Kinetics of the Silver(I)-catalysed Oxidation of H₃PO₂ with [Ethylenebis(biguanide)]silver(III) Cation in Aqueous Perchloric Acid Solution

Rupendranath Banerjee,* Rina Das and Subrata Mukhopadhyay*

Department of Chemistry, Jadavpur University, Calcutta 700 032, India

The silver(I)-catalysed oxidation of H_3PO_2 by [ethylenebis(biguanide)]silver(III) produces phosphite, Ag⁺ and the free ligand quantitatively. A coloured intermediate **III** is formed within the time of mixing which is probably composed of the silver(III) complex, Ag⁺ and hypophosphite in its active form. The firstorder rate constant for the oxidation is $k_0 = kK_1K_2[Ag^+][P^+]/([H^+] + K_d)$, where K_1K_2 is the formation constant of **III** and K_d is the acid dissociation constant of H_3PO_2 . Phosphorous acid does not affect the kinetics and no free radicals could be detected during the course of the reaction. The second-order rate constant $kK_1K_2 = 6.73$ dm³ mol⁻¹ s⁻¹ at 30 °C and I = 1.0 mol dm⁻³ is very much larger than the secondorder rate constant reported for the oxidation of hypophosphite by silver(I). A plausible mechanism involves a two-step electron transfer from P' to Ag^{III} via Ag^{II} within **III**. The reaction has been utilised in developing a kinetic method for the estimation and detection of millimolar concentrations of hypophosphite; other oxoacids of phosphorus do not interfere.

There have been reports on the kinetics of Ag^+ -catalysed oxidation¹ of H_3PO_2 by cerium(IV) and on the uncatalysed oxidation^{2.3} of H_3PO_2 by Ag^+ , and by silver(II) in acidic media. No such studies have, however, been made on the oxidation of H_3PO_2 by silver(III) species in acidic media despite the recent interest in the kinetics of reactions of higher-valent metal ions in solution stabilised by complexation with various ligands.^{4–8}

[Ethylenebis(biguanide)]silver(III) perchlorate, $[Ag(H_2L)]$ -[ClO₄]₃ (Fig. 1), is a rare example of an authentic cationic complex of silver(III) extensively stabilised ⁹ (log $K \approx 52$) by a square-planar acyclic tetraaza ligand. In acidic solution it is highly resistant to aquation and decomposition.¹⁰ It is a milder oxidising agent than Ag⁺ (ref. 11) and very slowly oxidises N₂H₅⁺,¹² HCO₂H¹³ and H₃PO₂ despite the considerable thermodynamic reducing strength of these reductants in acidic media.¹⁴ All these reactions are, however, strongly catalysed by Ag⁺ and a Ag⁺-Ag⁰ catalytic cycle operates for N₂H₅⁺ (ref. 12) and HCO₂H.¹³ It is interesting whether the same cycle operates in the oxidation of H₃PO₂.

Furthermore, H_3PO_2 can exist in two tautomeric forms,^{15,16} viz. the predominant 'normal' form which is tetrahedral and the 'active' three-co-ordinated form: $H_2P(O)OH \implies HP(OH)_2$ $(K_{eq} \approx 10^{-12})$. Tautomerism is the slow rate-determining step in several redox reactions of H_3PO_2 , but higher-valent metal ions like Ce^{IV}, Ag^{II}, Cr^V, Cr^{IV}, Tl^{III}, Co^{III}, Au^{III} and V^V and their complexes appear to facilitate the tautomeric shift and oxidation of H_3PO_2 occurs at a relatively high rate.^{1,3,17-21} Such a situation may be attributed ¹⁷ to preliminary co-ordination of P^I to the acidic metal centre thus mobilising the P-bound protons.

The electron affinity of Ag^{III} in the present complex is high ²² and it is known from structural ^{23–25} and kinetic ^{26,27} studies that the complex undergoes axial co-ordination with alcohols, H_2O_2 , SO_4^{2-} , NO_3^{--} or even with ClO_4^{--} . Whether it can bind H_3PO_2 and to what effect was probed through the present kinetic investigation.

