Synthesis, Reactions and Catalytic Activities of σ - and η^3 -Allylbis(triphenylstibine)rhodium(III) Complexes

Chong Shik Chin,* Sang Young Shin and Changjin Lee

Department of Chemistry, Sogang University, CPO Box 1142, Seoul 100–611, Korea

Reaction of $[RhCI(CO)(SbPh_3)_2]$ **1** with $CH_2=CHCH_2Br$ **2a** gives the σ -allylrhodium(III) complex $[Rh(\sigma-CH_2CH=CH_2)CI(Br)(CO)(SbPh_3)_2]$ **3**, while reactions of **1** with allyl halides and AgClO₄ give η^3 -allylrhodium(III) complexes $[Rh(\eta^3-allyl)X(CO)(SbPh_3)_2]CIO_4$ **4** $[allyl = CH_2CHCH_2, CH_2CHCHMe (X = Br or CI), CH_2CMeCH_2, or CH_2CHCHPh (X = CI)]$. The complex $[Rh(\eta^3-CH_2CHCH_2)Br(CO)-(SbPh_3)_2]CIO_4$ can also be prepared by the reaction of **3** with AgClO₄. The complex $[Rh(\eta^3-CH_2-CHCH_2)Br(CO)-(SbPh_3)_2]CIO_4$ reacts with alcohols, amines and triphenylphosphine to give **1** and allyl ethers, diallylamines and allylphosphonium perchlorate, respectively. Reactions of allyl halides with alcohols and amines are catalysed by the η^3 -allyl complexes **4** in the presence of ClO₄⁻.

Metal-allyl compounds have been prepared and studied since they are known to be key intermediates in various organic reactions.¹ Rhodium is one of the metals whose allyl compounds have been investigated.^{1e,f} Phosphines^{1e,f,2} and arsines^{2b,e} were employed to stabilize the allylrhodium moiety, but there has been no report on rhodium-allyl-stibine complexes. We now report the synthesis, reactions and catalytic activities of [Rh(σ -CH₂CH=CH₂)Cl(Br)(CO)(SbPh₃)₂] and [Rh(η ³-allyl)X(CO)(SbPh₃)₂]ClO₄ (X = Br or Cl).

Results and Discussion

Synthesis.—Reaction of $[RhCl(CO)(SbPh_3)_2]$ 1 with CH₂= CHCH₂Br 2a gives a σ -allyl complex $[Rh(\sigma-CH_2CH=CH_2)-Cl(Br)(CO)(SbPh_3)_2]$ 3 [equation (1)]. Complex 3 could be

$$[RhCl(CO)(SbPh_3)_2] + CH_2=CHCH_2Br \longrightarrow 2a$$

$$[Rh(\sigma-CH_2CH=CH_2)Cl(Br)(CO)(SbPh_3)_2] \quad (1)$$
3

obtained from the reaction of 1 only with 2a: reactions of 1 with other allyl bromides such as MeCH=CHCH₂Br 2b and allyl chlorides 2c-2g in the absence of AgClO₄ yield a mixture of uncharacterized rhodium complexes.

On the other hand the η^3 -allyl complexes 4 could be obtained from the reactions of both allyl bromides 2a and 2b and allyl chlorides 2c-2g with 1 and AgClO₄ which abstracts Cl⁻ from 1 to provide a co-ordination site for the η^3 -allyl group [see equation (2)]. Complexes 4 are stable in the solid state and in

$$1 + \text{RCHCR'CHR''X} \xrightarrow{\neg AgCl} 2$$

$$[\text{Rh}(\eta^{3}-\text{RCHCR'CHR'')X(CO)(SbPh_{3})_{2}]ClO_{4} (2)$$

$$4 (4d = 4f)$$

$$a R = R' = R'' = H, X = Br$$

$$b R = Me, R' = R'' = H, X = Br$$

$$c R = R' = R'' = H, X = Cl$$

$$d R = Me, R' = R'' = H, X = Cl$$

$$e R = R'' = H, R' = Me, X = Cl$$

$$f R = R' = H, R'' = Me, X = Cl$$

$$g R = Ph, R' = R'' = H, X = Cl$$

solution under nitrogen at room temperature. Complex 3 decomposes to unknown compound(s) in solution within several hours even under N_2 .

