Disproportionation of a Ruthenium(III) Nitro Complex of a Macrocyclic Tertiary Amine in an Aqueous Medium \dagger

Kwok-Yin Wong, ${ }^{a}$ Chi-Ming Che, ${ }^{*, a}$ Wai-Hing Yip, ${ }^{\boldsymbol{b}}$ Ru-Ji Wang ${ }^{\text {b }}$ and Thomas C. W. Mak ${ }^{*, b}$
${ }^{\text {a }}$ Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong
${ }^{b}$ Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong

Abstract

The reaction of trans-[RuLCl $]^{+} \quad(\mathrm{L}=1,5,9,13$-tetramethyl-1,5,9,13-tetraazacyclohexadecane $)$ with $\mathrm{NO}_{2}{ }^{-}$in water at $60^{\circ} \mathrm{C}$ leads to the formation of trans- $[\mathrm{RuL}(\mathrm{O}) \mathrm{Cl}]^{+}$and trans- $[\mathrm{RuL}(\mathrm{OH})(\mathrm{NO})]^{+}$. The formation of the products can be rationalized by the disproportionation of trans- $\left[\mathrm{RuL}(\mathrm{Cl})\left(\mathrm{NO}_{2}\right)\right]^{+}$. The structures of the products have been determined by X -ray crystallography: trans-[RuL(O) Cl$] \mathrm{ClO}_{4}$, space group Pna_{1} (no. 33), $a=12.616(1), b=15.421$ (3), $c=11.292$ (3) \AA; $\mathrm{Ru}=\mathrm{O}$ and Ru-Cl 1.75(1) and $2.435(6) \AA$; trans- $[\mathrm{RuL}(\mathrm{OH})(\mathrm{NO})]\left[\mathrm{ClO}_{4}\right]_{2}$, space group Pbca (no. 61), $a=20.459(3), b=29.16(1)$, $c=25.13(1) \AA$ A ; average $\mathrm{Ru}-\mathrm{OH}$ and $\mathrm{Ru}-\mathrm{NO} 1.906(9)$ and 1.74(1) \AA.

The study of metal nitro complexes is of considerable interest because of the multiple-electron interconversion between MNO_{2} and $\mathrm{M}-\mathrm{NH}_{3} .{ }^{1}$ Although a variety of transition-metal nitro complexes have been studied, the chemistry of ruthenium(iII) nitro complexes remains relatively unexplored. ${ }^{2,3 a}$ It has been suggested that this class of compounds are unstable and would undergo rapid disproportionation. ${ }^{2,3}$ Recently, Mukaida and co-workers ${ }^{3}$ reported the synthesis of a monooxoruthenium(Iv) complex by oxidation of nitrosylruthenium(iI) with NaOCl . Their results suggested that the $\mathrm{Ru}^{\mathrm{III}}-\mathrm{NO}_{2}$ species undergoes disproportionation to give $\mathrm{Ru}^{1 \mathrm{~V}}=\mathrm{O}$ and $\mathrm{Ru}^{11}-\mathrm{NO}^{+}$. In order further to investigate the chemistry of $\mathrm{Ru}^{\mathrm{III}}-\mathrm{NO}_{2}$ complexes with macrocyclic tertiary amine ligands we have attempted to prepare $\mathrm{Ru}^{\text {III }}-\mathrm{NO}_{2}$ by substitution of the Cl^{-}ligand in trans$\left[\mathrm{RuLCl}_{2}\right]^{+} \quad(\mathrm{L}=1,5,9,13$-tetramethyl-1,5,9,13-tetraazacyclohexadecane) with $\mathrm{NO}_{2}{ }^{-}$. The products of the reaction were identified by X-ray crystallography as trans- $[\mathrm{RuL}(\mathrm{O}) \mathrm{Cl}]^{+}$and trans- $[\mathrm{RuL}(\mathrm{OH})(\mathrm{NO})]^{2+}$.

Experimental

Physical Measurements.-The UV/VIS absorption spectra were recorded on a Milton Roy (Spectronic 3000 Array) diodearray spectrophotometer, infrared spectra as Nujol mulls on a Nicolet 20FXC FT-IR spectrophotometer, and ${ }^{1} \mathrm{H}$ NMR spectra on a JEOL 270 MHz FT-NMR spectrometer. Elemental analyses were performed at National Taiwan University.

Preparation of trans $-\left[\mathrm{RuL}(\mathrm{O}) \mathrm{Cl}^{2}\right] \mathrm{ClO}_{4}$ and trans $-[\mathrm{RuL}(\mathrm{OH})$ -$(\mathrm{NO})]\left[\mathrm{ClO}_{4}\right]_{2}$.-The complex trans- $\left[\mathrm{RuLCl}_{2}\right] \mathrm{Cl}$ was prepared as described previously. ${ }^{4}$ Other chemicals were obtained as reagent grade and used without further purification.
A mixture of trans- $\left[\mathrm{RuLCl}_{2}\right] \mathrm{Cl}(0.5 \mathrm{~g})$ and $\mathrm{NaNO}_{2}(0.1 \mathrm{~g})$ in deionized water was warmed at $60^{\circ} \mathrm{C}$ for 20 min . The colour of the solution changed from yellow to greenish blue. Upon cooling to $30^{\circ} \mathrm{C}, \mathrm{NaClO}_{4}$ (ca.1 g) was added to cause immediate precipitation of blue crystalline trans- $\left[\mathrm{RuL}(\mathrm{O}) \mathrm{Cl}_{2} \mathrm{ClO}_{4}\right.$ (yield ca. 0.13 g) which was filtered off. The filtrate was left to stand in air. Yellow crystals of trans- $[\mathrm{RuL}(\mathrm{OH})(\mathrm{NO})]\left[\mathrm{ClO}_{4}\right]_{2}$ (yield ca. 0.19 g) were obtained after about 1 d . Both complexes could be

