Manganese(II) Complexes of Trialkylphosphine Oxide Ligands and Their Reaction with Sulfur Dioxide to form Ligand-bound Adducts[†]

Stephen M. Godfrey, David G. Kelly and Charles A. McAuliffe*

Department of Chemistry, University of Manchester Institute of Science and Technology, Manchester M60 1QD, UK

Manganese(II) complexes of the rarely studied ligands OPR₃ (R = Et, Prⁿ or Buⁿ), [Mn(OPR₃)₂X₂] (R = Et, Prⁿ or Buⁿ) and [Mn(OPR₃)_n(NCS)₂] (R = Et or Buⁿ; n = 1, 2 or 4) have been prepared and characterised. The free ligands react rapidly with sulfur dioxide to form liquid 1:1 adducts R₃PO·SO₂, and over a longer period to form (R₃P·SO₂)(SO₂)_{0.6}. The adduct process is reversed by applying a vacuum; the stability of the R₃PO·SO₂ adducts is in the order R = Buⁿ > Prⁿ, Et. The [Mn(OPR₃)₂X₂] complexes do not react with SO₂ when slurried in toluene but take up 2 mol of SO₂ in the solid state. Moreover, [Mn(OPR₃)_n(NCS)₂] (n = 2 or 4) take up 2 and 4 mol of SO₂, respectively, in the solid state, *i.e.* the number of SO₂ molecules bound is proportional to the number of ligands in the complex. Other evidence is presented which confirms ligand-bound SO₂, including the observation that Buⁿ₃PO·SO₂ reacts with MnCl₂ to form [Mn{O(SO₂)PBuⁿ₃}₂Cl₂]. Consistent with previous studies of ligand-bound SO₂, the binding is weak and the SO₂ is not activated to reaction with dioxygen. Aluminium trichloride replaces Mn from [Mn(OPBuⁿ₃)₂Cl₂] to form Buⁿ₃PO·AlCl₃.

In contrast to the extensive use of triphenylphosphine oxide as a ligand, relatively little attention has been paid to the corresponding trialkyl derivatives. Long-chain alkylphosphine oxides have received attention as metal extractants in hydrometallurgy, and some trimethylphosphine oxide complexes have been characterised; ¹⁻⁴ however, generally reports of complexes with first-row transition metals are scarce. One manganese(11) complex, tetrahedral [Mn(OPBuⁿ₃)₄][ClO₄]₂, is known.⁵

We have made extensive use of manganese(11)^{6,7} and iron-(III)⁸ complexes containing OPPh₃ and OAsPh₃ ligands in binding and activating sulfur dioxide. In particular, manganese-(11) iodide and thiocyanate complexes ^{6,7} co-ordinate up to two molecules of SO_2 and in some cases activate the SO_2 to oxidation by moist air to produce sulfuric acid which may be isolated and crystallographically characterised as the ligand hydrogen-bonded species $(PPh_3O)(PPh_3OH)(HSO_4)^6$ and $(AsPh_3OH)(HSO_4)$.⁸ A good deal of complex redox chemistry goes on in these systems since highly unusual products, including $[AsPh_3I]I_3$, $^9AsPh_3(I_2)^{10}$ and $[(AsPh_3O)_2H]I_3^{11}$ can be formed from complexes containing OAsPh₃. Indeed, the rare blue gas N₂O₃ has been detected as a product of the interaction of manganese(11) nitrate complexes of diphosphine dioxide and diarsine dioxide ligands with SO_2 .¹² An extension of our work to a diphosphine dioxide ligand Ph₂P(O)CH₂CH₂CH₂(O)-PPh₂ produced a 'Chinese lantern' type of cryptate molecule $[Mn_{2}{Ph_{2}P(O)CH_{2}CH_{2}CH_{2}(O)PPh_{2}}_{4}(NCS)_{2}][NCS]_{2}$ which can reversibly bind five molecules of SO₂, although in this

which can reversibly bind five molecules of SO_2 , although in this case no activation of the SO_2 is observed.¹³

In view of this interesting chemistry we have extended our investigations to manganese(II) complexes containing OPEt₃, $OPPr^n_3$ and $OPBu^n_3$ ligands and have examined the interaction with sulfur dioxide in the solid state and as slurries in toluene.

Results and Discussion

Synthesis and Characterisation of the Complexes.--(a)

Manganese(II) Halides. The complexes $[Mn(OPR_3)_2X_2]$ (R = Et, Pr^n or Bu^n ; X = Cl, Br or I) are isolated from the reaction of MnX₂ with OPR₃ irrespective of the stoichiometries used, Table 1. No solvent dependence is observed and diethyl ether, toluene and hexane may all successfully be employed as solvents. Since both the anhydrous manganese(II) salts and trialkylphosphine oxide ligands are hygroscopic anhydrous reaction conditions need to be used; however, once isolated the final products are air stable. The complexes containing OPEt₃ are solids, whilst those of OPBuⁿ₃ are oils; those of the OPPrⁿ₃ ligand are intermediate, with the phase of the compound showing a secondary anion dependence, Table 1. The ESR spectra of the complexes provide little information, all exhibiting a strong g = 2 signal. The room-temperature magnetic moments are typical of spin-only values, Table 1, indicating monomeric species, as does the ready solubility of the complexes in most organic solvents. These pale yellow or green complexes are essentially non-conducting in nitrobenzene. All of these properties are consistent with a monomeric pseudotetrahedral structure and such a formulation concurs with the molecular weight obtained for $[Mn(OPPr_3)_2Br_2]$ of 497 (calc. 483) in dichloromethane. Crystals of the solid are readily grown, but the secondary evidence available is sufficient confidently to assign tetrahedral structures, making the complexes isostructural with their crystallographically characterised OPPh, analogues.14-16

An octahedral [Mn(OPPh₃)₄I₂] complex is also known.¹⁷ In view of the crystallographically characterised SO₂ insertion into the Mn–I bonds in this complex, [Mn(OPPh₃)₄{OS(O)I}₂],⁷ the isolation of an analogous six-co-ordinate trialkylphosphine oxide complex would be attractive. However, only the bis-(ligand) complexes [Mn(OPR₃)₂X₂] (R = Et, Prⁿ or Buⁿ) can be isolated under the same synthetic conditions.