The complexes were characterized by ¹H, ¹³C NMR and IR spectral data, elemental analyses and conductance measurements. All the newly prepared rhodium(III)-allyl compounds in this study show the typical signals at the appropriate regions in their ¹H, ¹³C NMR and IR spectra as do well characterized σ -or η^3 -allylmetal compounds.¹⁻³ For example, the ¹H NMR spectrum of the σ -CH₂CH=CH₂ complex 3 shows four different chemical shifts for the allyl protons (H_A to H_D) while the η^3 -allyl complexes 4a and 4c show only three for H_A to H_C (see Table 1). The ¹³C NMR spectrum of **3** gives three different chemical shifts for the allyl carbons C^1-C^3 while 4a and 4c give only two for C^1 and C² (see Table 2). Coupling between ¹⁰³Rh and allylic ¹³C also clearly distinguishes σ - from η^3 -allylrhodium complexes: a relatively large coupling (17 Hz) is observed for only one carbon (Rh-CH₂) in complex 3 whereas coupling is observed for two carbons (Rh-CH₂ and -CH) in complexes 4a and 4c with relatively small values, 4.9 and 5.1 Hz (see Table 1). The two η^3 allyl complexes 4d and 4f obtained in the reactions of 1 with MeCH=CHCH₂Cl 2d and CH₂=CHCH(Me)Cl 2f were found to be identical according to spectral data as expected, which also supports the formulation η^3 -CH₂CHCHMe. The lower v(CO) for complex 3 than for 4a and 4c suggests that the σ -CH₂CH=CH₂(Br)(Cl) moiety is a more effective electrondonating group to rhodium than is η^3 -CH₂CHCH₂(X) (X = Br or Cl). The absorption due to v(Rh-Cl) and v(Rh-Br) of 3 and 4 may appear in the 200–300 cm⁻¹ region,^{4a} but are obscured by SbPh₃ bands.^{4b}

Complex 3 is readily converted into 4a (but not 4c) by reaction with AgClO₄ [equation (3)]. The formation of 4a was

$$\mathbf{3} + \operatorname{AgClO}_4 \longrightarrow \mathbf{4a} + \operatorname{AgCl} \tag{3}$$

unambiguously confirmed by elemental analysis and spectral data (1 H, 13 C NMR and IR) which clearly distinguish the bromo- **4a** from the chloro-complex **4c** (see Tables).

It has been also found that the addition of $AgClO_4$ always yields AgCl (rather than AgBr) in reactions of complex 1 with allyl bromides **2a** and **2b** [equation (2)]. This may suggest initial chloride abstraction from rhodium by Ag^+ followed by oxidative addition of the allyl halides **2**. Separate experiments were carried out in order to verify the initial abstraction: complexes **4** were also prepared by the reactions of allyl halides **2** with the filtrate obtained by removing AgCl produced in the reaction of **1** and $AgClO_4$ in benzene in the presence of acetonitrile.

Reactions.—Complex **4c** reacts with alcohols, amines and triphenylphosphine to produce **1** and allyl ethers, diallylamines

Table 1Proton NMR data for [Rh(σ -CH₂CH=CH₂)Cl(Br)(CO)L₂] 3, [Rh(η^3 -CH₂CHCH₂)Br(CO)L₂]ClO₄ 4a, [Rh(η^3 -CH₂CHCHMe)-Br(CO)L₂]ClO₄ 4b, [Rh(η^3 -CH₂CHCH₂)Cl(CO)L₂]ClO₄ 4c, [Rh(η^3 -CH₂CHCHMe)Cl(CO)L₂]ClO₄ 4d = 4f, [Rh(η^3 -CH₂CHCH₂)-Cl(CO)L₂]ClO₄ 4e and [Rh(η^3 -CH₂CHCHPh)Cl(CO)L₂]ClO₄ 4g (L = SbPh₃) at 270 or 300 MHz in CDCl₃ at 25 °C