Experimental

Materials.-Sodium hypophosphite hydrate (Aldrich) was

Fig. 1 Structure of $[Ag(H_2L)][ClO_4]_3$. Bond lengths in Å

quantitatively analysed for P^{I} and P^{III} by the method of Jones and Swift.²⁸ The sample contained 0.43% P^{III} and 82.0% P^{I} . The reaction between Ag^{III} and P^{III} is undetectably slow even in the presence of Ag^{+} and a large excess of P^{III} , and hence the presence of small amounts of P^{III} in the phosphorus(1) sample had no effect on the kinetic results.

All other materials including the silver(III) complex have been described earlier.^{12,13}

Test for Free Radical.—Acrylonitrile (6% v/v) was added to the reaction mixture. A parallel blank experiment was carried out in the absence of Ag⁺.

Stoichiometry.—Several acidic solutions having known concentrations of silver(III) were mixed with an excess of hypophosphite and Ag^+ to a total volume of 100 cm³. There is a rapid rise in absorbance on mixing the reagents and the formation of a coloured intermediate is thus indicated. Therefore, the amount of unchanged Ag^{III} was estimated as follows. An aliquot (5 cm³) of the reaction mixture was mixed with a slight excess of cerium(Iv) solution in HClO₄. The Ce^{IV} quickly oxidised all the P^I and thus quenched the reaction and decomposed the intermediate. The total volume was made up to 10 cm³ and the unchanged [Ag^{III}] was estimated from the solution absorbance at 450 nm where, after the addition of Ce^{IV}, only the silver(III) complex absorbs. The complex has an

Fig. 2 Spectrum of (a) 0.2 mmol dm⁻³ silver(111) complex in 0.25 mol dm⁻³ HClO₄, (b) a fresh mixture of the complex (0.2 mmol dm⁻³), $[NaH_2PO_2] = 0.001$ mol dm⁻³, $[AgClO_4] = 0.008$ mol dm⁻³ in 0.25 mol dm⁻³ HClO₄ at 25 °C. (c) The difference between (a) and (b)

Fig. 3 Spectra of a silver hydrosol at 25 °C, $[P^1] = 0.001 \text{ mol } dm^{-3}$, $[HClO_4] = 0.25 \text{ mol } dm^{-3}$, $[AgClO_4] = 0.008 \text{ mol } dm^{-3}$; (a) immediately after mixing, (b) after 225 s and (c) after 450 s. Very similar spectra are obtained by mixing AgClO₄ (0.003 mol dm^{-3}) and $[N_2H_6][SO_4]$ (0.001 mol dm^{-3}) at pH 5.1, but the changes are very much slower

absorption coefficient of 1030 dm³ mol⁻¹ cm⁻¹ (0.01 < [H⁺] < 1.0 mol dm⁻³) at 450 nm. Cerium(iv) does not consume the silver(iii) complex under these conditions. The remaining 95 cm³ of the reaction mixture was simultaneously quenched by the addition of a slight excess of NaCl to precipitate and remove the catalyst Ag⁺ as AgCl. The amount of phosphite produced was estimated by the method of Jones and Swift²⁸ as follows.

The solution was largely neutralised with NaOH and phosphate buffer (pH \approx 7.3) was added. The silver(III) complex was precipitated quantitatively and removed by filtration. The precipitate was washed with phosphate buffer until free from chloride. A known solution of iodine in phosphate buffer was added and the mixture was kept in the dark for about an hour and thereafter acidified with *ca*. 6 mol dm⁻³ acetic acid solution. The excess of iodine was immediately titrated against standard thiosulfate to the starch-iodine end point. In these measurements aliquots were quenched before [Ag^{III}] fell below *ca*. 0.06 mmol dm⁻³, thus avoiding the direct reaction between Ag^I and H₃PO₂. This practice was adopted in kinetic measurements also.

Kinetic Measurements .- The absorbance of the reaction

mixture at different time intervals was generally measured at 380 nm with a Shimadzu Graphicord (UV-240) spectrophotometer using a 1 cm quartz cell. The reactions were initiated by rapid addition of AgClO₄ solution to a thermostatted mixture containing the other reactants.

In some kinetic runs the absorbance at different times was measured at 450 nm after the addition of 0.001 mol dm⁻³ Ce^{IV} in HClO₄ to aliquot portions in order to decompose the coloured intermediate and thus avoid its interference, if any, in the determination of rate.

