Some Chemistry of Half-sandwich η-Arene Tungsten Compounds[†]

Malcolm L. H. Green,^{*,}^a Andrew K. Hughes,^a Paul Lincoln,^a Jesus J. Martin-Polo,^a Philip Mountford,^a Andrea Sella,^a Luet-Lok Wong,^a Judith A. Bandy,^b Thomas W. Banks,^b Keith Prout^b and David J. Watkin^b ^a Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, UK

^b Chemical Crystallography Laboratory, 9 Parks Road, Oxford OX1 3PD, UK

The compounds $[W(\eta-C_6H_5Me)(PMe_3)_3]$ and $[W(\eta-C_6H_5Me){SiMe(CH_2PMe_2)_3}]$ have been prepared from $[W(\eta-C_6H_5Me)_2]$ and tertiary phosphines. They are protonated by NH_4BF₄ to give $[W(\eta-C_6H_5Me)(PMe_3)_3H]BF_4$ and $[W(\eta-C_6H_5Me)(SiMe(CH_2PMe_2)_3)H]BF_4$, respectively. Reaction of $[W(\eta-C_6H_5Me)(PMe_3)_3]$ with HCl gas gives the diprotonated cation $[W(\eta-C_6H_5Me)(PMe_3)_3H_2]^{2^+}$. Treatment of $[W(\eta-C_6H_5Me)(\eta-C_3H_5)(dmpe)]PF_6$ [dmpe = 1,2-bis(dimethylphosphino)ethane] with LiAlH₄ gives the η -methylcyclohexadienyl complex $[W(\eta^5-C_6H_6Me)(\eta-C_3H_5)(dmpe)]$, as a mixture of inseparable isomers. These have been characterised by multinuclear two-dimensional NMR spectroscopy. The fluorohydride $[W(\eta-C_6H_5Me)(dmpe)H(F)]$ has also been prepared. The X-ray crystal structures of $[W(\eta-C_6H_5Me)(PMe_3)_3H_2][PF_6]_2$ and $[W(\eta-C_6H_5Me)(dmpe)H(F)]$ have been determined.

Bis(η -arene)tungsten compounds have been known since 1960,¹ but only became available in gram quantities by the method of metal vapour synthesis.² Previously we have described some chemistry of (η -arene)tungsten compounds derived from [W(η -C₆H₅R)₂] (R = H or Me).³ More recently we reported the compound [W(η -C₆H₆)(PMe₃)₂H₂] which was prepared by co-condensation of tungsten with cyclohexane and PMe₃,⁴ by treatment of [W(PMe₃)₃H₆], [W(PMe₃)₅H₂], or [W(PMe₃)₄-(η ²-CH₂PMe₂)H] with cyclohexa-1,3- or 1,4-diene, or by the reduction of [W(PMe₃)₄Cl₂] in the presence of cyclohexa-1,3diene.⁵ The η -arene compound [W(η ⁶-C₆H₅PPrⁿ₂)(PPh-Prⁿ₂)₂(N₂)] has been prepared by the reduction of WCl₆ with Mg in the presence of PPhPrⁿ₂.⁶ Here we describe some further studies of the chemistry of [W(η -C₆H₅Me)₂] leading to the synthesis of new half-sandwich η -arene derivatives of tungsten.

Results and Discussion

Treatment of the bis(η -arene) compound $[W(\eta-C_6H_5Me)_2]$ 1 with neat trimethylphosphine at 200 °C gave air-sensitive, orange crystals of $[W(\eta-C_6H_5Me)(PMe_3)_3]$ 2. The formation of 2 by displacement of an η -toluene ring has a parallel with the reactions of $[M(\eta-C_6H_5Me)_2](M = Mo^7 \text{ or } Nb^8)$ with PMe₃. The analytical and spectroscopic data characterising 2 and the other new compounds described below are given in Table 1, and will not be further discussed except where interpretation is not straightforward.

Compound 2 shows a first He I photoionisation band at 4.99 eV (*ca.* 8×10^{-19} J), which may be assigned to the ionisation of an electron from the predominantly non-bonding d_{z^2} orbital of tungsten.^{9a} The molybdenum analogue, [Mo(η -C₆H₅Me)-(PMe₃)₃], shows a first ionisation at 5.3 eV.^{9b}

Compound 2 is rapidly protonated by HCl gas in a two-stage reaction in which a purple and then a yellow solid are formed. The yellow product is soluble in water and addition of ammonium hexafluorophosphate gives $[W(\eta-C_6H_5Me)(PMe_3)_3-H_2][PF_6]_2$ 3. The ¹H NMR spectrum of 3 shows two distinct phosphine and hydride environments, consistent with the mer

geometry shown in Scheme 1. Heteronuclear double-resonance experiments allow assignment of all the coupling constants. The ²J(H_aH_b) coupling constant is 9.6 Hz, indicating that two classical hydride ligands are present and not a η^2 -H₂ ligand. No coupling is observed between H_b and the ³¹P nucleus of the PMe₃ ligand *trans* to it (P_d). The structure of **3** has been confirmed by a single-crystal X-ray diffraction study. The molecular geometry is shown in Fig. 1, selected bond angles and distances in Table 2, and fractional atomic coordinates in Table 3. The solid-state structure is consistent with the solution NMR data; the hydride ligands were not located but space-filling models, and the P–W–P angles, suggest that the two hydrides fit *trans* to the arene-ring centroid and *trans* to P(2), giving the molecule an overall pseudo-octahedral geometry, if the η-toluene ligand is considered to occupy a single co-ordination site.

