Metal-Betaine Interactions. Part 15. ${ }^{1}$ Mercury(II) Chloride Adducts of Betaine Derivatives \dagger

Xiao-Ming Chen and Thomas C. W. Mak*
Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong

Abstract

The structures of the complexes $\left[\left\{\mathrm{Hg}_{2}\left(\mathrm{Me}_{3} \mathrm{NCH}_{2} \mathrm{CO}_{2}\right)_{2} \mathrm{Cl}_{4} \cdot 2 \mathrm{HgCl}_{2}\right\}_{n}\right] 1\left[\left\{\mathrm{Hg}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NCH}_{2} \mathrm{CO}_{2}\right)_{2} \mathrm{Cl}_{4}\right.\right.$. $\left.\left.\mathrm{HgCl}_{2}\right\}_{n}\right] 2$ and $\left[\mathrm{Hg}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}\right)_{2}\left(\mu-\mathrm{Cl}_{2} \mathrm{Cl}_{2}\right] 3\right.$ have been determined by X-ray crystallography. That of 1 features a centrosymmetrical bis(carboxylato- O)-bridged dimeric unit with each metal atom co-ordinated by two terminal chloro ligands; the HgCl_{2} moieties are linked by secondary bonds to the chloro ligands and oxygen atoms of neighbouring dimeric units to form a two-dimensional network. Complex 2 contains an analogous dimeric unit connected by unusual bis(carboxylato- $\mu-0, O^{\prime}$) bridges. Complex 3 comprises discrete dimeric molecules in which each betaine ligand functions in an unsymmetrical bidentate $0, O^{\prime}$ mode.

Mercury(iI) halides and carboxylates, especially acetate and trifluoroacetate, are very useful in the preparation of organic compounds via mercuriation. ${ }^{2}$ For example, they can be used as catalysts in the synthesis of aldehydes and ketones, ${ }^{3}$ and of stereospecific enol derivatives from alkynes. ${ }^{4}$ The crystal structures of only a few mercury(II) carboxylates and related complexes are known. The carboxylate group commonly acts in the unidentate mode as in $\left[\mathrm{HgPh}\left(\mathrm{MeCO}_{2}\right)\right],{ }^{5}\left[\mathrm{C}\left\{\mathrm{Hg}\left(\mathrm{F}_{3} \mathrm{C}\right.\right.\right.$ $\left.\left.\left.\mathrm{CO}_{2}\right)\right\}_{4}\right],{ }^{6}\left[\mathrm{C}\left\{\mathrm{Hg}\left(\mathrm{MeCO}_{2}\right)\right\}_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O},{ }^{7}$ and $[\{\mathrm{Hg}\{\mathrm{CH}[\mathrm{C}(\mathrm{O})$ $\left.\left.\left.\mathrm{Bu}^{2}\right]_{2}\right\}\left(\mathrm{MeCO}_{2}\right)\right],{ }^{8}$ while the bidentate chelate mode is found in $\left[\mathrm{Hg}\left(\mathrm{PBu}_{4}\right)\left(\mathrm{MeCO}_{2}\right)_{2}\right],{ }^{9}\left[\mathrm{Hg}(\mathrm{MeS})\left(\mathrm{MeCO}_{2}\right)(4 \mathrm{Me}-\mathrm{py})\right]$ and $\left[\mathrm{Hg}(\mathrm{EtS})\left(\mathrm{MeCO}_{2}\right)(4 \mathrm{Me}-\mathrm{py})\right]$ (4Me-py $=4$-methylpyridine). ${ }^{10}$ Mercury(iI) acetate has a one-dimensional polymeric structure with the metal atom forming two nearly linear strong $\mathbf{H g}-\mathrm{O}$ bonds ($2.07 \AA$) and three weak secondary $\mathrm{Hg}-\mathrm{O}$ bonds ($2.75 \AA$) in a square-pyramidal arrangement, ${ }^{11}$ while $\left[\mathrm{Hg}\left(2-\mathrm{ClC}_{6}\right.\right.$ $\left.\mathrm{H}_{4} \mathrm{OCH}_{2} \mathrm{CO}_{2}\right)_{2}$] also has a one-dimensional polymeric structure with the metal atom co-ordinated trigonally by a unidentate and a syn-anti bridging carboxylate group. ${ }^{12}$ In the unusual charge-transfer dimeric complex $\left[\mathrm{Hg}_{2}\left(\mathrm{~F}_{3} \mathrm{CCO}_{2}\right)_{4^{-}}\right.$ $\left(\mathrm{C}_{6} \mathrm{Me}_{6}\right)_{2}$] the carboxylate group functions in the syn-syn bridging mode. ${ }^{13}$ On the other hand, a large number of mercury(II) halide adducts with different neutral molecules have been structurally characterized, especially tertiary phosphine adducts formulated as $\mathrm{HgX}_{2}\left(\mathrm{PR}_{3}\right)_{n}(n=1$ or 2 ; $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, or I$)$. The Hg atoms are commonly in distortedtetrahedral co-ordination, and the adducts are di- or polymeric with halide bridges for $n=1^{14,15}$ and monomeric for $n=2$. $^{14.16}$

We have shown that betaine and its derivatives, considered as structural analogues of the corresponding carboxylate anions, can form stable soluble complexes of heavy metals such as silver(I). ${ }^{1.17}$ The overall charge neutrality of betaines is conducive to the preparation of metal complexes in which the metal centre can bear additional anionic ligands, thus providing a ready synthetic route to mercury(iI) chloride adducts. Although not structurally characterized, the $2: 1$ adduct of mercury(II) chloride with betaine (IUPAC name: trimethylammonioacetate, $\mathrm{Me}_{3} \mathrm{~N}^{+} \mathrm{CH}_{2} \mathrm{CO}_{2}{ }^{-}$; designated as L^{1}) has been known since $1938 .{ }^{18}$

We now report the synthesis and single-crystal X-ray analysis of mercury(iI) chloride adducts of betaine and two of its

[^0] Soc., Dalton Trans., 1992, Issue 1, pp. xx-xxv.
derivatives, namely pyridinioacetate $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}^{+} \mathrm{CH}_{2} \mathrm{CO}_{2}{ }^{-}, \mathrm{L}^{2}\right)$ and pyridiniopropionate $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}^{+} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}^{-}, \mathrm{L}^{3}\right)$; the new complexes are $\left[\left\{\mathrm{Hg}_{2} \mathrm{~L}^{\mathbf{1}}{ }_{2} \mathrm{Cl}_{4} \cdot 2 \mathrm{HgCl}_{2}\right\}_{n}\right] 1,\left[\left\{\mathrm{Hg}_{2} \mathrm{~L}^{2}{ }_{2} \mathrm{Cl}_{4}\right.\right.$. $\left.\left.\mathrm{HgCl}_{2}\right\}_{n}\right] 2$, and $\left[\mathrm{Hg}_{2} \mathrm{~L}^{3}{ }_{2}(\mu-\mathrm{Cl})_{2} \mathrm{Cl}_{2}\right] 3$.