		δ					
Compound		H _A	Н _в	H _c	H _D	H _E	J/Hz
3		4.38 (d)	4.58 (d)	5.95 (m)	3.21 (d)		$J(H_AH_C) = 16.7, J(H_BH_C) = 10.4, J(H_CH_D) = 7.1$
4a		3.83 (d)	5.28 (d)	6.17 (m)			$J(H_AH_C) = 13.7, J(H_BH_C) = 7.0$
4b		5.11 (m)	3.59 (d)	5.16 (d)	6.18 (m)	1.84 (d)	$J(H_AH_E) = 5.7, J(H_BH_D) = 12.6, J(H_CH_D) = 7.2$
4c		3.67 (d)	5.38 (d)	6.25 (m)			$J(H_AH_C) = 13.1, J(H_BH_C) = 7.6$
4d	$\begin{array}{c} H_{D} \\ H_{C} \\ H_{B} \\ H_{B} \\ H_{A} \end{array} CH_{3E}$	4.94 (m)	3.42 (d)	5.21 (d)	6.30 (m)	1.86 (d)	$J(H_AH_E) = 7.2, J(H_BH_D) = 14.1, J(H_CH_D) = 8.1$
4e		3.65 (s)	5.17 (s)	2.41 (d) ^a			$J(\mathbf{R}\mathbf{h}-\mathbf{H}_{\mathrm{C}}) = 2.0$
4g		5.80 (d)	3.59 (d)	5.38 (d)	b	b	$J(H_AH_D) = 13.5, J(H_BH_D) = 12.0, J(H_CH_D) = 7.5$

^a Very small $J(Rh-H_c)$ is observed as reported in ref. 2*d.* ^b Overlapped with signals for CPh and SbPh in the region of δ 7.1–7.7.

and allylphosphonium salt [see equations (4)-(6)]. Taube and

$$[Rh(\eta^{3}-CH_{2}CHCH_{2})Cl(CO)(SbPh_{3})_{2}]ClO_{4} + ROH \longrightarrow$$

$$[RhCl(CO)(SbPh_3)_2] + CH_2 = CHCH_2OR + HClO_4 \quad (4)$$

$$4\mathbf{c} + \frac{3}{2}\mathbf{N}\mathbf{H}_2\mathbf{R} \longrightarrow$$

 $1 + \frac{1}{2}NR(CH_2CH=CH_2)_2 + NH_2R \cdot HClO_4 \quad (5)$

$$4c + PPh_3 \longrightarrow 1 + [PPh_3(CH_2CH=CH_2)]ClO_4 \quad (6)$$

co-workers ^{3a} found that an osmium(1v)–allyl complex reacts with methanol, pyridine and PPh₃ to give osmium(1v) complexes containing co-ordinated η^2 -H₂C=CHCH₂OMe, η^2 -H₂C=CHCH₂NC₅H₅ and η^2 -H₂C=CHCH₂PPh₃ ligands. When a small amount of triphenylphosphine (Rh/PPh₃ = 1:1) was added to a solution of **4c** in benzene all the added PPh₃ was converted into the phosphonium salt and there was no sign of rhodium-bound SbPh₃ being replaced by PPh₃.

Attempts to prepare the dicationic complex $[Rh(\eta^3-CH_2-CHCH_2)(CO)(SbPh_3)_2]^{2+}$ by reaction of **4a** (or **4c**) with AgClO₄ have been unsuccessful. The reaction of **4c** with AgClO₄ in the presence of a nitrile (MeCH=CHCN), however, seems to produce a mixture of $[Rh(\eta^3-CH_2CHCH_2)(CO)-$

(MeCH=CHCN)(SbPh₃)₂][ClO₄]₂ and other uncharacterized rhodium complex(es) (see Experimental section).

