Reactions of Bis(phosphido)-bridged Dimanganese Complexes with Alkynes and Allene*

Ljubica Manojlović-Muir, ${ }^{\boldsymbol{a}}$ Martin J. Mays, ${ }^{\boldsymbol{b}}$ Kenneth W. Muir ${ }^{\boldsymbol{a}}$ and Kevan W. Woulfe ${ }^{\boldsymbol{b}}$
${ }^{a}$ Department of Chemistry, University of Glasgow, Glasgow G12 800, UK
${ }^{\text {b }}$ University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK

Abstract

The photolytic reactions of $\left[\mathrm{Mn}_{2}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{PPh})(\mathrm{CO})_{8}\right](R=P h 1 \mathrm{a}$ or Me 1 b$)$ with acetylene and of 1 a with allene have been studied. Although they are highly non-specific, a number of products have been isolated and characterised which contain new ligands derived from the combination of one of the bridging phosphido groups with acetylene or with allene. The reactions can involve the breaking of one or both of the bonds between the metal atoms and the bridging group. Thus the complexes [$M n_{2}\left(\eta^{4}-C_{4} H_{4} P P h R\right)$ -$\left.\left(\mu-P P h R^{\prime}\right)(C O)_{6}\right]\left(R=R^{\prime}=P h 2 a ; R=P h, R^{\prime}=M e 2 b ; R=M e, R^{\prime}=P h 2 c\right.$), containing quaternised phosphole ligands, and $\left[\mathrm{Mn}_{2}\left(\mu-\sigma: \eta^{4}-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{5}\right] 3$ are obtained in the reactions of 1 a and 16 with acetylene. The complexes $\left[\mathrm{Mn}_{2}\left(\mu-\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{7}\right] 4$ and $\left[\mathrm{Mn}_{2}\left(\mu-\eta^{3}-\mathrm{C}_{6} \mathrm{H}_{8} P \mathrm{Ph}_{2}\right)\right.$ -$\left.\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{6}\right] 5$, containing ligands derived respectively from the combination of one and two allene molecules with a phosphido group, are obtained in the reaction of 1 a with allene. Singlecrystal X-ray analyses of the molecular structures of 2c, 4 and 5 have been performed, and some reaction pathways are proposed and discussed.

Bridging phosphido ligands can inhibit the fragmentation of diand poly-nuclear metal complexes in the reactions of such species with unsaturated organic molecules. ${ }^{1}$ On the other hand phosphido bridges are by no means always inert and can participate in reactions of this type themselves, often with phosphorus-carbon bond formation. ${ }^{2-9}$ We have previously investigated the reactivity of phosphido-bridged dimanganese complexes and have observed phosphorus-carbon bond formation in some of the products arising from the reactions of $\left[\mathrm{Mn}_{2}(\mu-\mathrm{CRCHR})\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{7}\right](\mathrm{R}=\mathrm{Ph}$ or H$)$ with nucleophiles. ${ }^{10}$ A phosphorus-carbon bond is also formed in one of the products obtained from the reaction of $\left[\mathrm{Mn}_{2}(\mu-\mathrm{H})(\mu-\right.$ $\left.\mathrm{PPh}_{2}\right)(\mathrm{CO})_{8}$] with buta-1,3-diene. ${ }^{11}$
In order to focus upon this particular type of reaction in manganese chemistry we have now examined the reactions with alkynes and with allene of the dinuclear complexes $\left[\mathrm{Mn}_{2}(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2}\right)(\mu-\mathrm{PPhR})(\mathrm{CO})_{8}\right](\mathrm{R}=\mathrm{Ph}$ or Me$)$ which contain phosphido groups as the only bridging ligands, since if other bridging ligands are present they are usually the more reactive centres. ${ }^{12,13}$ A preliminary account of part of this work has been given. ${ }^{14}$

Results and Discussion

(a) Reaction of $\left[\mathrm{Mn}_{2}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{PPhR})(\mathrm{CO})_{8}\right](\mathrm{R}=\mathrm{Ph} 1 \mathbf{1 a}$ or Me 1b) with $\mathrm{C}_{2} \mathrm{H}_{2}$. -The passage of a slow stream of acetylene gas through a toluene solution of $\left[\mathrm{Mn}_{2}\left(\mu-\mathrm{PPh}_{2}\right)_{2^{-}}\right.$ $(\mathrm{CO})_{8}$] 1 a for 15 h at 363 K did not result in any reaction and $\mathbf{1 a}$ was recovered in quantitative yield. On the other hand the UV irradiation of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of 1 a for 5 h at room temperature gave at least nine products, all in low yield, and no starting material remained. It has proved possible to characterise only two of these products, $\left[\mathrm{Mn}_{2}\left(\eta^{4}-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{PPh}_{2}\right)(\mu\right.$ $\left.\left.\mathrm{PPh}_{2}\right)(\mathrm{CO})_{6}\right] \mathbf{2 a}\left(13 \%\right.$ yield) and $\left[\mathrm{Mn}_{2}\left(\mu-\sigma: \eta^{4}-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{PPh}_{2}\right)(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2}\right)(\mathrm{CO})_{5}\right] \mathbf{3}$ (22\% yield). Infrared, ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectra for them are given in Table 1; their molecular structures have been determined by single crystal X-ray analyses and were

[^0]
reported in the preliminary communication. ${ }^{14}$ The formation of [$\mathrm{Mn}_{2}\left(\eta^{4}-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{6}$] 2a in the reaction is significant in that it represents the only reported case in manganese chemistry in which both metal-phosphorus bonds of a bridging phosphido group are cleaved in a chemical reaction. A related dinuclear cobalt complex, $\left[\mathrm{Co}_{2}\left\{\mu-\eta^{2}: \eta^{\prime 2}\right.\right.$. $\left.\left.\mathrm{C}_{4}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{4} \mathrm{PPh}_{2}\right\}\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right]$, is formed in the thermal reaction of $\left[\mathrm{Co}_{3}\left(\mu-\mathrm{PPh}_{2}\right)_{3}(\mathrm{CO})_{6}\right]$ with dimethyl acetylenedicarboxylate. ${ }^{14}$

The $\mu-\sigma: \eta^{4}-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{PPh}_{2}$ ligand in complex 3 is presumably formed by a double insertion of acetylene into a metalphosphorus bond of one of the bridging phosphido groups in 1.

Table 1 Infrared and ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR data for the dimanganese complexes

Compound	$\mathrm{v}(\mathrm{CO})^{\mathrm{a}} / \mathrm{cm}^{-1}$	${ }^{1} \mathrm{H}$ NMR ${ }^{\text {b }}$	${ }^{31} \mathrm{P}$ NMR
2a $\left[\mathrm{Mn}_{2}\left(\eta^{4}-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{6}\right]$	$\begin{aligned} & \text { 2047s, 1973(sh), } \\ & \text { 1953(br), 1933(sh) } \end{aligned}$	7.9-7.1 (m, $20 \mathrm{H}, \mathrm{Ph}), 4.60\left[\mathrm{dd},{ }^{3} J(\mathrm{PH})\right.$ $18.6,{ }^{3} J(\mathrm{HH}) 2.4,2 \mathrm{H}, \mathrm{CHCHPPh}{ }_{2}$], 2.00 [dd, ${ }^{2} J(\mathrm{PH})$ 19.1, $2 \mathrm{H}, \mathrm{CHCHPPh}{ }_{2}$]	$\begin{aligned} & 58.9\left(\mathrm{~s}, \mu-\mathrm{PPh}_{2}\right), \\ & -103.1\left(\mathrm{~s}, \eta^{4}-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{PPh}_{2}\right) \end{aligned}$
2b $\left[\mathrm{Mn}_{2}\left(\eta^{4}-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{PPh}_{2}\right)(\mu-\mathrm{PPhMe})(\mathrm{CO})_{6}\right]$	$\begin{aligned} & \text { 2047, 1995(sh), } \\ & \text { 1972(sh), 1952(br), } \\ & \text { 1932(sh) } \end{aligned}$	$\left.\begin{array}{l} 7.9-7.3(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ph}), 4.64\left[\mathrm{dd},{ }^{3} J(\mathrm{PH})\right. \\ 17.7,{ }^{3} J(\mathrm{HH}) 1.3,2 \mathrm{H}, \mathrm{C} H \mathrm{CHPPh} \\ 2 \end{array}\right],{ }^{2} .$	$\begin{aligned} & 54.2(\mathrm{~s}, \mu-\mathrm{PPhMe}), \\ & -99.9\left(\mathrm{~s}, \eta^{4}-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{PPh}_{2}\right) \end{aligned}$
2c $\left[\mathrm{Mn}_{2}\left(\eta^{4}-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{PPhMe}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{6}\right]$	$\begin{aligned} & \text { 2047s, 1972(sh), } \\ & \text { 1952(br), 1933(sh), } \\ & 1905 \mathrm{w} \end{aligned}$	$7.7-7.3(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ph}), 5.08\left[\mathrm{dd},{ }^{3} J(\mathrm{PH})\right.$ $17.3,{ }^{3} J(\mathrm{HH}) 0.9,2 \mathrm{H}, \mathrm{CHCHPPhMe]}$, 2.60 [dd, $J(\mathrm{PH})$ 13.7, $3 \mathrm{H}, \mathrm{Me}$], 1.5 (m, $1 \mathrm{H}, \mathrm{CHCHPPhMe)}$	$\begin{aligned} & 52.0\left(\mathrm{~s}, \mu-\mathrm{PPh}_{2}\right), \\ & -106.1\left(\mathrm{~s}, \eta^{4}-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{PPhMe}\right) \end{aligned}$
$3\left[\mathrm{Mn}_{2}\left(\mu-\sigma: \eta^{4}-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{5}\right]$	$\begin{aligned} & \text { 2019m, 1956s, } \\ & 1895 \mathrm{~m} \end{aligned}$	10.80 [dd, ${ }^{3} J\left(\mathrm{H}^{3} \mathrm{H}^{4}\right) 8.1,{ }^{3} J(\mathrm{PH}) 2.0$, $1 \mathrm{H}, \mathrm{H}^{4}$], 8.02-6.76 (m, $22 \mathrm{H}, \mathrm{Ph}, \mathrm{H}^{2}$ $\left.\mathrm{H}^{3}\right), 3.07\left[\mathrm{~d}^{2} J\left(\mathrm{P}^{\prime} \mathrm{H}\right) 9.2,1 \mathrm{H}, \mathrm{H}^{1}\right]$	$111.5\left(\mathrm{~s}, \mu-\mathrm{PPh}_{2}\right)$, $-83.7\left(\mathrm{~s}, \mu-\sigma: \eta^{4}-\right.$ $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{PPh}_{2}$)
$4\left[\mathrm{Mn}_{2}\left(\mu-\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{7}\right]$	$\begin{aligned} & 2070 \mathrm{w}, 1994 \mathrm{~s}, \\ & 1984(\mathrm{sh}), 1968(\mathrm{sh}), \\ & 1925 \mathrm{~m}, 1905 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 7.8-7.3(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph}), 3.35\left[\mathrm{~m},{ }^{3} J\left(\mathrm{PH}^{\mathrm{s}}\right)\right. \\ & \left.9.6,2 \mathrm{H}, \mathrm{H}^{\mathrm{s}}\right], 2.44\left[\mathrm{~m},{ }^{3} J\left(\mathrm{PH}^{\mathrm{a}}\right) 20.3,2 \mathrm{H},\right. \\ & \left.\mathrm{H}^{\mathrm{a}}\right] \end{aligned}$	-51.2(s), -99.5(s)
$5\left[\mathrm{Mn}_{2}\left(\mu-\eta^{3}-\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{6}\right]$	$\begin{aligned} & 2052 \mathrm{w}, 2031 \mathrm{w} \\ & \text { 1990m, 1957s, } \\ & 1912 \mathrm{w}, 1894 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 8.1-7.3(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph}), 5.70\left[\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{PH})\right. \\ & \left.27.9,{ }^{1} \mathrm{H}, \mathrm{H}^{5}\right], 4.79\left[\mathrm{~d},{ }^{3} J(\mathrm{PH}) 14.9,1 \mathrm{H},\right. \\ & \left.\mathrm{H}^{6}\right], 3.53\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 2.86\left[\mathrm{~d},{ }^{3} J(\mathrm{PH})\right. \\ & \left.4.0,1 \mathrm{H}, \mathrm{H}^{4}\right], 2.06(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.96 \\ & \left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{3}\right) \end{aligned}$	$\begin{aligned} & 64.6\left(\mathrm{~s}, \mu-\mathrm{PPh}_{2}\right), \\ & -86.3\left(\mathrm{~s}, \mu-\eta^{3}-\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{PPh}_{2}\right) \end{aligned}$