[^0]recrystallized from hot water, although the quality of the crystals of the oxo complex was poor. trans- $[\mathrm{RuL}(\mathrm{O}) \mathrm{Cl}]-$ ClO_{4} : IR, $v(\mathrm{Ru}=\mathrm{O}) 840 \mathrm{~cm}^{-1}$; UV/VIS $\left(\mathrm{CH}_{3} \mathrm{CN}\right), \lambda / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3}\right.$ $\mathrm{mol}^{-1} \mathrm{~cm}^{-1}$): 570 (160), ca. 360 (250) and 295 (1600) (Found: C, 35.6; H, 6.8; N, 10.3. Calc.: C, 35.8; H, 6.7; N, 10.4%). trans$[\mathrm{RuL}(\mathrm{OH})(\mathrm{NO})]\left[\mathrm{ClO}_{4}\right]_{2}:$ IR, $v(\mathrm{NO}) 1825 \mathrm{~cm}^{-1}$; UV/VIS (water), $\lambda / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$: ca. 375 (340), 320 (1000) and 244 (26 300); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{CN}$), $\delta 2.12-2.4\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 2.76,2.8$ (s, NCH_{3}) and 3.1-3.6 (m, NCH_{2}) (Found: C, 30.2; H, 6.0; N, 10.9. Calc.: C, 30.4; H, 5.85 ; N, 11.1%).

X-Ray Structure Determination.-Details of crystal parameters, data collection and structure refinement are given in Table 1. Raw intensities collected were processed with the profilefitting procedures of Diamond ${ }^{5}$ and corrected for absorption using ψ-scan data. ${ }^{6}$ For trans- $\left[\mathrm{RuL}(\mathrm{O}) \mathrm{Cl}^{2}\right] \mathrm{ClO}_{4}$, the L ligand exhibits slight configurational disorder and distance constraints of $1.48(2), 1.52(2)$ and $1.54(2) \AA$ were applied to the $\mathrm{N}-\mathrm{C}$ (methylene), $\mathrm{N}-\mathrm{C}$ (methyl) and $\mathrm{C}-\mathrm{C}$ bonds, respectively. In addition, two major orientations of the ClO_{4}^{-}group were identified with half site occupancy assigned to the oxygen atoms, and distance constraints of 1.44(2) and 2.35(2) \AA applied to the $\mathrm{Cl}-\mathrm{O}$ bonds and $\mathrm{O} \ldots \mathrm{O}$ separations, respectively. Refinement proceeded with isotropic thermal parameters for the C atoms and anisotropic ones for the remaining non-hydrogen atoms in the asymmetric unit. The H atoms were generated geometrically ($\mathrm{C}-\mathrm{H} 0.96 \AA$) and included in structure-factor calculations with fixed isotropic thermal parameters. Reversal of the polarity of the structure produced no significant improvement. Table 2 lists the atomic coordinates for the nonhydrogen atoms of trans-[$\mathrm{RuL}(\mathrm{O}) \mathrm{Cl}^{2} \mathrm{ClO}_{4}$, Table 3 selected bond distances and angles.
The asymmetric unit in trans- $[\mathrm{RuL}(\mathrm{OH})(\mathrm{NO})]\left[\mathrm{ClO}_{4}\right]_{2}$ contains three independent $\mathrm{RuN}_{5} \mathrm{O}$ co-ordination polyhedra. One of the three L ligands exhibits two-fold disorder, which was modelled by two sets of atoms: $\mathrm{N}(12)-\mathrm{N}(15)$ plus $\mathrm{C}(33)-\mathrm{C}(48)$ and $\mathrm{N}\left(12^{\prime}\right)-\mathrm{N}\left(15^{\prime}\right)$ plus $\mathrm{C}\left(33^{\prime}\right)-\mathrm{C}\left(48^{\prime}\right)$, each of half site occupancy. Distance constraints of 1.48(2), 1.52(2) and 1.54(2) \AA were applied to the $\mathrm{N}-\mathrm{C}$ (methylene), $\mathrm{N}-\mathrm{C}$ (methyl) and $\mathrm{C}-\mathrm{C}$ bonds in order to overcome correlation problems caused by overlapping atoms. The non-hydrogen atoms except those of the disordered L ligand were subjected to anisotropic blockedmatrix refinement. The H atoms belonging to the hydroxide and disordered \mathbf{L} ligand were not included in structure-factor calculations, whereas the others were generated geometrically

Table 1 Data collection and processing parameters for * trans- $\left[\mathrm{RuL}(\mathrm{O}) \mathrm{Cl}_{1}\right] \mathrm{ClO}_{4}$ and trans- $[\mathrm{RuL}(\mathrm{OH})(\mathrm{NO})]\left[\mathrm{ClO}_{4}\right]_{2}$