(b) Manganese(II) thiocyanates. In contrast to the halide complexes, when $Mn(NCS)_2$ is used the ratio of reagents does influence the stoichiometry of the products formed: [Mn-(OPR₃)_n(NCS)₂] (R = Et or Buⁿ; n = 1, 2 or 4) can be isolated using the appropriate $Mn(NCS)_2$: ligand ratio, Table 2. Large excesses of the ligand still only yield the tetrakis complex. Complexes with a tris(ligand) stoichiometry may be recovered

^{*} Non SI unit employed: emu = SI $\times 10^6/4\pi$.

Table 1	Some physical properties and elemental analyses of the manganese(11) halide trialkylphosphine oxide complexes	

		M.p./°C Colour	ν(F μ _{eff} cm	$\mathcal{P}(\mathbf{PO})^{a}$	$v(PO)^{a}/\Lambda^{b}/S$ cm ⁻¹ cm ² mol ⁻¹	Analysis (%) ^c					
Complex	M.p./°C			cm^{-1}		С	Н	Halide	Р	Mn	
$[Mn(OPEt_3)_2Cl_2]$	75-76	Pale green	5.97	1108s, 1140 (sh)	2	36.7 (36.5)	7.9 (7.6)	17.7 (18.0)	16.0 (15.7)		
$[Mn(OPEt_3)_2Br_2]$	8889	Pale green	5.99	1108s, 1140 (sh)	3	29.5 (29.8)	5.9 (6.2)	32.9 (33.1)	12.6 (12.8)	11.2 (11.4)	
$[Mn(OPEt_3)_2I_2]$	79–80	Pale yellow	5.96	1108s, 1130m	6	25.2 (25.0)	5.4 (5.2)	43.8 (44.0)	10.6 (10.7)	9.1 (9.5)	
$[Mn(OPPr^n_3)_2Cl_2]$	63-64	Pale green	5.94	1120s	2	45.0 (45.2)	9.0 (8.8)	14.8 (14.9)	13.0 (13.0)	10.8 (11.5)	
$[Mn(OPPr^{n}_{3})_{2}Br_{2}]$	Oil	Pale green	5.98	1112s, 1135 (sh)	2	38.1 (38.1)	7.6 (7.4)	28.2 (28.2)	11.2 (10.9)	9.2 (9.7)	
$[Mn(OPPr^n_3)_2I_2]$	Oil	Orange	5.94	1115s	9	32.9 (32.7)	6.4 (6.4)	38.1 (38.4)	8.9 (9.4)	8.3 (7.8)	
$[Mn(OPBu^n_3)_2Cl_2]$	Oil	Pale green	5.91	1115s	3	51.1 (51.2)	9.9 (9.6)	12.5 (12.6)	11.2 (11.0)	9.9 (9.8)	
$[Mn(OPBu_{3}^{n})_{2}Br_{2}]$	Oil	Pale green	5.94	1117s	6	43.9 (44.2)	8.6 (8.3)	24.5 (24.6)	9.9 (9.5)	8.3 (8.4)	
$[Mn(OPBu^n_3)_2I_2]$	Oil	Orange	5.91	1120s	6	38.5 (38.7)	7.4 (7.2)	34.4 (34.1)			
4 v(PO): OPEt 1155		1160 ODD	11570	om-1 b In nitro	hanaana (C	alautotad vo	luce in mene	nthasas			

" v(PO): OPEt₃, 1155s; OPPrⁿ₃, 1160s; OPBuⁿ₃, 1157s cm⁻¹. ^b In nitrobenzene. ^c Calculated values in parentheses.

Table 2 Some physical properties and elemental analyses of the manganese(II) thiocyanate trialkylphosphine complexes

			- μ _{eff}	v(PO) <i>ª/</i> cm ⁻¹	$v(CN)/cm^{-1}$	Λ^{b}/S cm ² mol ⁻¹	Analysis (%) ^c					
Complex	M.p./°C	Colour					С	н	N	Р	S	Mn
$[Mn(OPEt_3)(NCS)_2]^d$	131 (decomp.)	White	5.39	1118s	2105s, 2060m		32.5 (31.5)	5.5 (4.9)	9.0 (9.2)	10.3 (10.2)	20.5 (21.0)	17.2 (18.0)
[Mn(OPEt ₃) ₂ (NCS) ₂]	Öil	Pale green	5.89	1125s	2060s	4	38.6 (38.3)	6.9 (6.8)	6.1 (6.4)	14.3	(,	()
$[Mn(OPEt_3)_4(NCS)_2]$	62–64	Pale green	6.08	1140s	2060s	5	43.8 (44.1)	8.3 (8.5)	4.0 (4.0)	17.2	9.1 (9.5)	8.3 (7.8)
$[Mn(OPBu^{n}_{3})(NCS)_{2}]^{d.e}$	238 (decomp.)	White	5.42	1145s	2105s, 2060s		40.1 (43.2)	6.9 (6.9)	7.3	7.8	16.7 (16.5)	13.8
$[Mn(OPBu^{n}_{3})_{2}(NCS)_{2}]$	Oil	Pale green	5.95	1118s	2060s	6	51.4 (51.4)	9.2 (9.0)	4.5 (4.6)	10.0 (10.2)	10.2 (10.5)	8.9 (9.0)
$[Mn(OPBu^{n}_{3})_{4}(NCS)_{2}]$	32–33	White	5.89	1130s	2060s	5	57.8	10.7	2.6	11.9	5.7	5.0

^a v(PO), OPEt₃ 1155s; OPPr^a₃, 1160s; OPBu^a₃, 1157s cm⁻¹. ^b In nitrobenzene. ^c Calculated values in parentheses. ^d Insoluble in PhNO₂ or MeNO₂. ^e Consistently low carbon analyses, but the total C + O (by difference) is 47.5 (47.3)⁶, suggesting a systematic error in analysis.