Scheme 1 Possible steps in the formation of complexes 2a and 3
Such multiple insertions have been observed previously, for example in the reaction of $\left[\mathrm{RuCo}\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{7}\right]$ with $\mathrm{Ph}_{2} \mathrm{C}_{2}$ to give $\left[\mathrm{RuCo}\left\{\mu-\mathrm{PhCCPhC}(\mathrm{O}) \mathrm{PPh}_{2}\right\}(\mathrm{CO})_{5}\right]^{3}$ and in the reaction of $\left[\mathrm{Fe}_{2}(\mu-\mathrm{CCBu})\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{7}\right]$ with $\mathrm{R}_{2} \mathrm{C}_{2} .{ }^{7}$

The $\eta^{4}-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{PPh}_{2}$ quaternised phosphole ligand in complex 2a could be formed from the $\mu-\sigma: \eta^{4}-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{PPh}_{2}$ ligand in 3 via ring closure, with addition of a molecule of CO to complex 3 to enable 2a to comply with the effective atomic number (e.a.n.) rule. Alternatively, the ligand in 3 could be formed from the ligand in 2a via phosphorus-carbon bond cleavage and loss of a molecule of CO. Complex 3, however, was recovered unchanged after UV irradiation (125 W UV lamp) for 1.5 h of a CO-saturated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution, and no trace of 2a could be detected. Similarly the UV irradiation of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of 2a gave only unchanged starting material. Accordingly it is perhaps more likely that 2a and $\mathbf{3}$ are formed irreversibly from a common intermediate and a tentative reaction scheme starting from 1a is shown in Scheme 1. The light-induced loss of CO from $\left[\mathrm{Mn}_{2}\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{8}\right]$ in dichloromethane solution to give the metal-metal bonded heptacarbonyl species $\left[\mathrm{Mn}_{2}(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{7}\right]$, which is postulated as the first step, has been documented previously ${ }^{15}$ and the colour change from yellow to red which accompanies this CO loss is also observed in the early stages of the reaction of $1 \mathbf{1 a}$ with acetylene under photolytic conditions. Stable complexes with bridging $\mathrm{Ph}_{2} \mathrm{PCHCH}$ ligands analogous to that in intermediate A are well known ${ }^{16}$ and the insertion of CO into the M-CH bond in such complexes has also been documented. ${ }^{17}$ The insertion of $\mathrm{HC} \equiv \mathrm{CH}$ (Scheme 1) which is postulated to give \mathbf{B} from \mathbf{A} is therefore not unreasonable and could be followed either by CO loss to give 3 or by ring closure and rearrangement of the CO ligands to give 2a. The feasibility of the suggested rearrangement of the CO ligands between the metal centres is supported by the presence of a semibridging carbonyl group in 2 a as revealed by the X-ray determination. ${ }^{14}$
In order to explore the scope of the reaction of complexes of type 1 with alkynes we have studied the reaction of 1 a with $\mathrm{EtC} \equiv \mathrm{CH}, \mathrm{PhC} \equiv \mathrm{CH}$ and $\mathrm{PhC} \equiv \mathrm{CPh}$. The reactions of the unsymmetrical alkynes were even less specific than the reaction of acetylene itself with 1a and we were not able to characterise any of the low-yield products obtained. Diphenylacetylene did not react at all. We have also studied the reaction of $\left[\mathrm{Mn}_{2}(\mu-\right.$ $\left.\mathrm{PPh}_{2}\right)(\mu-\mathrm{PPhMe})(\mathrm{CO})_{8}$] 1b with acetylene in the hope of ascertaining which type of bridging phosphido group would react more readily with the organic substrate. Again, however, the reaction is non-specific and only two of the nine or more

Fig. 1 A view of the structure of $\left[\mathrm{Mn}_{2}\left(\eta^{4}-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{PPhMe}\right)(\mu\right.$ $\left.\left.\mathrm{PPh}_{2}\right)(\mathrm{CO})_{6}\right] 2 \mathrm{c}$. Here, and in Figs. 2 and 3, 20\% displacement ellipsoids are shown for non-hydrogen atoms, whereas hydrogen atoms are represented by small spheres of arbitrary radius; phenyl rings are numbered cyclically $\mathrm{C}(n 1)-\mathrm{C}(n 6)$, with $\mathrm{C}(n 1)$ attached to phosphorus, and the ring label, n, is placed adjacent to $\mathrm{C}(n 2)$

Fig. 2 A view of the structure of $\left[\mathrm{Mn}_{2}\left(\mu-\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{PPh}_{2}\right)(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2}\right)(\mathrm{CO})_{7}\right] 4$
low-yield products seen on the TLC plate could be isolated. The slowest-moving band gave an orange complex in 4% yield which has been characterised as $\left[\mathrm{Mn}_{2}\left(\eta^{4}-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{PPhMe}\right)(\mu\right.$ $\left.\mathrm{PPh}_{2}\right)(\mathrm{CO})_{6}$] 2 c by an X-ray diffraction study. The molecular structure is illustrated in Fig. 1. Table 2 lists selected bond distances and angles.

The $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{PPhMe}$ ligand in complex 2 c is η^{4} bonded, through $C(8), C(9), C(10)$ and $C(11)$, to $\mathrm{Mn}(2)$, with the Me and Ph groups oriented respectively towards and away from the second metal centre. The phosphole C_{4} unit is planar [maximum C-atom displacement $0.006(6) \AA$], with the P atom $0.647(2) \AA$ above this plane on the opposite side to the metal atoms. The bond lengths and angles in the molecule as a whole are in good agreement with those in the molecular structure of the closely related $2 a^{14}$ and a semibridging carbonyl group