	trans-[RuL(O) $\mathrm{Cl}^{\text {] }} \mathrm{ClO}_{4}$	trans-[RuL $(\mathrm{OH})(\mathrm{NO})]\left[\mathrm{ClO}_{4}\right]_{2}$
Molecular formula	$\mathrm{C}_{16} \mathrm{H}_{36} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{Ru}$	$\mathrm{C}_{16} \mathrm{H}_{37} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{10}$
M	536.53	632.48
Colour and habit	Blue plate	Yellow polyhedron
Space group	$\mathrm{Pna2}_{1}$ (No. 33)	Pbca (No. 61)
a/ \AA	12.616(1)	20.459(3)
b / \AA	15.421(3)	29.16(1)
c / \AA	11.292(3)	25.13(1)
U / \AA^{3}	2196.9(7)	14 992(10)
Z	4	24
$F(000)$	1112	7848
$D_{\mathrm{c}} / \mathrm{g} \mathrm{cm}^{-3}$	1.622	1.681
Standard reflections	(112), (120)	(008), (641)
Intensity variation (\%)	± 6	± 2
$R_{\text {int }}$ (from merging of equiv. reflections)	0.034	0.080
μ / cm^{-1}	9.78	8.87
Crystal size/mm	$0.04 \times 0.34 \times 0.42$	$0.28 \times 0.32 \times 0.34$
Mean μr	0.13	0.121
Transmission factors	0.154-0.563	0.686-0.709
Scan type and rate	$\omega-2 \theta, 2.49-15.63^{\circ} \mathrm{min}^{-1}$	$\omega, 3.01-15.63^{\circ} \mathrm{min}^{-1}$
Scan range	0.60° below $\mathrm{K} \alpha_{1}$ to 0.70° above $\mathrm{K} \alpha_{2}$	0.65° below $\mathrm{K} \alpha_{1}$ to 0.65° above $\mathrm{K} \alpha_{2}$
Collection range	$h, k, l ; 2 \theta_{\text {max }}=50^{\circ}$	$h, k, l ; 2 \theta_{\text {max }}=45^{\circ}$
Unique data measured	2051	13169
Obs. data with $\left\|F_{\mathrm{o}}\right\| \geqslant 6 \boldsymbol{\sigma}\left(\left\|F_{\mathrm{o}}\right\|\right), n$	1309	6079
No. of variables, p	208	683
$\mathbf{R}=\Sigma\| \| F_{\mathrm{o}}\left\|-\left\|F_{\mathrm{c}}\right\|\right\| / \Sigma\left\|F_{\mathrm{o}}\right\|$	0.097	0.072
Weighting scheme, w	$\left[1-\exp \left(-6 \sin ^{2} \theta / \lambda^{2}\right)\right] /\left[\sigma^{2}\left(F_{\mathrm{o}}\right)+0.0010 \mid F_{\mathrm{o}}{ }^{2}\right]$	$\left[1-\exp \left(-8 \sin ^{2} \theta / \lambda^{2}\right)\right] /\left[\sigma^{2}\left(F_{\mathrm{o}}\right)+0.0008 \mid F_{\mathrm{o}}{ }^{2}\right]$
$\mathbf{R}^{\prime}=\left[\Sigma w\left(\left\|F_{\mathrm{o}}\right\|-\left\|F_{\mathrm{c}}\right\|\right)^{2} / \Sigma w\left\|F_{\mathrm{o}}\right\|^{2}\right]^{\frac{1}{2}}$	0.107	0.086
$S=\left[\Sigma w\left(\left\|F_{\mathrm{o}}\right\|-\left\|F_{\mathrm{c}}\right\|\right)^{2} /(n-p)\right]^{\frac{1}{2}}$	1.752	1.338
Residual extrema in final difference map/e \AA^{-3}	+3.42 to -2.01	+1.42 to -0.62

Fig. 1 A perspective view and atom numbering of the trans$[\mathrm{RuL}(\mathrm{O}) \mathrm{Cl}]^{+}$cation
and assigned the same isotropic thermal parameter $U=0.12$ \AA^{2}. All computations were performed using the SHELXTLPLUS program package ${ }^{7}$ on a DEC microVAX-II computer. Analytical expressions of atomic scattering factors were employed, and anomalous dispersion corrections were incorporated. ${ }^{8}$ Tables 4 and 5 list the atomic coordinates of the non-hydrogen atoms and selected bond distances respectively of trans- $[\mathrm{RuL}(\mathrm{OH})(\mathrm{NO})]\left[\mathrm{ClO}_{4}\right]_{2}$.

Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom coordinates, thermal parameters and remaining bond lengths and angles.

Results and Discussion

The formation of $\mathrm{Ru}^{\mathrm{IV}}=\mathrm{O}$ and $\mathrm{Ru}^{\mathrm{II}}-\mathrm{NO}^{+}$complexes from $\mathrm{Ru}^{\text {III }}-\mathrm{NO}_{2}$ has previously been suggested. ${ }^{3 b}$ In this work the reaction of trans- $\left[\mathrm{RuLCl}_{2}\right]^{+}$with NaNO_{2} gave similar products instead of the desired trans- $\left[\mathrm{RuL}\left(\mathrm{NO}_{2}\right)_{2}\right]^{+}$. The UV/VIS spectrum of trans-[RuL(O)Cl] ${ }^{+}$is similar to those of the $\mathrm{Ru}^{\mathrm{IV}}=\mathrm{O}$ complexes of tmc ($\mathrm{tmc}=1,4,8,11$-tetramethyl-1,4,8,11-tetraazacyclotetradecane), ${ }^{9}$ which have been reported previously. Since trans- $[\mathrm{RuL}(\mathrm{O}) \mathrm{Cl}]^{+}$is paramagnetic its ${ }^{1} \mathrm{H}$ NMR spectrum has not been recorded. According to Schreiner et al. ${ }^{10}$ ruthenium nitrosyl complexes such as trans-[Ru$\left.\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{OH})(\mathrm{NO})\right] \mathrm{Cl}_{2}$ and $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{NO})\right] \mathrm{Cl}_{3}$ should be formulated as $\left[\mathrm{Ru}^{11}-\mathrm{NO}^{+}\right]$species. A direct comparison between trans- $[\mathrm{RuL}(\mathrm{OH})(\mathrm{NO})]^{2+}$ and trans $-\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{OH})-\right.$ $(\mathrm{NO})]^{2+}$ revealed that their UV/VIS spectra and $v(\mathrm{NO})$ stretching frequencies $\left\{v(N O) 1834 \mathrm{~cm}^{-1}\right.$ for trans-[Ru$\left.\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{OH})(\mathrm{NO})\right]^{2+}$ ref. 10$\}$ are similar, thereby suggesting they may have similar electronic configurations. Assignment of a co-ordinated OH^{-}group in trans- $[\mathrm{RuL}(\mathrm{OH})(\mathrm{NO})]^{2+}$ based on the short average $\mathrm{Ru}-\mathrm{O}(\mathrm{OH})$ distance of $1.906(9) \AA$ is discussed in a later section. The ${ }^{1} \mathrm{H}$ NMR spectrum of trans$[\mathrm{RuL}(\mathrm{OH})(\mathrm{NO})]^{2+}$ in $\mathrm{CD}_{3} \mathrm{CN}$ exhibits two peaks at $\delta 2.8$ and 2.76 with unequal intensities, and two sets of multiplets at $\delta 3.1-$ 3.6 and 2.12-2.4. The two peaks at $\delta 2.8$ and 2.76 are assigned to NCH_{3} protons. The multiplets at $\delta 3.1-3.6$ are due to NCH_{2} protons.
The reaction of trans- $\left[\mathrm{RuLCl}_{2}\right]^{+}$with NaNO_{2} can be followed by measuring the UV/VIS spectrum periodically. A peak at $\lambda_{\text {max }} 570 \mathrm{~nm}$ characteristic of $\operatorname{trans}-[\mathrm{RuL}(\mathrm{O}) \mathrm{Cl}]^{+}$ appeared in the early stages of the reaction. The formation of trans- $[\mathrm{RuL}(\mathrm{O}) \mathrm{Cl}]^{+}$could not be due to aerial oxidation of trans- $\left[\mathrm{RuL}(\mathrm{OH})\left(\mathrm{OH}_{2}\right)\right]^{2+}$ as the related trans- $\left[\mathrm{RuL}^{\prime}(\mathrm{OH})-\right.$ $\left.\left(\mathrm{OH}_{2}\right)\right]^{2+}\left(\mathrm{L}^{\prime}=\right.$ macrocyclic tertiary amine ligands) complexes were found to be stable under similar reaction conditions.