Estimation of Hypophosphorous Acid by Kinetic Method.—A calibration curve was constructed using the fixed-time procedure²⁹ as follows. Several reaction mixtures were prepared. They contained fixed amounts of Ag^{III}, HClO₄ and AgNO₃ but [NaH₂PO₂] was varied in the range 0.5–5.0 mmol dm⁻³ at 45 °C. The absorbance of the reaction mixtures at 380 nm was measured at 5 and 45 min intervals. The difference in absorbance, ΔA at these two times, was plotted against [NaH₂PO₂].

Results and Discussion

General Observations and Stoichiometry.—No immediate colour change was observed upon addition of Ag^+ or H_3PO_2 separately to the silver(III) complex. However, when the three are mixed together, a coloured intermediate is formed within the time of mixing (60–120 s). The UV–VIS spectral studies suggest that this intermediate is not due to the formation of a coloured hydrosol of silver.

Spectra of the silver(III) complex alone and that of a mixture containing Ag^+ , H_3PO_2 and Ag^{III} in $HClO_4$ media immediately after mixing are shown in Fig. 2(*a*) and 2(*b*) respectively. The difference spectrum is shown in Fig 2(*c*), which should be that of the coloured intermediate assuming that a negligibly small amount of Ag^{III} is consumed in its formation. However, the spectrum in Fig. 2(*c*) is clearly different from those ^{30–33} of silver hydrosols obtained by us (Fig. 3) and reported by other workers.^{31–33} Therefore, it may be concluded that the coloured intermediate found in the present reaction is not the silver sol which is formed in the absence of Ag^{III} .

In stoichiometric experiments either Ag^{III} or H_3PO_2 was present in excess. The mean of several such estimations (Table 1) may be represented by equation (1).

$$Ag^{III} + H_3PO_2 + H_2O \longrightarrow Ag^I + H_3PO_3 + 2H^+$$
(1)

Kinetics.-In all the kinetic experiments the initial concentrations of P¹ and Ag⁺ were much higher than that of the silver(III) complex and are thus considered to remain constant within each run. Under such conditions the kinetic profile in the presence of the coloured intermediate at 380 nm and in its absence at 450 nm (intermediate decomposed by the addition of Ce^{IV} in HClO₄) indicated first-order processes. The two sets of absorbance-time data yielded comparable (within 7%) firstorder rate constants k_0 obtained from the usual first-order plots and/or Guggenheim³⁴ plots which were good straight lines for 60-90% completion of reaction. The higher the [Ag^{III}]₀ the greater is the percentage of the reaction which follows linearity. Most of the kinetic runs were done with $[Ag^{III}]_0 = 0.2 \text{ mmol} dm^{-3}$, when the linearity was obtained for at least 60-70%completion of reaction. Deviation from linearity in the later stages of reaction is due to the reaction between Ag⁺ and H_3PO_2 . This side reaction becomes appreciable when $[Ag^{III}]$ is very low. The first-order nature of the process is also indicated by the independence of k_0 on [complex] in the range 0.1–1.0 mmol dm-3. Kinetic data are summarised in Table 2, from which it is seen that k_0 depends on $[H^+]$, $[P^I]$ and $[Ag^+]$ as indicated by equation (2), where the terms in square brackets

 Table 1
 Stoichiometric results" for the Ag⁺-catalysed oxidation of P^I by the silver(III) complex

10 ⁴ [Ag ^{III}]/ mol dm ⁻³	10 ³ [P ¹]/ mol dm ⁻³	10 ⁴ [Ag ^{III}] unchanged/ mol dm ⁻³	10^{4} [P ^{III}] produced/ mol dm ⁻³	$\frac{ \Delta[P^{III}] }{ \Delta[Ag^{III}] }$
1.0	3.0	0.50	0.45	0.90
2.0	5.0	0.98	1.16	1.14
5.0	10.0	1.42	3.85	1.08
5.0	10.0	1.46	3.97	1.12
10.0	10.0	3.95	5.88	0.97 °
10.0	10.0	2.12	8.62	1.09 °
10.0	6.0	5.05	4.81	0.97
20.0	1.0	10.05	10.92	1.09 ^d
			Average 1.0	5 ± 0.15

 a [Ag⁺] = 0.03 mol dm⁻³, [H⁺] = 0.50 mol dm⁻³, 30 °C. b Reaction media purged with purified dinitrogen. c In the two sets the quenching times are different but all other conditions identical. d After completion of the reaction.