Catalytic Activities.---Stoichiometric reactions of complex 4c with alcohols [equation (4)] led us to investigate the reactions of allylic halides with alcohols catalysed by 4. The reaction of PhCH=CHCH₂Cl 2g (34 mmol) with EtOH (100 mmol) gives PhCH=CHCH₂OEt quantitatively within 24 h at 30 °C in benzene in the presence of $[Rh(\eta^3-CH_2CHCHPh)Cl(CO)(Sb Ph_3)_2$]ClO₄ 4g (0.17 mmol) and NaClO₄ (38 mmol), while the reaction mixture of 2g, EtOH and NaClO₄ in the absence of 4g gave only a trace amount of the ether in 24 h. It has also been found that the formation of the ether is not catalysed by [RhCl(CO)(SbPh₃)₂] 1 in the absence of NaClO₄. The reaction mixture of 1, 2g, EtOH, however, in the presence of NaClO₄ produces a significant amount of the ether. It has been found that the reactions of 1 with allyl halides and NaClO₄ also produce η^3 -allyl complexes 4. The catalytic activities of 4 are more prominent for the reactions of PrⁱOH (100 mmol) with allyl halides, MeCH=CHCH2Cl 2d (16 mmol) and CH2=CHCH-(Me)Cl 2f (16 mmol): the formation of the ether, MeCH=CH-CH₂OPrⁱ (which is obtained from both reaction of 2d and 2f with PrⁱOH) could be completed within 48 h in the presence of $[Rh(\eta^3-CH_2CHCHMe)Cl(CO)(SbPh_3)_2]ClO_4$ 4d (0.23 mmol) and NaClO₄ (16 mmol) in refluxing dichloromethane while the

Table 2	Carbon-13 NMR	data at 68 or	75 MHz in	CDCl ₃ at 25 °C
---------	---------------	---------------	-----------	----------------------------

	δ (<i>J</i> /Hz)				
Compound	$\overline{C^1}$	C ²	C ³	C ⁴	СО
3 Rh 2 3	23.7 (17.0)	111.1	147.7		183.9 (65.2)
48 1	77.2 (4.9)	108.7 (2.5)			177.8 (56.8)
4b 4 1 2 3	103.4 *	108.4 *	71.3 (6.0)	21.2	178.9 (56.4)
4c 1	79.2 (5.1)	109.0 (2.1)			178.4 (56.1)
4d 4 1 2 3	106.0 *	108.5 *	73.7 *	21.1	179.0 (56.4)
4e 1 2	78.0 (5.0)	131.3 *	24.0 *		181.3 (58.4)
4g Ph 2 3	102.5 *	108.2 *	74.2 (6.1)		178.8 (56.9)

* Poorly resolved, probably due to very small J(Rh-C).

Table 3	Infrared data (Nujol, cm ⁻¹)					
	Compound	v(CO)	v(CCC)			
	3	2034				
	4a	2065	502			
	4b	2061	503			
	4 c	2066	512			
	4d	2068	512			
	4 e	2056	514			
	4g	2059	511			

ether was never observed for 8 d under the same experimental conditions in the absence of the rhodium complex.

Reactions of amines with allyl halides to give diallylamines are also catalysed by complexes **4**: PhCH₂NH₂ (42 mmol) reacts with CH₂=CHCH₂Cl (28 mmol) to give PhCH₂N-(CH₂CH=CH₂)₂ quantitatively in the presence of [Rh(η^3 -CH₂CHCH₂)Cl(CO)(SbPh₃)₂]ClO₄ **4c** (0.23 mmol) and NaClO₄ (30 mmol) in refluxing benzene for 5 h, whereas it took 48 h to obtain the same amount of diallyl(benzyl)amine in the absence of the rhodium complex.

Experimental

The NMR spectra were obtained on either a Bruker WH-300 or JEOL GX 270 spectrometer at 300 or 270 MHz for ¹H and 75 or 68 MHz for ¹³C. Infrared spectra were measured on a Shimadzu IR-440, and a Varian 3700 gas chromatograph was used for analysis of products. Conductance measurements were carried out with a Wiss-Tech Werstatten Weilheim/Obb. LBR conductivity meter. Elemental analyses were performed at the Organic Chemistry Research Center, Sogang University, Korea. The complex [RhCl(CO)(SbPh₃)₂] was prepared by the literature method.⁵ Allyl halides were purchased from Aldrich and used without further purification.