Experimental

Preparations.-Compound L^{1} was used as purchased from Sigma. The synthesis of L^{3} was carried out as reported previously. ${ }^{17 b}$

Compound L^{2} was prepared by a modification of the literature method. ${ }^{19}$ Chloroacetic acid $(12.2 \mathrm{~g}, 0.10 \mathrm{~mol})$ was dissolved in pyridine $\left(100 \mathrm{~cm}^{3}\right)$ and the solution stirred at room temperature overnight. After removal of excess of pyridine under reduced pressure at about $60^{\circ} \mathrm{C}$ a slightly yellowish crystalline powder was obtained, which was redissolved in distilled water ($15 \mathrm{~cm}^{3}$), loaded on an 'Amberlite' IRA-93 anionexchange column $\left(\mathrm{OH}^{-}\right.$form, $\left.4.5 \times 40 \mathrm{~cm}\right)$, and eluted with distilled water $\left(300 \mathrm{~cm}^{3}\right)$. The eluate was then evaporated to dryness under reduced pressure in a water-bath at $c a .65^{\circ} \mathrm{C}$, giving a white crystalline product $(11.6 \mathrm{~g}, 85 \%$ yield), which is very hygroscopic. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}, \mathrm{SiMe}_{4}$ as internal standard): $\delta 5.31\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{CO}\right), 8.10(2 \mathrm{H}, \mathrm{t}, m-\mathrm{H}$ of py$), 8.60(1 \mathrm{H}, \mathrm{t}, p-\mathrm{H}$ of py), and $8.79(2 \mathrm{H}, \mathrm{d}, o-\mathrm{H}$ of py). IR (KBr): 3292s, 3256 s , $3090 \mathrm{~s}, 3063 \mathrm{~s}, 1634 \mathrm{~s}, 1592 \mathrm{vs}, 1500 \mathrm{~m}, 1489 \mathrm{~s}, 1391 \mathrm{~s}, 984 \mathrm{~m}, 955 \mathrm{~m}$, $780 \mathrm{~m}, 729 \mathrm{~m}, 682 \mathrm{~s}$ and $648 \mathrm{~m} \mathrm{~cm}^{-1}$.
$\left[\left\{\mathrm{Hg}_{2} \mathrm{~L}^{1}{ }_{2} \mathrm{Cl}_{4} \cdot 2 \mathrm{HgCl}_{2}\right\}_{n}\right]$ 1. Mercury(II) chloride ($0.272 \mathrm{~g}, 1.0$ $\mathrm{mmol})$ and $\mathrm{L}^{1}(0.117 \mathrm{~g}, 1.0 \mathrm{mmol})$ were mixed in hot distilled water $\left(7 \mathrm{~cm}^{3}\right)$. After stirring at about $90^{\circ} \mathrm{C}$ for 5 min a clear solution was obtained. Slow evaporation in air at room temperature for 1 week yielded colourless polyhedral crystals. IR: $3051 \mathrm{~s}, 3030 \mathrm{~s}, 2966 \mathrm{~s}, 1616 \mathrm{~s}, 1483 \mathrm{~m}, 1455 \mathrm{~m}, 1398 \mathrm{~s}, 1237 \mathrm{~m}$, $1124 \mathrm{w}, 1012 \mathrm{w}, 977 \mathrm{~m}, 934 \mathrm{~m}, 801 \mathrm{~m}, 740 \mathrm{~m}$ and $636 \mathrm{~m} \mathrm{~cm}^{-1}$.
$\left[\left\{\mathrm{Hg}_{2} \mathrm{~L}^{2}{ }_{2} \mathrm{Cl}_{4} \cdot \mathrm{HgCl}_{2}\right\}_{n}\right]$ 2. Mercury(II) chloride ($0.272 \mathrm{~g}, 1.0$ $\mathrm{mmol})$ and $\mathrm{L}^{2}(0.137 \mathrm{~g}, 1.0 \mathrm{mmol})$ were added to hot distilled water $\left(5 \mathrm{~cm}^{3}, 90^{\circ} \mathrm{C}\right)$; after stirring for about 10 min the resulting clear solution was cooled to room temperature. Colourless prismatic crystals were afforded by standing overnight in air. IR: $3093 \mathrm{~s}, 3065 \mathrm{~s}, 3009 \mathrm{~m}, 1630 \mathrm{vs}, 1505 \mathrm{~m}, 1490 \mathrm{~s}, 1384 \mathrm{vs}, 1307 \mathrm{~m}$, $1216 \mathrm{w}, 1195 \mathrm{~m}, 1166 \mathrm{w}, 977 \mathrm{w}, 913 \mathrm{w}, 850 \mathrm{~m}, 773 \mathrm{~m}, 709 \mathrm{~s}, 674 \mathrm{~s}$ and $611 \mathrm{vs} \mathrm{cm}^{-1}$.
$\left[\mathrm{Hg}_{2} \mathrm{~L}^{3}{ }_{2}(\mu-\mathrm{Cl})_{2} \mathrm{Cl}_{2}\right]$ 3. A mixture of $\mathrm{HgCl}_{2}(0.272 \mathrm{~g}, 1.0$ $\mathrm{mmol})$ and $\mathrm{L}^{3}(0.151 \mathrm{~g}, 1.0 \mathrm{mmol})$ was added to water ($5 \mathrm{~cm}^{3}$) and stirred at $70^{\circ} \mathrm{C}$ for 10 min , resulting in a clear solution. Colourless polyhedral crystals were afforded by slow evaporation of the solution at room temperature for several days. IR:

