Synthesis of the First Hydroxomonoaryltin(IV) Complexes. Crystal and Molecular Structure of $[\{Sn[C_6H_3(N=NC_6H_4-Me-4')-2,Me-5]Cl_2(\mu-OH)\}_2]^{\dagger}$

José Vicente,*,a María-Teresa Chicote,a María-del-Carmen Ramírez-de-Arellano and Peter G. Jones*,b

^a Grupo de Química Organometálica, Departamento de Química Inorgánica, Universidad de Murcia, 30071 Espinardo, Murcia, Spain

^b Institut für Anorganische und Analytische Chemie der Technischen Universität, Hagenring 30, W-3300 Braunschweig, Germany

Tin(II) chloride reacts in refluxing xylene with [HgLCI] [L = $C_6H_3(N=NC_6H_4R-4')-2$, R-5; R = Me (mpap) or MeO (mopap)] to give metallic mercury and [SnLCl3] (L = mpap 1 or mopap 2). Complex 1 reacts with CI -, dimethyl sulfoxide or [Hg(dmap)2] (dmap = $C_6H_4CH_2NMe_2-2$) to give, respectively, [Sn(mpap)Cl4] - 3, [Sn(mpap)Cl3(OSMe2)] 4 or [Sn(mpap)(dmap)Cl2] 5. Several types of hydrolytic process occur when 1, 2 or [Sn(mpap)Ph2Cl] react with various ligands. Thus, [Hg(dmap)Cl] reacts with 1 or 2 as a base to give [{SnLCl2(μ -OH)}2] (L = mpap 6 or mopap 7) and Hg(Hdmap)Cl2. Similarly, PhCH2NMe2 (bdma) reacts with 1 (1:1) to give the hydrolysis product [Hbdma][Sn(mpap)Cl3(OH)] 8. By treating 6 with excess of NaBr, [{Sn(mpap)Br2(μ -OH)}2] 9 can be obtained. Acetic anhydride reacts with complex 6 to give [Sn(mpap)Cl2(O2CMe)] 10, but not with 8. The complex [Sn(mpap)Ph2Cl] reacts with Tl(acac) (acac = acetylacetonate), NaH or Ag2O to give the hydrolysis product [Sn(mpap)Ph2(OH)] 11. The crystal structure of 6 was determined at -95 °C; the dimeric doubly bridged nature of the compound was confirmed. The Sn-O bridges are asymmetric, the bond lengths depending on the nature of the *trans* ligand. Two molecules of diethyl ether form hydrogen bonds to the bridging OH groups; another diethyl ether molecule is disordered over a symmetry centre. The structure of compound 7 was also determined; it too is dimeric with two hydroxo bridges, but the refinement was unsatisfactory, probably because of twinning effects.

Whereas the hydrolysis of halogenoorganotin(IV) complexes to hydroxo-, oxo- and oxohydroxo-organotin(IV) complexes is a well known process, well characterized hydroxoorganotin(IV) complexes are very rare because they are usually in equilibrium with the corresponding oxo-derivatives and water. As far as we are aware, only a few such complexes have been studied by X-ray diffraction, viz. [$\{SnMe_3(OH)\}_n$], [$\{SnPh_3(OH)\}_n$], [$\{SnRCl_2(H_2O)(\mu-OH)\}_2$] ($\{R=Et^4\}_0$ or $\{SnBu^5\}_0$), [$\{SnBu^5\}_0$] ($\{SnBu^5\}_0$), [$\{SnBu^5\}_0$] ($\{SnBu^5\}_0$)] ($\{SnBu^5\}_0$).

We are currently investigating the synthesis of aryltin(IV) complexes as part of a wider project involving the use of organomercury compounds as transmetallating agents. In particular, we have developed several methods of synthesising (phenylazo)phenyltin(IV) complexes.8

In this paper we report the synthesis of some derivatives of [SnLCl₃] and [SnLPh₂Cl], where L is a p-Me- or p-OMe-substituted 2-(phenylazo)phenyl chelating ligand. Some of these derivatives are the first hydroxomonoaryltin(IV) complexes reported. We also report the crystal structure of one of them, and a partial crystal structure determination of another.

Results and Discussion

Synthesis.—Tin(II) chloride reacts in refluxing xylene with

$$R - N$$

mpap (R = Me), mopap (R = OMe)

[HgLCl] [L = $C_6H_3(N=NC_6H_4R-4')-2,R-5$; R = Me (mpap) or MeO (mopap)] to give metallic mercury and [SnLCl₃] (L = mpap 1 or mopap 2) (see formula diagram and Scheme 1). Complex 1 reacts with NMe₄Cl or dimethyl sulfoxide to give [NMe₄][Sn(mpap)Cl₄] 3 or [Sn(mpap)Cl₃(OSMe₂)] 4, respectively. A second aryl group can be transmetallated from mercury to tin by treating [Hg(dmap)₂] (dmap = $C_6H_4CH_2-NMe_2-2$) with 1 to give the mixed-ligand complex [Sn(mpap)(dmap)Cl₂] 5. We have previously used analogous methods to prepare complexes [SnL(Ph)Cl₂] and [SnLPh₂Cl] (L = $C_6H_4N=NPh-2$ or mpap).8

Complex 1 is stable to atmospheric moisture in solution and in the solid state. It also resists 10 h of refluxing in an acetone—water mixture. However, treatment with various ligands (except for the three mentioned above) led to the formation of hydroxocomplexes. Even the mercurial reagent [Hg(dmap)Cl] reacts with 1 or 2 as a base, removing a proton from water and substituting Cl by OH to give [{SnLCl₂(µ-OH)}₂] (L = mpap 6 or mopap 7), instead of transmetallating the aryl group. The

[†] Supplementary data available: further details of the structure determination (complete bond lengths and angles, H-atom coordinates, structure factors, thermal parameters) have been deposited at the Fachinformationszentrum Karlsruhe, Gesellschaft für Wissenschaftlich-technische Information mbH, W-7514 Eggenstein-Leopoldshafen 2, Germany. Any request for this material sould quote a full literature citation and the reference number CSD 56083.

Scheme 1 Synthesis of complexes 1–11. (i) -Hg; (ii) $+Cl^-$; (iii) $+Me_2SO$; (iv) $+[Hg(dmap)_2] - [Hg(dmap)Cl]$; (v) $+H_2O + [Hg(dmap)Cl] - Hg(Hdmap)Cl_2$; (vi) $+H_2O + PhCH_2NMe_2 - PhCH_2NHMe_2^+$; (vii) +2NaBr - 2NaCl; (viii) $+(MeCO)_2O - MeCO_2H$; (ix) $+\frac{1}{2}Ag_2O + \frac{1}{2}H_2O - AgCl$ or $+MX + H_2O - MCl - HX$ (M = Tl, X = acac; M = Na, X = H)

Scheme 2 Proposed pathway for the synthesis of the hydroxocomplexes 6-8 (B = base)

by-product of this reaction is the unusual protonated organomercurial, Hg(Hdmap)Cl₂, which precipitates from the acetone solution; it can also be obtained by treating [Hg(dmap)Cl] with HCl. The basic character shown by the dmap ligand in [Hg(dmap)Cl] is also observed in the non-metallated precursor amine PhCH₂NMe₂ (bdma), which reacts with 1 (1:1) to give [Hbdma][Sn(mpap)Cl₃(OH)] 8. However, these results indicate that the insolubility of Hg(Hdmap)Cl₂ is responsible for the different nature of complexes 6 and 8.