Fig. 1 Plot of $1/\chi_M$ versus temperature for [Mn(OPEt_3)(NCS)_2]

from a reaction of Mn(NCS)₂:OPR₃ ratio 1:3; however, GLC analyses show that these are mixtures of the bis and tetrakis complexes. Infrared spectra of the [Mn(OPR₃)(NCS)₂] complexes, Table 2, exhibit v(CN) bands indicative of both terminal and bridging anions and thus a dinuclear structure is pointed to, in agreement with the reduced room-temperature magnetic moment due to the antiferromagnetism arising from bridging anions, Table 2. Low-temperature magnetic susceptibility studies for [Mn(OPEt₃)(NCS)₂] indicate a marked temperature dependence. This complex obeys the Curie–Weiss law, Fig. 1, with $\theta = -59$ K and 2J = -6.9 cm⁻¹. These values suggest a small, but significant, antiferromagnetic exchange. Crystallographic characterisation has been prevented by the extreme insolubility of these monoligand complexes. The bis-(ligand) complexes exhibit only a terminal v(CN) band and magnetic moments consistent with a high-spin complex with a monomeric pseudo-tetrahedral structure.

The $[Mn(OPR_3)_4(NCS)_2]$ complexes have infrared ^{18.19} and magnetic properties which mirror those of *trans*-octahedral $[Mn(OPPh_3)_4(NCS)_2]$.

There appears to be a marked difference between the monomeric $[Mn(OPR_3)_2(NCS)_2]$ (R = Et or Bu^n) reported here {the molecular weight of $[Mn(OPBu^n_3)_2(NCS)_2]$ is 590 (calc. 617 for a monomer) in dichloromethane} and the previously reported complex $[Mn(OPPh_3)_2(NCS)_2]$. The latter exhibits both bridging and terminal v(CN) bands and has been shown by X-ray crystallography to have a five-co-ordinate dinuclear structure.⁶ This is somewhat surprising since less, rather than more, steric crowding would be anticipated for the trialkylphosphine oxide complexes. However, the trialkyl-substituted ligands are significantly more basic than OPPh₃ (K_b : OPBuⁿ₃, 4.92; OPPh₃, 3.72),²⁰ and this suggests that the stronger σ donors stabilise the bis complex without the need to dimerise.

All the thiocyanate complexes are air stable, save for the monoligand complexes $[Mn(OPEt_3)(NCS)_2]$ and $[Mn(OPBu^3)(NCS)_2]$ which are hygroscopic. After exposure to air, infrared bands at 3400 and 1640 cm⁻¹ are observed; moreover, the v(CN) bands show major changes. The terminal v(CN) bands shift to lower energy by 5–10 cm⁻¹, but the bridging bands show vastly increased intensity. Karl-Fischer analyses indicate the presence of one H₂O molecule, *e.g.* Mn(OPEt_3)(H₂O)-(NCS)₂ (Found: H₂O, 5.6. Calc.: 6.0%). Other hygroscopic

Table 3 Sulfur dioxide uptake by the trialkylphosphine oxide ligands

	Amount				Amount ab	50 /M-	
Ligand	g	10 ⁻⁴ mol	Increase in mass/g	Ar/SO ₂ Corr./g	g	10 ⁻⁴ mol	ratio
OPEt ₃	0.1581	11.80	0.0825	0.0077	0.0784	11.69	1:0.99
OPPr ⁿ ,	0.4592	26.09	0.1921	0.0199	0.1722	26.90	1:1.03
OPBu ⁿ ₃	0.8998	41.28	0.3011	0.0233	0.2778	43.41	1:1.05

Table 4Infrared absorptions (cm^{-1}) for ligand-sulfur dioxide adducts(all clear liquids)

Adduct	$v_{sym}(SO)$	$v_{asym}(SO)$	δ(SO)	v(PO) ^{<i>b</i>}		
Et ₃ PO·SO ₂	1310s	1115s	525s	1150s		
Pr^{n} , PO·SO,	1310s	1112s	525s	1150s		
Bu ⁿ ₃ PO•SO ₂	1315s	1120s	528s	1150s		
^a For SO ₂ : v(SO) 1340, 1150, δ (SO) 524s cm ⁻¹ . ^b v(PO): OPEt ₃ , 1155s; OPPr ⁿ ₃ , 1160s; OPBu ⁿ ₃ , 1157s cm ⁻¹ .						

tertiary phosphine oxide complexes have been characterised; for example $[Mn(dppoe)(NCS)_2]$ [dppoe = Ph₂P(O)CH₂CH₂-(O)PPh₂] on recrystallisation from acetone yields the fiveco-ordinate polymeric complex [{Mn(dppoe)(H₂O)(NCS)₂· dppoe}_n].²¹

Reactivity of Unco-ordinated Trialkylphosphine Oxide Ligands with Sulfur Dioxide.—The reversible formation of a 1:1 adduct between Me₃PO and SO₂ was established as long ago as 1951.²² The solid ligand rapidly forms a liquid on exposure to SO₂, and the interaction is fairly weak since there is always a low partial pressure of SO₂ above the liquid, eventually leading to total loss of SO₂ and the reformation of the solid Me₃PO.