Table 1 Data collection and processing parameters

Complex	1	2	3
Formula	$\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{Cl}_{8} \mathrm{Hg}_{4} \mathrm{~N}_{2} \mathrm{O}_{4}$	$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{Cl}_{6} \mathrm{Hg}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}$	$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{Cl}_{4} \mathrm{Hg}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$
M	1320.30	1088.77	845.34
Colour and habit	Colourless plate	Colourless polyhedron	Colourless prism
Crystal system	Triclinic	Triclinic	Monoclinic
Space group	PI	PI	P2, $/ \mathrm{c}$
a / \AA	7.302(2)	7.247(5)	10.390(3)
b / \AA	9.364(3)	9.093(3)	8.043(2)
c / \AA	10.559(2)	9.626(5)	13.893(2)
$\alpha{ }^{\circ}$	103.48(2)	107.93(4)	90
$\beta /{ }^{\circ}$	104.45(2)	99.41(5)	108.15(2)
$\gamma /{ }^{\circ}$	97.63(2)	92.97(4)	90
U / \AA^{3}	665.7(8)	591.8(4)	1103.0(4)
Z	1	1	2
$D_{\mathrm{c}} / \mathrm{g} \mathrm{cm}^{-3}$	3.293	3.054	2.545
$F(000)$	564	486	776
μ / mm	23.8	20.1	14.4
Crystal size/mm	$0.24 \times 0.22 \times 0.24$	$0.16 \times 0.22 \times 0.30$	$0.08 \times 0.12 \times 0.28$
Transmission factors	0.014-0.022	0.066-0.160	0.061-0.160
Collection range, $2 \theta_{\text {max }} /{ }^{\circ}$	$h, \pm k, \pm l, 50$	$h, k, \pm l, 55$	$h, k, \pm l, 50$
Unique data measured	2342	2683	1935
Observed data [$I \geqslant 3 \sigma(I)]$, n	1822	1603	1302
No. of variables, p	128	134	128
$R_{\mathrm{F}}=\Sigma \Sigma / \Sigma\left\|F_{\mathrm{o}}\right\|^{\text {a }}$	0.062	0.049	0.044
$R_{\mathrm{G}}=\left[\Sigma w \Delta^{2} / \Sigma w\left\|F_{\mathrm{o}}\right\|^{2}\right]^{\frac{1}{2} b}$	0.073	0.053	0.037
$S=\left[\Sigma w \Delta^{2} /(n-p)\right]^{\frac{1}{2}}$	0.965	1.644	1.602
Residual extrema in final difference map ($e \AA^{-3}$)	+4.60 to -1.93	+ 0.67 to -1.25	+ 1.14 to - 1.76

${ }^{a} \Delta \equiv| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right|^{b}$ Weighting scheme, $w=\left[\sigma^{2}\left(F_{\mathrm{o}}\right)+K\left|F_{\mathrm{o}}\right|^{2}\right]^{-1}$ where $10^{4} \times K=10,4$ and 1 for complexes 1,2 and 3 , respectively.

Table 2 Atomic coordinates ($\times 10^{5}$ for $\mathrm{Hg} \times 10^{4}$ for others)

Atom	x	y	z	Atom	x	y	z
$\left[\mathrm{Hg}_{2} \mathrm{~L}^{1}{ }_{2} \mathrm{Cl}_{4} \cdot 2 \mathrm{HgCl}_{2}\right] \mathbf{1}$							
$\mathrm{Hg}(2)$	94 468(11)	-36 940(8)	66 476(7)	O(2)	8611(29)	1 165(17)	$3773(20)$
$\mathrm{Cl}(3)$	11 363(9)	- 3 050(6)	$8838(5)$	C(1)	7 794(29)	-2(18)	$3845(18)$
$\mathrm{Cl}(4)$	7 509(8)	-4608(5)	4 420(5)	C(2)	$8101(38)$	-1 520(19)	$3095(18)$
$\mathrm{Hg}(1)$	4453(1)	-2 193(1)	$5079(1)$	N(1)	7740 (22)	-1 748(15)	$1567(14)$
$\mathrm{Cl}(1)$	6416(8)	-1 867(7)	7 296(5)	C(3)	$9379(48)$	-878(28)	$1286(33)$
$\mathrm{Cl}(2)$	$2763(9)$	-3 436(6)	2 795(5)	C(4)	6 033(46)	- 1 198(40)	$1005(26)$
$\mathrm{O}(1)$	$6734(26)$	-146(15)	4556 (20)	C(5)	7 524(55)	- 3 379(23)	892(26)
$\left[\mathrm{Hg}_{2} \mathrm{~L}^{2}{ }_{2} \mathrm{Cl}_{4} \cdot \mathrm{HgCl}_{2}\right] 2$							
$\mathrm{Hg}(2)$	50000	50000	50000	C(2)	4360 (19)	335(17)	3032 (14)
$\mathrm{Cl}(3)$	5 799(9)	5 893(5)	7 547(5)	N(1)	3 294(18)	-854(15)	1 637(15)
$\mathrm{Hg}(1)$	6 538(10)	22 956(8)	62 707(7)	C(3)	2 516(24)	-418(20)	496(18)
$\mathrm{Cl}(1)$	2 262(7)	2 243(6)	8 541(5)	C(4)	1 604(24)	-1 528(20)	-818(19)
$\mathrm{Cl}(2)$	- 1483 (8)	3 129(8)	4 692(6)	C(5)	$1469(25)$	- 3 107(20)	-942(20)
$\mathrm{O}(1)$	$1538(18)$	252(15)	4000 (15)	C(6)	2 267(24)	- 3 542(22)	263(21)
O(2)	3 722(17)	2 190(13)	$5188(12)$	C(7)	$3175(22)$	-2370(16)	$1579(20)$
C(1)	3041 (22)	951(18)	4 185(18)				
$\left[\mathrm{Hg}_{2} \mathrm{~L}^{3}{ }_{2}(\mu-\mathrm{Cl})_{2} \mathrm{Cl}_{2}\right]^{3}$							
$\mathrm{Hg}(1)$	17 028(6)	7 984(4)	$7811(4)$	C(3)	$3022(13)$	6024(16)	$3036(9)$
$\mathrm{Cl}(1)$	-188(3)	-797(5)	$1227(2)$	N(1)	3010 (11)	7 784(13)	3 351(8)
$\mathrm{Cl}(2)$	3 569(3)	--848(6)	754(3)	C(4)	$1996(14)$	8 283(19)	3 684(9)
$\mathrm{O}(1)$	$1055(10)$	3 311(12)	$1029(8)$	C(5)	$1964(16)$	$9885(19)$	4 032(10)
O(2)	3 149(11)	3 196(14)	$1976(9)$	C(6)	2 998(18)	10 938(20)	4030 (11)
C(1)	2056(16)	3 946(17)	1 646(11)	C(7)	4053(18)	$10389(21)$	$3713(11)$
C(2)	$1989(14)$	5 693(17)	$1998(10)$	C(8)	$4002(15)$	8 799(18)	3 357(10)

