The Reaction of Cyclooctatetraene with $[RuCl(H)(PPh_3)_3]^{\dagger}$

Giuseppe Alibrandi and Brian E. Mann*

Department of Chemistry, The University, Sheffield S3 7HF, UK

It has been shown that $[RuCl(H)(PPh_3)_3]$ reacts with cyclooctatetraene to give three isomers, which are characterised by ¹H, ¹³C and ³¹P NMR spectroscopy to be two isomers of $[Ru(\eta^5-C_8H_9)Cl(PPh_3)_2]$ and $\{(2,3,4,5,6-\eta)$ -bicyclo[5.1.0]octadienyl}chlorobis(triphenylphosphine)ruthenium(II). The interconversion of the two isomers of the $(1,2,3,4,5-\eta)$ -C₈H₉ derivative and the generation of an apparent plane of symmetry by exchange in the bicyclo[5.1.0]octadienyl derivative has been investigated quantitatively.

The reaction of dienes and trienes with $[RuCl(H)(PPh_3)_3]$ have been studied in order to investigate the mechanism of addition of this very active hydrogenation catalyst to unsaturated molecules.¹ The product is stabilised by co-ordination of the double bonds to the ruthenium. Thus when $[RuCl(H)(PPh_3)_3]$ is treated with cycloheptatriene $[Ru(\eta^5-C_7H_9)Cl(PPh_3)_2]$ 1 is quantitatively formed.² When penta-1,4-diene is used $[Ru(\eta^3-1$ *anti* $-EtC_3H_4)Cl(PPh_3)_2]$ 2 is initially formed, but this reacts with more penta-1,4-diene to give $[Ru(\eta^5-C_5H_7)Cl(PPh_3)_2]$ 3 and then $[Ru(\eta^5-C_5H_5)Cl(PPh_3)_2]$ 4, see Scheme 1.³

In the present work the reaction of $[RuCl(H)(PPh_3)_3]$ with cyclooctatetraene is examined. There have been a number of studies of the reactions of cvclooctatetraene when co-ordinated to iron or ruthenium. The principal reaction has been the protonation of cyclooctatetraene. The protonation of $[Ru(\eta^4 C_8H_8$)(CO)₃] yields {(2,3,4,5,6- η)-bicyclo[5.1.0]octadienyl}tricarbonylruthenium(1 +), which then isomerises to either the $(1,2,3,4,7-\eta)$ - or $(1,2,3,6,7-\eta)$ -C₈H₉ derivative.⁴ Similarly, protonation of $[Ru(\eta^4-C_8H_8)(CO)_2(PPh_3)]$ yields the $(1,2,3,6,7-\eta)-C_8H_9$ monocation.^{4,5} The analogous iron compound [Fe(η^4 -C₈H₈)(CO)₃] is protonated to give the (1,2,3,4,5- η)-C₈H₉ monocation as the initial product, which then isometrises to $\{(2,3,4,5,6-\eta)\)$ -bicyclo[5.1.0]octadienyl $\}$ tricarbonyliron(1 +).⁶ If hydrogen chloride is used as the acid, then protonation of $[M(\eta^4-C_8H_8)(CO)_3]$ (M = Fe or Ru) yields the tricarbonylchloro[(1,2,3-n)-cyclooctatrienyl]metal compounds.⁷ Protonation of $[Ru(\eta^4-C_8H_8)(\eta^6-arene)]$ (arene = 1,3,5-Me₃C₆H₃, C₆Me₆ or C₆H₅Bu^t yields initially the $(1,2,3,4,5-\eta)$ -C₈H₉ monocations which in the cases of arene = $1,3,5-Me_{3}C_{6}H_{3}$ or $C_{6}Me_{6}$, isomerises to the $(1,2,3,6,7-\eta)-C_{8}H_{9}$ monocations.⁸ The reaction is not restricted to the addition of H^+ to the cyclooctatetraene ring. Recently, $[Fe{P(OMe)_3}]$ - $(NO)_2(\eta^3-allyl)]^+$ (allyl = CH₂CHCH₂ or CH₂CMeCH₂) has been used as a source of $[allyl]^+$ to add to $[Ru(\eta^4 C_8H_8)(CO)_2L$] (L = CO or PPh₃) to yield the (1,2,3,6,7- η)- C_8H_9 monocations and to [Fe(η^4 - C_8H_8)(CO)₂(CNBu¹)] to yield a mixture of the $(1,2,3,4,5-\eta)-C_8H_9$ monocation and {(2,3,4,5,6-η)-bicyclo[5.1.0]octadienyl}(tert-butylisocyanide)dicarbonyliron(1 +). Electrochemical oxidation of [Ru- $(\eta^4 - C_8 H_8)(CO)_2(PPh_3)$] yields the corresponding dimer containing $(1,2,3,6,7-\eta;1',2',3',6',7'-\eta')-C_{16}H_{16}^{5}$ This reaction contrasts with the dimerisation of $[Fe(\eta^4-C_8H_8)(CO)_3]$ to yield bis{(2,3,4,5,6-n)-bicyclo[5.1.0]octadienyl}hexacarbonyldiiron(1 +).¹⁰ The insertion of cyclooctatetraene into a ruthenium-silicon bond is known in the case of cis-[Ru(Si- $Me_{3}_{2}(CO)_{4}$, where treatment with cyclooctatetraene in refluxing hexane yields dicarbonyl(trimethylsilyl)[(1,2,3,6,7-η)-