Table 2 Atomic coordinates ($\times 10^{4}$) for trans-[RuL(O)Cl]ClO ${ }_{4}$

Atom*	x	y	z
Ru	8393 (1)	$8617(1)$	7500
$\mathrm{Cl}(1)$	$10230(4)$	$9099(4)$	7 566(14)
$\mathrm{O}(1)$	7 075(11)	8 264(10)	7570 (20)
$\mathrm{Cl}(2)$	502(5)	$6381(4)$	2 552(11)
O(2)	- 109(20)	6 511(20)	$1511(17)$
$\mathrm{O}\left(2^{\prime}\right)$	466(20)	6042(16)	$1369(14)$
O(3)	$1421(15)$	$5839(15)$	2 266(22)
$\mathrm{O}\left(3^{\prime}\right)$	755(20)	5 707(13)	3 380(19)
$\mathrm{O}(4)$	- 104(17)	5 922(16)	3 439(17)
$\mathrm{O}\left(4^{\prime}\right)$	- 538(13)	$6726(17)$	2833 (21)
$\mathrm{O}(5)$	869(19)	7 177(12)	3 046(22)
$\mathrm{O}\left(5^{\prime}\right)$	1 269(18)	7 062(14)	2 628(24)
$\mathrm{N}(1)$	8 741(13)	7 667(11)	6 057(15)
$\mathrm{N}(2)$	8820 (18)	$7481(20)$	8 754(21)
N(3)	$8058(13)$	$9475(13)$	9 088(16)
$\mathrm{N}(4)$	8011(14)	$9705(13)$	6 310(16)
$\mathrm{C}(1)$	9 665(17)	$7097(17)$	6 273(24)
$\mathrm{C}(2)$	9 151(21)	6 421(17)	7 106(20)
C(3)	$8421(20)$	6 698(18)	$8136(21)$
$\mathrm{C}(4)$	8 126(22)	7 630(19)	$9786(21)$
C(5)	8 397(21)	$8334(14)$	10 686(21)
C(6)	8 685(19)	9 215(16)	10 140(20)
C(7)	8445 (18)	$10374(13)$	9 018(19)
$\mathrm{C}(8)$	$7913(18)$	$10821(16)$	7 968(15)
C(9)	$8337(19)$	10 584(14)	$6732(19)$
C(10)	8 574(19)	$9735(15)$	5 171(18)
C(11)	8480 (21)	$8892(15)$	4 450(22)
C(12)	$9128(23)$	$8145(20)$	4 993(23)
C(13)	$7731(18)$	$7328(20)$	$5496(24)$
C(14)	$9955(20)$	7 486(23)	9 219(26)
C(15)	6 910(14)	9 466(16)	9 448(22)
C(16)	6826 (15)	9768 (19)	$6075(24)$

* Disordered oxygen atoms of perchlorate anion were treated as $\mathrm{O}(2)-$ $O(5)$ and $O\left(2^{\prime}\right)-O\left(5^{\prime}\right)$, each of half site occupancy.

Table 3 Selected bond lengths (\AA) and angles (${ }^{\circ}$) for trans$[\mathrm{RuL}(\mathrm{O}) \mathrm{Cl}] \mathrm{ClO}_{4}$

$\mathrm{Ru}-\mathrm{Cl}(1)$	$2.435(6)$	$\mathrm{Ru}-\mathrm{O}(1)$	$1.75(1)$
$\mathrm{Ru}-\mathrm{N}(1)$	$2.23(2)$	$\mathrm{Ru}-\mathrm{N}(2)$	$2.32(3)$
$\mathrm{Ru}-\mathrm{N}(3)$	$2.27(2)$	$\mathrm{Ru}-\mathrm{N}(4)$	$2.20(2)$
$\mathrm{Cl}(1)-\mathrm{Ru}-\mathrm{O}(1)$	$175.7(8)$	$\mathrm{Cl}(1)-\mathrm{Ru}-\mathrm{N}(1)$	$92.0(5)$
$\mathrm{O}(1)-\mathrm{Ru}-\mathrm{N}(1)$	$90.9(8)$	$\mathrm{Cl}(1)-\mathrm{Ru}-\mathrm{N}(2)$	$89.5(6)$
$\mathrm{O}(1)-\mathrm{Ru} \mathrm{N}(2)$	$87.6(8)$	$\mathrm{N}(1)-\mathrm{Ru}-\mathrm{N}(2)$	$84.5(8)$
$\mathrm{Cl}(1)-\mathrm{Ru}-\mathrm{N}(3)$	$88.6(3)$	$\mathrm{O}(1)-\mathrm{Ru}-\mathrm{N}(3)$	$88.2(8)$
$\mathrm{N}(1)-\mathrm{Ru}-\mathrm{N}(3)$	$174.6(6)$	$\mathrm{N}(2)-\mathrm{Ru}-\mathrm{N}(3)$	$90.1(8)$
$\mathrm{Cl}(1)-\mathrm{Ru}-\mathrm{N}(4)$	$89.7(5)$	$\mathrm{O}(1)-\mathrm{Ru}-\mathrm{N}(4)$	$93.2(7)$
$\mathrm{N}(1)-\mathrm{Ru}-\mathrm{N}(4)$	$95.6(6)$	$\mathrm{N}(2)-\mathrm{Ru}-\mathrm{N}(4)$	$179.1(7)$
$\mathrm{N}(3)-\mathrm{Ru}-\mathrm{N}(4)$	$89.8(7)$		