Fig. 3 A view of the structure of $\left[\mathrm{Mn}_{2}\left(\mu-\eta^{3}-\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)\right.$ $\left.(\mathrm{CO})_{6}\right] 5$
$\left[\mathrm{Mn}(2)-\mathrm{C}(6)-\mathrm{O}(6) 162.1(5)^{\circ}\right.$ and $\left.\mathrm{Mn} \cdots \mathrm{C}(6) 2.60 \AA\right]$ is again present.
The other product isolated in low yield (3%) from the reaction of complex 1b with acetylene shows the same molecular ion peak in its mass spectrum as 2 c . On this basis and on the basis of its spectroscopic properties (Table 1) the complex is formulated as $\left[\mathrm{Mn}_{2}\left(\eta^{4}-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{PPh}_{2}\right)(\mu-\mathrm{PPhMe})(\mathrm{CO})_{6}\right] 2 \mathrm{~b}$, although it is not possible from the available data to rule out entirely an alternative formulation of the complex as $\left[\mathrm{Mn}_{2}\left(\eta^{4}-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{PPh}-\right.\right.$ $\left.\mathrm{Me})\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{6}\right]$, an isomer of 2 c which could differ in structure from 2 c only in that the other face of the quaternised phosphole is co-ordinated to the metal.
(b) Reaction of $\left[\mathrm{Mn}_{2}\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{8}\right]$ 1a with Allene.--The UV irradiation of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of complex 1a with allene leads to the formation of at least fifteen products of which two, $\left[\mathrm{Mn}_{2}\left(\mu-\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{7}\right] \quad 4$ (5% yield) and $\left[\mathrm{Mn}_{2}\left(\mu-\eta^{3}-\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{6}\right] 5$ (12% yield), have been characterised, both by single-crystal X -ray analyses.
The molecular structure of complex 4 is shown in Fig. 2. Table 3 lists selected bond distances and angles. The two manganese atoms are bridged by a PPh_{2} ligand and a $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{PPh}_{2}$ ligand which is σ bonded to $\mathrm{Mn}(1)$ via the phosphorus atom and η^{3} bonded to $\mathrm{Mn}(2)$ via the $\mathrm{C}_{3} \mathrm{H}_{4}$ grouping. The $\mathrm{Mn}(1)$ atom is additionally ligated by four terminal CO groups, completing an approximately octahedral arrangement, while $\mathrm{Mn}(2)$ is also co-ordinated by three terminal CO groups. The $\mathbf{M n}-\mathbf{P}-\mathbf{M n}$ angle associated with the bridging phosphido group of $117.6(1)^{\circ}$ may be compared with the corresponding $\mathbf{M n}-\mathbf{P}-\mathrm{Mn}$ angle of $78.3(1)^{\circ}$ in $\mathbf{2 c}$ and is in the range associated with the absence of any significant interaction between the two metal centres. ${ }^{18}$ The Mn \cdots Mn non-bonded distance is $4.125(1) \AA$. The two carbon-carbon distances within the allyl ligand are equal within experimental error [1.404(6) and 1.406(5) \AA] and the $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angle at $120.9(4)^{\circ}$ is typical of that expected for an allyl group η^{3} bonded to a metal atom. ${ }^{19}$ The two $\mathrm{Mn}-\mathbf{P}$ bonds to the bridging phosphido group are unequal in length [$\mathrm{Mn}(1)-\mathrm{P}(2) 2.438(1)$, $\mathrm{Mn}(2)-\mathrm{P}(2) 2.385(1) \AA]$, perhaps reflecting the fact that this group needs to donate two electrons to $\mathrm{Mn}(2)$ and only one to $\mathrm{Mn}(1)$ in order for the e.a.n. rule to be obeyed at each metal centre.
The molecular structure of complex 5 is shown in Fig. 3. Table 4 lists selected bond distances and angles. The two manganese atoms are bridged by a PPh_{2} ligand and by a $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{PPh}_{2}$ ligand which is derived from one of the PPh_{2} groups in 1a and 2 equivalents of allene. One of the allene molecules is linked through its central carbon atom to phosphorus and through a terminal carbon atom to the central carbon atom of the other allene. A hydrogen atom has migrated from the linking
terminal carbon atom of the first allene molecule to the terminal carbon atom $\mathrm{C}(11)$ of the second. This ligand is bonded through phosphorus to $\mathrm{Mn}(1)$ and via an η^{3}-allyl linkage to $\mathrm{Mn}(2)$. In contrast to the allyl ligand in 4 the carbon-carbon bond lengths in the allyl group in 5 are not the same [C(9)-C(10) 1.421(9), $\mathrm{C}(10)-\mathrm{C}(12) 1.389(10) \AA]$ and the $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angle is a little

Table 2 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ in complex 2c

$\mathbf{M n (1) - M n (2)}$	2.858(2)	$\mathbf{M n}(1)-\mathrm{P}(1)$	2.264(2)
$\mathrm{Mn}(1)-\mathrm{C}(1)$	1.841 (6)	$\mathrm{Mn}(1)-\mathrm{C}(2)$	1.776 (6)
$\mathrm{Mn}(1)-\mathrm{C}(3)$	1.825(6)	$\mathrm{Mn}(1)-\mathrm{C}(4)$	1.806(7)
$\mathrm{Mn}(2)-\mathrm{P}(1)$	2.263(2)	$\mathrm{Mn}(2)-\mathrm{C}(5)$	1.749(6)
$\mathrm{Mn}(2)-\mathrm{C}(6)$	1.797(7)	$\mathrm{Mn}(2)-\mathrm{C}(8)$	2.217(6)
$\mathrm{Mn}(2)-\mathrm{C}(9)$	2.117(6)	$\mathrm{Mn}(2)-\mathrm{C}(10)$	2.082(6)
$\mathrm{Mn}(2)-\mathrm{C}(11)$	$2.128(6)$	$\mathrm{P}(1)-\mathrm{C}(\mathrm{A} 1)$	1.857(6)
$\mathrm{P}(1)-\mathrm{C}(\mathrm{B} 1)$	1.860(6)	$\mathrm{P}(2)-\mathrm{C}(7)$	1.791(6)
$\mathrm{P}(2)-\mathrm{C}(8)$	1.729(5)	$\mathrm{P}(2)-\mathrm{C}(11)$	1.768(6)
$\mathrm{P}(2)-\mathrm{C}(\mathrm{C} 1)$	1.822(6)	$\mathrm{O}(1)-\mathrm{C}(1)$	1.152(7)
$\mathrm{O}(2)-\mathrm{C}(2)$	1.153(8)	$\mathrm{O}(3)-\mathrm{C}(3)$	$1.150(8)$
$\mathrm{O}(4)-\mathrm{C}(4)$	1.155(9)	$\mathrm{O}(5)-\mathrm{C}(5)$	1.169(7)
$\mathrm{O}(6)-\mathrm{C}(6)$	1.167(8)	$\mathrm{C}(8)-\mathrm{C}(9)$	1.439(7)
C(9)-C(10)	1.388(8)	$\mathrm{C}(10)-\mathrm{C}(11)$	1.429(8)
$\mathrm{Mn}(2)-\mathrm{Mn}(1)-\mathrm{P}(1)$	50.8(1)	$\mathrm{Mn}(2)-\mathrm{Mn}(1)-\mathrm{C}(1)$	83.8(2)
$\mathrm{Mn}(2)-\mathrm{Mn}(1)-\mathrm{C}(2)$	149.9(2)	$\mathrm{Mn}(2)-\mathrm{Mn}(1)-\mathrm{C}(3)$	88.7(2)
$\mathbf{M n}(2)-\mathrm{Mn}(1)-\mathrm{C}(4)$	115.6(3)	$\mathrm{P}(1)-\mathrm{Mn}(1)-\mathrm{C}(1)$	90.9(2)
$\mathrm{P}(1)-\mathrm{Mn}(1)-\mathrm{C}(2)$	99.4(2)	$\mathrm{P}(1)-\mathrm{Mn}(1)-\mathrm{C}(3)$	87.7(2)
$\mathrm{P}(1)-\mathrm{Mn}(1)-\mathrm{C}(4)$	166.1(3)	$\mathrm{C}(1)-\mathrm{Mn}(1)-\mathrm{C}(2)$	93.4(3)
$\mathrm{C}(1)-\mathrm{Mn}(1)-\mathrm{C}(3)$	171.3(3)	$\mathrm{C}(1)-\mathrm{Mn}(1)-\mathrm{C}(4)$	90.3(3)
$\mathrm{C}(2)-\mathrm{Mn}(1)-\mathrm{C}(3)$	95.3(3)	$\mathrm{C}(2)-\mathrm{Mn}(1)-\mathrm{C}(4)$	94.3(3)
$\mathrm{C}(3)-\mathrm{Mn}(1)-\mathrm{C}(4)$	89.1(3)	$\mathrm{Mn}(1)-\mathrm{Mn}(2)-\mathrm{P}(1)$	50.9(1)
$\mathrm{Mn}(1)-\mathrm{Mn}(2)-\mathrm{C}(5)$	99.6(2)	$\mathrm{Mn}(1)-\mathrm{Mn}(2)-\mathrm{C}(6)$	63.2(2)
$\mathrm{Mn}(1)-\mathrm{Mn}(2)-\mathrm{C}(8)$	103.7(2)	$\mathbf{M n}(1)-\mathrm{Mn}(2)-\mathrm{C}(9)$	130.7(2)
$\mathbf{M n}(1)-\mathrm{Mn}(2)-\mathrm{C}(10)$	169.0(2)	$\mathrm{Mn}(1)-\mathrm{Mn}(2)-\mathrm{C}(11)$	142.5(2)
$\mathrm{P}(1)-\mathrm{Mn}(2)-\mathrm{C}(5)$	90.4(2)	$\mathrm{P}(1)-\mathrm{Mn}(2)-\mathrm{C}(6)$	112.7(2)
$\mathrm{C}(5)-\mathrm{Mn}(2)-\mathrm{C}(6)$	87.9(3)	$\mathrm{Mn}(1)-\mathrm{P}(1)-\mathrm{Mn}(2)$	78.3(1)
$\mathrm{Mn}(1)-\mathrm{P}(1)-\mathrm{C}(\mathrm{A} 1)$	118.9(2)	$\mathrm{Mn}(1)-\mathrm{P}(1)-\mathrm{C}(\mathrm{B} 1)$	119.7(2)
$\mathrm{Mn}(2)-\mathrm{P}(1)-\mathrm{C}(\mathrm{A} 1)$	120.4(2)	$\mathrm{Mn}(2)-\mathrm{P}(1)-\mathrm{C}(\mathrm{B} 1)$	121.0(2)
$\mathrm{C}(\mathrm{A} 1)-\mathrm{P}(1)-\mathrm{C}(\mathrm{B} 1)$	99.7(3)	$\mathrm{C}(7)-\mathrm{P}(2)-\mathrm{C}(8)$	116.4(3)
$\mathrm{C}(7)-\mathrm{P}(2)-\mathrm{C}(11)$	117.8(3)	$\mathrm{C}(7)-\mathrm{P}(2)-\mathrm{C}(\mathrm{Cl})$	103.1(3)
$\mathrm{C}(8)-\mathrm{P}(2)-\mathrm{C}(11)$	89.7(3)	$\mathrm{C}(8)-\mathrm{P}(2)-\mathrm{C}(\mathrm{C} 1)$	117.7(3)
$\mathrm{C}(11)-\mathrm{P}(2)-\mathrm{C}(\mathrm{C} 1)$	112.7(3)	$\mathrm{Mn}(1)-\mathrm{C}(1)-\mathrm{O}(1)$	179.0(6)
$\mathrm{Mn}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	178.8(6)	$\mathrm{Mn}(1)-\mathrm{C}(3)-\mathrm{O}(3)$	178.5(6)
$\mathrm{Mn}(1)-\mathrm{C}(4)-\mathrm{O}(4)$	174.6(7)	$\mathrm{Mn}(2)-\mathrm{C}(5)-\mathrm{O}(5)$	176.5(5)
$\mathrm{Mn}(2)-\mathrm{C}(6)-\mathrm{O}(6)$	162.1(5)	$\mathrm{P}(2)-\mathrm{C}(8)-\mathrm{C}(9)$	107.6(4)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$112.2(5)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	112.0(5)
$\mathrm{P}(2)-\mathrm{C}(11)-\mathrm{C}(10)$	106.7(4)		