Treatment of compound 3 with 30% aqueous KOH removes one proton to give $[W(\eta-C_6H_5Me)(PMe_3)_3H]PF_6$ 4, as a deep purple solid which may be crystallised from dichloromethane. The analogous BF_4^- salt of 4 may be prepared from $[W(\eta-C_6H_5Me)(PMe_3)_3]$ and the weak acid NH_4BF_4 . The monohydride $[W(\eta-C_6H_5Me)(PMe_3)_3H]PF_6$ is stable to deprotonation by KOH at room temperature but when the temperature is raised to 70 °C deprotonation occurs regenerating 2. Treatment of 3 with potassium hydride in tetrahydrofuran (thf) gives 2 in a clean reaction.

Comparison of the conditions required for the protonation reactions of compound 2 with those for the molybdenum analogues shows that the diprotonation of 2 occurs with weaker acids and correspondingly that the deprotonation of the dication 3 requires more forcing conditions than for the molybdenum analogue.⁷

Treatment of $[W(\eta-C_6H_5Me)_2]$ with SiMe(CH₂PMe₂)₃ at 200 °C for 2 d gives, after recrystallisation from pentane, the tripodal phosphine complex $[W(\eta-C_6H_5Me){SiMe(CH_2-PMe_2)_3}]$ 5, in 70% yield. Complex 5 is readily protonated by NH₄BF₄ to give the monohydride $[W(\eta-C_6H_5Me){SiMe(CH_2PMe_2)_3}H]BF_4$ 6.

The ¹H NMR spectra of compounds 4 and 6 at room temperature all show resonances assignable to the η -arene and phosphine ligands as well as quartet resonances assignable to the single hydride. The ³¹P-{¹H} NMR spectra at ambient temperature all show relatively sharp singlets. These spectra do

^{*} Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1992, Issue 1, pp. xx-xxv.

Scheme 1 (*i*) PMe₃ (neat), sealed tube, 200 °C, 18 h, yield >90%; (*ii*) HCl (g), light petroleum, >90% or NH₄BF₄ (s), thf, 12 h, >90%; (*iii*) HCl (g), light petroleum, >90%; (*iv*) 30% KOH (aq.), room temperature (r.t.) >90%; (*v*) 30% KOH (aq.), 70 °C, >90%; (*vi*) SiMe(CH₂PMe₂)₃ (neat), sealed tube, 200 °C, 2 d, 70%; (*vii*) NH₄BF₄ (s), thf, 12 h, 75%; (*viii*) excess of LiAlH₄, thf, r.t., 12 h, 78%; (*ix*) (on one occasion only) excess of LiAlH₄, -30 °C then r.t., 1 h

Fig. 1 Molecular structure of $[W(\eta-C_6H_5Me)(PMe_3)_3H_2][PF]_2$ 3. Hydrogen atoms bonded to W were not located. Other hydrogen atoms and PF_6^- anions omitted for clarity

not allow one unambiguously to distinguish between a symmetrical pseudo-trigonal-bipyramidal ground state (approximate C_{3v} symmetry) or a highly fluxional pseudo-square-based pyramidal structure (approximate C_s symmetry as illustrated in Scheme 1). To our knowledge, the cation $[W(\eta-C_5Me_5)Me_4]^+$ is the only crystallographically characterised $[M(\eta-hydro$ $carbyl)(ligand)_4]$ species which possesses local C_{3v} symmetry at the metal centre.¹⁰ We have studied the reaction between the previously described compound $[W(\eta-C_6H_5Me)(\eta-C_3H_5)(dmpe)]$ (dmpe = $Me_2PCH_2CH_2PMe_2$) and LiAlH₄. Treatment of $[W(\eta-C_6-H_5Me)(\eta-C_3H_5)(dmpe)]PF_6$ with LiAlH₄ in thf gave a pale yellow solid $[W(\eta^5-C_6H_6Me)(\eta-C_3H_5)(dmpe)]$ 7. The infrared spectrum shows a band at 2745 cm⁻¹, which suggests the presence of a C-H_{exo} group.^{11,12} The ³¹P-{¹H} NMR spectrum indicates an isomeric mixture. For example there are three pairs of doublets with associated ¹⁸³W satellites, each pair assignable to a co-ordinated dmpe ligand in which the phosphorus atoms of the dmpe ligands are inequivalent. This inequivalence suggests that, as found for the analogous molybdenum compounds $[Mo(\eta-C_6H_6R)(\eta-C_3H_5)L_2][R = H \text{ or Bu}; L_2 = dmpe, dppe (Ph_2PCH_2PPh_2), or 2,5-dithiahexane] there is no plane of symmetry through the molecules of the three isomers present and that ring rotation does not occur on the NMR time-scale.¹¹$