Meyer ${ }^{11}$ and Mukaida ${ }^{3 c}$ and their co-workers proposed the transfer of an oxygen atom from one $\mathrm{Ru}^{\mathrm{III}}-\mathrm{NO}_{2}$ group to another to give the intermediate $[\mathrm{ClRu}-\mathrm{N}(\mathrm{O}) \mathrm{O}-\mathrm{N}(\mathrm{O})-\mathrm{O}-$ RuCl^{2+} which easily decomposes into $\left[\mathrm{Cl}-\mathrm{Ru}^{11}-\mathrm{NO}^{+}\right]^{2+}$ and $\left[\mathrm{O}=\mathrm{Ru}^{\mathrm{IV}}-\mathrm{Cl}\right]^{+}$. It is likely that a similar mechanism operates here.

Structure of trans- $\left[\mathrm{RuL}(\mathrm{O}) \mathrm{Cl}^{2} \mathrm{ClO}_{4}\right.$--Fig. 1 shows a perspective drawing of the trans $-[\mathrm{RuL}(\mathrm{O}) \mathrm{Cl}]^{+}$cation. The Ru atom has distorted octahedral co-ordination comprising four nitrogen atoms of L and the chloro and oxo ligands which are trans to each other. The Ru atom lies on the equatorial plane composed of the four N atoms such that the mean deviation of the four N atoms from the plane is $0.01(2) \AA$ and the Ru atom is displaced $0.003 \AA$ from it towards $\mathrm{O}(1)$. The respective $\mathrm{Ru}=\mathrm{O}$ and $\mathrm{Ru}-\mathrm{Cl}$ bond lengths of $1.75(1)$ and $2.435(6) \AA$ are matched closely by values of 1.765(7) and $2.505(3) \AA$ in its analogue trans $-[\mathrm{Ru}(\mathrm{tmc}) \mathrm{O}(\mathrm{Cl})]^{+} .{ }^{12}$ The configuration of the L ligand in
(a)

(b)

Fig. 2 Perspective view and atom numbering of (a) cation I, (b) cation II and (c) the two-fold disordered cation III of trans$[\mathrm{RuL}(\mathrm{OH})(\mathrm{NO})]^{2+}$. In (c), atoms representing one possible orientation of the L ligand are linked by solid lines and those representing the other orientation by broken lines
the present complex is 'three up, one down', the same as in trans- $[\mathrm{Ru}(\mathrm{tmc}) \mathrm{O}(\mathrm{Cl})]^{+}$, but different from the 'two up, two down' configuration in trans- $\left[\mathrm{RuLO}_{2}\right]^{2+} .{ }^{13}$ The crystal structure consists of a packing of discrete cations and anions with normal van der Waals separations.

Structure of trans $-[\mathrm{RuL}(\mathrm{OH})(\mathrm{NO})]\left[\mathrm{ClO}_{4}\right]_{2}$.-There are three independent trans- $[\mathrm{RuL}(\mathrm{OH})(\mathrm{NO})]^{2+}$ cations (labelled I-III) and six perchlorate anions in a crystallographic asymmetric unit of this complex. The co-ordination environment about each Ru atom can be described as a compressed

Table 4 Atomic coordinates $\left(\times 10^{4}\right)$ for trans- $[\mathrm{RuL}(\mathrm{OH})(\mathrm{NO})]\left[\mathrm{ClO}_{4}\right]_{2}$