We have explored the possibility of similar interactions of OPEt₃, OPPrⁱ₃ and OPBuⁿ₃ with SO₂, applying quantitative 'solid state' techniques. When the argon atmosphere above the ligands is replaced by one of dry SO₂ an almost instantaneous liquefaction of all three compounds occurs. Maintaining an atmosphere of SO₂ above these liquids results in a stable mass increase after *ca*. 60 s. After correcting for the greater density of SO₂ compared to that of argon, the weight increase is commensurate with 1:1 R₃PO-SO₂ adducts, Table 3. On standing for 24 h this value increases to *ca*. 1.5 mol of SO₂ per mol of ligand. This additional 0.5 SO₂ seems much more weakly bound, since it is lost by even a slight application of a vacuum to leave the 1:1 adduct. Much longer evacuation, *ca*. 1 h, is required to remove the remaining SO₂ (Scheme 1).

$$R_{3}PO$$
vacuum
$$\left\| excess SO_{2} \\
ca. 1h \\
ca. 60 s$$

$$R_{3}PO-SO_{2}$$
vacuum
$$\left\| excess SO_{2} \\
ca. 60 s
\\
ca. 24 h$$

$$(R_{3}PO-SO_{2})(SO_{2})_{0.5}$$
Scheme 1

The infrared spectra of the adducts exhibit smaller shifts in their v(PO) bands from those of the free ligands, Table 4. Whilst such shifts to lower energy are frequently associated with ligand co-ordination, solvation effects can also be responsible for relatively small movements.²³ Intense bands due to the v_{sym}(SO) and δ (SO) modes of SO₂ are also observed, Table 4, and v_{asym}(SO) appears as a shoulder on the more prominent v(PO)

Table 5	The ³¹ F	'NMR shifts for	trialkylphosphine	oxide ligands after
exposure	to sulfu	r dioxide		

Ligand	Literature value ^{27,28}	In CCl4	In SO ₂ - saturated CCl ₄	Neat adduct	In 98% H₂SO₄				
OPEt ₃	48.3	48.3	53.0	52.8	96.8				
5			$(\Delta = 4.7)$	$(\Delta = 4.5)$	$(\Delta = 48.5)$				
OPPr ^a ,	_	42.6	49.3	47.9	91.9				
5			$(\Delta = 6.7)$	$(\Delta = 5.3)$	$(\Delta = 49.3)$				
OPBu",	43.2	43.1	53.7	54.1	93.0				
5			$(\Delta = 10.6)$	$(\Delta = 11.0)$	$(\Delta=49.9)$				
All values are quoted in ppm relative to H_3PO_4 .									

band. The two assignable bands are shifted to lower energy from those of free SO_2 and are consistent with weak reversible co-ordination.^{24,25}

However, ³¹P NMR spectroscopy has proven to be a more informative technique. Previous studies with OPPh₃ show that certain solvents can significantly displace the ³¹P signal as a result of even weak interactions with the ligand. Carbon tetrachloride has little effect, whereas concentrated H_2SO_4 causes the largest known shifts.²⁶ We have thus used these two solvents as references in this study.

Phosphorus-31 NMR shifts of 5–10 ppm to low frequency from those in CCl₄ are recorded for the ligands in SO₂saturated CCl₄, Table 5. If solvation rather than genuine coordinative bonding were occurring a more dilute SO₂-CCl₄ mixture should result in significantly small shifts from the freeligand values. In fact the resultant spectra are remarkably similar, suggesting that R₃PO·SO₂ adducts are formed in each case. Numerically, the displacements from the free-ligand values are small compared to those in sulfuric acid and a rapid R₃PO-SO₂ \implies R₃PO + SO₂ equilibrium may be envisaged, but cooling to -17 °C in CCl₄ and -78 °C in CH₂Cl₂ fails to produce any line broadening or splitting, reducing the case for such an equilibrium.

Lewis-acid and -base behaviour by the SO₂ and ligand, respectively, is the logical form of bonding, and this is confirmed by the ³¹P NMR shifts to lower frequency on adduct formation. Such movements imply deshielding of the phosphorus, commensurate with electron donation by the adjacent oxygen. Although both oxygen and sulfur atoms in SO₂ can function as Lewis bases, only the sulfur can function as an acid by donation into the empty $2b_1$ molecular orbital, which is essentially sp² in character.

The precise upfield shift is indicative of the strength of the coordination. That of $Bu_3^{n}PO$ -SO₂ is significantly greater, *ca.* 10 ppm, than its triethyl and tri-*n*-propyl analogues. This is reflected in its relative stability during elemental analysis [Found (Calc.): C, 51.4 (51.1); H, 9.9 (9.6); S, 10.9 (11.3)%], and a weak parent ion (m/z = 282) is observed in its mass spectrum. Similar results could not be recorded for the Prⁿ₃PO-SO₂ and Et₃PO-SO₂ adducts.