Table 2 Some representative first-order rate constants for Ag^+ -catalysed oxidation of hypophosphorous acid with $[Ag(H_2L)]^{3+}$ under different conditions ^a

	10 ² [Ag ⁺]/ mol dm ⁻³	10 ³ [P ^I]/ mol dm ⁻³	$10^4 k_0 / s^{-1}$		
[H ⁺]/ mol dm ⁻³			20	30	40 °C
0.10	3.0	2.0	15.6	17.7	20.9 (20.0)
0.30	3.0	2.0	7.5 (7.2)	9.4	11.2
0.50	3.0	2.0	5.8	6.5	7.5
0.70	3.0	2.0	4.4	4.9	5.8
1.0	3.0	2.0	3.1 (3.3)	3.6	4.1
0.10	0.50	1.0	1.3	1.4 (1.4)	1.7 (1.6)
0.10	1.0	1.0	2.6	2.8	3.3
0.10	3.0	1.0	7.5	8.8	10.2
0.10	5.0	1.0	13.1	14.3	16.4
0.50	3.0	1.5	3.9	4.7	5.4
0.50	3.0	4.0	10.3	12.4	13.8 ^b
0.50	3.0	6.0	16.2	19.0°	22.5 (24.0)
0.50	3.0	10.0	26.4	31.0	35.1 ^d

^a [complex] = 0.2 mmol dm⁻³, I = 1.0 mol dm⁻³ (NaClO₄); values in parentheses were obtained by quenching with Ce^{IV}. ^b $k_0 = (13.5-14.3) \times 10^{-4}$ s⁻¹ for [Ag^{III}]₀ = 0.1-1.0 mmol dm⁻³. ^c $k_0 = (18.9 \pm 0.6) \times 10^{-4}$ s⁻¹ when 0.01–0.1 mol dm⁻³ P^{III} was added. ^d Kinetics shows positive deviation from first-order plots when [Ag^{III}] = [Ag⁺] = 0.001 mol dm⁻³.

Table 3 Values of A and B [see equation (2)] at different temperatures

	$T_{l}^{\prime \circ} \mathbf{C}$			
	20	30	40	
$4(=kK_1K_2)^a/dm^3 mol^{-1} s^{-1}$	6.02 ± 0.17	6.73 ± 0.26	7.52 ± 0.36	
$B(=K_d)^a/\text{mol } dm^{-3}$	0.146 ± 0.016	0.134 ± 0.006	0.120 ± 0.011	
	$(0.139)^{v}$	$(0.130)^{\nu}$	(0.119) ⁶	

^a [complex] = 0.2 mmol dm⁻³, [H⁺] = (0.10–1.0) mol dm⁻³, [P^I] = 0.001–0.01 mol dm⁻³, [Ag⁺] = 0.005–0.05 mol dm⁻³, and I = 1.0 mol dm⁻³ (NaClO₄). ^b Literature value ³⁵ of K_{d} .

$$k_{0} = \frac{A[P^{1}][Ag^{+}]}{B + [H^{+}]}$$
(2)

represent the analytical concentrations of NaH₂PO₂, AgClO₄ and HClO₄; k_0 was found to be independent of [H₃PO₃] up to 0.1 mol dm⁻³. Stray light, dissolved oxygen and occasional shaking of the spectrophotometric cell had no detectable influence on the kinetics. No polymerisation was detected in the course of the reaction in the presence of acrylonitrile. Duplicate runs reproduced individual k_0 values within 5% which were well fitted (within 8%) by the empirical equation (2). The leastsquares values of A and B in Table 3 were obtained from the slope and intercept of plots of $1/k_0$ against [H⁺] which are good straight lines (regression coefficient, r > 0.98).