The synthesis of complexes 6-8 can be rationalized assuming that the hydrolyses lead to [SnLCl₂(OH)] and that this is the final product because of the insolubility of Hg(Hdmap)Cl₂; otherwise, complex 8, the product of the reaction between [SnLCl₂(OH)] and Cl⁻, is obtained (see Scheme 2).

$$[Sn(mpap)Ph_{2}CI] + \frac{1}{2}Ag_{2}O + \frac{1}{2}H_{2}O \longrightarrow [Sn(mpap)Ph_{2}(OH)] + AgCI$$

$$\downarrow^{+ MX}$$

$$[Sn(mpap)Ph_{2}X] \xrightarrow{+ H_{2}O} \quad HX + 11 \ (M = TI, \ X = acac; \ M = Na, \ X = H)$$

$$(X = CIO_{4})$$

$$\downarrow^{+ H_{2}O} \qquad \downarrow^{+ L' = phen, \ bipy, \ py, \ PPh_{3}}$$

$$[Sn(mpap)Ph_{2}(H_{2}O)]X \xrightarrow{+ L' - H_{2}O} \quad [Sn(mpap)Ph_{2}L]X$$

$$\downarrow^{+ L'} \qquad [Sn(mpap)Ph_{2}(OH)]$$

$$[Sn(mpap)Ph_{2}(OH)]$$

Scheme 3 Proposed pathways for the synthesis of complex 11

Addition of excess of NaBr to complex 6 gives [{Sn(mpap)-Br₂(µ-OH)}₂] 9. Complex 6 reacts with acetic anhydride to give [Sn(mpap)Cl₂(O₂CMe)] 10, whereas 8 does not react.

The complex [Sn(mpap)Ph₂Cl] does not react with 1,10-phenanthroline (phen•H₂O), 2,2'-bipyridine (bipy), pyridine (py) or PPh₃.8c In an attempt to prepare cationic derivatives with such ligands, [Sn(mpap)Ph2Cl] was treated with AgClO4. After removing AgCl, addition of the above ligands (L') (1:1) gave mixtures which seemed to contain the expected complexes, [Sn(mpap)Ph₂L']ClO₄, along with some hydrolysis product(s) that could not be separated. When the reaction with phen H₂O was carried out in 1:2 molar ratio (Sn:phen), the complex [Sn(mpap)Ph₂(OH)] 11 was obtained along with [Hphen]ClO₄ and some excess of phen•H2O. We interpret these results (see Scheme 3) assuming that the complex [Sn(mpap)Ph₂(OClO₃)], formed first in solution, reacts with the added ligand and with water (adventitious or added with the ligand in the case of phen•H₂O) giving the cationic complexes [Sn(mpap)Ph₂L']⁺. The aqua-complex, $L' = H_2O$, is an acid, the dissociation equilibrium of which can be shifted by the added (basic) ligand to give 11. Upon addition of a second mole of phen•H₂O, not only is this last equilibrium displaced forming 11, but the simultaneous addition of 1 mol of water also shifts the equilibrium system [Sn(mpap)Ph₂(H₂O)]⁺/[Sn(mpap)Ph₂-(phen)] + in favour of the former (see Scheme 3).

A more direct and convenient preparation of complex 11 is the reaction of [Sn(mpap)Ph₂Cl] with Tl(acac) (acac = acetylacetonate), or NaH (1:1) or Ag_2O (2:1); the by-products of these reactions HX (X = acac or H) and MCl (M = Ag, Tl or Na) are easily separated from 11.

Structure and Spectroscopic Properties of Complexes 1–11.—Repeated attempts to grow crystals of complexes 1–11 were, except for 6 and 7 (see below), unsuccessful. Our proposals of six-co-ordination for complexes 3–5, 8 and 10 and five-co-ordination for 1, 2 and 11 (see Scheme 1) are thus based on solution data and previous reports of similar complexes. Complexes related to 1 and 2, such as $[Sn\{C_6H_4C(Ph)=NMe\}-Cl_3]^9$ or $[Sn\{CH_2CH_2C(O)OPr^i\}Cl_3]^{10}$ have trigonal-bipyramidal structures with axial nitrogen or oxygen atoms, respectively. Complexes 1 and 2 should adopt the same type of structure because the small bite of the 2-(phenylazo)phenyl ligand $(ca. 70^\circ)^8$ requires its location in a vertical plane and the more electronegative donor atom N should be axial.

Whereas the anionic complex 3 behaves in nitromethane solutions as a 1:1 electrolyte, with $B=247 \,\Omega^{-1} \,\mathrm{cm}^{\frac{3}{2}} \,\mathrm{mol}^{\frac{3}{2}}$ in the Onsager equation ($\Lambda=A-Bc^{\frac{1}{2}}$) in the range 2×10^{-3} to 10^{-4} mol dm⁻³, ¹¹ complex 8 shows an anomalous negative value

 $B=-49~\Omega^{-1}~{\rm cm^2}^{2}~{\rm mol}^{-\frac{3}{2}}$ in the same range. The ¹H NMR spectrum of 8 in chloroform changes with concentration. With increased concentration the NH signal at δ ca. 10 shifts to high field (δ ca. 9.5) and the CH₂ and Me singlets (at δ 4.23 and 2.81) change to an apparent doublet (at δ 4.24 and 4.26, which should be an AB system) and two singlets (at δ 2.82 and 2.84). All these data point to the formation of a hydrogen bond RNH · · · O(H)M when the concentration rises, which could be responsible for the non-ideal electrolyte behaviour of 8.

Complex 5 is assumed to be octahedral by analogy to the related [Sn(mpap)₂Cl₂] ¹² and [Sn(dmap)₂Cl₂]; ¹³ in all reported structures of organotin(IV) complexes containing potential C,N ligands a N-Sn bond is indeed observed. ^{1,8} Furthermore, the IR spectrum of 5 gives bands assignable to v(SnCl) modes at 300 and 280 cm⁻¹, cf. [Sn(dmap)₂Cl₂] at 320 and 295 cm⁻¹.

