of 1 is equivalent to the actual absorbance of 0.75. (b) Arrhenius plot of ln ( $k_{0,8}$ ) vs. 1/T; a least-squares analysis of the data revealed the following: n = 6,  $m = -(6.06 \pm 0.09) \times 10^3$  K,  $c = 10.8 \pm 0.3$  and r = 0.9995



**Fig. 6** Plot of  $k_{0.8}$  vs. log[HSO<sub>4</sub><sup>-</sup>] using the same reaction conditions as for Fig. 3, with [RuO<sub>2</sub>·yH<sub>2</sub>O\*] = 75 µg cm<sup>-3</sup>

(16) which has a constant  $^{13} \approx 10^2$  mol dm<sup>-3</sup>. The experimental

$$H_2SO_4 \Longrightarrow HSO_4^- + H^+$$
 (16)

conditions used were such that in each kinetic run in which  $[HSO_4^-]$  (and, therefore,  $H_2SO_4$ ) was varied, the 'free'  $[H^+]$  was fixed at 1 mol dm<sup>-3</sup>. Fig. 6 illustrates the final plot of  $k_{0.8}$  vs. log $[HSO_4^-]$  arising from the analysis of the kinetic data obtained in this work.

#### Discussion

The oxidation of water by  $MnO_4^-$  via reaction (15) in 1 mol  $dm^{-3}$  HClO<sub>4</sub> is mediated by  $RuO_2 \cdot yH_2O^*$  as evidenced by the data illustrated in Fig. 2 and the work with sodium bismuthate described earlier. The independence of the kinetics of catalysis upon  $[Mn^{2+}]$  provides some supporting evidence for the applicability of the electrochemical model described earlier and summarised by equation (13). The 0.8 order with respect to  $[MnO_4^-]$ , observed at  $[MnO_4^-] \leq 10^{-4}$  mol dm<sup>-3</sup> [see Fig. 2(c)] would, according to the electrochemical model, indicate that the product  $\theta_2 r_1$  is equal to 0.8 under the experimental conditions employed. Since the reaction order,  $\theta_2$ , is 1 for many redox reactions, and assuming that this is also the case in our work, then it follows that  $r_1$  must then be 0.8.

From the results of other dioxygen redox catalysis studies<sup>7</sup> carried out using  $RuO_2 \cdot yH_2O^*$  it appears that the oxidation of water to oxygen occurs *via* the 'oxide pathway',<sup>14</sup> *i.e.* equations (17)–(19) where S is the surface-active site, with reaction (18) as

$$S + H_2O \longrightarrow S-OH + H^+ + e^-$$
 (17)

$$2S-OH \longrightarrow S-O + S + H_2O \tag{18}$$

$$2S - O \longrightarrow 2S + O_2 \tag{19}$$

the rate-determining step. If it is assumed that this is also the situation for reaction (15) mediated by  $RuO_2 \cdot yH_2O^*$ , then the Tafel slope for water oxidation will be 30 mV per decade and, therefore,  $\alpha_1 = 2$ . Thus, given  $r_1 = 0.8$ , from equation (12) it follows that  $\alpha_2$  will be 0.5.

The work of Desideri<sup>8</sup> on the electrochemical reduction of  $MnO_4^-$  in mineral acid media using a bubbling platinum electrode confirms the highly irreversible nature of the reduction of  $MnO_4^-$  to  $Mn^{2+}$  and also indicates that  $\alpha_2$  may lie in the range 0.5–1. No attempt by these workers was made at interpreting these latter results in terms of an electrochemical mechanism, however one possibility can be gleaned from the work of Bockris and Reddy<sup>15</sup> on general multistep reactions of the type A + ne<sup>-</sup>  $\longrightarrow$  Z; these workers note that if a series of quasi-electron-transfer equilibria are set up before the rate-determining step (r.d.s.) then the transfer coefficient will be given by equation (20) where  $\gamma =$  number of electron-transfer

$$\alpha = (\gamma/\nu) + \omega\beta \tag{20}$$

steps before the r.d.s., v = reaction stoichiometry,  $\beta =$  symmetry factor and where  $\omega = 1$  (if the r.d.s. is a charge-transfer step) or 0 (if the r.d.s. is a chemical reaction). Typically, v = 1 and  $\beta$  is taken as 0.5, thus, assuming the electrochemical model and a general multistep scheme for  $MnO_4^-$  reduction, the kinetics of  $MnO_4^-$  reduction will give a transfer coefficient  $\alpha_2 = 0.5$  if the initial electron-transfer reaction involving  $Mn^{VII}$  is rate determining.