smaller [117.7(6) ${ }^{\circ}$]. As expected, the unco-ordinated carboncarbon double bond, $\mathrm{C}(7)-\mathrm{C}(8)$, is considerably shorter [1.308(10) \AA] than the carbon-carbon bonds within the allyl group or the single bonds $\mathrm{C}(8)-\mathrm{C}(9)$ and $\mathrm{C}(10)-\mathrm{C}(11)$ [1.471(9) and 1.498(10) \AA respectively]. The $\mathrm{Mn}-\mathrm{P}-\mathrm{Mn}$ angle of the bridging phosphido group is $82.7(1)^{\circ}$ and angles of this magnitude are normally associated with some degree of direct interaction between the two metal centres. ${ }^{18} \mathrm{The} \mathrm{Mn}(1)-\mathrm{Mn}(2)$ distance [2.986(2) \AA] is indeed in the range expected for an $\mathrm{Mn}-\mathrm{Mn}$ single bond. ${ }^{20}$ The two $\mathrm{Mn}-\mathrm{P}$ distances to the bridging phosphido group [$\mathrm{Mn}(2)-\mathrm{P}(1)$ 2.323(2), $\mathrm{Mn}(1)-\mathrm{P}(1)$ 2.196(2) \AA] differ by a wider margin than the corresponding $\mathrm{Mn}-\mathrm{P}$ distances in 4. Again the shorter bond is to the manganese atom $[\mathrm{Mn}(1)]$ which requires the donation of two electrons to satisfy the e.a.n. rule. Each Mn atom is additionally co-ordinated by three terminal CO groups.
Complex 4 represents, to our knowledge, the first example of the insertion of allene into a metal-phosphorus bond of a bridging phosphido group. It seems probable that 5 is formed via the further reaction of 4 with allene, although the yields of 4 and 5 are such that we have not been able to verify this experimentally. One possible pathway for the formation of 5 via this route is shown in Scheme 2. Hydrogen-atom migrations similar to that required to convert intermediate \mathbf{B} into complex 5 have been observed previously in photolytic reactions of related dimanganese and molybdenum-manganese complexes. ${ }^{13}$
The dimerisation of allene at transition-metal centres is a well known process and can take place in several different ways. ${ }^{21}$ Coupling of the two central carbon atoms is most commonly observed although there is at least one known example of terminal-central carbon coupling. ${ }^{22}$ The hydrogen migration and phosphorus-carbon bond formation which accompany this process in the formation of 5 are, however, to our knowledge unique.

Experimental

All reactions were carried out under a nitrogen atmosphere in N_{2}-saturated solvents distilled from the appropriate drying agent and stored over $4 \AA$ molecular sieves. Ultraviolet irradiation was carried out in a glass photolysis vessel using Hanovia 4 W or 125 W medium-pressure immersion lamps in a water- or ethanol-cooled quartz inner tube.

Table 3 Selected bond lengths (\AA) and angles (${ }^{\circ}$) in complex 4

$\mathrm{Mn}(1)-\mathrm{P}(1)$	2.324(1)	$\mathrm{Mn}(1)-\mathrm{P}(2)$	2.438(1)	$\mathrm{P}(1)-\mathrm{C}(\mathrm{A} 1)$	$1.836(4)$	$\mathrm{P}(1)-\mathrm{C}(\mathrm{B} 1)$	1.837(4)
$\mathrm{Mn}(1)-\mathrm{C}(1)$	1.857(4)	$\mathrm{Mn}(1)-\mathrm{C}(2)$	$1.816(4)$	$\mathrm{P}(2)-\mathrm{C}(\mathrm{C} 1)$	1.858(4)	$\mathrm{P}(2)-\mathrm{C}(\mathrm{D} 1)$	1.849(4)
$\mathrm{Mn}(1)-\mathrm{C}(3)$	$1.839(4)$	$\mathrm{Mn}(1)-\mathrm{C}(4)$	$1.839(4)$	$\mathrm{O}(1)-\mathrm{C}(1)$	1.129(5)	$\mathrm{O}(2)-\mathrm{C}(2)$	$1.127(6)$
$\mathrm{Mn}(2)-\mathrm{P}(2)$	$2.385(1)$	$\mathrm{Mn}(2)-\mathrm{C}(5)$	$1.795(4)$	$\mathrm{O}(3)-\mathrm{C}(3)$	$1.144(5)$	$\mathrm{O}(4)-\mathrm{C}(4)$	$1.117(5)$
$\mathrm{Mn}(2)-\mathrm{C}(6)$	1.810(5)	$\mathrm{Mn}(2)-\mathrm{C}(7)$	1.799(4)	$\mathrm{O}(5)-\mathrm{C}(5)$	$1.155(5)$	$\mathrm{O}(6)-\mathrm{C}(6)$	1.151(6)
$\mathrm{Mn}(2)-\mathrm{C}(8)$	2.164(4)	$\mathrm{Mn}(2)-\mathrm{C}(9)$	2.129(3)	$\mathrm{O}(7)-\mathrm{C}(7)$	1.140 (5)	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.404(6)$
$\mathrm{Mn}(2)-\mathrm{C}(10)$	2.237(4)	$\mathrm{P}(1)-\mathrm{C}(9)$	1.862(4)	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.406(5)$	$\mathrm{Cl}(\mathrm{S})-\mathrm{C}(\mathrm{S})$	1.703(5)
$\mathbf{P}(1)-\mathrm{Mn}(1)-\mathrm{P}(2)$	85.9(1)	$\mathrm{P}(1)-\mathrm{Mn}(1)-\mathrm{C}(1)$	90.3(2)	$\mathrm{C}(7)-\mathrm{Mn}(2)-\mathrm{C}(10)$	155.7(2)	$\mathrm{Mn}(1)-\mathrm{P}(1)-\mathrm{C}(9)$	115.2(2)
$\mathrm{P}(1)-\mathrm{Mn}(1)-\mathrm{C}(2)$	94.7(2)	$\mathrm{P}(1)-\mathrm{Mn}(1)-\mathrm{C}(3)$	88.1(2)	$\mathrm{Mn}(1)-\mathrm{P}(1)-\mathrm{C}(\mathrm{A} 1)$	114.8(2)	$\mathrm{Mn}(1)-\mathrm{P}(1)-\mathrm{C}(\mathrm{B1})$	$117.2(2)$
$\mathrm{P}(1)-\mathrm{Mn}(1)-\mathrm{C}(4)$	174.8(2)	$\mathbf{P}(2)-\mathrm{Mn}(1)-\mathrm{C}(1)$	88.7(2)	$\mathrm{C}(9)-\mathrm{P}(1)-\mathrm{C}(\mathrm{A} 1)$	107.1(2)	$\mathrm{C}(9)-\mathrm{P}(1)-\mathrm{C}(\mathrm{B} 1)$	98.6(2)
$\mathrm{P}(2)-\mathrm{Mn}(1)-\mathrm{C}(2)$	176.9(2)	$\mathrm{P}(2)-\mathrm{Mn}(1)-\mathrm{C}(3)$	90.0(2)	$\mathrm{C}(\mathrm{A} 1)-\mathrm{P}(1)-\mathrm{C}(\mathrm{B} 1)$	101.9(2)	$\mathrm{Mn}(1)-\mathrm{P}(2)-\mathrm{Mn}(2)$	117.6(1)
$\mathrm{P}(2)-\mathrm{Mn}(1)-\mathrm{C}(4)$	89.0(2)	$\mathrm{C}(1)-\mathrm{Mn}(1)-\mathrm{C}(2)$	88.3(2)	$\mathrm{Mn}(1)-\mathrm{P}(2)-\mathrm{C}(\mathrm{C} 1)$	105.5(2)	$\mathrm{Mn}(1)-\mathrm{P}(2)-\mathrm{C}(\mathrm{D} 1)$	109.6(2)
$\mathrm{C}(1)-\mathrm{Mn}(1)-\mathrm{C}(3)$	177.9(2)	$\mathrm{C}(1)-\mathrm{Mn}(1)-\mathrm{C}(4)$	90.7(2)	$\mathrm{Mn}(2)-\mathrm{P}(2)-\mathrm{C}(\mathrm{C} 1)$	113.4(2)	$\mathbf{M n}(2)-\mathrm{P}(2)-\mathrm{C}(\mathrm{D} 1)$	109.1(2)
$\mathrm{C}(2)-\mathrm{Mn}(1)-\mathrm{C}(3)$	93.1(2)	$\mathrm{C}(2)-\mathrm{Mn}(1)-\mathrm{C}(4)$	90.4(2)	$\mathrm{C}(\mathrm{C} 1)-\mathrm{P}(2)-\mathrm{C}(\mathrm{D} 1)$	100.2(2)	$\mathrm{Mn}(1)-\mathrm{C}(1)-\mathrm{O}(1)$	177.8(4)
$\mathrm{C}(3)-\mathrm{Mn}(1)-\mathrm{C}(4)$	90.8(2)	$\mathrm{P}(2)-\mathrm{Mn}(2)-\mathrm{C}(5)$	84.7(2)	$\mathrm{Mn}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	176.3(4)	$\mathrm{Mn}(1)-\mathrm{C}(3)-\mathrm{O}(3)$	177.8(4)
$\mathrm{P}(2)-\mathrm{Mn}(2)-\mathrm{C}(6)$	168.7(2)	$\mathrm{P}(2)-\mathrm{Mn}(2)-\mathrm{C}(7)$	87.5(2)	$\mathrm{Mn}(1)-\mathrm{C}(4)-\mathrm{O}(4)$	178.1(4)	$\mathrm{Mn}(2)-\mathrm{C}(5)-\mathrm{O}(5)$	177.0(4)
$\mathrm{P}(2)-\mathrm{Mn}(2)-\mathrm{C}(8)$	103.3(2)	$\mathrm{P}(2)-\mathrm{Mn}(2)-\mathrm{C}(9)$	87.6(1)	$\mathrm{Mn}(2)-\mathrm{C}(6)-\mathrm{O}(6)$	176.4(4)	$\mathrm{Mn}(2)-\mathrm{C}(7)-\mathrm{O}(7)$	176.6(4)
$\mathrm{P}(2)-\mathrm{Mn}(2)-\mathrm{C}(10)$	102.9(2)	$\mathrm{C}(5)-\mathrm{Mn}(2)-\mathrm{C}(6)$	85.2(2)	$\mathrm{Mn}(2)-\mathrm{C}(9)-\mathrm{P}(1)$	125.7(2)	$\mathrm{Mn}(2)-\mathrm{C}(9)-\mathrm{C}(8)$	72.3(2)
$\mathrm{C}(5)-\mathrm{Mn}(2)-\mathrm{C}(7)$	97.4(2)	$\mathrm{C}(5)-\mathrm{Mn}(2)-\mathrm{C}(8)$	170.0(2)	$\mathrm{Mn}(2)-\mathrm{C}(9)-\mathrm{C}(10)$	75.4(3)	$\mathrm{P}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	113.9(3)
$\mathrm{C}(5)-\mathrm{Mn}(2)-\mathrm{C}(9)$	138.3(2)	$\mathrm{C}(5)-\mathrm{Mn}(2)-\mathrm{C}(10)$	105.3(2)	$\mathrm{P}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	125.2(3)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	120.9(4)
$\mathrm{C}(6)-\mathrm{Mn}(2)-\mathrm{C}(7)$	88.7(2)	$\mathrm{C}(6)-\mathrm{Mn}(2)-\mathrm{C}(8)$	87.2(2)	$\mathrm{Cl}(\mathrm{S})-\mathrm{C}(\mathbf{S})-\mathrm{Cl}(\mathbf{S})$	113.2(5)		
$\mathrm{C}(6)-\mathrm{Mn}(2)-\mathrm{C}(9)$	103.3(2)	$\mathrm{C}(6)-\mathrm{Mn}(2)-\mathrm{C}(10)$	84.7(2)				
$\mathrm{C}(7)-\mathrm{Mn}(2)-\mathrm{C}(8)$	88.9(2)	$\mathrm{C}(7)-\mathrm{Mn}(2)-\mathrm{C}(9)$	123.2(2)				