Fig. 1 The molecule of compound 7 in the crystal. The numbering scheme of the asymmetric unit is indicated. Radii are arbitrary; H atoms were not located (see Experimental section)

Complex 11 is monomeric in chloroform solution (*M* found 499, calc. 501). Although a dimeric structure in the solid state *via* bridging OH groups cannot be ruled out, an octahedral structure for this triaryl complex seems unlikely. Complex 9 is dimeric and 10 monomeric in chloroform solution (*M* found 1084 and 508, calc. 1010 and 458, respectively).

Infrared spectra show that the Me₂SO ligand of complex 4 is bonded through the oxygen atom [v(SO) 930 cm⁻¹] and that the MeCO₂ ligand of 10 is chelating [v_{asym}(CO₂) 1530 cm⁻¹]. Bands corresponding to v(SnCl)⁸ and v(OH)⁷ are observed in the regions 360–280 and 3500–3240 cm⁻¹ (see Experimental section).

The peak with highest m/z of the mass spectra of complexes 1, 2, 5 and 10 corresponds to the molecular ion; otherwise for 4 M^+ – OSMe₂, for 6 and 7 SnLCl₂(OH)₂⁺, for 9 Sn(mpap)Br₂⁺ and for 11 M^+ – OH.

Crystal Structures of Complexes 6 and 7.—Initially, single crystals of complex 7 were studied. The structure was established as a doubly bridged dimer with crystallographic two-fold symmetry (Fig. 1), but problems with the refinement (see Experimental section) rendered the structure unsatisfactory; the H atoms were not located and estimated standard deviations (e.s.d.s) were high. Furthermore, a region of electron density identified as a diethyl ether molecule (giving a ratio Sn:ether = 1:1) could not be successfully refined. We prefer not to discuss quantitative aspects of this structure.

The structure of complex 6 presented no such difficulties. It too consists of dimers with two bridging OH groups (see Fig. 2) leading to a distorted octahedral co-ordination for both tin atoms. Diethyl ether of solvation is also observed (Sn:ether = 4:5). The Sn₂OH bridges are asymmetric, with Sn-O bonds trans to the chloro ligands longer [2.193(3), 2.188(3) Å] than those trans to the phenyl groups [2.027(3), 2.015(3) Å]. In octahedral complexes containing the Sn(μ -OH)₂Sn moiety the bridge is symmetric if the other ligands in the Sn₂O₂ plane are identical or similar. These Sn-O bond lengths lie in the range 2.09-2.04 Å when chloro ligands are trans to the OH groups. However, where the ligands are different, as in 6, the bridge is asymmetric. Thus, in [{SnRCl₂(H₂O)(μ -OH)}₂] (R = Et⁴ or

Fig. 2 The structure of compound 6 in the crystal. Radii are arbitrary; H bonds are indicated as dashed lines. The disordered solvent and the H atoms other than hydroxyl H are omitted for clarity. Symmetry operators of the ether molecules (referred to the coordinates of Table 1) are: $x, \frac{1}{2} - y, \frac{1}{2} + z$ for the molecule at O(1), $x, 1\frac{1}{2} - y, \frac{1}{2} + z$ for the molecule at O(2)

1842 J. CHEM. SOC. DALTON TRANS. 1992

Table 1 Atomic coordinates (×10⁴) for compound 6

Atom	x	y	z	Atom	x	у	z
Sn(1)	1484.5(1)	5272.1(3)	1610.0(1)	C(32)	4049(2)	4154(4)	1642(2)
Sn(2)	2894.4(1)	3662.5(3)	2300.4(1)	C(33)	4638(2)	4661(5)	1519(3)
Cl(1)	1202.5(6)	5721(1)	2629.7(6)	C(34)	5036(3)	5355(5)	1998(3)
Cl(2)	1402.2(6)	7326(1)	1233.3(6)	C(35)	4858(3)	5551(5)	2586(3)
Cl(3)	2845.1(6)	4219(1)	3380.3(6)	C(36)	4259(2)	5034(5)	2701(3)
Cl(4)	3041.8(6)	1559(1)	2570.4(6)	C(37)	5286(3)	6311(6)	3110(3)
O(1)	1895(1)	3487(3)	1924(2)	C(41)	2850(2)	2033(4)	821(2)
O(2)	2497(1)	5373(3)	1861(2)	C(42)	3213(3)	1441(5)	415(2)
N(1)	1143(2)	4098(4)	195(2)	C(43)	2905(3)	533(5)	15(3)
N(2)	1637(2)	4673(3)	520(2)	C(44)	2243(3)	201(5)	-9(3)
N(3)	3698(2)	3366(3)	1156(2)	C(45)	1897(3)	797(5)	398(3)
N(4)	3143(2)	2966(3)	1256(2)	C(46)	2196(3)	1700(5)	820(3)
C(11)	580(2)	4444(4)	1122(2)	C(47)	1928(4)	– 793(6)	-461(3)
C(12)	586(2)	3972(4)	504(2)	O(3)	1088(2)	2828(4)	7485(2)
C(13)	27(2)	3370(4)	152(2)	C(1)	721(5)	3799(9)	7228(S)
C(14)	-533(2)	3239(5)	412(2)	C(2)	717(5)	4101(8)	6584(4)
C(15)	-560(2)	3686(4)	1036(2)	C(3)	1155(4)	2627(9)	8185(4)
C(16)	16(2)	4278(4)	1379(2)	C(4)	542(5)	2143(9)	8359(4)
C(17)	-1179(2)	3539(5)	1312(3)	O(4)	3173(2)	7581(4)	7236(2)
C(21)	2193(2)	4793(4)	201(2)	C(5)	3033(7)	6818(9)	7714(6)
C(22)	2639(2)	5740(5)	392(2)	C(6)	2795(5)	7288(10)	8220(5)
C(23)	3192(3)	5880(5)	97(3)	C(7)	3681(5)	7208(9)	6771(6)
C(24)	3308(3)	5059(6)	-363(3)	C(8)	3320(7)	6431(10)	6429(7)
C(25)	2858(3)	4136(5)	-550(3)	O(5)	5000	5000`	5000 É
C(26)	2302(3)	3993(5)	-276(2)	C(9)	4952(9)	6247(16)	5199(9)
C(27)	3933(3)	5185(7)	-655(3)	C(10)	5132(11)	6947(20)	5600(12)
C(31)	3855(2)	4346(4)	2234(2)	` '	` ,	,	. (-)