Atom	x	y	z	Atom	x	y	z
Cation I							
$\mathrm{Ru}(1)$	426(1)	1474(1)	9 119(1)	C(5)	-748(11)	831(8)	8841 (9)
O(1)	39(4)	$1997(3)$	$9450(4)$	C(6)	-907(10)	755(7)	9437 (9)
$\mathrm{O}(2)$	$1085(5)$	709(4)	$8609(5)$	C(7)	-243(13)	674(9)	$9714(11)$
$\mathrm{N}(1)$	829(5)	$1008(3)$	$8814(4)$	C(8)	758(12)	859(9)	10 053(9)
N(2)	670(6)	1940 (4)	$8438(4)$	C(9)	$1180(11)$	1 253(7)	10371 (7)
N(3)	--514(5)	$1282(4)$	$8724(5)$	C(10)	$1259(10)$	$1718(7)$	$10113(7)$
N(4)	177(6)	$1068(4)$	$9832(4)$	C(11)	1 480(9)	2 198(6)	9412(9)
N(5)	$1354(5)$	1 705(4)	9 513(5)	C(12)	1719 (10)	2 259(7)	8 834(8)
C(1)	$1405(10)$	2015 (8)	$8397(8)$	C(13)	379(11)	2 409(7)	8471 (8)
C(2)	542(13)	1749 (8)	$7911(8)$	C(14)	- $1047(9)$	1 609(8)	8 824(9)
C(3)	-272(12)	$1701(9)$	$7855(8)$	C(15)	-170(13)	$1315(8)$	10 264(8)
C(4)	-452(10)	$1252(8)$	$8137(7)$	C(16)	1930 (8)	1441 (7)	9 407(9)
Cation II							
$\mathrm{Ru}(2)$	4 662(1)	9006 (1)	973(1)	C(21)	6033(11)	8826(9)	474(10)
$\mathrm{O}(3)$	4 696(5)	$8639(3)$	1 602(3)	C(22)	6364 (10)	9 084(8)	955(9)
$\mathrm{O}(4)$	4 593(6)	9 584(3)	45(4)	C(23)	5996 (15)	9 571(9)	$1009(14)$
N(6)	4 640(6)	9 357(3)	419(4)	C(24)	5 260(14)	9 943(11)	$1405(13)$
N(7)	$3881(6)$	8 560(5)	642(5)	C(25)	4 667(11)	$10007(8)$	1 792(9)
N(8)	$5442(6)$	8 577(4)	616(5)	C(26)	4 059(12)	9 903(8)	$1464(10)$
$\mathrm{N}(9)$	$5442(6)$	9437(4)	$1335(5)$	C(27)	3 250(11)	9 390(9)	$1119(11)$
N(10)	3 902(7)	9 410(5)	$1407(5)$	C(28)	$2952(9)$	$8957(8)$	1 034(9)
C(17)	3 367(13)	$8459(10)$	993(12)	C(29)	3641 (11)	8 674(9)	126(8)
C(18)	4 124(14)	$8073(8)$	583(11)	C(30)	5 647(10)	8 173(7)	962(9)
C(19)	4 677(12)	8 018(7)	152(9)	C(31)	5 558(14)	9357 (10)	1 893(7)
C(20)	5 225(13)	8 384(9)	115(10)	C(32)	3 733(11)	9 237(9)	$1934(8)$
Disordered cation III							
$\mathrm{Ru}(3)$	7 152(1)	6 266(1)	$2367(1)$	C(47)	6 948(16)	5 307(11)	$1822(15)$
O(5)	$6445(5)$	$5885(4)$	2 575(4)	C(48)	8389 (11)	6 087(11)	3 051(12)
O (6)	8 220(8)	$6831(6)$	2 061(7)	$\mathrm{N}\left(12^{\prime}\right)$	6463 (13)	6840 (9)	2 280(11)
N(11)	$7824(6)$	6 606(4)	2 203(5)	$\mathrm{N}\left(13^{\prime}\right)$	7 021(13)	$6055(10)$	$1532(11)$
N(12)*	$6829(11)$	$6815(8)$	2 908(9)	$\mathrm{N}\left(14^{\prime}\right)$	7849(13)	$5675(10)$	2511 (10)
N(13)	6619(12)	6 620(8)	1 698(10)	$\mathrm{N}\left(15^{\prime}\right)$	$7251(11)$	6420 (8)	3 225(10)
N(14)	7 431(10)	$5705(8)$	$1822(8)$	$\mathrm{C}\left(33^{\prime}\right)$	6694(17)	7 254(10)	2 589(12)
N(15)	7 684(8)	5 930(6)	$3017(7)$	$\mathrm{C}\left(34^{\prime}\right)$	6 356(26)	6 988(17)	$1722(13)$
C(33)	$6712(18)$	6 634(17)	3 457(12)	C(35')	6 210(22)	6664(13)	1256 (18)
C(34)	6217 (18)	7 067(18)	2 796(17)	C(36')	6 372(16)	6 151(13)	1 291(17)
C(35)	6 258(19)	7 298(14)	2 243(13)	C(37')	6977(19)	5 566(11)	$1381(19)$
C(36)	6 632(16)	7 130(9)	1743 (12)	C(38)	7 634(20)	5331 (18)	$1519(14)$
C(37)	$6941(19)$	6 540(12)	1 181(13)	C(39')	$7629(18)$	5 246(13)	2 122(13)
C(38)	6 975(16)	6 048(11)	957(14)	C(40')	$7787(19)$	5 441(12)	3 031(11)
C(39)	$7553(14)$	$5822(11)$	$1252(9)$	C(41')	7982(23)	$5806(12)$	3 448(18)
C(40)	8 082(12)	5 527(11)	1 994(11)	C(42')	$7932(14)$	6327 (12)	3 407(15)
C(41)	$8052(15)$	5 219(10)	2 493(10)	C(43')	7 267(14)	6916 (8)	3 338(12)
C(42)	7 653(16)	$5419(8)$	2 959(12)	C(44')	6619(17)	7 164(16)	3 184(13)
C(43)	7 342(13)	5 967(9)	3 536(9)	$\mathrm{C}\left(45^{\prime}\right)$	$5753(15)$	6 707(15)	2 372(17)
C(44)	$7325(17)$	6463(10)	3 751(15)	C(46')	$7521(20)$	6 196(18)	$1119(16)$
C(45)	7316 (21)	7 194(15)	3 022(21)	C(47)	8 554(15)	$5807(14)$	2 425(17)
C(46)	$5891(14)$	6491 (16)	$1707(18)$	$\mathrm{C}\left(48^{\prime}\right)$	$6762(19)$	6 204(16)	3 600(16)
Perchlorate anions							
$\mathrm{Cl}(1)$	$3174(2)$	$2379(2)$	$5125(2)$	$\mathrm{Cl}(2)$	2 733(2)	$1338(2)$	$7623(2)$
O(7)	3 061(9)	2 678(8)	4747 (11)	$\mathrm{O}(11)$	3 034(8)	989(6)	7314 (7)
$\mathrm{O}(8)$	$3795(8)$	2 267(8)	$5037(10)$	$\mathrm{O}(12)$	2326 (10)	$1087(7)$	$7981(7)$
$\mathrm{O}(9)$	$2823(15)$	$2412(12)$	5 535(11)	$\mathrm{O}(13)$	3 149(12)	1 598(6)	7 901(9)
$\mathrm{O}(10)$	$2854(14)$	$2015(10)$	5 046(12)	$\mathrm{O}(14)$	2346 (9)	$1613(6)$	7 306(7)
$\mathrm{Cl}(3)$	683(2)	$2751(2)$	$6726(2)$	$\mathrm{Cl}(4)$	$7504(2)$	114(2)	$5009(2)$
O(15)	$1284(10)$	2 575(10)	6720 (14)	$\mathrm{O}(19)$	7 206(10)	267(6)	$5468(7)$
O(16)	616(11)	$3074(7)$	$7116(8)$	O(20)	7 960(12)	-173(8)	$5130(8)$
O(17)	269(9)	$2385(5)$	$6806(6)$	$\mathrm{O}(21)$	$7169(10)$	-3(10)	4 600(11)
$\mathrm{O}(18)$	584(15)	2 923(7)	$6254(8)$	$\mathrm{O}(22)$	7850 (13)	462(10)	$4805(8)$
$\mathrm{Cl}(5)$	5061(3)	323(2)	3 401(2)	$\mathrm{Cl}(6)$	307(3)	$1231(2)$	3 696(2)
$\mathrm{O}(23)$	$5645(13)$	209(8)	3 541(13)	O(27)	305(12)	$1097(7)$	3 164(6)
O (24)	4706 (11)	259(8)	3849 (7)	O(28)	-63(12)	1 626(7)	3 785(9)
$\mathrm{O}(25)$	$4771(16)$	2(11)	3 133(9)	O(29)	31(17)	941(7)	$4007(8)$
$\mathrm{O}(26)$	5 054(11)	746(7)	3 222(11)	$\mathrm{O}(30)$	878(14)	1500 (13)	$3865(12)$