Table 4 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ in complex 5

$\mathbf{M n}(1)-\mathrm{Mn}(2)$	2.986(2)	$\mathbf{M n}(1)-\mathrm{P}(1)$	2.196(2)	$\mathrm{P}(2)-\mathrm{C}(\mathrm{C} 1)$	1.819(6)	$\mathrm{P}(2)-\mathrm{C}(\mathrm{D} 1)$	1.816(7)
$\mathrm{Mn}(1)-\mathrm{P}(2)$	2.266 (2)	$\mathrm{Mn}(1)-\mathrm{C}(1)$	1.788(7)	$\mathrm{O}(1)-\mathrm{C}(1)$	1.167(8)	$\mathrm{O}(2)-\mathrm{C}(2)$	$1.160(8)$
$\mathrm{Mn}(1)-\mathrm{C}(2)$	1.747(7)	$\mathrm{Mn}(1)-\mathrm{C}(3)$	1.805(7)	$\mathrm{O}(3)-\mathrm{C}(3)$	$1.155(9)$	$\mathrm{O}(4)-\mathrm{C}(4)$	$1.156(9)$
$\mathrm{Mn}(2)-\mathrm{P}(1)$	2.323(2)	$\mathrm{Mn}(2)-\mathrm{C}(4)$	1.823(7)	$\mathrm{O}(5)-\mathrm{C}(5)$	$1.158(8)$	$\mathrm{O}(6)-\mathrm{C}(6)$	1.153(9)
$\mathrm{Mn}(2)-\mathrm{C}(5)$	1.778(7)	$\mathrm{Mn}(2)-\mathrm{C}(6)$	1.820(7)	$\mathrm{C}(7)-\mathrm{C}(8)$	1.308(10)	$\mathrm{C}(8)-\mathrm{C}(9)$	1.471(9)
$\mathrm{Mn}(2)-\mathrm{C}(9)$	2.319(6)	$\mathrm{Mn}(2)-\mathrm{C}(10)$	2.188(7)	$\mathrm{C}(9)-\mathrm{C}(10)$	1.421(9)	$\mathrm{C}(10)-\mathrm{C}(11)$	1.498(10)
$\mathrm{Mn}(2)-\mathrm{C}(12)$	2.197(7)	P(1)-C(A1)	1.831(6)	$\mathrm{C}(10)-\mathrm{C}(12)$	1.389(10)		
$\mathrm{P}(1)-\mathrm{C}(\mathrm{B} 1)$	1.826(6)	$\mathrm{P}(2)-\mathrm{C}(8)$	1.836(6)				
$\mathrm{Mn}(2)-\mathrm{Mn}(1)-\mathrm{P}(1)$	50.5(1)	$\mathrm{Mn}(2)-\mathrm{Mn}(1)-\mathrm{P}(2)$	96.7(1)	$\mathrm{C}(5)-\mathrm{Mn}(2)-\mathrm{C}(9)$	145.5(3)	$\mathrm{C}(5)-\mathrm{Mn}(2)-\mathrm{C}(10)$	111.0(3)
$\mathbf{M n}(2)-\mathrm{Mn}(1)-\mathrm{C}(1)$	92.3(3)	$\mathrm{Mn}(2)-\mathrm{Mn}(1)-\mathrm{C}(2)$	157.9(3)	$\mathrm{C}(5)-\mathrm{Mn}(2)-\mathrm{C}(12)$	81.4(3)	$\mathrm{C}(6)-\mathrm{Mn}(2)-\mathrm{C}(9)$	94.3(3)
$\mathbf{M n}(2)-\mathrm{Mn}(1)-\mathrm{C}(3)$	91.9(2)	$\mathbf{P}(1)-\mathrm{Mn}(1)-\mathrm{P}(2)$	147.2(1)	$\mathrm{C}(6)-\mathrm{Mn}(2)-\mathrm{C}(10)$	82.1(3)	$\mathrm{C}(6)-\mathrm{Mn}(2)-\mathrm{C}(12)$	104.0(3)
$\mathrm{P}(1)-\mathrm{Mn}(1)-\mathrm{C}(1)$	89.6(2)	$\mathrm{P}(1)-\mathrm{Mn}(1)-\mathrm{C}(2)$	107.4(3)	$\mathbf{M n (1) - P (1) - M n (2) ~}$	82.7(1)	$\mathrm{Mn}(1)-\mathrm{P}(1)-\mathrm{C}(\mathrm{A} 1)$	120.5(2)
$\mathrm{P}(1)-\mathrm{Mn}(1)-\mathrm{C}(3)$	91.0(2)	$\mathrm{P}(2)-\mathrm{Mn}(1)-\mathrm{C}(1)$	92.9(2)	$\mathrm{Mn}(1)-\mathrm{P}(1)-\mathrm{C}(\mathrm{B} 1)$	118.5(3)	$\mathrm{Mn}(2)-\mathrm{P}(1)-\mathrm{C}(\mathrm{A} 1)$	117.1(3)
$\mathrm{P}(2)-\mathrm{Mn}(1)-\mathrm{C}(2)$	105.4(3)	$\mathrm{P}(2)-\mathrm{Mn}(1)-\mathrm{C}(3)$	89.2(2)	$\mathrm{Mn}(2)-\mathrm{P}(1)-\mathrm{C}(\mathrm{B} 1)$	118.4(3)	$\mathrm{C}(\mathrm{A} 1)-\mathrm{P}(1)-\mathrm{C}(\mathrm{B} 1)$	100.7(3)
$\mathrm{C}(1)-\mathrm{Mn}(1)-\mathrm{C}(2)$	85.7(3)	$\mathrm{C}(1)-\mathrm{Mn}(1)-\mathrm{C}(3)$	175.1(3)	$\mathrm{Mn}(1)-\mathrm{P}(2)-\mathrm{C}(8)$	104.0(2)	$\mathrm{Mn}(1)-\mathrm{P}(2)-\mathrm{C}(\mathrm{Cl})$	118.4(2)
$\mathrm{C}(2)-\mathrm{Mn}(1)-\mathrm{C}(3)$	89.5(3)	$\mathrm{Mn}(1)-\mathrm{Mn}(2)-\mathrm{P}(1)$	46.8(1)	$\mathrm{Mn}(1)-\mathrm{P}(2)-\mathrm{C}(\mathrm{D} 1)$	122.0(3)	$\mathrm{C}(8)-\mathrm{P}(2)-\mathrm{C}(\mathrm{Cl})$	103.6(3)
$\mathrm{Mn}(1)-\mathrm{Mn}(2)-\mathrm{C}(4)$	84.7(2)	$\mathrm{Mn}(1)-\mathrm{Mn}(2)-\mathrm{C}(5)$	137.9(3)	$\mathrm{C}(8)-\mathrm{P}(2)-\mathrm{C}(\mathrm{D} 1)$	107.3(3)	C(C1)-P(2)-C(D1)	100.0(3)
$\mathbf{M n}(1)-\mathrm{Mn}(2)-\mathrm{C}(6)$	88.6(2)	$\mathrm{Mn}(1)-\mathrm{Mn}(2)-\mathrm{C}(9)$	76.5(2)	$\mathrm{Mn}(1)-\mathrm{C}(1)-\mathrm{O}(1)$	174.3(6)	$\mathrm{Mn}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	178.1(6)
$\mathrm{Mn}(1)-\mathrm{Mn}(2)-\mathrm{C}(10)$	110.5(2)	$\mathrm{Mn}(1)-\mathrm{Mn}(2)-\mathrm{C}(12)$	139.3(2)	$\mathrm{Mn}(1)-\mathrm{C}(3)-\mathrm{O}(3)$	175.5(6)	$\mathrm{Mn}(2)-\mathrm{C}(4)-\mathrm{O}(4)$	176.2(6)
$\mathrm{P}(1)-\mathrm{Mn}(2)-\mathrm{C}(4)$	87.5(2)	$\mathrm{P}(1)-\mathrm{Mn}(2)-\mathrm{C}(5)$	91.1(3)	$\mathrm{Mn}(2)-\mathrm{C}(5)-\mathrm{O}(5)$	175.8(6)	$\mathrm{Mn}(2)-\mathrm{C}(6)-\mathrm{O}(6)$	178.4(6)
$\mathrm{P}(1)-\mathrm{Mn}(2)-\mathrm{C}(6)$	85.5(2)	$\mathrm{P}(1)-\mathrm{Mn}(2)-\mathrm{C}(9)$	123.3(2)	$\mathrm{P}(2)-\mathrm{C}(8)-\mathrm{C}(7)$	123.0(5)	$\mathrm{P}(2)-\mathrm{C}(8)-\mathrm{C}(9)$	109.6(5)
$\mathrm{P}(1)-\mathrm{Mn}(2)-\mathrm{C}(10)$	154.5(2)	$\mathrm{P}(1)-\mathrm{Mn}(2)-\mathrm{C}(12)$	167.9(2)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	127.4(6)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	127.9(6)
$\mathrm{C}(4)-\mathrm{Mn}(2)-\mathrm{C}(5)$	92.5(3)	$\mathrm{C}(4)-\mathrm{Mn}(2)-\mathrm{C}(6)$	172.5(3)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$122.9(6)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(12)$	117.7(6)
$\mathrm{C}(4)-\mathrm{Mn}(2)-\mathrm{C}(9)$	87.4(3)	$\mathrm{C}(4)-\mathrm{Mn}(2)-\mathrm{C}(10)$	103.4(3)	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(12)$	119.5(6)		
$\mathrm{C}(4)-\mathrm{Mn}(2)-\mathrm{C}(12)$	83.3(3)	$\mathrm{C}(5)-\mathrm{Mn}(2)-\mathrm{C}(6)$	90.3(3)				