$3079 \mathrm{~m}, 3058 \mathrm{~m}, 1637 \mathrm{~s}, 1616 \mathrm{vs}, 1574 \mathrm{~s}, 1483 \mathrm{~s}, 1356 \mathrm{w}, 1317 \mathrm{w}$, $780 \mathrm{~m}, 681 \mathrm{~s}$ and $676 \mathrm{~m} \mathrm{~cm}^{-1}$.

For all three complexes the same product (checked by its IR spectrum and unit-cell dimensions) was obtained when the molar ratio of HgCl_{2} to betaine ligand used was changed to $1: 2$.

Crystallography.-Diffraction intensities for each complex were collected at $21^{\circ} \mathrm{C}$ on a Nicolet $\mathrm{R} 3 \mathrm{~m} / \mathrm{V}$ diffractometer using graphite monochromated Mo-K α radiation $(\lambda=0.71073$
\AA) and the ω-scan ($2.2-14.6^{\circ} \mathrm{min}^{-1}$) mode. ${ }^{20}$ Data processing, absorption corrections, structure solution, and full-matrix leastsquares refinement were performed with the SHELXTL-PLUS program package ${ }^{21}$ (parameters listed in Table 1) on a DEC MicroVAX-II computer. The non-hydrogen atoms were refined anisotropically. All the hydrogen atoms were generated geometrically ($\mathrm{C}-\mathrm{H} 0.96 \AA$), assigned isotropic thermal factors, and included in the structure-factor calculations. Analytic expressions of neutral-atom scattering factors were employed,

Table 3 Selected interatomic distances (\AA) and angles (${ }^{\circ}$)