Table 2 Selected bond lengths (Å) and angles (°) for compound 6

Sn(1)-Cl(1)	2.381(2)	Sn(1)– $Cl(2)$	2.402(2)
Sn(1)-O(1)	2.193(3)	Sn(1)– $O(2)$	2.015(3)
Sn(1)-N(2)	2.463(4)	Sn(1)-C(11)	2.118(4)
Sn(2)-Cl(3)	2.373(2)	Sn(2)-Cl(4)	2.401(2)
Sn(2)-O(1)	2.027(3)	Sn(2)-O(2)	2.188(3)
Sn(2)-N(4)	2.474(4)	Sn(2)-C(31)	2.120(5)
N(1)-N(2)	1.263(5)	N(1)-C(12)	1.420(7)
N(2)-C(21)	1.432(6)	N(3)-N(4)	1.267(5)
N(3)-C(32)	1.419(6)	N(4)-C(41)	1.425(6)
Cl(1)-Sn(1)-Cl(2)	94.9(1)	Cl(1)-Sn(1)-O(1)	93.7(1)
Cl(2)-Sn(1)-O(1)	161.5(1)	Cl(1)-Sn(1)-O(2)	99.9(1)
Cl(2)-Sn(1)-O(2)	91.8(1)	O(1)-Sn(1)-O(2)	70.6(1)
Cl(1)-Sn(1)-N(2)	172.7(1)	Cl(2)-Sn(1)-N(2)	87.8(1)
O(1)-Sn(1)-N(2)	85.7(1)	O(2)-Sn(1)-N(2)	86.7(1)
Cl(1)-Sn(1)-C(11)	100.5(1)	Cl(2)-Sn(1)-C(11)	104.8(1)
O(1)-Sn(1)-C(11)	89.6(1)	O(2)-Sn(1)-C(11)	152.3(2)
N(2)-Sn(1)-C(11)	72.2(2)	Cl(3)-Sn(2)-Cl(4)	93.1(1)
Cl(3)-Sn(2)-O(1)	99.4(1)	Cl(4)-Sn(2)-O(1)	93.8(1)
Cl(3)-Sn(2)-O(2)	95.5(1)	Cl(4)-Sn(2)-O(2)	163.1(1)
O(1)-Sn(2)-O(2)	70.5(1)	Cl(3)-Sn(2)-N(4)	170.2(1)
Cl(4)-Sn(2)-N(4)	82.5(1)	O(1)-Sn(2)-N(4)	89.6(1)
O(2)-Sn(2)-N(4)	91.1(1)	Cl(3)-Sn(2)-C(31)	100.9(1)
Cl(4)-Sn(2)-C(31)	106.9(1)	O(1)-Sn(2)-C(31)	150.0(2)
O(2)-Sn(2)-C(31)	85.8(1)	N(4)-Sn(2)-C(31)	72.3(2)
Sn(1)-O(1)-Sn(2)	108.6(1)	Sn(1)-O(2)-Sn(2)	109.3(1)
N(2)-N(1)-C(12)	114.7(4)	Sn(1)-N(2)-N(1)	113.7(3)
Sn(1)-N(2)-C(21)	132.3(3)	N(1)-N(2)-C(21)	113.9(4)
N(4)-N(3)-C(32)	115.2(4)	Sn(2)-N(4)-N(3)	112.8(3)
Sn(2)-N(4)-C(41)	131.4(3)	N(3)-N(4)-C(41)	114.5(4)

Bu^{n 5}) the Sn-O bonds *trans* to chloro ligands [2.153, 2.169(4) Å, respectively] are longer than those *trans* to the ethyl [2.067(3) Å] or butyl [2.047(4) Å] groups. In the current structure the Sn-Cl bonds *trans* to nitrogen [2.381(2), 2.373(2) Å] are shorter than those *trans* to oxygen [2.402(2), 2.401(2) Å]. The Sn-N bond distances [2.463(4), 2.474(4) Å] are shorter than those in the octahedral complex [Sn(mpap)₂Cl₂] [2.58(2), 2.51(2) Å]. ¹²

The narrowing of the O-Sn-O angles to ca. 70° in the four-membered rings may be regarded as reducing the metal-metal

repulsion (Sn ··· Sn 3.429 Å); additionally, the electronegativity of the oxygen atoms decreases the repulsion of the Sn-O bonding pairs [valence shell electron pair repulsion (VSEPR) model]. The narrow C-Sn-N angles (ca. 72°) are probably attributable to the chelating nature of the ligand mpap. Other bond angles are correspondingly widened by 10–15° from the ideal 90°.

Two molecules of diethyl ether are involved in hydrogen bonds, each to one OH group. This type of interaction is a common feature in hydroxotin(v) complexes. ¹⁴ The distances $O(1)\cdots O(3)$ 2.64 and $O(2)\cdots O(4)$ 2.68 Å imply strong hydrogen bonds (cf. $O\cdots O$ 2.59–2.79 in various hydrogenbonded systems in ref. 14). One further molecule of diethyl ether is disordered over a centre of symmetry and is not involved in hydrogen-bonding interactions.

Experimental

The IR spectra, the C, H and N analyses, conductance measurements, melting-point determinations, and NMR spectra were recorded as described elsewhere. Some spectra were recorded on a Varian Unity-300 spectrometer. The NMR spectra of 6, 7 and 15 were measured in (CD₃)₂CO, those of all other complexes in CDCl₃, with SiMe₄ used as reference. The atom numbering for the H and NMR assignments corresponds to the mpap ligand co-ordinated to Sn(1) in Fig. 2.

[Sn(mpap)Cl₃] 1.—To a suspension of anhydrous SnCl₂ (500 mg, 2.64 mmol) in xylene (15 cm³) was added [Hg(mpap)Cl] (1174.2 mg, 2.64 mmol); the suspension was refluxed for 5 h. The solvent was removed under vacuum, the residue, containing Hg, treated with dichloromethane (90 cm³) and the resulting suspension filtered off. The filtrate was concentrated (5 cm³) and diethyl ether (20 cm³) added to precipitate complex 1 as a yellow solid which was recrystallized from diethyl ether. Yield 79%, m.p. 203 °C, $\Lambda_{\rm M}=11~\Omega^{-1}~{\rm cm^2~mol^{-1}}$. Mass spectrum: m/z 438–432 (M^+ , 1.5), 159–151 (SnCl⁺, 10), 123–116 (Sn⁺, 58), 91 ($C_7H_7^+$, 100) and 65 ($C_5H_5^+$, 19%). v(SnCl) 355 and 325 cm⁻¹. 8(¹H) 8.18 [d, 2 H, H²², $J({\rm H}^{22}{\rm H}^{23})=9$], 8.16 [d, 1 H, H¹³, $J({\rm H}^{13}{\rm H}^{14})=8$], 7.92 [d, 1 H, H¹⁶, $J({\rm H}^{14}{\rm H}^{16})=1.5$ Hz], 7.64 (dd, 1 H, H¹⁴), 7.35 (d, 2 H, H²³), 2.57 (s, 3 H, Me) and 2.46 (s, 3

H, Me); $\delta(^{13}\text{C})$ 148.6 (C¹²), 147.4 (C²¹), 145.2 (C¹⁵), 144.3 (C²⁴), 136.7 (C¹⁶), 134.6 (C¹⁴), 133.1 (C¹³), 130.2 (C²³), 124.4 (C²²), 21.9 (Me) and 21.7 (Me) (Found: C, 39.4; H, 3.4; N, 6.5. C₁₄H₁₃Cl₃N₂Sn requires C, 38.7; H, 3.0; N, 6.4%).