[^1]Table 5 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for trans- $[\mathrm{RuL}-$ $(\mathrm{OH})(\mathrm{NO})]\left[\mathrm{ClO}_{4}\right]_{2}$

$\mathrm{Ru}(1)-\mathrm{O}(1)$	$1.909(9)$	$\mathrm{Ru}(1)-\mathrm{N}(1)$	$1.76(1)$
$\mathrm{Ru}(1)-\mathrm{N}(2)$	$2.24(1)$	$\mathrm{Ru}(1)-\mathrm{N}(3)$	$2.23(1)$
$\mathrm{Ru}(1)-\mathrm{N}(4)$	$2.21(1)$	$\mathrm{Ru}(1)-\mathrm{N}(5)$	$2.25(1)$
$\mathrm{O}(2)-\mathrm{N}(1)$	$1.14(2)$		
$\mathrm{Ru}(2)-\mathrm{O}(3)$			
$\mathrm{Ru}(2)-\mathrm{N}(7)$	$1.910(9)$	$\mathrm{Ru}(2)-\mathrm{N}(6)$	$1.73(1)$
$\mathrm{Ru}(2)-\mathrm{N}(9)$	$2.22(1)$	$\mathrm{Ru}(2)-\mathrm{N}(8)$	$2.22(1)$
$\mathrm{O}(4)-\mathrm{N}(6)$	$2.23(1)$	$\mathrm{Ru}(2)-\mathrm{N}(10)$	$2.24(1)$
	$1.15(2)$		
$\mathrm{Ru}(3)-\mathrm{O}(5)$			
$\mathrm{Ru}(3)-\mathrm{N}(12)$	$1.90(1)$	$\mathrm{Ru}(3)-\mathrm{N}(11)$	$1.74(1)$
$\mathrm{Ru}(3)-\mathrm{N}(14)$	$2.20(2)$	$\mathrm{Ru}(3)-\mathrm{N}(13)$	$2.25(2)$
$\mathrm{Ru}(3)-\mathrm{N}\left(12^{\prime}\right)$	$2.21(2)$	$\mathrm{Ru}(3)-\mathrm{N}(15)$	$2.19(2)$
$\mathrm{Ru}(3)-\mathrm{N}\left(14^{\prime}\right)$	$2.20(3)$	$\mathrm{Ru}(3)-\mathrm{N}\left(13^{\prime}\right)$	$2.20(3)$
$\mathrm{O}(6)-\mathrm{N}(11)$	$2.27(3)$	$\mathrm{Ru}(3)-\mathrm{N}\left(15^{\prime}\right)$	$2.21(2)$
	$1.10(2)$		
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$176.6(4)$	$\mathrm{N}(2)-\mathrm{Ru}(1)-\mathrm{N}(5)$	$88.1(4)$
$\mathrm{N}(1)-\mathrm{Ru}(1)-\mathrm{N}(2)$	$91.8(4)$	$\mathrm{N}(4)-\mathrm{Ru}(1)-\mathrm{N}(5)$	$89.9(4)$
$\mathrm{N}(1)-\mathrm{Ru}(1)-\mathrm{N}(3)$	$90.9(4)$	$\mathrm{Ru}(1)-\mathrm{N}(1)-\mathrm{O}(2)$	$179(1)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{N}(4)$	$88.8(4)$	$\mathrm{Ru})$	
$\mathrm{N}(2)-\mathrm{Ru}(1)-\mathrm{N}(4)$	$175.1(4)$	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{N}(2)$	$86.6(4)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{N}(5)$	$85.4(4)$	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{N}(3)$	$92.1(4)$