$\left[\left\{\mathrm{Hg}_{2} \mathrm{~L}^{1}{ }_{2} \mathrm{Cl}_{4} \cdot 2 \mathrm{HgCl}_{2}\right\}_{n}\right] 1$			
$\mathrm{Hg}(2)-\mathrm{Cl}(3)$	2.276 (5)	$\mathrm{Hg}(2)-\mathrm{Cl}(4)$	2.312(4)
$\mathrm{Hg}(1)-\mathrm{Cl}(1)$	2.346 (5)	$\mathrm{Hg}(1)-\mathrm{Cl}(2)$	2.348(5)
$\mathrm{Hg}(1)-\mathrm{O}(1)$	2.62(2)	$\mathrm{Hg}(1)-\mathrm{O}(1 \mathrm{a})$	2.45(2)
$\mathrm{Hg}(2) \cdots \mathrm{Cl}(1)$	3.083(5)	$\mathrm{Hg}(2) \cdots \mathrm{O}(2 \mathrm{~b})$	2.78(2)
$\mathrm{Hg}(2) \cdots \mathrm{Cl}(2 \mathrm{c})$	3.199(6)	$\mathrm{Hg}(2) \cdots \mathrm{Cl}(4 \mathrm{~d})$	3.177(6)
$\mathrm{Cl}(3)-\mathrm{Hg}(2)-\mathrm{Cl}(4)$	174.0(2)	$\mathrm{Cl}(1)-\mathrm{Hg}(1)-\mathrm{Cl}(2)$	157.9(2)
$\mathrm{Cl}(1)-\mathrm{Hg}(1)-\mathrm{O}(1)$	95.0(4)	$\mathrm{Cl}(2)-\mathrm{Hg}(1)-\mathrm{O}(1)$	95.8(4)
$\mathrm{Cl}(1)-\mathrm{Hg}(1)-\mathrm{O}(1 \mathrm{a})$	99.1(4)	$\mathrm{Cl}(2)-\mathrm{Hg}(1)-\mathrm{O}(1 \mathrm{a})$	102.6(4)
$\mathrm{O}(1)-\mathrm{Hg}(1)-\mathrm{O}(1 \mathrm{a})$	70.8(8)	$\mathrm{Hg}(1)-\mathrm{O}(1)-\mathrm{C}(1)$	142(1)
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{Hg}(1 \mathrm{a})$	104(1)		
$\mathrm{O}(1)-\mathrm{C}(1)$	1.22(3)	$\mathrm{O}(2)-\mathrm{C}(1)$	1.20(3)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.53(3)		
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(2)$	126(2)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	112(2)
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	122(2)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(1)$	114(2)
$\left[\left\{\mathrm{Hg}_{2} \mathrm{~L}^{2}{ }_{2} \mathrm{Cl}_{4} \cdot \mathrm{HgCl}_{2}\right\}_{n}\right] \mathbf{2}$			
$\mathrm{Hg}(2)-\mathrm{Cl}(3)$	$2.295(5)$	$\mathrm{Hg}(1)-\mathrm{Cl}(1)$	2.318(5)
$\mathrm{Hg}(1)-\mathrm{Cl}(2)$	2.311 (7)	$\mathrm{Hg}(1)-\mathrm{O}(1)$	2.59(1)
$\mathrm{Hg}(1)-\mathrm{O}(2)$	2.60(1)	$\mathrm{Hg}(1)-\mathrm{O}(1 \mathrm{a})$	2.66 (1)
$\mathrm{Hg}(2) \cdots \mathrm{O}(2)$	2.74(1)	$\mathrm{Hg}(2) \cdots \mathrm{Cl}(2 \mathrm{c})$	3.141(7)
$\mathrm{Cl}(1)-\mathrm{Hg}(1)-\mathrm{Cl}(2)$	156.2(2)	$\mathrm{Cl}(1)-\mathrm{Hg}(1)-\mathrm{O}(1)$	113.8(3)
$\mathrm{Cl}(2)-\mathrm{Hg}(1)-\mathrm{O}(1)$	90.1(3)	$\mathrm{Cl}(1)-\mathrm{Hg}(1)-\mathrm{O}(2)$	92.1(3)
$\mathrm{Cl}(2)-\mathrm{Hg}(1)-\mathrm{O}(2)$	104.8(3)	$\mathrm{O}(1)-\mathrm{Hg}(1)-\mathrm{O}(2)$	49.9(4)
$\mathrm{Cl}(1)-\mathrm{Hg}(1)-\mathrm{O}(1 \mathrm{a})$	90.0(3)	$\mathrm{Cl}(2)-\mathrm{Hg}(1)-\mathrm{O}(1 \mathrm{a})$	94.7(3)
$\mathrm{O}(1)-\mathrm{Hg}(1)-\mathrm{O}(1 \mathrm{a})$	77.1(5)	$\mathrm{O}(2)-\mathrm{Hg}(1)-\mathrm{O}(1 \mathrm{a})$	122.4(4)
$\mathrm{Hg}(1)-\mathrm{O}(1)-\mathrm{C}(1)$	92(1)	$\mathrm{O}(1)-\mathrm{O}(1)-\mathrm{Hg}(1 \mathrm{a})$	152(1)
$\mathrm{Hg}(1)-\mathrm{O}(2)-\mathrm{C}(1)$	90(1)		
$\mathrm{O}(1)-\mathrm{C}(1)$	1.19(2)	$\mathrm{O}(2)-\mathrm{C}(1)$	1.25(2)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.57(2)	$\mathrm{C}(2)-\mathrm{N}(1)$	1.50(2)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(2)$	127(2)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	119(1)
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	113(1)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(1)$	111(1)
$\left[\mathrm{HgL}^{3}{ }_{2}(\mu-\mathrm{Cl})_{2} \mathrm{Cl}_{2}\right]^{3}$			
$\mathbf{H g}(1)-\mathrm{Cl}(1)$	2.578(4)	$\mathrm{Hg}(1)-\mathrm{Cl}(2)$	2.358(4)
$\mathrm{Hg}(1)-\mathrm{O}(1)$	2.191(9)	$\mathrm{Hg}(1)-\mathrm{O}(2)$	2.679(9)
$\mathrm{Hg}(1)-\mathrm{Cl}(1 \mathrm{a})$	2.743(3)		
$\mathrm{Cl}(1)-\mathrm{Hg}(1)-\mathrm{Cl}(2)$	114.6(1)	$\mathrm{Cl}(1)-\mathrm{Hg}(1)-\mathrm{O}(2)$	122.1(3)
$\mathrm{Cl}(1)-\mathrm{Hg}(1)-\mathrm{O}(1)$	97.3(3)	$\mathrm{Cl}(1 \mathrm{a})-\mathrm{Hg}(1)-\mathrm{O}(2)$	131.6(3)
$\mathrm{Cl}(1 \mathrm{a})-\mathrm{Hg}(1)-\mathrm{Cl}(2)$	101.4(1)	$\mathrm{Cl}(1 \mathrm{a})-\mathrm{Hg}(1)-\mathrm{O}(1)$	93.0(3)
$\mathrm{Cl}(1)-\mathrm{Hg}(1)-\mathrm{Cl}(1 \mathrm{a})$	90.3(1)	$\mathrm{Cl}(2)-\mathrm{Hg}(1)-\mathrm{O}(1)$	144.6(3)
$\mathrm{Cl}(2)-\mathrm{Hg}(1)-\mathrm{O}(2)$	96.3(3)	$\mathrm{O}(1)-\mathrm{Hg}(1)-\mathrm{O}(2)$	51.6(5)
$\mathrm{Hg}(1)-\mathrm{O}(1)-\mathrm{C}(1)$	104.9(9)	$\mathrm{Hg}(1)-\mathrm{O}(2)-\mathrm{C}(2)$	81.3(9)
$\mathrm{O}(1)-\mathrm{C}(1)$	1.23(2)	$\mathrm{O}(2)-\mathrm{C}(1)$	1.24(2)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.50(2)	$\mathrm{C}(2)-\mathrm{C}(3)$	1.53(2)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(2)$	122(1)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	120(1)
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	117(1)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	112(1)

Symmetry codes: for 1 , a $1-x,-y, 1-z$; b $2-x,-y, 1-z ; \mathrm{c} 1-x,-1+y, 1-z ; \mathrm{d} 2-x,-1+y, 1-z ;$ for $2, \mathrm{a}-x,-y, 1-z ; \mathrm{b} 1-x$, $1-y, 1-z ; \mathrm{c} 1+x, y, z ; \mathrm{d}-x, 1-y, 1-z ;$ for 3, a $-x,-y,-z$.
and anomalous dispersion corrections were incorporated. ${ }^{22}$ The final discrepancy indices and other parameters at the conclusion of refinement are listed in Table 1, atomic coordinates are given in Table 2, and selected interatomic distances and bond angles in Table 3.

Additional material available from the Cambridge Crystallographic Data Centre comprises H -atom coordinates, thermal parameters, and remaining bond lengths and angles.