[Sn(mopap)Cl₃] 2.—To a solution of anhydrous SnCl₂ (250 mg, 1.32 mmol) in xylene (20 cm³) was added [Hg(mopap)Cl] (629.3 mg, 1.32 mmol); the suspension was refluxed for 5 h. The hot suspension was filtered off over MgSO₄ to remove Hg, the solution concentrated to 1 cm³ and hexane (20 cm³) added to precipitate complex 2 as a red solid, which was recrystallized from acetone–diethyl ether. Yield 67%, m.p. 171 °C, $\Lambda_{\rm M}=0~\Omega^{-1}~{\rm cm^2~mol^{-1}}$. Mass spectrum: m/z 450, 448, 446 (M^+ , 0.5), 161–147 (SnCl⁺, 45), 123–116 (Sn⁺, 3), 105 (C₆H₅N₂⁺, 21.7), 92 (27), 77 (41) and 63 (21%). v(SnCl) 360 and 310 cm⁻¹. δ (¹H) 8.24 [d, 2 H, H²², J(H²²H²³) = 9], 8.14 [d, 1 H, H¹⁴, J(H¹³H¹⁴) = 9], 7.64 [d, 1 H, H¹⁶, J(H¹⁴H¹⁶) = 3 Hz], 7.26 (m, 1 H, H¹³), 7.03 (d, 2 H, H²³), 4.00 (s, 3 H, OMe) and 3.92 (s, 3 H, OMe). δ (¹³C) 165.6 (C¹⁵), 163.2 (C²⁴), 144.6 (C¹²), 141.0 (C²¹), 134.2 (C¹³), 126.3 (C²²), 121.5 (C¹⁶), 118.8 (C¹⁴), 114.7 (C²³), 56.3 (OMe) and 55.7 (OMe) (Found: C, 35.8; H, 2.8; N, 5.5. C₁₄H₁₃Cl₃N₂O₂Sn requires C, 36.1; H, 2.8; N, 6.0%).

[NMe₄][Sn(mpap)Cl₄] 3.—To a solution of complex 1 (200 mg, 0.46 mmol) in acetone (15 cm³) was added NMe₄Cl (50.5 mg, 0.46 mmol). The resulting suspension was stirred at room temperature for 18 h and then filtered to give complex 3 as a yellow solid. Yield 80%, m.p. 293 °C, $\Lambda_{\rm M}=141~\Omega^{-1}~{\rm cm^2~mol^{-1}}$. v(SnCl) 310, 275 and 250 cm⁻¹. $\delta(^1{\rm H})$ 8.16 [d, 2 H, H²², $J({\rm H^{2}^2H^{23}})=8$], 7.96 [d, 1 H, H¹³, $J({\rm H^{13}H^{14}})=8$], 7.74 [d, 1 H, H¹⁶, $J({\rm H^{16}H^{14}})=1~{\rm Hz}$], 7.36 (m, 3 H, H¹⁴ + H²³), 3.41 (s, 12 H, NMe₄ +), 2.46 (s, 3 H, Me) and 2.42 (s, 3 H, Me) (Found: C, 40.7; H, 5.00; Cl, 26.1; N, 7.9. C₁₈H₂₅Cl₄N₃Sn requires C, 39.8; H, 4.6; Cl, 26.1; N, 7.7%).

[Sn(mpap)Cl₃(OSMe₂)] 4.—When a suspension of complex 1 (100 mg, 0.23 mmol) in diethyl ether (10 cm³) was treated with an excess of dimethyl sulfoxide and stirred at room temperature for 4 h a new suspension was obtained. After filtration complex 4 was obtained as a yellow solid. Yield 82%, m.p. 167 °C, $\Lambda_{\rm M}=0~\Omega^{-1}~{\rm cm^2~mol^{-1}}$. Mass spectrum: m/z 436–432 (M^+ – dmso, 0.1), 165 ($C_{13}H_9^+$, 19), 161–147 (SnCl⁺, 25), 123–116 (Sn⁺, 61), 91 ($C_7H_7^+$, 100) and 65 ($C_5H_5^+$, 13%). v(SnCl) 315, 305 and 280 cm⁻¹. $\delta(^1H)$ 8.05 (m, 3 H, H¹³ + H²²), 7.78 [d, 1 H, H¹⁶, $J(H^{16}H^{14}) = 1$], 7.48 [dd, 1 H, H¹⁴, $J(H^{13}H^{14}) = 7$], 7.32 [d, 2 H, H²³, $J(H^{22}H^{23}) = 8$ Hz], 2.63 (s, 6 H, Me₂SO), 2.52 (s, 3 H, Me) and 2.45 (s, 3 H, Me). $\delta(^{13}C)$ 147.7 (C^{12}), 147.1 (C^{21}), 146.4 (C^{15}), 143.0 (C^{24}), 133.4 (C^{16}), 132.9 (C^{14}), 132.6 (C^{13}), 129.8 (C^{23}), 124.2 (C^{22}), 38.6 (Me₂SO), 22.1 (Me) and 21.7 (Me) (Found: C, 37.9; H, 4.00; N, 5.5. $C_{16}H_{19}Cl_3N_3$ OSSn requires C, 37.5; H, 3.7; N, 5.5%).

[Sn(mpap)(dmap)Cl₂] 5.—To a dichloromethane (6 cm³) solution of complex 1 (100 mg, 0.23 mmol) was added [Hg(dmap)₂] (108 mg, 0.23 mmol). The solution was stirred at room temperature for 12 h and then evaporated to dryness. The residue was extracted with diethyl ether (15 cm³), and filtered. The filtrate was concentrated (1 cm³) and hexane (3 cm³) added to precipitate complex 5 as an orange solid. Yield 20%, m.p. 176 °C, $\Lambda_{\rm M} = 2 \Omega^{-1}$ cm² mol⁻¹. Mass spectrum: m/z 537–529 (M^+ , 8), 180 ($C_{14}H_{12}^+$, 22), 165 ($C_{13}H_{9}^+$, 15), 132 (dmap⁺ – H_2 , 100), 91 ($C_7H_7^+$, 60) and 58 (CH₂NMe₂⁺, 26%). v(SnCl) 300 and 280 cm⁻¹. $\delta(^1H)$ 8.35 (dd, 1 H, H⁶ of dmap, J = 8 and 2), 8.14 [d, 1 H, H¹⁵, $J(H^{16}H^{14}) = 1.5$], 8.10 [d, 1 H, H¹³, $J(H^{13}H^{14}) = 8$], 7.60–7.18 [m, 6 H of H³⁻⁵ dmap + H¹⁴ + H²²], 7.01 [d, 2 H, H²³, $J(H^{22}H^{23}) = 8.3$], 3.93 (d, 1 H, NCH₂, J = 14.2 Hz), 3.33 (d, 1 H, NCH₂), 2.55, 2.32, 2.28 and 1.74 (s, 3 H, MeC₆H₄, MeC₆H₃, Me₂N). $\delta(^{13}C)$ 149.4, 147.9 (C^{12} and C^2 of dmap), 145.8 (C^{21}), 142.9 (C^{15}), 142.0 (C^{24}), 135.7, 134.9 (C^{16} and C^6 of dmap), 132.8 (C^{14}), 131.8 (C^{13}), 130.4 (C^4 of dmap), 129.5 (C^{23}), 128.8 (C^3 of dmap), 127.4 (C^5 of dmap), 122.9 (C^{22}),