Scheme 1 Reaction of penta-1,4-diene with $[RuCl(H)(PPh_3)_3]$. (*i*) Penta-1,4-diene

trimethylsilylcyclooctatrienyl]ruthenium(II).¹¹ Clearly the reactions of cyclooctatetraene at an iron or ruthenium centre is complex with possible products containing the $(1,2,3,4,5-\eta)$ -C₈H₈R, $(1,2,3,6,7-\eta)$ -C₈H₈R or $(2,3,4,5,6-\eta)$ -bicyclo[5.1.0]-octadienyl) metal centres.

Results and Discussion

The complex [RuCl(H)(PPh₃)₃] in CD₂Cl₂ was treated with cyclooctatetraene at -78 °C and then warmed to room temperature, and the subsequent reaction monitored by 162 MHz ³¹P NMR spectroscopy. The broad signal due to [RuCl-(H)(PPh₃)₃] decreased and new broad signals centred around δ 28 appeared. On cooling to -60 °C the ³¹P NMR signals sharpened and three AX patterns were resolved at δ 33.1 and 25.5, ²J(³¹P-³¹P) = 22 Hz, δ 31.9 and 19.0, ²J(³¹P-³¹P) = 24 Hz and δ 29.4 and 26.9, ²J(³¹P-³¹P) = 26 Hz, in the ratio 0.45 : 0.41 : 1.00 due to isomers **5a**, **5b** and **5c**. The signals are

 $[\]dagger$ Non-SI unit employed: cal = 4.184 J.

Fig. 1 The 1 H and 13 C NMR chemical shifts of the C₈H₉ ligand in isomer 5c

Fig. 2 The 1H and ^{13}C NMR chemical shifts of the C_8H_9 ligand in isomer 5b

Fig. 3 The probable structures of isomers 5b and 5c

Scheme 2 The interconversion of isomers 5b and 5c

Scheme 3 The interconversion of isomers 5c and 5c'

quite temperature dependent with the corresponding shifts at -19.5 °C being δ 32.8 and 26.2, 31.6 and 19.9 and 29.6 and 25.9. On account of the marked temperature dependence of the chemical shift of the low-frequency reference of isomer 5c, there is overlap with the low-frequency signal due to isomer 5a at around -30 °C.

Magnetisation transfer was carried out at -19.5 °C, using ³¹P DANTE measurements. The signals at δ 32.8, 31.6, 29.6 and 19.9 were sequentially inverted. No magnetisation transfer was detected between isomer **5a** and either **5b** or **5c**. Magnetisation transfer was observed between the two inequivalent PPh₃ ligands of isomer **5a**, with a rate of 50 s⁻¹, corresponding to $\Delta G^{\ddagger}_{253.5} = 12.8$ kcal mol⁻¹, and between all the remaining four PPh₃ signals. If these sites are labelled 1–4 at δ 31.6, 19.9, 29.6 and 25.9, respectively, then due to the symmetry of the system, $k_{13} = k_{24}$ and $k_{14} = k_{23}$. This treatment gave $k_{12} = 0.27$ s⁻¹, $k_{13} = k_{24} = 0.41$ s⁻¹, $k_{14} = k_{23} = 31.11$ s⁻¹ and $k_{34} = 3.34$ s⁻¹, with an error of 0.490. When k_{12} , $k_{13} = 3.80$ s⁻¹, with an error of 0.495. If k_{34} is also set equal to 0, then the error increases to 1.561, showing that this assumption is not justified. It is