Affinity of Trialkylphosphine Oxide Complexes of Manganese(II) for Sulfur Dioxide.—(a) Manganese(II) halides. The [Mn(OPR_3)₂X₂] complexes take one of two physical forms: the low-molecular-weight compounds (R = Et, X = Cl, Br or I;
 Table 6
 Mass changes on exposure of the manganese(11) halide complexes to sulfur dioxide

	Amount		In	A = /60	Amount abs	orbed	60 M
Complex	g	10 ⁻⁴ mol	mass/g	Ar/SO ₂ Corr./g	g	10 ⁻⁴ mol	SO ₂ /Mn ratio
$[Mn(OPEt_3),Cl_2]$	0.1806	4.58	0.0829	0.0233	0.0596	9.31	1:2.03
$[Mn(OPEt_3)_2Br_2]$	0.1833	3.58	0.0686	0.0199	0.0487	7.61	1:2.00
$[Mn(OPEt_3)_2I_2]$	0.3916	6.79	0.1033	0.0167	0.0866	13.53	1:1.99
$[Mn(OPPr_{3})_{2}Cl_{2}]$	0.3550	7.43	0.1205	0.0233	0.0972	15.19	1:2.05
$[Mn(OPPr_3)_2Br_2]$	0.3441	5.89	0.1088	0.0346	0.0742	11.59	1:1.97
$[Mn(OPPr_3)_2I_2]$	0.2239	3.39	0.0527	0.0087	0.0440	6.88	1:2.02
$[Mn(OPBu^n_3)_2Cl_2]$	0.1059	1.88	0.0360	0.0128	0.0232	3.63	1:1.92
$[Mn(OPBu_{3})_{2}Br_{2}]$	0.2675	4.11	0.0860	0.0525	0.0535	8.36	1:2.00
$[Mn(OPBu^{n}_{3})_{2}I_{2}]$	0.3290	4.42	0.0613	0.0047	0.0566	8.84	1:2.00

Table 7 Infrared absorptions (cm $^{-1})$ for $[Mn\{OP(SO_2)R_3\}_2X_2]$ adducts (X = Cl, Br or I)

Complex	Colour	$v_{sym}(SO)$	δ(SO)	v(PO)
$[Mn{O(SO_2)PEt_3}_2Cl_2]$	Green	1323s	524s	1108s,
[Mn{O(SO ₂)PEt ₂ } ₂ Br ₂]	Green	13215	5218	1140s 1108s
				1140s
$[Mn{O(SO_2)PEt_3}_2I_2]$	Red	1322s	523s	1108s,
$[Mn{O(SO_2)PPr^n_3}_2Cl_2]$	Green	1322s	521s	1120s
$[Mn{O(SO_2)PPr^n_3}_2Br_2]$	Green	1320s	521s	1112s,
$[M_n(\Omega(SO))PP_n \setminus I]$	Red	13200	5730	1135
$[Mn{O(SO_2)PBu^n}_{2}]$	Green	1320s	523s 524s	1115s
$[Mn{O(SO_2)PBu^n_3}_2Br_2]$	Green	1320s	521s	1115s
$[Mn{O(SO_2)PBu^n_3}_2I_2]$	Red	1320s	522s	1117s

Fig. 2 The infrared spectra $(1300-500 \text{ cm}^{-1} \text{ region})$ of $[Mn(OPPr^n_3)_2$ -Br₂] (upper) and $[Mn\{O(SO_2)PPr^n_3\}_2Br_2]$ (lower) illustrating the strong v(SO) absorptions in the latter

 $R = Pr^n$, X = Cl) are solids, whilst the remainder of the complexes are oils. Exposure of the latter to SO_2 as toluene slurries produces no visible change and the oils may be recovered with no apparent SO_2 co-ordination. The solid complexes rapidly become oily when slurried in SO_2 -saturated toluene; however, on isolation the oils resolidify and no SO_2 is detectable either by elemental analyses or infrared spectroscopy.

Quantitative 'solid state' exposures to SO_2 are more informative. All complexes rapidly increase in weight to a maximum commensurate with the co-ordination of two SO_2 moieties, Table 6. The solid complexes become intensely coloured oils.

Parallels are strong with the ligand reactivity already discussed. Co-ordination is reversible and empirical observations suggest that SO_2 binds even more weakly than to the free ligands. Such weak interactions explain the difficulties encountered in isolating the adducts formed in toluene slurries: solvent cannot be removed without the concurrent loss of sulfur dioxide, and this acute lability effectively prevents the elemental analysis of the adducts. In such analyses some sulfur and

reduced carbon and hydrogen values are recorded, but the results are variable and at best only confirmed *ca*. 50% of the total SO₂ present.

The infrared spectra of the adducts, Table 7, exhibit very strong $v_{sym}(SO)$ and $\delta(SO)$ bands, Fig. 2. These are typical of ligand-, rather than metal-, co-ordinated SO_2^{29} and are very similar to those of the R₃PO·SO₂ adducts, Table 4. Hence, the SO₂ is co-ordinated to the R₃PO ligands in the [Mn(OPR₃)₂X₂] complexes, but it is somewhat surprising that this occurs without decomposition of the complex. Complexation of the R₃PO ligands with the MnX₂ salts results in shifts to lower energy of the v(PO) band of *ca*. 40–50 cm⁻¹ compared to the free R₃PO ligand value, whereas co-ordination to SO₂ by R₃PO causes only shifts of *ca*. 10 cm⁻¹. On the other hand, co-ordination of SO₂ to the [Mn(OPR₃)₂(NCS)₂] complexes results in no detectable shift in v(PO), Table 7, compared to that of the complexes, Table 1.

It is thus most likely that the phosphine oxide ligand must coordinate to both SO_2 and the metal through a single oxygen centre. Assuming that the [Mn(OPR_3)₂X₂] complexes are isostructural with their crystallographically characterised [Mn-(OPPh_3)₂X₂] analogues, the co-ordinating oxygen will be essentially sp² hybridised.^{14–16} This leads to bent Mn–O–P bonds of *ca.* 145°, which leaves a second sp² lone pair free to co-ordinate to SO₂ without steric hindrance.