45.9 and 44.6 (NMe₂), 22.0 (Me) and 21.7 (Me) (Found: C, 51.1; H, 5.4; N, 7.20. $C_{23}H_{25}Cl_2N_3Sn$ requires C, 51.8; H, 4.7; N, 7.9%).

[{Sn(mpap)Cl₂(μ-OH)}₂] **6.**—When a solution of complex 1 (250 mg, 0.58 mmol) in acetone (40 cm³) was treated with [Hg(dmap)Cl] (213 mg, 0.58 mmol) a suspension was formed which was stirred at room temperature for 5 h and then filtered, separating Hg(Hdmap)Cl₂ as a white solid. The filtrate was evaporated to dryness and the residue stirred with diethyl ether (15 cm³) to give complex **6** as an orange solid. Yield 90%, m.p. 145 °C, $\Lambda_{\rm M}=15.7~\Omega^{-1}~{\rm cm}^2~{\rm mol}^{-1}$. Mass spectrum: m/z 436–432 [Sn(mpap)Cl₂(OH)₂+,0.3], 161–147 (SnCl+,13), 123–116 (Sn+,53), 91 (C₇H₇+, 100) and 65 (C₅H₅+, 10%). v(SnCl) 320, 300; v(OH) 3460 cm⁻¹. δ(¹H) 8.00–7.12 (m, 7 H, Ph), 2.56 (s, 3 H, Me) and 2.44 (s, 3 H, Me) (Found: C, 40.4; H, 3.5; N, 6.4. C₂₈H₂₈Cl₄N₄O₂Sn₂ requires C, 40.4; H, 3.4; N, 6.7%).

[{Sn(mopap)Cl₂(μ-OH)}₂] 7.—To a solution of complex 2 (300 mg, 0.64 mmol) in acetone (15 cm³) was added [Hg-(dmap)Cl] (238.2 mg, 0.64 mmol); the resulting suspension was stirred at room temperature for 1 h and then filtered to separate Hg(Hdmap)Cl₂. The filtrate was concentrated (1 cm³) and diethyl ether (10 cm³) added to precipitate complex 7 as a brick-red solid. Yield 85%, m.p. 125 °C, $\Lambda_{\rm M}=0~\Omega^{-1}~{\rm cm}^2~{\rm mol}^{-1}$. Mass spectrum: m/z 467–463 [Sn(mopap)Cl₂(OH)₂+, 0.1], 433–432 [Sn(mopap)Cl₂+, 0.1), 242 (C₁₄H₁₃O₂+, 5), 186–180 (SnCl₂+, 21), 156–149 (SnCl+, 7), 123–116 (Sn+, 12), 107 (C₇H₇O+, 18.5), 91 (C₇H₇+, 100), 77 (C₆H₅+, 21), 65 (C₅H₅+, 11) and 51 (C₄H₃+, 15%). v(SnCl) 320, 300; v(OH) 3240 cm⁻¹. δ(¹H) 8.03 [d, 1 H, H¹³, J(H¹³H¹⁴) = 8.7], 7.84 (m, 2 H, H²²), 7.49 [d, 1 H, H¹⁶, J(H¹⁶H¹⁴) = 2.4 Hz], 7.33 (m, 1 H, H¹⁴), 6.75 (m, 2 H, H²³), 4.02 (s, 3 H, OMe) and 3.94 (s, 3 H, OMe). δ(¹³C) 166.3 (C¹⁵), 163.3 (C²⁴), 134.7 (C¹³), 127.5 (C²³), 114.4 (C²²), 56.6 (OMe) and 56.2 (OMe) (Found: C, 37.8; H, 3.3; N, 5.6. C₂₈H₂₈Cl₄N₄O₆Sn₂ requires C, 37.5; H, 3.2; N, 6.2%).

[Hbdma][Sn(mpap)Cl₃(OH)] **8.**—To a solution of complex **1** (300 mg, 0.69 mmol) in diethyl ether (30 cm³) was added liquid PhCH₂NMe₂ (89.5 mg, 0.66 mmol); the resulting suspension was stirred at room temperature for 5 min and then filtered to give complex **8** as a yellow solid. Yield 69%, m.p. 131 °C, $\Lambda_{\rm M}=93~\Omega^{-1}~{\rm cm^2~mol^{-1}}$. v(SnCl) 330, 310, 280; v(OH) 3500 cm⁻¹. $\delta^{(1}{\rm H})$ (concentrated solution) 9.39 (br s, 1 H, NH), 8.09 [m, 3 H, H²² + H¹³], 7.82 [d, 1 H, H¹⁶ $J({\rm H^{16}H^{14}})=1$], 7.50–6.93 [m, 8 H, Hbdma + H¹⁴ + H²³], 4.26 (s, 1 H, CH₂), 4.24 (s, 1 H, CH₂), 2.84 (s, 3 H, Me of Hbdma), 2.82 (s, 3 H, Me of Hbdma), 2.50 (s, 3 H, Me) and 2.44 (s, 3 H, Me); (dilute solution) 10.0 (br s, 1 H, NH), 8.11 (m, 3 H, H²² + H¹³), 7.84 [d, 1 H, H¹⁶, $J({\rm H^{16}H^{14}})=1$], 7.50–7.36 [m, 6 H, Hbdma + H¹⁴], 7.32 [d, 2 H, H²³, $J({\rm H^{22}H^{23}})=8~{\rm Hz}$], 4.23 (s, 2 H, CH₂), 2.81 (s, 6 H, Me₂), 2.51 (s, 3 H, Me) and 2.44 (s, 3 H, Me). $\delta^{(13}{\rm C})$ 147.4 (C¹² + C²¹), 142.4 (C²⁴ + C¹⁵), 132.9 (C¹⁶), 132.1 and 132.0 (C¹⁴ + C¹³), 131.2 and 130.3 (o-, p-C of Hbdma), 129.5 (C²³), 129.3 (m-C of Hbdma), 124.3 (C²²), 61.6 (CH₂), 42.9 (2 Me of Hbdma), 22.0 (Me) and 21.5 (Me) (Found: C, 46.9; H, 4.8; Cl, 20.3; N, 7.0. C₂₃H₂₈Cl₃N₃OSn requires C, 47.0: H, 4.8; Cl, 18.1; N, 7.2%).