therefore concluded that k_{14} , k_{23} and k_{34} are significant, corresponding to $\Delta G^{\ddagger}_{253,5} = 13.0$ kcal mol⁻¹ for $1 \longrightarrow 4$ and $2 \longrightarrow 3$ and 14.1 kcal mol⁻¹ for $3 \longleftrightarrow 4$. No reliable values can be attached to k_{12} , k_{13} or k_{24} but these rate constants must be small, and an upper value of 1 s^{-1} can be given corresponding to an upper value of $\Delta G^{\ddagger}_{253,5} = 14.7$ kcal mol⁻¹. Phosphorus-31 magnetisation-transfer measurements were also performed at 0 °C, to examine if there is any significant exchange between **5b/5c** and **5a**. None was detected, placing an upper limit of 2 s^{-1} for exchange from **5b/5c** to **5a**. Hence the activation energy for the conversion is greater than 15.5 kcal mol⁻¹. In order to explain these data it is necessary to determine the structures of isomers **5a-5c**.

The structures were determined by a combination of ¹H and ¹³C NMR spectroscopy. At -60 °C, decoupling difference ¹H NMR spectroscopy was used to determine the sequence of hydrogen signals around each C₈H₉ ring. For the major isomer, 5c, the problem was complicated by the accidental degeneracy of two signals at δ 4.91. Decoupling difference established the connectivity permitting the assignment in Fig. 1(a). These ${}^{1}H$ nuclei were related to the attached ¹³C nuclei by a twodimensional ¹³C-{¹H} correlation spectrum and the assignments are given in Fig. 1(b). These measurements establish that two adjacent carbon nuclei which have chemical shifts in the range expected for sp² nuclei at δ 122.5 and 127.6 are attached to the protons at δ 5.21 and 4.90 respectively. This permits the unambiguous positioning of the unco-ordinated carbon atoms within the ring and hence the determination of the structure as the $(1,2,3,4,5-\eta)$ -C₈H₉ isomer. This is in contrast with dicarbonyl[(1,2,3,6,7-n)-cyclooctatrienyl](trimethylsilyl)ruthenium(II).11

The ³¹P magnetisation measurements have established chemical exchange between isomers 5c and 5b. Hence, qualitative ¹H magnetisation-transfer measurements at -25 °C were used to establish the ${}^{1}H-{}^{1}H$ connectivity between 5b and 5c. In addition, decoupling difference was used to establish coupling connectivity within 5b. The ¹H NMR assignments are given in Fig. 2(*a*). These ¹H nuclei were related to the attached ¹³C nuclei by a two-dimensional ¹³C-{¹H} correlation spectrum and the assignments are given in Fig. 2(b). The position of the unco-ordinated double bond and dienyl moiety are identical to that in 5c, but the chemical shifts of the dienyl are significantly different. The carbon which shows the large coupling to ³¹P has moved from one end of the dienyl to the other. By analogy with $[Ru(\eta^5-C_7H_9)Cl(PPh_3)_2]$, it is proposed that the two isomers are as given in Fig. 3. The ³¹P NMR spectrum of $[Ru(\eta^5-C_7H_9)Cl(PPh_3)_2]$ shows that the PPh₃ groups are inequivalent. The $J(^{31}P^{-13}C)$ coupling to the ^{13}C NMR signals at δ 53.0 and 99.3 for **5b** and δ 58.4 and 97.4 for 5c is consistent with trans-PPh₃ groups. The ¹³C chemical shifts are also consistent with the relative trans influence of the PPh₃ and Cl ligands.

Examination of the ¹H chemical shifts of isomers **5b** and **5c** shows the danger of assigning structures from NMR spectra without a CH correlation measurement. The ¹H NMR spectra are equally consistent with a $(1,2,5,6,7-\eta)$ -C₈H₉ bonding arrangement. It is only when the connectivity has been established by ¹H decoupling and the ¹³C NMR signals have been assigned by CH correlation that it is possible unambiguously to assign the structure.

The interconversion of isomers **5b** and **5c** occurs by rotation of the RuCl(PPh₃)₂ moiety with respect to the η^5 -C₈H₉ ligand, see Scheme 2. This mechanism is established for the analogous [Ru(η^5 -C₇H₉)Cl(PPh₃)₂] derivative.² The mechanism which interconverts the inequivalent PPh₃ ligands in **5c** produces pairwise exchange between the signals at δ 5.89 and 1.31, 4.91 and 5.21, and 4.90 and 3.17. This is consistent with the exchange shown in Scheme 3. Possible intramolecular processes which are consistent with this exchange are either *via* [Ru(η^7 -C₈H₉)-(PPh₃)₂]⁺ or chloro[(3,4,5- η)-cyclooctatrienyl]bis(triphenylphosphine)ruthenium(II).