Mechanism.—It is noted that the values of *B* are very close to the known ³⁵ proton dissociation constant, K_d , of H_3PO_2 which suggests that the proton dissociation equilibrium has some role in the reaction. However the silver(III) complex is a weak acid

 $(pK_{a_1} = 3.8)^{13}$ and suffers no proton dissociation in the range 0.1–1.0 mol dm⁻³ HClO₄ used in the present study. It is also noted that *A*, the second-order rate constant for the oxidation of H₃PO₂, is very much larger than the second-order rate constant (5.2 × 10⁻² dm³ mol⁻¹ s⁻¹) reported² for the oxidation of H₃PO₂ by Ag⁺. This and the first-order dependence of the present reaction on [Ag^{III}] strongly suggests that direct oxidation of Ag⁺ by H₃PO₂ is not the rate-determining step. This is in contrast to the observed mechanism for the Ag⁺-catalysed oxidation of N₂H₅⁺ (ref. 12) and HCO₂H¹³ by this silver(III) complex. In the present reaction the sequence (3)–(7) correlates

$$H_3PO_2 \xrightarrow{\wedge_d} H^+ + H_2PO_2^-$$
(3)

$$Ag^{III} + H_2P(O)OH \xrightarrow{\kappa_1} [Ag^{III} {OPH(OH)}]^{2+} + H^+$$
(4)

$$[Ag^{III}{O\ddot{P}H(OH)}]^{2^+} + Ag^+ \xleftarrow{K_2} [Ag^{III}{OPH(OH)}Ag^I]^{3^+} (5)$$

$$[Ag^{II}{O\ddot{P}H(OH)}Ag^{I}]^{3+} \xrightarrow{k}_{slow} [Ag^{II}{O\dot{P}H(OH)}Ag^{I}]^{2+} (6)$$

 $[Ag^{II}{O\dot{P}H(OH)}Ag^{I}]^{2+} \xrightarrow{\text{fast}} 2Ag^{+} + H_{2}\dot{P}O_{2}$ (7)

$$H_2 \overset{+}{P}O_2 + H_2O \xrightarrow{\text{fast}} H_3PO_3 + H^+$$
 (8)

our data satisfactorily. This sequence leads to expression (9) if it

$$k_{0} = \frac{kK_{1}K_{2}[P^{t}][Ag^{+}]}{[H^{+}] + K_{d}}$$
(9)

is assumed that $([H^+] + K_d) \gg K_1[Ag^{III}] (1 + K_2[Ag^+])$, and that $[H^+]$, $[Ag^+]$ and $[P^1]$ are equal to the initial concentrations of HClO₄, AgClO₄ and NaH₂PO₂ respectively.

Equation (9) when compared with the empirical rate equation (2) gives $A = kK_1K_2$ and $B = K_d$. The values of ΔH^{\ddagger} and ΔS^{\ddagger} corresponding to kK_1K_2 are 5 ± 1 kJ mol⁻¹ and -212 ± 15 J K⁻¹ mol⁻¹ respectively. Since kK_1K_2 is a composite quantity, these activation parameters are the sum of the individual values for the activation step and the two equilibria. The large negative value of ΔS^{\ddagger} may be indicative of a compact transition state.

Our findings are consistent with Scheme 1, in which hypophosphorous acid co-ordinates axially to the square-planar $[Ag(H_2L)]^{3+}$ complex ion and is thus deprotonated. The function of intermediate I is simply to hold the silver(III) and phosphorus(1) centres in proximity; the bridging oxygen is not transferred. The tautomeric shift I \longrightarrow II is then facilitated by the nearby Ag^{III}. This leaves an exposed electron pair on phosphorus and precedes the act of stepwise electron transfer (III \longrightarrow IV, slow; and IV to V, rapid) through Ag⁺ attached to III and IV. Reduction of AuCl₄⁻ to Au¹ is also brought about

Table 4 Fixed-time procedure for the estimation of NaH₂PO₂*

_	Absorbance		
10 ³ [NaH ₂ PO ₂]/ mol dm ⁻³	at 5 min	at 45 min	ΔA
0.50	0.285	0.265	0.020
1.0	0.279	0.240	0.039
1.5	0.275	0.222	0.053
2.0	0.268	0.192	0.076
3.0	0.265	0.159	0.106
4.0	0.258	0.114	0.144
5.0	0.255	0.075	0.180
* [complex] = 0.2	mmol dm ⁻³ , [AgN	O_3 = 0.01 mol dm ⁻³ ,	[HClO₄] =