[$\{Sn(mpap)Br_2(\mu-OH)\}_2$] 9.—To a suspension of complex 6 (200 mg, 0.22 mmol) in acetone (10 cm³) was added NaBr (125 mg, 1.21 mmol); the resulting suspension was stirred for 72 h and then filtered. The solution was evaporated to dryness and the residue washed with diethyl ether (5 cm³) and filtered off to give complex 9 as an orange solid. Yield 77%, m.p. 169 °C, $\Lambda_{\rm M}=5~\Omega^{-1}~{\rm cm}^2~{\rm mol}^{-1}$, M found (calc.) 1084 (1010). Mass spectrum: m/z 490–485 [Sn(mpap)Br₂ +, 31], 205–191 (SnBr +, 21), 165 (C₁₃H₉ +, 19), 122–116 (Sn +, 16), 91 (C₇H₇ +, 100) and 65 (C₅H₅ +, 18%). v(OH) 3410 cm⁻¹. δ (¹H) 8.22–7.25 (m, 7 H, Ph), 2.57 (s, 3 H, Me) and 2.46 (s, 3 H, Me) (Found: C, 32.9; H, 2.8; N, 5.4. C₂₈H₂₈Br₄N₄O₂Sn₂ requires C, 33.3; H, 2.8; N, 5.6%).

Table 3 Atomic coordinates (×104) for c apound 7

Atom	x	y	z
Sn	4392	1634	3572
Cl(1)	4332	632	3654
Cl(2)	2786	1752	3814
N(1)	4482	2640	3778
N(2)	4846	2789	4566
O(1)	6086	1142	7072
O(2)	2936	4407	1678
O(3)	4258	1687	2088
C(1)	5045	1799	4936
C(2)	5213	2350	5167
C(3)	5642	2497	6060
C(4)	5888	2066	6685
C(5)	5752	1522	6449
C(6)	5344	1391	5607
C(7)	6059	567	6815
C(8)	4128	3119	3208
C(9)	4258	3673	3496
C(10)	3859	4121	2934
C(11)	3319	3987	2146
C(12)	3194	3395	1866
C(13)	3611	2988	2386
C(14)	2339	4322	835

[Sn(mpap)Cl₂(O₂CMe)] **10**.—To a suspension of complex **6** (100 mg, 0.11 mmol) in dichloromethane (20 cm³) was added (MeCO)₂O (62 mg, 0.61 mmol); the suspension was stirred for 5 h and then filtered. The solution was evaporated under vacuum (1 cm³) and hexane added to precipitate complex **10** as a yellow solid. Yield 68%, m.p. 105 °C, $\Lambda_{\rm M}=2~\Omega^{-1}~{\rm cm}^2~{\rm mol}^{-1}$, *M* found (calc.) 508 (458). Mass spectrum: m/z 460–456 (M^+ , 0.4), 183–175 [Sn(O₂CMe)⁺, 4], 161–147 (SnCl⁺, 14), 123–116 (Sn⁺, 46), 91 (C₇H₇⁺, 100) and 65 (C₅H₅⁺, 51%). v(SnCl) 320 and 310 cm⁻¹. δ (¹H) 8.12 (m, 3 H, H¹³ + H²²), 7.83 (s, 1 H, H¹⁶), 7.57 [d, 1 H, H¹⁴, J(H¹³H¹⁴) = 8], 7.37 [d, 2 H, H²³, J(H²²H²³) = 8 Hz], 2.57 (s, 3 H, Me), 2.49 (s, 3 H, Me) and 18.0 (C¹²), 134.6 (C¹⁶), 133.4 (C¹⁴), 132.6 (C¹³), 130.2 (C²³), 124.3 (C²²), 22.1 (Me), 21.7 (Me) and 18.0 (MeCO₂) (Found: C, 41.3; H, 3.6; N, 6.0. C₁₆H₁₆Cl₂N₂O₂Sn requires C, 42.0; H, 3.5; N, 6.1%).

[Sn(mpap)Ph₂(OH)] 11.—(a) To a solution of [Sn(mpap)Ph₂Cl]^{8c} (80 mg, 0.15 mmol) in dichloromethane (7 cm³) was added Tl(acac) (47 mg, 0.15 mmol); the resulting suspension was stirred at room temperature for 4 h and filtered over Celite. The filtrate was concentrated to dryness and the residue stirred with hexane (3 cm³) to give complex 11 as an orange solid. Yield 53%.

(b) To a solution of [Sn(mpap)Ph₂Cl] (80 mg, 0.15 mmol) in dichloromethane (5 cm³) was added NaH (7.02 mg, 0.29 mmol) under a nitrogen atmosphere. The resulting suspension was stirred under nitrogen for 14 h and then filtered over MgSO₄. The filtrate was concentrated (1 cm³) and hexane (5 cm³) added to precipitate complex 11. Yield 56%.

(c) To a solution of [Sn(mpap)Ph₂Cl] (100 mg, 0.19 mmol) in dichloromethane (6 cm³) was added Ag₂O (44.8 mg, 0.19 mmol); the resulting suspension was stirred at room temperature for 38 h and then filtered. The filtrate was concentrated (1 cm³) and hexane (3 cm³) added to precipitate complex 11. Yield 37%, m.p. 176 °C, $\Lambda_{\rm M}=0~\Omega^{-1}~{\rm cm^2~mol^{-1}}$, M found (calc.) 501 (499). Mass spectrum: m/z 483 (M^+ – OH, 0.6), 165 ($C_{13}H_9^+$, 31), 152 ($C_{12}H_8^+$, 36), 122–116 (Sn⁺, 9), 91 ($C_7H_7^+$, 100), 77 ($C_6H_5^+$, 15), 65 ($C_5H_5^+$, 68) and 51 ($C_4H_3^+$, 31%). v(OH) 3360 cm⁻¹. $\delta(^1H)$ 8.14 [d, 1 H, H¹³, $J(H^{13}H^{14})$ = 8], 8.00 [d, 1 H, H¹⁶, $J(H^{14}H^{16})$ = 2], 7.46 (m, 7 H, H²² + H¹⁴ + o-H of Ph), 7.3 (m, 6 H, m- and p-H of Ph), 7.02 [d, 2 H, H²³, $J(H^{22}H^{23})$ = 8 Hz], 2.47 (s, 3 H, Me) and 2.27 (s, 3 H, Me). $\delta(^{13}C)$ 153.7 (C^{12}), 144.1

(C²¹), 143.9 (C¹⁵), 142.3 (C²⁴), 138.8 (C¹⁶), 136.0 (o-C of Ph), 132.6 (C¹⁴), 131.6 (C¹³), 129.6 and 129.2 (C²³ + p-C of Ph), 128.6 (m-C of Ph), 122.9 (C²²), 21.6 (Me) and 21.3 (Me) (Found: C, 62.9; H, 4.6; N, 5.8. C₂₆H₂₄N₂OSn requires C, 62.6; H, 4.8; N, 5.6%).