Results and Discussion

$\left[\left\{\mathrm{Hg}_{2} \mathrm{~L}^{1}{ }_{2} \mathrm{Cl}_{4} \cdot 2 \mathrm{HgCl}_{2}\right\}_{n}\right]$ 1.-Complex 1 primarily consists of centrosymmetrical bis(carboxylato)bridged $\mathrm{Hg}_{2} \mathrm{~L}^{1}{ }_{2} \mathrm{Cl}_{4}$ dimeric units (Fig. 1) and virtually linear HgCl_{2} units $[\mathrm{Hg}-\mathrm{Cl}$ $\left.2.276(5), 2.312(4) \AA ; \mathrm{Cl}-\mathrm{Hg}-\mathrm{Cl} 174.0(2)^{\circ}\right]$. In the dimeric unit a pair of $\mathrm{Hg}(1)$ atoms, separated at a non-bonded distance of $4.129(3) \AA$, are bridged by two carboxylato oxygen atoms [$\mathrm{Hg}-\mathrm{O} 2.45(2), 2.62(2) \AA$], and each metal atom is co-ordinated
by two terminal chloro ligands [$\mathrm{Hg}-\mathrm{Cl} 2.346(5), 2.348(5) \AA$] in a highly distorted tetrahedral geometry with bond angles ranging from $\mathrm{O}(1)-\mathrm{Hg}(1)-\mathrm{O}(1 \mathrm{a})$ at $70.8(8)^{\circ}$ to $\mathrm{Cl}(1)-\mathrm{Hg}(1)-\mathrm{Cl}(2)$ at 157.9(2) ${ }^{\circ}$. This significant distortion may be attributed to the fact that the chlorine atom is a stronger σ donor (hence leading to greater repulsion between the chloro ligand bond pairs at the metal centre) than a carboxylato oxygen atom, so that the two chloro ligands in 1 favour stronger bonding with $\mathrm{Hg}^{I I}$ and a tendency toward linear co-ordination, which has been observed for mercury(II) halide adducts of phosphines. ${ }^{14-16}$ The second oxygen atom, i.e. $\mathrm{O}(2)$ in the same carboxy group is $2.96(1) \AA$ from the $\mathrm{Hg}(1)$ atom, showing clearly that the carboxylato group does not behave as a bidentate ligand.
The O-bridging mode is common in metal alkoxide chemistry, ${ }^{23 a}$ one example being the copper(I) complex $\left[\left\{\mathrm{Cu}\left(\mathrm{OBu}^{1}\right)\right\}_{4}\right],{ }^{24}$ where each pair of metal atoms are bridged by an oxygen atom of the alkoxide to form a tetrameric structure. In contrast, this one-atom bridge is seldom the only

Fig. 1 Perspective view showing the co-ordination environment of the mercury(II) atoms in $\left[\left\{\mathrm{Hg}_{2} \mathrm{~L}^{1}{ }_{2} \mathrm{Cl}_{4} \cdot 2 \mathrm{HgCl}_{2}\right\}_{n}\right] 1$ and the atom numbering scheme. The secondary bonds are represented by dotted lines. Symmetry codes are as given in Table 3
link between the metal atoms in metal carboxylate structures, one example being the dimeric $\left[\mathrm{Hg}_{2}\left(\mathrm{MeCO}_{2}\right)_{4}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}_{2}\right]$, ${ }^{25}$ in which one acetate group acts in the O -bridging mode and the other in the unidentate mode. Frequently the other carboxy oxygen atom O^{\prime} is also bound to another metal atom, resulting in a μ-O, O^{\prime} mode, ${ }^{23 b}$ which commonly occurs in silver(I$)$ complexes of carboxylates and betaines. ${ }^{17}$ Thus the O-bridging mode found in complex 1 is uncommon.
In the HgCl_{2} unit, considering the strong covalent $\mathrm{Hg}-\mathrm{Cl}$ bonds $[2.276(5), 2.312(4) \AA$] as axial, the metal atom forms four secondary bonds in the equatorial plane with three chlorine atoms $[\mathrm{Hg} \cdots \mathrm{Cl} 3.083(5)-3.199(6) \AA$] and the $\mathrm{O}(2)$ atom $[\mathrm{Hg} \cdots \mathrm{O} 2.78(2) \AA]$ of the carboxylato group from adjacent dimers. Thus the co-ordination geometry about the $\mathrm{Hg}(2)$ atom may be described as a compressed octahedron in which the most distorted angles are $\mathrm{Cl}(3)-\mathrm{Hg}(2)-\mathrm{Cl}(4)$ at $174.0(2)^{\circ}$ and $\mathrm{Cl}(3)-\mathrm{Hg}(2) \cdots \mathrm{Cl}(1)$ at $94.9(4)^{\circ}$. The secondary bonding links the dimeric and HgCl_{2} units into a two-dimensional polymeric network concentrated about the plane $z=\frac{1}{2}$, as illustrated in Fig. 2.
[$\left.\left\{\mathrm{Hg}_{2} \mathrm{~L}^{2}{ }_{2} \mathrm{Cl}_{4} \cdot \mathrm{HgCl}_{2}\right\}_{n}\right]$ 2.-Complex 2 is also composed primarily of centrosymmetrical $\mathrm{Hg}_{2} \mathrm{~L}^{2}{ }_{2} \mathrm{Cl}_{4}$ dimers and linear HgCl_{2} units (Fig. 3). In the dimeric unit a pair of metal atoms are bridged by two oxygen atoms of the carboxylato groups [$\mathrm{Hg}-\mathrm{O} 2.59(1), 2.66(1) \AA$] at an intradimer non-bonded metalmetal separation of $4.106(3) \AA$, while the other carboxylato oxygen atom $\mathrm{O}(2)[\mathrm{Hg}-\mathrm{O}(2) 2.60(1) \AA]$ also participates in coordination to $\mathrm{Hg}(1)$. The co-ordination sphere about each metal atom in the dimer is completed by two terminal chloro ligands [2.311(7), 2.318(5) \AA] in a highly irregular five-co-ordinate arrangement. The most distorted angles, as in the case of complex 1, are $\mathrm{Cl}(1)-\mathrm{Hg}(1)-\mathrm{Cl}(2) 156.2(2)^{\circ}$ and $\mathrm{O}(1)-\mathrm{Hg}(1)-\mathrm{O}(2) 49.9(4)^{\circ}$, which can also be ascribed to the stronger σ-donating ability of the chlorine atom than that of the carboxylate oxygen atom.
It is noteworthy that the carboxylato group in complex 2 acts in the very uncommon chelating plus bridging mode, which is extremely rare among metal carboxylates, ${ }^{23 b, 26}$ and has not yet been found among metal complexes of betaines. Hitherto the only known examples exist in a uranyl carboxylate, $\left[\left\{\mathrm{UO}_{2}\left(\mathrm{NO}_{3}\right)\right\}_{2}(\text { sal })_{2}\right] \cdot 2 \mathrm{NC}_{5} \mathrm{H}_{4} \mathrm{NMe}_{2}-4 \quad($ sal $=$ salicylate $),{ }^{27}$ and a cadmium(II) carboxylate, $\left[\left\{\mathrm{Cd}\left(\mathrm{MeCO}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right\}_{n}\right]^{28}$ Presumably this unusual ligation mode may occur when the carboxylato group co-ordinates to metal ions of large radii.
Since the $\mathrm{Hg}(2)$ atom is located at an inversion centre the HgCl_{2} unit is exactly linear with $\mathrm{Hg}-\mathrm{Cl} 2.295(5) \AA$. As in