 $(1000 \text{ gm}^{-3}; 45 \text{ °C}; \lambda = 380 \text{ nm}, \text{ path length 1 cm}.$

by HP(OH)₂ through similar one-electron steps.²⁰ The strongly co-ordinated d⁸ silver(III) complex is a weaker oxidant than Ag^I (ref. 11) and hence the electron transfer via Ag⁺ is preferred. Detachment of H₂PO₂ from Ag^{II} has not been considered in the absence of any evidence for a free radical. It is possible that the act of electron transfer produces Ag⁰ transiently and that this is quickly reoxidised by Ag^{II} in the vicinity, so Ag⁰ does not escape into the bulk solution. This is a likely proposition because such 'nascent' Ag⁰ should be a very strong reducing agent since it is known that Ag₂⁰, Ag₄⁰ and other small clusters of Ag⁰ are powerful reducing agents.³⁶

Spectral evidence suggests the coloured intermediate contains Ag^{I} , Ag^{III} and P^{I} together. Thus III in Scheme 1 appears to be the coloured intermediate. Its colour may be very tentatively ascribed to some kind of $Ag^{I} \longrightarrow Ag^{III}$ charge transfer.

The proposed mechanism predicts autocatalysis in Ag^+ Reaction at $[Ag^+]_0 = 1.0 \text{ mmol dm}^{-3}$ shows a detectable positive deviation (increase in rate) from apparent first-order kinetics (see footnote *d* in Table 2).

Estimation of P¹ by a Kinetic Method.—The ΔA values for different [NaH₂PO₂] are shown in Table 4. They obey an excellent straight line relation (r > 0.99) with an intercept very close to zero. Linearity was obtained up to at least 0.005 mol dm⁻³ NaH₂PO₂. Phosphite, phosphate or pyrophosphate do not interfere up to 0.1 mol dm⁻³ and at least up to 70 °C. It might be mentioned here that, in the estimation of hypophosphite with Ce^{IV}, phosphite interferes ³⁷ above 60 °C. The present method is rapid, selective and may be utilised for the determination of hypophosphite down to 0.5 mmol dm⁻³. The results are reproducible; the standard deviation is 1% for six estimations on one sample.

In order to compare this kinetic procedure with other standard non-kinetic techniques, we analysed a sample of NaH₂PO₂ (LOBA, G.R.) by use of Ce^{IV},³⁷ of KMnO₄ as catalysed by Br⁻,³⁸ by iodimetry in phosphate buffer²⁸ and by this kinetic method. The amount of hypophosphite in the sample as measured by these methods is 79.8, 78.0, 80.2 and 80.1% respectively. The somewhat low value obtained by permanganometry is typical of the method. The kinetic method is usable in sulfuric acid media. However, hydrohalogenic acids must be absent: HNO₃ in concentration greater than 1.0 mol dm⁻³ interferes and hydrazine strongly inhibits the reaction.

Acknowledgements

The awards of a senior research fellowship to R. D. by the University Grants Commission (New Delhi) and of a junior research fellowship to S. M. by Council of Scientific and Industrial Research (New Delhi) are gratefully acknowledged.