The observed variation of initial rate vs.  $[MnO_4^-]$  illustrated in Fig. 3 appears typical of that expected if reaction (15) depends directly upon the adsorbed concentration of  $MnO_4^-$  which in turn fits a Langmuir adsorption isotherm. Assuming this adsorption isotherm and the electrochemical model, the term  $[Ox^2]$  in the expression  $[Ox^2]\theta_2r_1$  in equation (13) is the concentration of adsorbed  $MnO_4^-$  per m<sup>2</sup> of the surface of the redox catalyst, *i.e.* as in equation (21) where  $[MnO_4^-]^*$  is the

$$[MnO_4^{-}]_{ads} = [MnO_4^{-}]^* K[MnO_4^{-}]/$$
(1 + K[MnO\_4^{-}]) (21)

concentration of  $MnO_4^-$  adsorbed per m<sup>2</sup> of redox catalyst when the surface has a monolayer coverage of  $MnO_4^-$  ions, *K* is a measure of the strength of the adsorption and  $[MnO_4^-]$  is the concentration of  $MnO_4^-$  in the bulk solution. As predicted by this equation a plot of  $(1/R_i)^{1.25}$  vs  $[MnO_4^-]^{-1}$  is a good straight line, as illustrated in Fig. 7.

In the electrochemical model  $i_{mix,t}$  is a current density and,

therefore, will depend directly upon  $-(d[MnO_4^-]/dt)$  and  $A_{cat}$ . Since the catalyst surface area will be proportional to [RuO<sub>2</sub>·yH<sub>2</sub>O\*], the observed straight-line dependence of  $k_{0.8}$ vs. [RuO<sub>2</sub>·yH<sub>2</sub>O] illustrated in Fig. 4 appears to confirm the prediction made by the electrochemical model. The observed decrease in  $O_2$  yield with increasing [RuO<sub>2</sub>·yH<sub>2</sub>O<sup>\*</sup>] does not appear to be associated with adventitious reducible impurities associated with the  $RuO_2 \cdot yH_2O^*$ , since the %O<sub>2</sub> yield remains reproducibly low for a series of repeat injections of 10<sup>-4</sup> mol  $dm^{-3}$   $MnO_4^{-}$  into the same catalyst dispersion. Other experiments show, under the typical experimental conditions used, that  $RuO_2 \cdot yH_2O^*$ ; (i) has no strong affinity for adsorbing dissolved O<sub>2</sub>, (ii) undergoes little or no corrosion and (iii) is charged up by the oxidant but the number of oxidising equivalents used is much lower than needed to rationalise the marked loss in  $O_2$  yield with increasing [RuO<sub>2</sub>·yH<sub>2</sub>O\*]. At present, the most likely explanation is that as the [RuO2.  $yH_2O^*$  is increased the fraction of O<sub>2</sub> generated increases on surfaces where access to the bulk solution is poor.

The variation in  $k_{0.8}$  vs. [HSO<sub>4</sub><sup>-</sup>], illustrated in Fig. 6, is not simply explained and probably depends upon many factors. It could be that  $HSO_4^-$  competes with  $MnO_4^-$  for sites, however even at high [HSO4-] an appreciable degree of catalysis continues (see Fig. 6), indicating that  $HSO_4^-$  can only bind to a limited fraction of the sites available for adsorption by  $MnO_4$ ions; there appears to be no obvious explanation why this should be the case. In terms of the electrochemical model the situation is further complicated by the effect of  $[HSO_4^-]$  on the term  $(E_2^{\circ} - E_1^{\circ})$ . Unlike the case for the Ce<sup>IV</sup>-Ce<sup>III</sup> couple it is not obvious why changes in  $[HSO_4^-]$  should effect the equilibrium potential of the  $MnO_4^--Mn^{2+}$  couple. However, Desideri<sup>8</sup> notes that the half-wave potential for the reduction of  $MnO_4^-$  to  $Mn^{2+}$  is higher in HClO<sub>4</sub> than in H<sub>2</sub>SO<sub>4</sub> and at high acid concentrations (*i.e.* > 10 mol dm<sup>-3</sup>) 'the permanganic ion is strongly associated with  $SO_4^{2-}$  ions to form complex ions' as evidenced by striking reversible changes in the absorption spectrum of  $MnO_4^-$  with increasing  $[H_2SO_4]$ ; these changes are not unlike those observed for Ce<sup>IV</sup> in  $H_2SO_4$ at similar high concentrations. In addition, in the electrochemical model, if the manganese species involved in the ratedetermining step is complexed by  $HSO_4^-$  then a variation in  $HSO_4^-$  will also affect the kinetics of reaction (15). It appears likely a combination of a number, if not all, of these factors is responsible for the effect of  $HSO_4^-$  on the observed variation of  $k_{0.8}$  for reaction (15).