Preparations.—[Rh(σ -CH₂CH=CH₂)Cl(Br)(CO)(SbPh₃)₂] **3.** A suspension of [RhCl(CO)(SbPh₃)₂] (0.2 g, 0.23 mmol) and CH₂=CHCH₂Br **2a** (0.38 mmol) in MeOH (8.0 cm³) was stirred under nitrogen for 1 h at 25 °C. The reaction mixture remained as a suspension during the reaction. The yellow solid obtained was filtered off, washed with cold methanol (20 cm³) and dried in vacuum. Yield 90% based on **3** (Found: C, 48.7; H, 3.25. Calc. for C₄₀H₃₅BrClORhSb₂: C, 48.4; H, 3.55%).

[Rh(η^3 -CH₂CHCH₂)Br(CO)(SbPh₃)₂]ClO₄ 4a. Silver perchlorate (0.23 mmol) was added to a yellowish red benzene (10 cm³) solution of [RhCl(CO)(SbPh₃)₂] (0.2 g, 0.23 mmol) and CH₂=CHCH₂Br (*ca.* 0.8 mmol) at 25 °C under nitrogen and the resulting yellow solution and white precipitation of AgCl was stirred for 30 min. Addition of hexane (25 cm³) to the solution after the removal of AgCl by filtration resulted in precipitation of pale yellow microcrystals which were filtered off, washed with cold benzene (5 cm³) and hexane (5 cm³) and dried in vacuum. Yield 90% based on 4a (Found: C, 45.1; H, 3.30. Calc. for C₄₀H₃₅BrClO₅RhSb₂: C, 45.4; H, 3.35%). $\Lambda_{\rm M} = 54$ ohm⁻¹ cm² mol⁻¹ ([Rh] = 4.4 × 10⁻⁴ mol dm⁻³ in CH₂Cl₂ at 25 °C), *cf.* $\Lambda_{\rm M}$ of NBu₄ClO₄ is 48 ohm⁻¹ cm² mol⁻¹ in CH₂Cl₂.

Other η^3 -allyl complexes. Complexes **4b**-4g were prepared in the same manner as described above for **4a**. Their elemental analyses were satisfactory and measured molar conductance values (Λ_M) were in good agreement with those of 1:1 electrolytes.

Reactions of $[Rh(\eta^3-CH_2CHCH_2)Cl(CO)(SbPh_3)_2]ClO_4 4c.$ —With MeOH. Methanol (0.4 mmol) was added to a chloroform (10 cm³) solution of complex 4c (0.2 mmol) at 25 °C under N₂ and the resulting solution was stirred for 30 min. Addition of hexane (20 cm³) resulted in precipitation of $[RhCl(CO)-(SbPh_3)_2]$ which was identified by the IR spectrum. The other product, CH₂CHCH₂OMe in the filtrate, was analysed by GC.

With PhCH₂NH₂. Addition of PhCH₂NH₂ (0.46 mmol) to a chloroform (10 cm³) solution of **4c** (0.2 mmol) at 25 °C

immediately resulted in a white precipitate of $PhCH_2NH_2$ · $HClO_4$ which was removed by filtration. The purple-red solid was isolated after the addition of hexane (20 cm³) to the filtrate and identified as [RhCl(CO)(SbPh_3)_2] by the IR spectrum. The GC analysis of the filtrate showed a quantitative amount of $(CH_2=CHCH_2)_2NCH_2Ph$.

With PPh₃. Addition of PPh₃ (0.2 mmol) to a chloroform (10 cm³) solution of complex **4c** (0.2 mmol) immediately resulted in a white precipitate of [PPh₃(CH₂CH₂CH₂CH₂)]ClO₄ which was isolated by filtration and identified by IR and ¹H NMR measurements. Hexane (20 cm³) was added to the filtrate to yield [RhCl(CO)(SbPh₃)₂] which was identified by the IR spectrum.

With AgClO₄ in the presence of MeCH=CHCN. Silver perchlorate (0.2 mmol) was added to a dichloromethane (10 cm³) solution of complex **4c** (0.2 mmol) and MeCH=CHCN (0.3 mmol) at 25 °C under nitrogen and the resulting solution was stirred for 30 min until a significant amount of a white precipitate of AgCl was observed. This was removed by filtration and hexane (10 cm³) was added to the filtrate to precipitate a pale yellow solid which was filtered off and dried in vacuum. The IR spectrum (Nujol) of this yellow solid showed v(CO) at 1991w and 2098s, v(CN) at 2266, v(C=C) at 1622 cm⁻¹ and most absorptions of **4c**.