References

1 A. K. Indrayan, S. K. Mishra and Y. K. Gupta, *Indian J. Chem.*, Sect. A, 1983, 22, 756.

- 2 A. K. Indrayan, S. K. Mishra and Y. K. Gupta, *Inorg. Chem.*, 1981, **20**, 1924.
- 3 A. K. Indrayan, S. K. Mishra and Y. K. Gupta, *Inorg. Chem.*, 1981, **20**, 450.
- 4 K. S. Yamaguchi and D. T. Sawyer, Isr. J. Chem., 1985, 25, 164.
- 5 A. McAuley and P. R. Norman, Isr. J. Chem., 1985, 25, 106.
- 6 L. Fabbrizzi, M. Licchelli, A. Perotti, A. Poggi and S. Soresi, *Isr. J. Chem.*, 1985, **25**, 112.
- 7 W. Levason and M. D. Spicer, Coord. Chem. Rev., 1987, 76, 45.
- 8 E. Mentasti, C. Baiocchi and J. S. Coe, *Coord. Chem. Rev.*, 1984, 54, 131.
- 9 D. Sen, N. N. Ghosh and P. Ray, J. Indian Chem. Soc., 1950, 27, 619.
- 10 R. Banerjee and D. Banerjee, *Indian J. Chem., Sect. A*, 1979, **17**, 246. 11 K. Das, R. Banerjee, A. Das and S. Dasgupta, *Bull. Electrochem.*,
- 1989, 5, 477.
- 12 R. Banerjee, A. Das and S. Dasgupta, J. Chem. Soc., Dalton Trans., 1990, 2271.
- 13 R. Banerjee, K. Das, A. Das and S. Dasgupta, *Inorg. Chem.*, 1989, **28**, 585.
- 14 W. M. Latimer, The Oxidation States of the Elements and their Potentials in Aqueous Solutions, 2nd edn., Prentice-Hall, Englewood Cliffs, NJ, 1952.
- 15 A. D. Mitchell, J. Chem. Soc., 1920, 117, 1322; 1921, 119, 1266; 1922, 121, 1624; 1923, 123, 629.
- 16 J. R. Van Wazer, *Phosphorus and its Compounds*, Interscience, New York, 1958, vol. 1, ch. 7.
- 17 S. K. Ghosh, R. N. Bose, K. Laali and E. S. Gould, *Inorg. Chem.*, 1986, 25, 4737.
- 18 K. S. Gupta and Y. K. Gupta, J. Chem. Soc. A, 1970, 256.
- 19 D. E. Linn, jun. and E. S. Gould, Inorg. Chem., 1988, 27, 3140.

- 20 K. K. Sengupta, B. Basu, S. Sengupta and S. Nandi, *Polyhedron*, 1983, 2, 983.
- 21 J. N. Cooper, H. L. Hoyt, C. W. Buffington and C. A. Holmes, J. Phys. Chem., 1971, 75, 891.
- 22 D. A. Zatko and J. W. Prather, J. Electron Spectrosc. Relat. Phenom., 1973, 2, 191.
- 23 N. R. Kunchur, Nature (London), 1968, 217, 539.
- 24 M. L. Simms, J. L. Atwood and D. A. Zatko, J. Chem. Soc., Chem. Commun., 1973, 46.
- 25 L. Coghi and G. Pellizzi, Acta Crystallogr., Sect. B, 1975, 31, 131.
- 26 R. Banerjee, A. Das and S. Dasgupta, J. Chem. Soc., Dalton Trans., 1990, 1207.
- 27 R. Banerjee, A. Das and S. Dasgupta, J. Chem. Soc., Dalton Trans., 1989, 1645.
- 28 R. T. Jones and E. H. Swift, Anal. Chem., 1953, 25, 1272.
- 29 H. B. Mark, jun. and G. A. Rechnitz, *Chemical Analysis*, eds. P. J. Elving and I. M. Kolthoff, Interscience, New York, 1968, vol. 24, ch. 3.
- 30 R. J. Hodges and W. F. Pickering, Aust. J. Chem., 1966, 19, 981. 31 A. Fabrikanos, S. Athanassiou and K. H. Leiser, Z. Naturforsch.,
- *Teil B*, 1963, **18**, 612.
- 32 P. C. Lee and D. Meisel, J. Phys. Chem., 1982, 86, 3391.
- 33 P. Hildebrandt and M. Stockburger, J. Phys. Chem., 1984, 88, 5935.
- 34 E. A. Guggenheim, Philos. Mag., 1926, 2, 538.
- 35 J. H. Espenson and D. F. Dustin, Inorg. Chem., 1969, 8, 1760.
- 36 R. Tausch, A. Henglein and J. Lilie, Ber. Bunsenges. Phys. Chem., 1978, 82, 1335.
- 37 D. N. Bernhart, Anal. Chem., 1954, 26, 1798.
- 38 J. R. Pound, J. Chem. Soc., 1942, 307.

Received 18th November 1991; Paper 1/05814B