octahedron with the hydroxide and nitrosyl ligands aligned in the short axial direction. The Ru atom in each cation is displaced by $0.01(1)-0.07(1) \AA$ from the mean plane of the four equatorial N atoms towards the nitrosyl ligand. The $\mathrm{Ru}-\mathrm{N}$ (macrocycle) bonds varying over a narrow range of 2.19-2.27 \AA [average $2.22(2) \AA$] are typical of those found in other ruthenium macrocyclic amine complexes. ${ }^{13,14}$ The $\mathrm{Ru}-\mathrm{O}$ distances in the three cations are $1.909(9), 1.910(9)$ and $1.90(1) \AA$ respectively, and the average length of $1.906(9) \AA$ is comparable to that $[1.910(3) \AA]$ of the $\mathrm{Ru}-\mathrm{OH}$ bond in trans$\left[\mathrm{Ru}(\mathrm{py})_{4}(\mathrm{OH})(\mathrm{NO})\right]^{2+}(\mathrm{py}=\text { pyridine })^{3 d}$ but shorter than those in trans- $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{OH})(\mathrm{NO})\right]^{2+}(1.961 \AA),{ }^{10} \mathrm{Na}_{2}[\mathrm{Ru}-$ $\left.\left(\mathrm{NO}_{2}\right)_{4}(\mathrm{OH})(\mathrm{NO})\right](1.950 \AA)^{15}$ and $\left[\mathrm{Ru}\left(\mathrm{NO}_{2}\right)_{2}\left(\mathrm{NH}_{3}\right)_{2}(\mathrm{OH})-\right.$ (NO) $](1.945 \AA) .{ }^{16}$ As in the case of $\operatorname{trans}-\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{OH})-\right.$ (NO) $]^{2+}$ and trans- $\left[\mathrm{Ru}(\mathrm{py})_{4}(\mathrm{OH})(\mathrm{NO})\right]^{2+}$ the $\mathrm{Ru}-\mathrm{NO}$ unit is essentially linear. The average $\mathrm{Ru}-\mathrm{N}(\mathrm{NO})$ distance is $1.74 \AA$, which is comparable to those found in other ruthenium nitrosyl complexes. The L ligands in the three cations exhibit different configurations. As illustrated in Fig. 2, three N-methyl groups are cis to the $\mathrm{Ru}-\mathrm{O}$ bond in cations I and II so that the L ligand assumes the 'three up, one down' configuration. On the other hand, the two-fold disordered L ligand in cation III adopts the 'two up, two down' configuration [Fig. 2(c)]. The observed disorder of cation III may be described in terms of two equally
populated orientations related by an approximately 90° rotation about their common $\mathrm{O}-\mathrm{Ru}-\mathrm{NO}$ axis.
The crystal structure consists of a packing of discrete cations and anions with normal van der Waals separations except for two short $\mathrm{O} \cdots \mathrm{O}$ distances $[\mathrm{O}(1) \cdots \mathrm{O}(8) 2.96(2)$ and $\mathrm{O}(3) \cdots \mathrm{O}(17) 3.03(2) \AA$] which are indicative of hydrogen bonding between the hydroxyl ligand $[O(1)$ and $O(3)]$ and the oxygen atoms of the perchlorate groups $[O(8)$ and $O(17)]$.

Acknowledgements

We acknowledge support from the University of Hong Kong, the Chinese University of Hong Kong and the Hong Kong Research Grants Council. C.-M. C. thanks the Microanalytical Service Unit at the Chemistry Department of National Taiwan University.

References

1 W. R. Murphy, jun., K. Takeuchi, M. H. Barley and T. J. Meyer, Inorg. Chem., 1986, 25, 1041; J. N. Armor and M. Z. Hoffman, Inorg. Chem., 1975, 14, 444.
2 R. A. Leising and K. J. Takeuchi, J. Am. Chem. Soc., 1988, 110, 4079; L. F. Szczepura and K. J. Takeuchi, Inorg. Chem., 1990, 29, 1772.

3 (a) H. Nagao, M. Mukaida, K. Shimizu, F. S. Howell and H. Kakihana, Inorg. Chem., 1986, 25, 4312; (b) H. Nagao, F. S. Howell, M. Mukaida and H. Kakihana, J. Chem. Soc., Chem. Commun., 1987, 1618; (c) H. Nagao, H. Nishimura, Y. Kitanaka, F. S. Howell, M. Mukaida and H. Kakihana, Inorg. Chem., 1990, 29, 1693; (d) H. Nishimura, H. Matsuzawa, T. Togano, M. Mukaida, H. Kakihana and F. Bottomley, J. Chem. Soc., Dalton Trans., 1990, 137.
4 C. M. Che, K. Y. Wong and C. K. Poon, Inorg. Chem., 1986, 25, 1809.
5 R. Diamond, Acta Crystallogr., Sect. A, 1969, $25,43$.
6 G. Kopfmann and R. Huber, Acta Crystallogr., Sect. A, 1968, 24, 348.
7 G. M. Sheldrick, in Crystallographic Computing 3: Data Collection, Structure Determination, Proteins and Databases, eds. G. M. Sheldrick, C. Kruger and R. Goddard, Oxford University Press, New York, 1985, pp. 175-189.
8 International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4, pp. 55, 99, 149.
9 C. M. Che, T. F. Lai and K. Y. Wong, Inorg. Chem., 1987, 26, 2289.
10 A. F. Schreiner, S. W. Lin, P. J. Hauser, E. A. Hopcus, D. J. Hamm and J. D. Gunter, Inorg. Chem., 1972, 11, 880.
11 F. R. Keene, D. J. Salmon, J. L. Walsh, H. D. Abruna and T. J. Meyer, Inorg. Chem., 1980, 19, 1896.
12 C. M. Che, K. Y. Wong and T. C. W. Mak, J. Chem. Soc., Chem. Commun., 1985, 988.
13 T. C. W. Mak, C. M. Che and K. Y. Wong, J. Chem. Soc., Chem. Commun., 1985, 986.
14 D. D. Walker and H. Taube, Inorg. Chem., 1981, 20, 2828.
15 S. H. Simonsen and M. H. Mueller, J. Inorg. Nucl. Chem., 1965, 27, 309.

16 T. S. Khodashova, V. S. Vergienko and M. A. Porai-Koshits, J. Struct. Chem., 1971, 12, 439.

Received 30th September 1991; Paper 1/05019B

[^0]: \dagger Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1992, Issue 1, pp. xx-xxv.

[^1]: * The two-fold disordered ligand in cation III was treated as $\mathrm{N}(12)-\mathrm{C}(48)$ and $\mathrm{N}\left(12^{\prime}\right)-\mathrm{C}\left(48^{\prime}\right)$, each of half site occupancy.