Fig. 4 The ¹H and ¹³C NMR chemical shifts of the C_8H_9 ligand in isomer 5a

Fig. 5 The probable structure of isomer 5a

The ¹H NMR spectrum of the third isomer, **5a** was assigned by a combination of decoupling difference and magnetisationtransfer measurements, see Fig. 4(*a*). The dynamic process which causes exchange of the PPh₃ ³¹P NMR signals causes pairwise exchange across the ring, exchanging the pairs of protons at δ 3.48 and 4.77, 1.13 and 4.36 and -0.16 and 0.47. The ¹H NMR signals were related to the ¹³C NMR signals by a two-dimensional ¹³C-{¹H} correlation experiment, and this is the basis of the assignments given in Fig. 4(*b*).

The position of the RuCl(PPh₃)₂ fragment with respect to the organic bicyclo[5.1.0]octadienyl ligand was deduced from $J({}^{31}P{}^{-13}C)$, which is large when the PPh₃ is *trans* to the carbon atom. The probable structure of isomer **5a** is given in Fig. 5. The ${}^{13}C$ chemical shifts are consistent with the relative *trans* influence of Cl and PPh₃. The exchange of the two inequivalent PPh₃ groups and pairwise proton exchange is consistent with the rotation of the RuCl(PPh₃)₂ moiety.

There have been a number of preparations of compounds containing the η^5 -C₈H₉ ligand involving protonation of the η^4 -C₈H₈ ligand, yielding a wide selection of products. Many of the published reactions have relied on ¹H NMR data for elucidation of the structure. In the present work it is clear that the structures of **5b** and **5c** could not have been reliably determined by ¹H NMR spectroscopy alone, and so published structures relying purely on such data must be viewed with caution.

In the present work the addition of cyclooctatetraene to $[RuCl(H)(PPh_3)_3] \text{ yields both } [Ru(\eta^5 - C_8H_9)Cl(PPh_3)_2], \\ two \text{ isomers, and } \{(2,3,4,5,6-\eta)\text{-bicyclo}[5.1.0]\text{ octadienyl}\}.$ chlorobis(triphenylphosphine)ruthenium(II). The ratio of the compounds is approximately constant. As the (1,2,3,4,5-η)- C_8H_9 metal compounds {'metal' = [Fe(CO)_3]^+ or [Ru(η^6 arene)]⁺, arene = 1,3,5-Me₃C₆H₃ or C₆Me₆} isomerise to the $(1,2,3,6,7-\eta)$ -C₈H₉ derivatives it is probable that in the case when 'metal' = $RuCl(PPh_3)_2$ a similar isomerisation occurs. The ratio observed for 5a:5b:5c is independent of whether the reaction between cyclooctatetraene and [RuCl(H)(PPh₃)₃] has been stopped before completion, or has been allowed to continue for several hours at room temperature. It is therefore probable that the rate of isomerisation of $[Ru(\eta^5-C_8H_9) Cl(PPh_3)_2$] to the (2,3,4,5,6- η)-bicyclo[5.1.0]octadienyl compound is faster than the formation of the former from cyclooctatetraene and $[RuCl(H)(PPh_3)_3]$, and the product ratio reflects an equilibrium between the isomers. At 20 °C the half-life of the reaction between cyclooctatetraene and $[RuCl(H)(PPh_3)_3]$ is only a few minutes, giving an upper limit to the activation energy of the interconversion of the (1,2,3,4,5)- η)-C₈H₉ and (2,3,4,5,6- η)-bicyclo[5.1.0]octadienyl derivatives as 21 kcal mol⁻¹. Magnetisation-transfer measurements have established a lower activation energy for this process of 15.5 kcal mol⁻¹. It is clear from this and earlier work that there are only very small energy differences between the co-ordination modes of the η^{5} -C₈H₉ ligand.

Experimental

The NMR spectra in CD_2Cl_2 were measured on a Bruker WH400 spectrometer. The temperatures were measured using a Comark electronic thermometer, by replacing the sample with an NMR tube containing a thermocouple in CH_2Cl_2 . Carbon-13 chemical shifts were referenced to the central resonance of CD_2Cl_2 at δ 53.6, ³¹P chemical shifts were determined relative to external 85% H₃PO₄.