Catalytic Reactions.—PhCH=CHCH₂Cl and EtOH in the presence of $[Rh(\eta^3-CH_2CHCHPh)Cl(CO)(SbPh_3)_2]ClO_4$ 4g and NaClO₄. The reaction mixture of PhCH=CHCH₂Cl (34 mmol), EtOH (100 mmol), NaClO₄ (38 mmol) and complex 4g (0.17 mmol) in benzene (25 cm³) was stirred for 24 h. The organic layer was dried with MgSO₄ after being extracted with water. Addition of hexane resulted in the precipitation of uncharacterized rhodium complex(es) which was separated by filtration. The GC analysis of the filtrate showed a quantitative amount of PhCH=CHCH₂OEt.

Reactions of PrⁱOH with MeCH=CHCH₂Cl **2d** and CH₂= CHCH(Me)Cl **2f** in the presence of [Rh(η^3 -CH₂CHCHMe)Cl-(CO)(SbPh₃)₂]ClO₄ **4d** and NaClO₄ were carried out in the same manner as described above. PhCH₂NH₂ with CH₂=CHCH₂Cl in the presence of [Rh(η^3 -CH₂CHCH₂)Cl(CO)(SbPh₃)₂]ClO₄ **4c** and NaClO₄. This reaction was carried out in a similar manner.

Acknowledgements

We thank the Korea Science and Engineering Foundation and Ministry of Education, Republic of Korea for financial support.

References

- 1 (a) J. B. Wakefield and J. M. Stryker, J. Am. Chem. Soc., 1991, 113, 7057; (b) Z. Zhong, R. J. Hinkle, A. M. Arif and P. J. Stang, J. Am. Chem. Soc., 1991, 113, 6196; (c) M. Oshima, I. Shimizu, A. Yamamoto and F. Ozawa, Organometallics, 1991, 10, 1221; (d) R. Blau and U. Siriwardane, Organometallics, 1991, 10, 1627; (e) R. T. Baker, D. W. Ovenall and R. Harlow, Organometallics, 1990, 9, 3028; (f) E. B. Tjaden and J. M. Stryker, J. Am. Chem. Soc., 1990, 112, 6420; (g) W. D. McGhee and R. G. Bergman, J. Am. Chem. Soc., 1988, 110, 4246; (h) R. J. Blau, M. S. Goetz, R. R. Howe, C. J. Smith, R.-J. Tsay and U. Siriwardane, Organometallics, 1991, 10, 3259; (i) C. Amatore and A. Jutand, J. Am. Chem. Soc., 1991, 113, 2819.
- 2 (a) J. F. Nixon, B. Wilkins and D. A. Clement, J. Chem. Soc., Dalton Trans., 1974, 1993; (b) M. Green and G. J. Parker, J. Chem. Soc., Dalton Trans., 1974, 333; (c) C. K. Brown, W. Mowat, G. Yagupsky and G. Wilkinson, J. Chem. Soc. A, 1971, 850; (d) C. A. Reilly and H. Thyret, J. Am. Chem. Soc., 1967, 89, 5144; (e) D. N. Lawson, J. A. Osborn and G. Wilkinson, J. Chem. Soc. A, 1966, 1733.
- 3 (a) W. D. Harman, T. Hasegawa and H. Taube, *Inorg. Chem.*, 1991, 30, 453; (b) S. A. King, D. V. Engen, E. H. Fischer and J. Schwartz, *Organometallics*, 1991, 10, 1195; (c) P. W. Jolly and R. Mynott, *Adv. Organomet. Chem.*, 1981, 19, 279; (d) B. E. Mann, *Adv. Organomet. Chem.*, 1974, 12, 153; (e) M. L. H. Green and P. L. I. Nagy, *Adv. Organomet. Chem.*, 1964, 2, 325.
- 4 K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3rd edn., Wiley, New York, 1978, (a) p. 317, (b) p. 376.
- 5 L. Vallarino, J. Chem. Soc., 1957, 2287.

Received 29th October 1991; Paper 1/05488K