Table 5 Crystallographic data and refinement details for the complexes $2 c, 4$ and 5

Compound	2c	4	5
Formula	$\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{Mn}_{2} \mathrm{O}_{6} \mathrm{P}_{2}$	$\mathrm{C}_{34} \mathrm{H}_{24} \mathrm{Mn}_{2} \mathrm{O}_{7} \mathrm{P}_{2} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{Mn}_{2} \mathrm{O}_{6} \mathrm{P}_{2}$
M	638.31	758.85	728.44
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	$P 2_{1} / n$	C2/c	C2/c
a / \AA	12.231(2)	35.291(5)	34.679(5)
b / \AA	9.637(2)	9.537(1)	9.697(2)
c / \AA	23.774(3)	21.529(3)	20.430(3)
$\beta{ }^{\circ}$	94.27(1)	115.17(1)	99.86(1)
U / \AA^{3}	2794.5(7)	6558(2)	6769(2)
Z	4	8	8
$D_{\mathrm{c}} / \mathrm{g} \mathrm{cm}^{-3}$	1.517	1.537	1.429
$F(000)$	1296	3080	2976
μ / cm^{-1}	10.5	9.6	8.5
Crystal size/mm	$0.18 \times 0.08 \times 0.40$	$1.1 \times 0.88 \times 0.40$	$0.48 \times 0.24 \times 0.04$
$\theta /{ }^{\circ}$	2-22	2-27	2-22
h	0-12	0-45	0-36
k	0-10	0-12	0-10
l	-25 to 25	-27 to 27	-21 to 21
Reflections measured	4504	7586	4037
Unique reflections	3395	7089	3964
Observed reflections	2068	5049	2236
$R_{\text {int }}$	0.022	0.025	0.029
R	0.031	0.043	0.036
R^{\prime}	0.039	0.057	0.041
Parameters	316	436	415
$\|\Delta \rho\| / \mathrm{e} \AA^{-3}$	0.30	0.60	0.42

Work-up procedures were generally performed in air. Preparative thin-layer chromatography (TLC) was carried out on commercial Merck plates coated with a 0.25 mm layer of silica; products are presented in order of decreasing R_{f} values.
The instrumentation used to obtain spectroscopic data has been described previously. ${ }^{23}$ Phosphorus-31 NMR chemical shifts are given relative to $\mathrm{P}(\mathrm{OMe})_{3}$ with upfield shifts negative. All NMR spectra were recorded at 293 K . The complex [$\mathrm{Mn}_{2^{-}}$ $\left.\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{8}\right]^{24}$ was prepared in high yield from the reaction of $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{10}\right]$ with $\mathrm{PPh}_{2} \mathrm{H}$ (see below) and the complex $\left[\mathrm{Mn}_{2}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{PPhMe})(\mathrm{CO})_{8}\right]$ in 53% yield from the deprotonation and subsequent methylation with MeI of $\left[\mathrm{Mn}_{2}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{PPhH})(\mathrm{CO})_{8}\right] .{ }^{25}$ All other reagents were
obtained from the usual commercial suppliers and used without further purification.
(i) Synthesis of $\left.\left[\mathrm{Mn}_{2}\left(\mu-\mathrm{PPh}_{2}\right)_{2}\right)(\mathrm{CO})_{8}\right]$ 1a.-A solution of $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{10}\right](1.040 \mathrm{~g}, 2.67 \mathrm{mmol})$ in undried decalin (200 cm^{3}) (used as obtained from the commercial suppliers) ${ }^{26}$ was heated to 423 K and $\mathrm{PPh}_{2} \mathrm{H}\left(0.990 \mathrm{~cm}^{3}, 5.69 \mathrm{mmol}\right)$ was then added. The mixture was stirred at 423 K for 4 h after which CO was bubbled through the solution for 2 min . The decalin was removed under vacuum to leave a yellow residue to which $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~cm}^{3}\right)$ was added to form a slurry. This slurry was filtered through a Whatman No. 1 filter-paper to yield $\left[\mathrm{Mn}_{2}\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{8}\right] \mathbf{1 a}(1.380 \mathrm{~g})$. A further 0.372 g of

Table 6 Fractional coordinates for non-hydrogen atoms

(a) $\left[\mathrm{Mn}_{2}\left(\mathrm{\eta}^{4}-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{PPhMMe}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{6}\right] 2 \mathrm{c}$			
Atom	x	y	z
$\mathrm{Mn}(1)$	$0.20256(7)$	0.130 57(9)	-0.072 32(3)
$\mathrm{Mn}(2)$	$0.11411(6)$	0.307 53(9)	-0.160 81(3)
$\mathrm{P}(1)$	0.28341 (10)	0.308 69(15)	-0.115 39(5)
$\mathrm{P}(2)$	$-0.07667(11)$	0.445 69(16)	-0.134 57(5)
$\mathrm{O}(1)$	0.0912 (3)	0.327 1(5)	0.0023 (1)
$\mathrm{O}(2)$	0.3763 (4)	0.062 6(5)	0.014 8(2)
$\mathrm{O}(3)$	0.283 4(4)	-0.057 4(5)	-0.159 4(2)
$\mathrm{O}(4)$	0.063 7(5)	-0.102 6(6)	-0.039 3(2)
$\mathrm{O}(5)$	0.194 4(3)	0.168 2(4)	-0.258 5(1)
$\mathrm{O}(6)$	-0.023 5(3)	$0.0602(5)$	-0.153 8(2)
C(1)	0.134 6(4)	0.252 4(7)	-0.026 6(2)
C(2)	0.308 5(5)	0.090 6(6)	-0.019 6(2)
C(3)	0.253 4(5)	0.016 4(6)	-0.125 8(2)
C(4)	$0.1136(6)$	-0.0075(7)	-0.052 2(3)
C(5)	0.1655(4)	0.224 2(6)	-0.218 6(2)
C(6)	0.039 1(5)	$0.1515(6)$	-0.148 4(2)
C(7)	-0.138 1(4)	0.324 9(7)	-0.089 1(2)
C(8)	0.057 5(4)	0.4923 (6)	-0.115 6(2)
C(9)	0.1083 (4)	$0.5267(6)$	-0.166 5(2)
C(10)	0.054 5(4)	$0.4665(6)$	-0.213 9(2)

$(b)\left[\mathrm{Mn}_{2}\left(\mu-\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{PPh}_{2}\right)\left(\mathrm{PPh}_{2}\right)(\mathrm{CO})_{7}\right] 4$			
$\mathrm{Mn}(1)$	$0.14387(2)$	$0.29869(5)$	$-0.00504(2)$
$\mathrm{Mn}(2)$	$0.09619(2)$	$-0.06226(5)$	$0.04004(2)$
$\mathrm{P}(1)$	$0.13018(3)$	$0.10266(9)$	$-0.07538(4)$
$\mathrm{P}(2)$	$0.13970(3)$	$0.13964(8)$	$0.08047(4)$
$\mathrm{O}(1)$	$0.23581(8)$	$0.24444(29)$	$0.05160(12)$
$\mathrm{O}(2)$	$0.15537(11)$	$0.49422(37)$	$-0.10133(16)$
$\mathrm{O}(3)$	$0.05187(9)$	$0.35033(34)$	$-0.06278(14)$
$\mathrm{O}(4)$	$0.15912(9)$	$0.53501(28)$	$0.09142(15)$
$\mathrm{O}(5)$	$0.14145(9)$	$-0.17006(33)$	$0.18097(13)$
$\mathrm{O}(6)$	$0.04637(11)$	$-0.32125(34)$	$0.02179(19)$
$\mathrm{O}(7)$	$0.03017(8)$	$0.08875(33)$	$0.06140(14)$
$\mathrm{C}(1)$	$0.20091(12)$	$0.26214(35)$	$0.03029(17)$
$\mathrm{C}(2)$	$0.15007(13)$	$0.41682(41)$	$-0.06624(19)$
$\mathrm{C}(3)$	$0.08703(12)$	$0.32802(37)$	$-0.04018(17)$
$\mathrm{C}(4)$	$0.15337(11)$	$0.44421(37)$	$0.05580(18)$
$\mathrm{C}(5)$	$0.12471(11)$	$-0.12650(38)$	$0.12586(18)$
$\mathrm{C}(6)$	$0.06488(13)$	$-0.21925(42)$	$0.02681(20)$
$\mathrm{C}(7)$	$0.05668(11)$	$0.03260(41)$	$0.05465(17)$
$\mathrm{C}(8)$	$0.06182(12)$	$-0.02243(43)$	$-0.06872(18)$
$\mathrm{C}(9)$	$0.10432(10)$	$-0.04551(34)$	$-0.05215(15)$
$\mathrm{C}(10)$	$0.12374(13)$	$-0.17288(38)$	$-0.02275(19)$
$\mathrm{C}(\mathrm{A} 1)$	$0.17599(11)$	$0.03038(37)$	$-0.08380(19)$
$\mathrm{C}(\mathrm{A} 2)$	$0.18031(13)$	$0.04585(47)$	$-0.14540(20)$
$\mathrm{C}(\mathrm{A} 3)$	$0.21543(16)$	$-0.00874(56)$	$-0.15012(27)$