(b) Manganese(II) thiocyanates. The activity of both bis $[Mn(OPR_3)_2(NCS)_2]$ and tetrakis $[Mn(OPR_3)_4(NCS)_2]$ complexes (R = Et or Buⁿ) mirrors that of the halide complexes, inasmuch as 'solid state' exposure to SO₂ turns all the compounds to oils, with weight increases corresponding to 2 and 4 mol of SO₂ per Mn, respectively, Table 8. Clearly, the number of SO₂ moieties co-ordinated is dependent on the number of phosphine oxide ligands present, strengthening our deduction of SO₂ binding at these ligands.

The rapid reversibility of SO₂ binding is once again observed. Strong bands at *ca.* 1312 and 525 cm⁻¹ are evidence for SO₂ coordination and these rapidly disappear on the application of a vacuum. The v(CN) bands of the [Mn(OPR₃)_n(NCS)₂] (n = 2or 4) complexes are not affected by SO₂ binding, Table 9, discounting the possibility of binding to the thiocyanate ion (such binding to thiocyanate has previously been observed ^{21,30}). Thus, we once more propose weak ligand–SO₂ binding in these complexes.

The oligomeric monoligand complexes $[Mn(OPR_3)(NCS)_2]$ (R = Et or Buⁿ) behave very differently, however. No weight increases are observed on exposure to SO₂, Table 8, and no change in infrared spectra, Table 9. Since we have observed that co-ordination of the ligand to manganese(11) reduces the ligand

Table 8 Mass changes on exposure of the thiocyanate complexes to SO₂

	Amount				Amount abs			
Complex	g 10 ⁻⁴ mol		Increase in mass/g	Ar/SO ₂ Corr./g	g	10 ⁻⁴ mol	SO ₂ /Mn ratio	
[Mn(OPEt ₃)(NCS) ₂]	0.1072	3.51	0.0100	0.0096	0.0004	0.06	1:<0.1	
$[Mn(OPEt_3)_2(NCS)_3]$	0.1073	2.44	0.0479	0.0167	0.0312	4.88	1:2.00	
$[Mn(OPEt_3)_4(NCS)_2]$	0.3372	4.78	0.1372	0.0146	0.1227	19.17	1:4.02	
[Mn(OPBu ⁿ ₃)(NCS) ₂]	0.2443	6.28	0.0150	0.0146	0.0004	0.06	1:<0.1	
$[Mn(OPBu^n_3)_2(NCS)_2]$	0.5735	9.45	0.1433	0.0233	0.1200	18.75	1:1.99	
[Mn(OPBu ⁿ ₃) ₄ (NCS) ₂]	0.5707	5.47	0.1607	0.0186	0.1421	22.20	1:4.05	

Table 9 Infrared data (cm⁻¹) for $[Mn{OP(SO_2)R_3}_n(NCS)_2]$ adducts and $[Mn(OPR_3)(NCS)_2]$ complexes (n = 2 or 4, R = Et or Buⁿ)

Complex	Colour	v _{syni} (SO)	$\delta_{def}(SO)$	v(PO)	v(CN)
[Mn(OPEt ₃)(NCS) ₂]	White			1120s	2105s, 2060s
$[Mn{O(SO_2)PEt_3}(NCS)_2]$	Green	1315s	523s	1125s	2060s
$[Mn{O(SO_2)PEt_3}(NCS)_2]$	Green	1315s	527s	1140s	2065s
[Mn(OPBu ⁿ ₄)(NCS) ₅]	White			1145s	2105s, 2060m
$[Mn{O(SO_2)PBu^n}]$	Green	1312s	520s	1118s	2060s
$[Mn{O(SO_2)PBu_3}_{(NCS)_2}]$	Green	1310s	525s	1130s	2060s
[Mn(OPEt_)(H ₂ O)(NCS) ₂]	White			1120s	2110s, 2050s
$[Mn(OPBu^{n})(H_{2}O)(NCS)_{2}]$	White			1145s	2105s, 2060s

Table 10 NMR data for the R_3PO -AlCl₃ adducts and their R_3PO precursors

Compound	δ(³¹ P)	δ(²⁷ Al)
Ph ₃ PO ³¹	29.3	
Ph ₃ PO·AlCl ₃ ³¹	44.9	90 ($v_{\pm} = 40 \text{ Hz}$)
Bu ⁿ ₃ PO	43.2	2
Bu ⁿ ₃ PO•AlCl ₃	75.5	90 ($v_1 = 50 \text{ Hz}$)

affinity for SO₂, the expected greater manganese-ligand interaction in the monoligand complexes appears to render these complexes totally inactive to SO₂ binding.

(c) Exposure under aerobic conditions. Exposure of the complexes to air, after slurrying in SO₂-saturated toluene, produces no evidence of oxidation of the sulfur dioxide: the complexes are recovered unchanged and no sulfuric acid derivative can be isolated even on concentration of the solution. This is not altogether surprising since SO₂ activation is generally thought to require direct co-ordination to a metal.²⁹ We thus see the quite drastic effect which the nature of the R group in manganese(II) tertiary phosphine oxide complexes has on the co-ordination of sulfur dioxide. Where this happens the complexes containing triarylphosphine oxide ligands induce a Mn–OSO bond, characterised by v(SO) at *ca.* 1265 cm⁻¹, which tends to activate the bound SO₂ to oxidation, whilst the complexes of trialkylphosphine oxides induce ligand-bound SO_2 , v(SO) ca. 1320 cm⁻¹, where the binding is weak and activation to oxidation does not occur.