X-Ray Structure Determination of Compound 6 (Diethyl Ether Solvate).—Crystal data. $C_{28}H_{28}Cl_4N_4O_2Sn_2\cdot 2.5C_4H_{10}O$, M=1017.0, monoclinic, space group $P2_1/c$, a=20.278(7), b=11.073(4), c=21.016(7) Å, $\beta=101.82(3)^\circ$, U=4619(3) ų, Z=4, $D_c=1.46$ Mg m³, $\lambda(Mo-K\alpha)=0.710$ 69 Å, $\mu=1.36$ mm¹, F(000)=2052, T=-95 °C.

Data collection and reduction. A yellow prism ca. $0.6 \times 0.35 \times 0.3$ mm was mounted in inert oil on a glass fibre and transferred to the cold gas stream of the diffractometer (Siemens R3 with LT-2 low-temperature attachment). A total of 9372 reflections were measured to $2\theta_{\text{max}}$ 50°, of which 8119 were unique (R_{int} 0.025) and 6588 considered observed [$F > 4\sigma(F)$]. An absorption correction based on ψ scans was applied, with transmission factors 0.61–0.89. Cell constants were refined from diffractometer angles of 50 reflections in the 2θ range 20– 22° .

Structure solution and refinement. The structure was solved by direct methods (to locate the tin atoms) and subsequent tangent recycling. Two ordered molecules of diethyl ether, hydrogen bonded to the complex, were located, and another molecule was found to be disordered over a symmetry centre. Hydrogen atoms were included in the refinement using a riding model, except for the disordered solvent H (not included) and the hydroxyl H, which were refined subject to the O-H bond length restraint 0.85 ± 0.02 Å. Anisotropic refinement on F led to a final R value of 0.039, R' 0.048. The weighting scheme was $w^{-1} = \sigma^2(F) + 0.000$ 35 F^2 . 466 Parameters; S 1.7; maximum Δ/σ 0.1; maximum $\Delta\rho$ 1.5 e Å⁻³. The crystallographic program system Siemens SHELXTL PLUS was used. Final atom coordinates are given in Table 1, selected bond lengths and angles in Table 2.

X-Ray Structure Determination of Compound 7 (Diethyl Ether Solvate).—Compound 7 crystallizes in the orthorhombic space group $C222_1$ with a=14.644(5), b=23.840(7), c=13.640(7) Å (at -95 °C), Z=4. Data were collected as above. The structure was refined to R 0.09. A region of unidentified electron density was tentatively identified as an ether molecule, but two large difference peaks were impossibly close to ring carbon atoms. Attempts to refine the structure in a transformed cell of lower symmetry, $P2_1$ with a=c, were similarly unsuccessful (such structures can falsely simulate space group $C222_1^{-16}$). It is probable that the crystal was twinned. In view of these difficulties the bond lengths and angles must be unreliable, and we do not present them. The atom coordinates are given, without e.s.d.s, in Table 3.

Acknowledgements

We thank Dirección General de Investigacion Científica y Técnica (Spain) (PB89-0430) and the Fonds der Chemischen Industrie for financial support. M. C. R. is grateful for a grant from Patronato A. García Rogel (Obra Social CAM).

References

- 1 R. W. Weiss, in Organometallic Compounds. Methods of Synthesis, Physical Constants and Chemical Reactions, ed. M. Dub, Springer, Berlin, 2nd edn., 1967, vol. 2, p. 358; First Supplement, 2nd edn., 1973, p. 593; A. G. Davis and P. J. Smith, in Comprehensive Organometallic Chemistry, eds. G. Wilkinson, F. G. A. Stone and E. W. Abel, Pergamon, Oxford, 1982, vol. 2, ch. 11; I. Omae, Organotin Chemistry, Elsevier, Amsterdam, 1989 and refs. therein.
- 2 N. Kasai, K. Yasuda and R. Okawara, J. Organomet. Chem., 1965, 3, 172.
- C. Glidewell and D. C. Liles, Acta Crystallogr., Sect. B, 1978, 34, 129.
 P. C. Lecomte, J. Protas and M. Devaud, Acta Crystallogr., Sect. B, 1976, 32, 923.

- 5 R. R. Holmes, S. Shafieezad, V. Chandrasekhar, J. M. Holmes and R. O. Day, J. Am. Chem. Soc., 1988, 110, 1174.
- 6 H. Puff, H. Hevendehl, K. Höfer, H. Reuter and W. Schuh, J. Organomet. Chem., 1985, 287, 163.
- 7 A. Bonardi, A. Cantoni, C. Pelizzi, G. Pelizzi and P. Tarasconi, J. Organomet. Chem., 1991, 402, 281.
- 8 (a) J. Vicente, M. T. Chicote, R. M. Carreño and M. C. Ramírez-de-Arellano, J. Organomet. Chem., 1989, 368, 263; (b) J. Vicente, M. T. Chicote, M. C. Ramírez-de-Arellano, G. Pelizzi and F. Vitali, J. Chem. Soc., Dalton Trans., 1990, 279; (c) J. Vicente, M. T. Chicote, M. C. Ramírez-de-Arellano and P. G. Jones, J. Organomet. Chem., 1990, 394, 77.
- 9 W. Clegg, C. M. J. Grievson and K. Wade, J. Chem. Soc., Chem. Commun., 1987, 969.
- 10 R. A. H. Howie, E. S. Paterson, J. L. Wardell and J. W. Burley, J. Organomet. Chem., 1986, 304, 301.

- 11 R. D. Feltham and R. G. Hayter, J. Chem. Soc., 1964, 4587.
- 12 J. L. Briansó, X. Solans and J. Vicente, J. Chem. Soc., Dalton Trans., 1983, 169.
- 13 G. van Koten, J. T. B. H. Jastrzebski and J. G. Noltes, *J. Organomet. Chem.*, 1979, 177, 283.
- 14 J. C. Barnes, H. A. Sampson and T. J. R. Weakley, J. Chem. Soc., Dalton Trans., 1980, 949; D. Tudela, V. Fernández and A. Vegas, J. Chem. Soc., Dalton Trans., 1986, 883.
- 15 J. Vicente, M. D. Bermúdez, J. Escribano, M. P. Carrillo and P. G. Jones, J. Chem. Soc., Dalton Trans., 1990, 3083.
- 16 P. G. Jones, W. Clegg and G. M. Sheldrick, Acta Crystallogr., Sect. B, 1980, 36, 160.

Received 13th January 1992; Paper 2/00142J