Atom			z
C(11)	$-0.0364(4)$	$0.3834(6)$	$-0.1998(2)$
C(A1)	$0.4063(4)$	$0.2732(4)$	$-0.1545(3)$
C(A2)	$0.4890(3)$	$0.1902(5)$	$-0.1305(1)$
C(A3)	$0.5818(2)$	$0.1662(6)$	$-0.1586(2)$
C(A4)	$0.5919(3)$	$0.2253(3)$	$-0.2109(2)$
C(A5)	$0.5092(3)$	$0.3083(5)$	$-0.2349(2)$
C(A6)	$0.4164(3)$	$0.3322(6)$	$-0.2068(3)$
C(B1)	$0.3338(5)$	$0.4616(5)$	$-0.0733(2)$
C(B2)	$0.3383(3)$	$0.4599(3)$	$-0.0151(2)$
C(B3)	$0.3741(3)$	$0.5756(5)$	$0.0151(1)$
C(B4)	$0.4053(4)$	$0.6930(5)$	$-0.0128(2)$
C(B5)	$0.4007(2)$	$0.6946(4)$	$-0.0710(2)$
C(B6)	$0.3649(4)$	$0.5789(6)$	$-0.1012(1)$
C(C1)	$-0.1783(4)$	$0.5839(6)$	$-0.1428(3)$
C(C2)	$-0.1489(3)$	$0.7200(7)$	$-0.1316(2)$
C(C3)	$-0.2262(5)$	$0.8240(5)$	$-0.1389(2)$
C(C4)	$-0.3329(3)$	$0.7919(5)$	$-0.1574(2)$
C(C5)	$-0.3622(4)$	$0.6559(6)$	$-0.1686(2)$
C(C6)	$-0.2849(5)$	$0.5519(4)$	$-0.1613(2)$

(c) $\left[\mathrm{Mn}_{2}\left(\mu-\eta^{4}-\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{PPh}_{2}\right)\left(\mathrm{PPh}_{2}\right)(\mathrm{CO})_{6}\right] 5$

$\mathrm{Mn}(1)$	0.129 48(2)	0.224 68(9)	0.088 32(4)	C(A2)	$0.18312(19)$	-0.067 97(68)	$0.26151(30)$
Mn (2)	0.106 20(3)	-0.070 17(9)	0.097 66(4)	C(A3)	0.217 67(22)	-0.092 94(78)	0.305 64(34)
$\mathrm{P}(1)$	0.128 67(4)	$0.09656(15)$	0.176 69(7)	C(A4)	0.243 22(22)	0.012 00(101)	$0.32197(39)$
$\mathrm{P}(2)$	0.119 10(4)	0.23700 (16)	$-0.02408(7)$	C(A5)	$0.23544(23)$	0.139 64(99)	$0.29534(43)$
$\mathrm{O}(1)$	0.051 24(15)	$0.33080(48)$	0.10030 (25)	C(A6)	$0.20073(24)$	$0.16343(74)$	$0.25132(39)$
$\mathrm{O}(2)$	0.154 41(14)	0.498 65(50)	$0.13547(24)$	C(B1)	$0.09686(18)$	0.147 93(66)	$0.23503(27)$
$\mathrm{O}(3)$	0.212 52(15)	0.157 36(52)	$0.08683(26)$	C(B2)	$0.06977(21)$	0.062 48(64)	0.257 10(34)
$\mathrm{O}(4)$	0.025 29(14)	0.036 20(47)	0.093 64(23)	C(B3)	0.045 44(22)	$0.11160(79)$	0.298 02(39)
$\mathrm{O}(5)$	$0.09580(14)$	-0.274 49(47)	0.19917 (23)	C(B4)	$0.04765(24)$	0.242 92(91)	$0.32014(36)$
$\mathrm{O}(6)$	0.190 01(15)	-0.148 08(48)	0.109 09(22)	C(B5)	0.074 62(28)	$0.32816(85)$	$0.30038(43)$
C(1)	$0.08125(18)$	0.284 18(64)	$0.09314(29)$	C(B6)	$0.09917(23)$	$0.28141(76)$	$0.25796(38)$
C(2)	0.144 89(18)	0.389 48(66)	$0.11588(30)$	C(C1)	0.071 33(17)	0.293 39(62)	$-0.06680(28)$
C(3)	$0.17975(20)$	0.178 09(60)	0.087 11(30)	C(C2)	$0.05651(19)$	$0.41806(62)$	$-0.04843(30)$
C(4)	0.057 19(20)	$-0.00089(62)$	$0.09620(28)$	C(C3)	$0.02157(20)$	0.468 83(64)	-0.080 53(34)
$\mathrm{C}(5)$	0.10090 (18)	-0.191 39(65)	$0.16083(31)$	C(C4)	-0.000 38(20)	0.394 98(78)	-0.129 87(38)
C(6)	0.157 46(20)	-0.117 78(63)	0.103 68(30)	C(C5)	0.013 09(23)	0.273 08(81)	-0.149 25(35)
C(7)	0.143 62(23)	0.01711 (68)	-0.093 55(33)	C(C6)	0.048 94(22)	$0.22077(68)$	-0.117 42(35)
C(8)	$0.12192(18)$	$0.05691(58)$	-0.050 62(28)	C(D1)	$0.15050(19)$	0.337 65(65)	-0.068 43(34)
C(9)	0.097 06(18)	$-0.02965(60)$	-0.015 84(28)	C(D2)	0.18317 (21)	0.403 48(73)	-0.035 16(36)
$\mathrm{C}(10)$	$0.10190(19)$	-0.171 56(64)	0.000 98(30)	C(D3)	$0.20697(23)$	$0.48152(85)$	$-0.06860(46)$
C(11)	$0.13459(23)$	-0.257 28(64)	-0.016 53(29)	C(D4)	0.198 75(28)	0.489 79(86)	$-0.13650(51)$
$\mathrm{C}(12)$	0.074 65(22)	-0.231 71(63)	0.034 62(32)	C(D5)	$0.16619(29)$	0.429 26(85)	-0.170 86(40)
C(A1)	0.174 08(17)	0.059 06(66)	$0.23405(28)$	C(D6)	$0.14187(22)$	0.352 27(72)	-0.137 19(37)

4

5

A (ij)