In the photochemical decomposition of  $MnO_4^-$  the origin of the oxygen is the  $MnO_4^-$  ions themselves, *via* reaction (22).<sup>16</sup>

$$MnO_4^- \longrightarrow MnO_2^- + O_2$$
 (22)

However, from the results of the work reported here there is no evidence that  $MnO_2$  is formed and given the results of previous work on dioxygen catalytic systems using different oxidising agents<sup>3</sup> it appears most likely that the  $O_2$  evolved originates from water. Further work is, however, required using isotopically labelled solvent or  $MnO_4^-$  ions to confirm this assumption.

## Conclusion

The observed kinetics of the oxidation of water to oxygen by  $MnO_4^-$ , mediated by thermally activated ruthenium dioxide hydrate, is readily rationalised using an electrochemical model in which the catalyst particles act as microelectrodes providing a medium for electron transfer between the highly irreversible oxidation of water to  $O_2$  and the highly irreversible reduction of  $MnO_4^-$  to  $Mn^{2+}$ . The rate of catalysis depends upon the surface concentration of  $MnO_4^-$  (which in turn appears to fit a Langmuir adsorption isotherm) and the catalyst concentration, but is independent of the concentration of manganese(II) ions. The results of the kinetic study indicate that the initial electron-



Fig. 7 Plot of the data illustrated in Fig. 3 in the form of  $(1/R_i)^{1.25}$  vs.  $[MnO_4^{-}]^{-1}$ . The term  $[MnO_4^{-}]$  is the total initial concentration of in the bulk solution and was found to be largely unchanged MnO<sub>4</sub> after the process of adsorption of the  $MnO_4^-$  ions onto the redox catalyst. A least-squares analysis of the data revealed the following: m = 4,  $m = 11.0 \pm 0.2$ ,  $c = (10.4 \pm 0.9) \times 10^3$  (MnO<sub>4</sub><sup>-</sup> absorbance units at 527 nm)<sup>-1.25</sup> s<sup>1.25</sup> and r = 0.9997

transfer reaction involving  $Mn^{VII}$  is rate determining for the reduction of the  $Mn^{VII}$ , assuming that the oxidation of water to oxygen occurs via the 'oxide pathway'14 with the first disproportionation step the slowest of the steps in the oxidation of water.

## Acknowledgements

We thank the University of Wales for a post-graduate studentship (for T. R.).

# References

- 1 M. Spiro, Chem. Soc. Rev., 1986, 15, 141.
- 2 M. Spiro and A. B. Ravnö, J. Chem. Soc., 1965, 78.
- 3 A. Mills, Chem. Soc. Rev., 1989, 18, 285 and refs. therein.
- 4 Vogel's Quantitative Inorganic Analysis, revised by J. Bassett, R. C. Denney, G. H. Jeffery and J. Mendham, 4th edn., Longmans, London, 1981, pp. 359 and 765.
- 5 Energy Resources through Photochemistry and Catalysis, ed. M. Grätzel, Academic Press, New York, 1983.
- 6 A. Mills, S. Giddings, I. Patel and C. Lawrence, J. Chem. Soc., Faraday Trans. 1, 1987, 2331.
- 7 A. Mills and N. McMurray, J. Chem. Soc., Faraday Trans. 1, 1989, 2055
- 8 P. G. Desideri, J. Electroanal. Chem., 1963, 6, 344.
- 9 A. Mills and T. Russell, J. Chem. Soc., Faraday Trans., 1991, 1245. 10 S. Trasatti and G. Lodi, Electrodes of Conductive Metallic Oxides, ed.
- S. Trasatti, Elsevier, Amsterdam, 1980, vol. B, ch. 10.
- 11 M. Spiro, J. Chem. Soc., Faraday Trans. 1, 1979, 1507.
- 12 F. Wilkinson, Chemical Kinetics and Reaction Mechanisms, Wiley, New York, 1981, p. 239. 13 D. F. Shriver, P. W. Atkins and C. H. Langford, *Inorganic Chemistry*,
- Oxford University Press, Oxford, 1990, p. 150.
- 14 J. O'M. Bockris, J. Chem. Phys., 1956, 24, 817.
- 15 J. O'M. Bockris and A. K. Reddy, Modern Electrochemistry, Macdonald, London, 1970, vol. 2, p. 1002.
- 16 G. Zimmerman, J. Chem. Phys., 1955, 23, 825.

Received 19th July 1991; Paper 1/03657B