Fig. 2 Molecular packing in the crystal structure of $\left[\left\{\mathrm{Hg}_{2}-\right.\right.$ $\left.\left.\mathrm{L}^{1}{ }_{2} \mathrm{Cl}_{4} \cdot 2 \mathrm{HgCl}_{2}\right\}_{n}\right]$ 1. The origin of the unit cell lies at the upper left corner, with a pointing towards the reader, b downwards, and c from left to right. The secondary bonds are represented by dotted lines

Fig. 3 Perspective view showing the co-ordination environment of the mercury(II) atoms in $\left[\left\{\mathrm{Hg}_{2} \mathrm{~L}^{2}{ }_{2} \mathrm{Cl}_{4} \cdot \mathrm{HgCl}_{2}\right\}_{n}\right] 2$ and the atom numbering scheme. The secondary bonds are represented by dotted lines. Symmetry codes are as given in Table 3
the case of complex $\mathbf{1}$, the HgCl_{2} unit in 2 forms four secondary bonds in the equatorial plane with two chlorine $[\mathrm{Hg}(2) \cdots \mathrm{Cl}(2 \mathrm{c}) 3.141(7) \AA]$ and two oxygen atoms $[\mathrm{Hg}(2)-$ $\mathrm{O}(2)$ 2.74(1) $\AA]$ from adjacent dimeric units, resulting in a compressed octahedron. These secondary bonds connect the structural units into a two-dimensional network concentrated about the plane $z=\frac{1}{2}$, as shown in Fig. 4.
$\left[\mathrm{Hg}_{2} \mathrm{~L}^{3}{ }_{2}(\mu-\mathrm{Cl})_{2} \mathrm{Cl}_{2}\right]$ 3.-Unlike 1 and 2 , complex $\mathbf{3}$ comprises only discrete centrosymmetrical $\mathrm{Hg}_{2} \mathrm{~L}^{3}{ }_{2}(\mu-\mathrm{Cl})_{2} \mathrm{Cl}_{2}$ dimers (Fig. 5) in which a pair of metal atoms, separated at a non-bonded distance of 3.754(3) \AA, are linked by unsymmetrical μ-chloro

Fig. 4 Molecular packing in the crystal structure of $\left[\left\{\mathrm{Hg}_{2} \mathrm{~L}^{2}{ }_{2}-\right.\right.$ $\left.\mathrm{Cl}_{4} \cdot \mathrm{HgCl}_{2\}_{n}}\right]$ 2. Details as in Fig. 2

Fig. 5 Perspective view showing the molecular structure of $\left[\mathrm{Hg}_{2} \mathrm{~L}^{3}{ }_{2}-\right.$ $\left.(\mu-\mathrm{Cl})_{2} \mathrm{Cl}_{2}\right] 3$ and the atom numbering scheme. Symmetry codes are as given in Table 3
bridges $[\mathrm{Hg}-\mathrm{Cl} 2.578(4), 2.743(3) \AA]$. The co-ordination sphere about each metal atom is completed by an unsymmetrical bidentate carboxylato group [$\mathrm{Hg}-\mathrm{O} 2.191(9), 2.679(9) \AA$] and a terminal chloro ligand $[\mathrm{Hg}-\mathrm{Cl} 2.358(4) \AA$] in a very distorted square-pyramidal geometry; regarding the $\mathrm{Cl}(1)-\mathrm{Hg}(1)$ bond as axial, the most distorted angles are $\mathrm{Cl}(1 \mathrm{a})-\mathrm{Hg}(1)-\mathrm{O}(2) 131.6(3)^{\circ}$ and $\mathrm{O}(1)-\mathrm{Hg}(1)-\mathrm{O}(2) 51.6(5)^{\circ}$. The terminal $\mathrm{Hg}-\mathrm{Cl}$ bond length is significantly shorter than those of the bridging $\mathrm{Hg}-\mathrm{Cl}$ bonds. The $\mathrm{Hg}(1)-\mathrm{O}(1)$ bond $[2.191(9) \AA]$ is significantly shorter by more than $0.35 \AA$ than all the other $\mathrm{Hg}-\mathrm{O}$ bonds in complexes $\mathbf{1 - 3}$, although it is still longer than the longest one $[2.08(1) \AA]$ found in $\left[\mathrm{C}\left\{\mathrm{Hg}\left(\mathrm{MeCO}_{2}\right)\right\}_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O},{ }^{7}$ where the acetato group acts in a unidentate fashion. The geometry of the chloro bridge in complex 3 is comparable to those found in a number of mercury(II) chloride adducts with phosphines. ${ }^{14,15}$
Complex $\mathbf{3}$ is distinct from both $\mathbf{1}$ and $\mathbf{2}$ in regard to the different co-ordination mode of the carboxylato group and the absence of HgCl_{2} species in the crystal. This may be due to the fact that, with one more methylene group as a spacer between the pyridine ring and the carboxy group as compared to pyridinioacetate (L^{2}), the pyridine ring in L^{3} may be further stretched, thus facilitating an optimum arrangement of ligands about each metal centre that effectively precludes association to any HgCl_{2} species by secondary bonding.

Conclusion

The present study has shown that betaine ligands can exhibit different co-ordination modes in their mercury(II) complexes, which are uncommon in the metal carboxylates and betaine complexes of other metals. That the same product can be obtained by using different molar ratios of starting materials implies that the stoichiometry of a particular mercury(II) chloride-betaine adduct depends mainly on the ligand characteristics. The dominant factor affecting the stoichiometry might be the size of the betaine ligand, which may dictate the extent of secondary bonding between the ligands of the dimeric unit and the metal atom of the co-existing HgCl_{2} species.