Scheme 2 Possible steps in the formation of complex 5 from 4. (i) allene; (ii) insertion; (iii) H -atom migration
material with the same infrared spectrum, identical to that reported in the literature for $\left[\mathrm{Mn}_{2}\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{8}\right]^{24}$ was obtained on evaporation of the filtrate. The combined yield was 93%.
(ii) Reaction of $\left[\mathrm{Mn}_{2}\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{8}\right]$ 1a with $\mathrm{C}_{2} \mathrm{H}_{2}$. - A solution of complex $\mathbf{1 a}(0.100 \mathrm{~g}, 0.142 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(85$ cm^{3}) with acetylene bubbling through was irradiated with a 4 W UV lamp at room temperature for 5 h . After removal of the solvent on a rotary evaporator the residue was redissolved in the minimum of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and separated by preparative TLC using dichloromethane-hexane ($35: 65$) as eluent. Nine bands were eluted of which the ninth, orange in colour, was the only one to give a product in greater than $c a .1-2 \%$ yield. This band contained $\left[\mathrm{Mn}_{2}\left(\eta^{4}-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{6}\right.$] 2a $(0.13 \mathrm{~g}$, 13%). The fifth band, red-brown in colour, gave [$\mathrm{Mn}_{2}\left(\mu-\sigma: \eta^{4}\right.$ $\left.\left.\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{5}\right] 3(0.002 \mathrm{~g}, 2 \%)$. The other seven bands did not yield sufficient quantities of material to permit characterisation. Complex 2a (Found: C, 58.2; H, 3.7. $\mathrm{C}_{34} \mathrm{H}_{24} \mathrm{Mn}_{2} \mathrm{O}_{6} \mathrm{P}_{2}$ requires C, $58.3 ; \mathrm{H}, 3.4 \%$): $m / z 644$ (M^{+} -2 CO) and $616\left(M^{+}-3 \mathrm{CO}\right)$. Complex 3: m/z $672\left(M^{+}\right)$and $M^{+}-n \mathrm{CO}(n=1-5)$.
(iii) Reaction of $\left[\mathrm{Mn}_{2}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{PPhMe})(\mathrm{CO})_{8}\right]$ 1b with $\mathrm{C}_{2} \mathrm{H}_{2}$. The complex $\left[\mathrm{Mn}_{2}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{PPhMe})(\mathrm{CO})_{8}\right] \quad 1 \mathrm{~b}$ ($0.075 \mathrm{~g}, 0.119 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(85 \mathrm{~cm}^{3}\right.$) was irradiated with a 4 W UV lamp at room temperature for 12.75 h with acetylene bubbling through the solution. After removal of the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ on a rotary evaporator the reaction residue was separated by TLC using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane ($2: 3$) as eluent. Nine bands were eluted of which the ninth, orange in colour, gave $\left[\mathrm{Mn}_{2}\left(\eta^{4}-\mathrm{C}_{4}-\right.\right.$ $\left.\left.\mathrm{H}_{4} \mathrm{PPh}_{2}\right)(\mu-\mathrm{PPhMe})(\mathrm{CO})_{6}\right] 2 \mathrm{~b}(0.002 \mathrm{~g}, 3 \%)$. The eighth, also orange in colour, gave $\left[\mathrm{Mn}_{2}\left(\eta^{4}-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{PPhMe}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{6}\right]$ $2 \mathrm{c}(0.003 \mathrm{~g}, 4 \%)$. None of the other bands gave products in yields sufficient to permit their characterisation. Complex 2b: $m / z 638\left(M^{+}\right)$and $M^{+}-n \mathrm{CO}(n=1$ or 2). Complex 2 c (Found: C, 52.9; H, 3.4. $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{Mn}_{2} \mathrm{O}_{6} \mathrm{P}_{2}$ requires $\mathrm{C}, 54.5 ; \mathrm{H}$, 3.4%): $m / z 638\left(M^{+}\right)$.
(iv) Reaction of $\left[\mathrm{Mn}_{2}\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{8}\right]$ 1a with Allene.Complex 1a ($0.250 \mathrm{~g}, 0.355 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(85 \mathrm{~cm}^{3}\right)$ was irradiated with a 125 W UV lamp at 258 K for 25 min while allene was bubbled slowly through the solution. After removal of the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ on a rotary evaporator the reaction residue was separated by TLC using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane (3:7) as eluent. Twelve bands were eluted of which band seven (decreasing R_{f}
values), orange in colour, gave $\left[\mathrm{Mn}\left(\mu-\eta^{3}-\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{PPh}_{2}\right)(\mu\right.$ $\left.\left.\mathrm{PPh}_{2}\right)(\mathrm{CO})_{6}\right] 5(0.032 \mathrm{~g}, 12 \%)$. Band six was rechromatographed using ethyl acetate-hexane (1:5) as eluent. Four bands were eluted of which band two gave orange $\left[\mathrm{Mn}_{2}\left(\mu-\eta^{3}-\right.\right.$ $\left.\left.\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{7}\right] \mathbf{4}(0.014 \mathrm{~g}, 5 \%)$. None of the other bands gave products in sufficient yield to permit their characterisation. Complex 4 (Found: C, 55.4; H, 3.3. $\mathrm{C}_{34} \mathrm{H}_{24} \mathrm{Mn}_{2} \mathrm{O}_{7} \mathrm{P}_{2}$ requires C, $57.0 ; \mathrm{H}, 3.4 \%$): $m / z 688\left(M^{+}-\mathrm{CO}\right)$ and $M^{+}-$ $n \mathrm{CO}(n=1-7)$. Complex 5 (Found: C, 58.7; H, 4.2. $\mathrm{C}_{36}{ }^{-}$ $\mathrm{H}_{28} \mathrm{Mn}_{2} \mathrm{O}_{6} \mathrm{P}_{2}$ requires C, $59.3 ; \mathrm{H}, 3.8 \%$): $m / z 672\left(M^{+}-2 \mathrm{CO}\right)$ and $M^{+}-n \mathrm{CO}(n=2-6)$.

Crystal Structure Analysis of Complexes 2c, 4 and 5.-Similar experimental and computational methods were used in all three structure analyses (Table 5). Measurements were made at 295 K with Mo-K α X-rays, $\lambda=0.71069 \AA$, on an Enraf-Nonius CAD4 diffractometer fitted with a graphite monochromator. Cell dimensions were obtained from least-squares treatments of the setting angles of 21-25 high-angle reflections. Intensities were determined from $\omega-2 \theta$ scans of $0.70-0.80^{\circ}$ in ω and were corrected for Lorentz polarisation and absorption ${ }^{27}$ effects. The structures were solved by Patterson and Fourier methods. They were then refined on F with $w=1 / \sigma\left(F^{2}\right)$ to convergence ($\Delta / \sigma \geqslant 0.50$) by the method of full-matrix least squares using reflections with $I \geqslant k \sigma(I)(k=2$ for $2 \mathrm{c}, k=3$ for 4 and 5). With the exceptions noted below, anisotropic displacement parameters were refined for non-hydrogen atoms and allowance was made for the scattering of the hydrogen atoms. Hydrogen atoms were initially positioned to give conventional stereochemistry at their parent carbon atoms, the orientations of each methyl group being derived from a difference synthesis, and were then constrained to ride on their parent carbon atoms with C-H $0.96 \AA$ and with fixed isotropic displacement parameters $U(\mathrm{H})=1.2 U(\mathrm{C})$. Neutral atom scattering factors and anomalous dispersion corrections were taken from ref. 28 and the calculations were performed on a SEL 3227 computer with the GX program package. ${ }^{29}$
The phenyl rings in complex 2 c were refined as rigid hexagons of side $1.38 \AA$. The positional and isotropic displacement parameters of the allyl hydrogen atoms in 4 were refined without constraints. Crystals of 4 contain a loosely held dichloromethane solvent molecule which lies on a diad axis and which may be disordered; its hydrogen atoms were not included in the calculations. For $\mathbf{4}$ and $\mathbf{5}$ different sets of parameters were refined in alternate cycles because of constraints on the size of the normal matrix. For all three structures final atomic coordinates are presented in Table 6.
Additional material available from the Cambridge Crystallographic Data Centre comprises H -atom coordinates, thermal parameters and remaining bond lengths and angles.

Acknowledgements

We thank the SERC for financial support and Dr. M. J. Morris (Sheffield) for valuable discussion; Lj. Manojlović-Muir and K. W. Muir thank the University of Glasgow for financial support.

References

1 A. J. Carty, Adv. Chem. Ser., 1982, 196, 163; Pure Appl. Chem., 1982, 54, 113.
2 K. Yasufuku, K. Aoki and H. Yamazaki, J. Organomet. Chem., 1975, 84, C28; B. L. Barnett and C. Kruger, Cryst. Struct. Commun., 1973, 2, 347.
3 R. Regragui, P. H. Dixneuf, N. J. Taylor and A. J. Carty, Organometallics, 1984, 3, 814; 1990, 9, 2234.
4 F. Van Gastel, A. J. Carty, M. A. Pellinghelli, A. Tiripicchio and E. Sappa, J. Organomet. Chem., 1990, 385, C50.

5 R. Zolk and H. Werner, J. Organomet. Chem., 1983, 252, C53; 1987, 337, 95.

6 A. D. Horton, M. J. Mays and P. R. Raithby, J. Chem. Soc., Chem. Commun., 1985, 247.
7 W. F. Smith, N. J. Taylor and A. J. Carty, J. Chem. Soc., Chem. Commun., 1976, 896.
8 B. Klingert, A. L. Rheingold and H. Werner, Inorg. Chem., 1988, 27, 1354.

9 G. Conole, M. McPartlin, M. J. Mays and M. J. Morris, J. Chem. Soc., Dalton Trans., 1990, 2359.
10 K. Henrick, M. McPartlin, J. A. Iggo, A. C. Kemball, M. J. Mays and P. R. Raithby, J. Chem. Soc., Dalton Trans., 1987, 2669.

11 K. Henrick, J. A. Iggo, M. J. Mays and P. R. Raithby, J. Chem. Soc., Chem. Commun., 1984, 209.
12 J. A. Iggo, M. J. Mays, P. R. Raithby and K. Henrick, J. Chem. Soc., Dalton Trans., 1983, 205.
13 A. D. Horton, A. C. Kemball and M. J. Mays, J. Chem. Soc., Dalton Trans., 1988, 2953.
14 D. Braga, A. J. M. Caffyn, M. C. Jennings, M. J. Mays, L. ManojlovićMuir, P. R. Raithby, P. Sabatino and K. W. Woulfe, J. Chem. Soc., Chem. Commun., 1989, 1401.
15 T. Kawamura, K. Machida, H. Masuda, T. Sowa, T. Taga, T. Yamube and T. Yonezawa, J. Organomet. Chem., 1984, 276, C10.
16 G. Conole, K. A. Hill, M. McPartlin, M. J. Mays and M. J. Morris, J. Chem. Soc., Chem. Commun., 1989, 688.

17 A. J. M. Caffyn, M. J. Mays, G. A. Solan, D. Braga, P. Sabatino, G. Conole, M. McPartlin and H. R. Powell, J. Chem. Soc., Dalton Trans., 1991, 3103.
18 P. J. Hay, R. R. Ryan, K. V. Salazar, A. P. Sattelberger and D. A. Wrobleski, J. Am. Chem. Soc., 1986, 108, 313.
19 H. L. Clarke, J. Organomet. Chem., 1974, 80, 155.
20 M. Creswick, I. Bernal, B. Reiter and W. A. Herrmann, Inorg. Chem., 1982, 21, 645.
21 G. S. Lewandos, N. M. Doherty, S. A. R. Knox, K. A. Macpherson and A. G. Orpen, Polyhedron, 1988, 7, 837 and refs. therein.
22 J. R. Schmidt and D. M. Duggan, Inorg. Chem., 1981, $20,318$.
23 A. J. M. Caffyn, M. J. Mays and P. R. Raithby, J. Chem. Soc., Dalton Trans., 1991, 2349.
24 M. L. H. Green and J. T. Moelwyn-Hughes, Z. Naturforsch., Teil. B, 1962, 17, 783.
25 K. W. Woulfe, Ph. D. Thesis, University of Cambridge, 1988.
26 J. A. Iggo and M. J. Mays, Inorg. Synth., 1989, 26, 225.
27 N. Walker and D. Stuart, Acta Crystallogr., Sect. A, 1983, 39, 158.
28 International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4, pp. 99, 119.
29 P. R. Mallinson and K. W. Muir, J. Appl. Crystallogr., 1985, 18, 51.
Received 13th November 1991; Paper 1/05755C

[^0]: * Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1992, Issue 1, pp. xx-xxv.