Reaction of Manganese(II) Chloride with Bu^n_3PO -SO₂.—We have seen that co-ordination of Mn to the O donor of OPR₃ does not prevent subsequent binding by SO₂, but would the opposite also prevail, *i.e.* will binding of SO₂ to OPR₃ subsequently block binding to the manganese?

To the neat liquid Bu^n_3PO -SO₂ was added 0.5 mol equivalent of anhydrous $MnCl_2$ and after 7 d the pink salt was totally consumed to leave a pale green oil {*cf* the conventional synthesis of [Mn(OPBuⁿ₃)₂Cl₂] in toluene appears complete after *ca.* 1 d}. The infrared spectrum of the product is identical to that of [Mn{O(SO₂)PBuⁿ₃}₂Cl₂] [v(PO) 1115, v(SO) 1320, δ (SO) 524 cm⁻¹] prepared by exposure of [Mn(OPBuⁿ₃)₂Cl₂] to SO₂. Whilst the lability of the co-ordinated SO₂ once again prevented accurate elemental analysis, nonetheless loss of the gas yields stable [Mn(OPBuⁿ₃)₂Cl₂] [Found (Calc.): C, 51.5 (51.6); H, 9.9 (9.6); Cl, 12.7 (12.6)%]. Reactivity of Aluminium Trichloride with $[Mn(OPBu^n_3)_2-Cl_2]$.—We have observed that the interaction between SO₂ and manganese(II) complexes of trialkylphosphine oxide is a finely balanced system. Could a stronger Lewis acid than SO₂, but of similar size, for example AlCl₃, yield a solid adduct?

The addition of 2 mol equivalents of $AlCl_3$ to a dichloromethane solution of $[Mn(OPBu^n_3)_2Cl_2]$ under anaerobic conditions gives an almost immediate milky pink suspension. No further change occurs after 2 d and filtration and concentration of the resultant filtrate quantitatively yields $Bu^n_3PO-AlCl_3$ [Found (Calc.): C, 41.3 (41.0); H, 8.0 (7.7); Cl, 29.8 (30.3)%]. Work-up of the insoluble component in air gives $[Mn(H_2O)_4Cl_2]$ [Found (Calc.): Cl, 30.3 (30.3); Mn, 23.3 (23.5)%].

Clearly, aluminium trichloride is a more effective Lewis acid than is $MnCl_2$ and displaces the latter. Similar aluminium, gallium and boron adducts have been isolated by direct reaction with OPPh₃.³¹ Comparisons of the ³¹P NMR data for Ph₃PO-AlCl₃ and Buⁿ₃PO-AlCl₃, Table 10, suggest similar aluminium environments. Greater upfield shifts for Buⁿ₃PO-AlCl₃ arise from the more basic nature of the ligand. The crystal structure of Ph₃PO-AlCl₃ shows linear P–O–Al bonding, implying an sp-hybridised oxygen.³¹ Such a change in the hybridisation of an isostructural Buⁿ₃PO-AlCl₃ adduct from the sp² configuration of oxygen in [Mn(OPBuⁿ₃)₂Cl₂] would remove the second lone pair required for simultaneous coordination of manganese and AlCl₃.

Experimental

Reagents.—Hydrated manganese(II) salts (X = Cl, Br or NCS, Aldrich; X = I, Ross Chemicals) were dried according to published methods ³² down to Karl-Fischer water analysis < 0.02%. The ligands OPEt₃, OPPrⁿ₃ (Strem Chemicals) and OPBuⁿ₃ (Fluka) were used as received.

Preparation of $[Mn(OPR_3)_2X_2]$ (R = Et, Prⁿ or Buⁿ; X = Cl, Br or I).—All the complexes were synthesised under strictly anaerobic and moisture-free conditions, since both the anhydrous manganese(II) salts and the trialkylphosphine oxide ligands are hygroscopic. The method is illustrated for $[Mn(OPEt_3)_2Cl_2]$. Manganese(II) chloride (1.10 g, 8.7 × 10⁻³ mol) was placed in a flame-dried round-bottomed flask (250 cm³) fitted with a side-arm and a ground-glass tap. Triethylphosphine oxide (2.90 g, 17.5 × 10⁻³ mol) in freshly distilled toluene (100 cm³) was added against a stream of dry argon. The flask was

then evacuated and then the vacuum let down against a stream of dry argon. The flask was sealed and the slurry was briskly stirred for *ca*. 7 d. The complex was then isolated using standard Schlenk techniques. [When the product was an oil, the flask was transferred to an argon-filled dry-box. The product was then pipetted from the flask, washed with dry hexane $(2 \times 25 \text{ cm}^3)$ and separated by the use of a small separating funnel.] The product was eventually dried *in vacuo* for *ca*. 24 h.

Preparation of $[Mn(OPR_3)_n(NCS)_2] R = Et \text{ or } Bu^n$; n = 1, 2or 4).—These preparations were achieved in the same way as that described above, except that the ratio of reagents influences the stoichiometry of the product formed. An exact stoichiometric ratio of $Mn(NCS)_2$ and the trialkylphosphine oxide (either 1:1, 1:2 or 1:4) was employed to synthesise the mono, bis and tetrakis complexes, respectively.

The R_3PO -SO₂ Adducts.—The trialkylphosphine oxide ligand (ca. 2.0 g) was placed in a round-bottomed flask (100 cm³) equipped with a side-arm under dry argon. The argon was evacuated and an atmosphere of dry sulfur dioxide introduced. A rapid reaction occurred which led to a liquid product being formed. The flask was sealed until further use.