The following experimental procedure was employed to carry out the DANTE¹² measurements. A suitable temperature was chosen so that there was a little line broadening due to exchange. After the spectrometer had stabilised at that temperature, the T_1 values of the P(OMe)₃ groups were estimated using the $10D_1 - \pi - D_1 - \frac{\pi}{2}$ pulse sequence, adjusting the delay, D_1 , for null signal. Subsequently the relaxation delay was taken as $10D_1$. The DANTE pulse length was optimised for maximum signal inversion. The measurements were carried out using the pulse sequence: {[read free induction decay (f.i.d.)-{ $10D_1$ - $(D_2-P_1)_{30}-D_3-\frac{\pi}{2}$ -acquire}₈-write f.i.d.-change $D_3]_m$ -reset exchange delay, D_3 , with m typically 10 and n chosen to give adequate signal: noise ratio. Typical values are $D_1 = 3$ s, $D_2 =$ 0.2 ms, $P_1 = 2.8 \,\mu\text{s}$, $D_3 = m$ values with the minimum being 3 μ s and the largest 10D₁, and $\frac{\pi}{2}$ pulse = 40.0 μ s. The remaining times were chosen to give a spread over the exchange and relaxation times, typically: 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2 and 0.4 s. This sequence has the advantage that any temperature drift during the experiment will be spread over all the measurements. The resulting data were analysed as previously described.13

The complex [RuCl(H)(PPh₃)₃] was prepared following established procedures.¹⁴ The cyclooctatetraene, purchased from Aldrich, was purified by passage through alumina shortly before use. The NMR solutions were prepared by taking [RuCl(H)(PPh₃)₃] (ca. 50 mg) in a Schlenk tube, and adding degassed CD₂Cl₂ (ca. 0.3 cm³). A syringe was used to transfer the solution to a nitrogen-filled 5 mm NMR tube fitted with a B10 socket and subaseal. The tube was immersed in liquid nitrogen. A solution of cyclooctatetraene (50 µl) in degassed CD_2Cl_2 (ca. 0.1 cm³) was added. When the solution had frozen the tube was transferred to a solid CO_2 -acetone bath at -78 °C and the contents mixed by shaking. The tube was then brought slowly to room temperature, and the reaction observed as the violet solution of $[RuCl(H)(PPh_3)_3]$ was consumed and the yellow-brown products formed. The tube was then placed in the probe.

Acknowledgements

B. E. M. thanks the SERC for financial support.

References

- 1 See, for example, B. R. James, Adv. Organomet. Chem., 1979, 17, 323 and refs. therein.
- 2 M. Grassi, B. E. Mann, P. Manning and C. M. Spencer, J. Organomet. Chem., 1986, 307, C55.
- 3 B. E. Mann, P. Manning and C. M. Spencer, J. Organomet. Chem., 1986, 312, C64.
- 4 M. Cooke, P. T. Draggett, M. Green, B. F. G. Johnson, J. Lewis and D. J. Yarrow, *Chem. Commun.*, 1971, 621.
- 5 N. G. Connelly, P. G. Graham and J. B. Sheridan, J. Chem. Soc., Dalton Trans., 1986, 1619.
- 6 M. Brookhart, E. R. Davis and D. L. Harris, J. Am. Chem. Soc., 1972, 94, 7853; A. Davison, W. McFarlane, L. Pratt and G. Wilkinson, J. Chem. Soc., 1962, 4821; J. D. Holmes and R. Pettit, J. Am. Chem. Soc., 1963, 85, 2531.

- 7 A. D. Charles, P. Diversi, B. F. G. Johnson and J. Lewis, J. Organomet. Chem., 1976, 116, C25.
 8 M. A. Bennett, T. W. Matheson, G. B. Robertson, A. K. Smith and D. A. E. Diversion, A. K. Smith and D. A. Standard, C. S. Standard, S. S. Standard, C. S. Standard, S. Standar
- P. A. Tucker, Inorg. Chem., 1981, 20, 2353.
- 9 N. G. Connelly, M. Gilbert, A. G. Orpen and J. B. Sheridan, J. Chem.
- Soc., Dalton Trans., 1990, 1291.
 N. G. Connelly, R. L. Kelly, M. D. Kitchen, R. M. Mills, R. D. F. Stansfield, M. W. Whitley and P. Woodward, J. Chem. Soc., Dalton Trans., 1981, 1317.
- 11 P. J. Harris, J. A. K. Howard, S. A. R. Knox, R. J. McKinney, R. P. Phillips, F. G. A. Stone and P. Woodward, J. Chem. Soc., Dalton Trans., 1978, 403.
- 12 G. A. Morris and R. Freeman, J. Magn. Reson., 1978, 29, 433.
- 13 M. Grassi, B. E. Mann, B. T. Pickup and C. M. Spencer, J. Magn. Reson., 1986, **69**, 92. 14 R. A. Schunn and E. R. Wonchoba, *Inorg. Synth.*, 1972, **13**, 131.

Received 14th November 1991; Paper 1/05771E