Acknowledgements

This work was supported by a Hong Kong Research Grants Council Earmarked Grant for Research (Acc. No. 221600010).

References

1 Part 14, X. M. Chen and T. C. W. Mak, Aust. J. Chem., 1991, 44, 1783.
2 J. L. Wardell, in Comprehensive Organometallic Chemistry, eds. G. Wilkinson, F. G. A. Stone and E. W. Abel, Pergamon, Oxford, 1982, vol. 2, ch. 17, pp. 863-978.
3 R. D. Bach, R. A. Woodward, T. J. Anderson and M. D. Glick, J. Org. Chem., 1982, 47, 3707; G. Chandra, D. Devaprahakara and M. S. Muthana, Curr. Sci., 1971, 40, 400.
4 P. F. Hudrlik and A. M. Hudrlik, J. Org. Chem., 1973, 38, 4254; R. C. Larock, K. Oertle and K. M. Beatty, J. Am. Chem. Soc., 1980, 102, 1966; Yu. K. Grisgin, D. V. Bazhenov, Yu. A. Ustynyuk, N. S. Zefirov, V. R. Kartashov, T. N. Sokolova, E. V. Skorobogatova, and A. N. Chernov, Tetrahedron Lett., 1988, 29, 4631.

5 B. Kamenar and M. Penavic, Inorg. Chim. Acta, 1972, 6, 191.
6 D. Grdenic, B. Kamenar, B. Korpar-Colig, M. Sikirica and G. Jovanovski, J. Chem. Soc., Chem. Commun., 1974, 646.
7 D. Grdenic and M. Sikirica, Z. Kristallogr., 1979, 150, 107.
8 R. Allmann, K. Flatan and H. Musso, Chem. Ber., 1973, 106, 3001.
9 P. J. Roberts, G. Ferguson, R. G. Goel, W. O. Ogini and R. J. Restivo, J. Chem. Soc., Dalton Trans., 1978, 253.

10 A. J. Canty, C. L. Raston and A. H. White, Aust. J. Chem., 1979, 32, 311.

11 R. Allmann, Z. Kristallogr., 1973, 138, 366.
12 T. C. W. Mak, W. H. Yip, C. H. L. Kennard and G. Smith, Aust. J. Chem., 1990, 43, 1431.
13 W. Lau, J. C. Huffman and J. K. Kochi, J. Am. Chem. Soc., 1982, 104, 5515.

14 P. A. W. Dean, Prog. Inorg. Chem., 1978, 24, 109.
15 N. A. Bell, M. Goldstein, T. Jones and I. W. Nowell, Inorg. Chim. Acta, 1981, 48, 185; N. A. Bell, M. Goldstein, T. Jones, L. A. March and I. W. Nowell, Inorg. Chim. Acta, 1982, 61, 83; N. A. Bell, T. D. Dee, M. Goldstein and I. W. Nowell, Inorg. Chim. Acta, 1983, 70, 215 ; N. A. Bell, L. A. March and I. W. Nowell, Inorg. Chim. Acta, 1989, 156, 201; 162, 57.
16 N. A. Bell, T. D. Dee, M. Goldstein, P. J. McKenna and I. W. Nowell, Inorg. Chim. Acta, 1983, 71, 135; N. A. Bell, M. Goldstein, L. A. March and I. W. Nowell, J. Chem. Soc., Dalton Trans., 1984, 1621; N. A. Bell, L. A. March and I. W. Nowell, Inorg. Chim. Acta, 1989, 156, 195.
17 (a) X.-M. Chen and T. C. W. Mak, J. Chem. Soc., Dalton Trans., 1991, 1219; (b) X.-M. Chen and T. C. W. Mak, J. Chem. Soc., Dalton Trans., 1991, 3253; (c) X.-M. Chen and T. C. W. Mak, Polyhedron, 1991, 10, 1723; (d) W.-Y. Huang, L. Lü, X.-M. Chen and T. C. W. Mak, Polyhedron, 1991, 10, 2687.
18 R. Krimberg, Biochem. Z., 1938, 297, 261.
19 J. T. Esdall and J. Wyman, jun., J. Am. Chem. Soc., 1935, 57, 1964; X.-M. Chen and T. C. W. Mak, J. Cryst. Spectrosc. Res., 1990, 21, 21.

20 R. A. Sparks, in Crystallographic Computing Techniques, ed. F. R. Ahmed, Munksgaard, Copenhagen, 1977, p. 452.
21 G. M. Sheldrick, in Computational Crystallography, ed. D. Sayre, Oxford University Press, New York, 1982, p. 506; G. M. Sheldrick, in Crystallographic Computing 3: Data Collection, Structure Determination, Proteins and Databases, eds. G. M. Sheldrick, C. Krüger and R. Goddard, Oxford University Press, New York, 1985, p. 175.

22 International Tables for X-Ray Crystallography, Kynoch Press,

Birmingham, 1974, vol. 4, pp. 55, 99 and 149 (present distributors, Kluwer Academic Publishers, Dordrecht).
23 (a) M. H. Chisholm and I. P. Rothwell, in Comprehensive Coordination Chemistry, eds. G. Wilkinson, R. D. Gillard and J. A. McCleverty, Pergamon, Oxford, 1987, vol. 2, ch. 15, pp. 335-346; (b) C. Oldham, Comprehensive Coordination Chemistry, ch. 15, pp. 435-442
24 T. Greiser and E. Weiss, Chem. Ber., 1976, 109, 3142.
25 E. C. Alyea, S. A. Dias, G. Ferguson, M. A. Khan and P. J. Roberts, Inorg. Chem., 1979, 18, 2433.

26 C. Mehrotra and R. Bohra, Metal Carboxylates, Academic Press, New York, 1983.
27 L. R. Nassimbeni, A. L. Rodgers and J. M. Haigh, Inorg. Chim. Acta, 1976, 20, 149.
28 W. Harrison and J. Trotter, J. Chem. Soc., Dalton Trans., 1972, 956.

Received 14th October 1991; Paper 1/05206C

[^1]
[^0]: \dagger Supplementary data available: see Instructions for Authors, J. Chem.

[^1]: © Copyright 1992 by the Royal Society of Chemistry