Reactions of the Manganese(II) Complexes with Sulfur Dioxide in the Solid State.—Complexes were exposed to SO_2 in the solid state under anaerobic conditions. The techniques and conditions used have been published.⁶

Elemental analyses were performed by the University of Manchester Institute of Science and Technology (UMIST) Microanalytical Service. Infrared spectra were obtained for Nujol mulls on KBr plates over the 4000–200 cm⁻¹ range on a Perkin-Elmer 598 spectrometer. NMR spectra were obtained in 5 mm sealed tubes on a Bruker WP80 NMR spectrometer at 32.4 MHz, relative to concentrated phosphoric acid external standard.

Acknowledgements

We thank the SERC for studentships (to S. M. G. and D. G. K.).

References

1978, 443, 269.

- 1 A. M. Brodie, S. H. Hunter, G. A. Rodley and C. J. Wilkins, *Inorg. Chim. Acta*, 1968, **2**, 195.
- 2 F. Edelmann and U. Behrens, Acta Crystallogr., Sect. C, 1986, 42, 1715.
- Y. Yanoshoji, T. Matsushuti and T. Shono, *Polyhedron*, 1986, 5, 1291.
 M. W. G. De Bolster, C. Boutkan, T. A. Van de Knaap, L. Van Zweeden, I. E. Kort and W. L. Groeneweld, *Z. Anorg. Allg. Chem.*,

- 5 N. M. Karayannis, C. M. Mikulski, L. L. Pytlewski and M. Labes, Inorg. Chem., 1970, 9, 582.
- 6 K. Al-Farhan, B. Beagley, O. El-Sayrafi, G. A. Gott, C. A. McAuliffe, P. P. Mac Rory and R. G. Pritchard, J. Chem. Soc., Dalton Trans., 1990, 1243.
- 7 G. A. Gott, J. Fawcett, C. A. McAuliffe and D. R. Russell, J. Chem. Soc., Chem. Commun., 1984, 1283.
- 8 B. Beagley, D. G. Kelly, P. P. Mac Rory, C. A. McAuliffe and R. G. Pritchard, J. Chem. Soc., Dalton Trans., 1990, 2657.
- 9 C. A. McAuliffe, B. Beagley, G. A. Gott, A. G. Mackie, P. P. MacRory and R. G. Pritchard, *Angew. Chem., Int. Ed. Engl.*, 1987, 26, 264.
- 10 B. Beagley, C. B. Colburn, O. El-Sayrafi, G. A. Gott, D. G. Kelly, A. G. Mackie, C. A. McAuliffe, P. P. Mac Rory and R. G. Pritchard, *Acta Crystallogr., Sect. C*, 1988, 44, 38.
- 11 B. Beagley, O. El-Sayrafi, G. A. Gott, D. G. Kelly, C. A. McAuliffe, A. G. Mackie, P. P. Mac Rory and R. G. Pritchard, J. Chem. Soc., Dalton Trans., 1988, 1095.
- 12 S. Banda, O. El-Sayrafi, C. A. McAuliffe and P. P. Mac Rory, *Inorg. Chim. Acta*, in the press.
- 13 B. Beagley, G. Dyer, C. A. McAuliffe, P. P. Mac Rory and R. G. Pritchard, J. Chem. Soc., Chem. Commun., 1991, 965.
- 14 B. Beagley, C. A. McAuliffe, R. G. Pritchard and E. White, Acta Chem. Scand., 1988, 544.
- 15 K. Tomita, Acta Crystallogr., Sect. C, 1985, 41, 1832.
- 16 O. El-Sayrafi, Ph.D. Thesis, Victoria University of Manchester, 1987.
- 17 D. M. L. Goodgame, M. Goodgame and P. J. Hayward, J. Chem. Soc. A, 1970, 1352.
- 18 A. H. Norbury, Adv. Inorg. Chem. Radiochem., 1975, 17, 248.
- 19 R. A. Bailey, S. L. Kozak, T. W. Michelson and W. N. Mills, *Coord. Chem. Rev.*, 1971, 6, 407.
- 20 F. Krasovec and C. Klofutar, J. Inorg. Nucl. Chem., 1968, 30, 1640.
- 21 P. P. Mac Rory, Ph.D. Thesis, Victoria University of Manchester, 1988.
- 22 A. B. B. McKee and W. E. McKee, J. Am. Chem. Soc., 1951, 73, 4590.
- 23 R. A. Zingaro and R. M. Hedges, J. Phys. Chem., 1961, 65, 1132.
- 24 E. R. Lippincott and F. E. Welsh, Spectrochim. Acta, 1961, 17, 123
- 25 D. E. Katsolus, V. S. Tausch and M. T. Pope, *Inorg. Chem.*, 1987, 26, 215.
- 26 G. E. Maciel and R. V. James, Inorg. Chem., 1964, 3, 243.
- 27 N. Muller, P. C. Lauterbauer and J. Goldenson, J. Am. Chem. Soc., 1956, 78, 3557.
- 28 R. A. Y. Jones and A. R. Katritzky, Angew Chem., Int. Ed. Engl., 1962, 1, 32.
- 29 R. R. Ryan, G. J. Kubas, D. C. Moody and P. G. Eller, Struct. Bonding (Berlin), 1981, 46, 47.
- 30 S. Wasif and S. B. Salama, J. Chem. Soc., Dalton Trans., 1973, 2148 and refs. therein.
- 31 N. Burford, B. W. Royan, R. E. H. Spence, T. S. Cameron, A. Linden and R. D. Rodgers, J. Chem. Soc., Dalton Trans., 1990, 1521.
- 32 A. Hosseiny, A. G. Mackie, C. A. McAuliffe and K. Minten, *Inorg. Chim. Acta*, 1981, **49**, 99.

Received 30th September 1991; Paper 1/05014A