The ¹H NMR spectrum of the isomeric mixture is extremely complex and a substantial assignment was only possible with the aid of phosphorus-decoupled phase-sensitive doublequantum-filtered ¹H-¹H correlation spectroscopy (COSY) together with ¹H-{¹H,³¹P} NMR spectra. These spectra identified three distinct coupling networks which may be assigned to methylcyclohexadienyl groups arising from nucleophilic addition of hydride at the *ortho* (7a), *meta* (7b) or *para* (7c) positions (Scheme 1) of the η-toluene ligand. The data show the isomers to be in the approximate ratio 1:2:4. There is no evidence for addition of the H⁻ to the *ipso*-ring carbon.

It has been observed in the molybdenum analogues of compound 7, namely $[Mo(\eta-C_6H_6R)(\eta-C_3H_5)L_2]$ (R = H or Bu; L_2 = dmpe, dppe, or 2,5-dithiahexane), and elsewhere,¹¹ that the protons at the 4 position of a η -cyclohexadienyl ligand are Table 1 Analytical and spectroscopic data

		Analysi	s (%) ª	
Compound	Colour	C	н	NMR data ^b (δ)
$2 \left[W(\eta - C_6 H_5 Me) (PMe_3)_3 \right]$	Orange	37.9 (38.1)	6.8 (7.0)	¹ H: 3.75 (2 H, br t, ortho or meta), 3.58 (3 H, m, para and meta or ortho), 2.19 (3 H, s, MePh), 1.35 (27 H, m, MeP) ¹³ C: 78.9 (s, ipso), 73.5 (d, ortho or meta), 70.8 (d, para), 63.9 (d, meta or ortho), 28.9 (q, MeP), 21.9 (q, C ₆ H ₃ Me)
3 [W(η-C ₆ H ₅ Me)(PMe ₃) ₃ H ₂][PF ₆] ₂	Yellow	24.2 (24.1)	4.6 (4.6)	¹ H [(CD ₃) ₂ CO]: 6.7 (1 H, m, para), 6.1 (4 H, m, ortho and meta), 3.5 [1 H, br q, $J(H_aP_e) = 58$, $J(H_aP_d) = 40.8$, $J(H_aH_p) = 2$, $J(H_aH_b) = 9.6$, WH_a], 2.1 (18 H, d, $J_{PH} = 12$, $2 \times PMe_3$), 2.6 (3 H, s, MePh), 1.9 (9 H, d, $J_{PH} = 12$, PMe_3), -4.5 [1 H, br t, $J(H_bP_c) = 38$, $J(H_bP_d) = 0$, $J(H_bH_a) = 9.6$, WH_b] ¹³ C (D ₂ O): ^c 122.9 (s, ipso), 116.9 (d, para), 90.8 (d, ortho or meta), 89.7 (d, ortho or meta), 25.3 (qd, MeP_c), 22.7 [qd, Me_3P_d], 21.5 (q, C_6H_5Me) ³¹ P (D ₂ O): ^c - 34.5 (2, d, $J_{PP} = 23.5$, P _c), -45.4 (1 t, $J_{PP} =$ 23.5 P ₂)
$4 [W(\eta - C_6H_5Me)(PMe_3)_3H][PF_6]$	Purple	29.8 (29.5)	5.3 (5.5)	¹ H [(CD ₃) ₂ CO]: 4.6 (4 H, m, ortho and meta), 4.4 (1 H, m, para), 2.1 (3 H, s, $J_{HH} = 1.3$, C_6H_5Me), 1.9 (27 H, m, PMe ₃), -4.7 (1 H, q, $J_{PH} = 55.8$, WH) ³¹ P (CD ₃) - (CD ₃)
$5[W(\eta-C_6H_5Me){SiMe(CH_2PMe_2)_3}]$	Orange	37.3 (37.6)	6.4 (6.5)	¹ H: 3.82 (2 H, br m, ortho or meta), 3.75 (2 H, m, meta or ortho), 3.68 (1 H, m, para), 2.25 (3 H, s, C ₆ H ₅ Me), 1.45 (18 H, vct, Me ₂ P), 0.85 (6 H, m, PCH ₂), -0.05 (3 H, s, SiMe) ³¹ P: -32.8 (s. J _{nw} = 395)
6 [W(η -C ₆ H ₅ Me){SiMe(CH ₂ PMe ₂) ₃ }H][BF ₄]	Purple	31.7 (32.2)	6.4 (5.8)	¹ H [(CD ₃) ₂ CO]: 5.1 (2 H, m, ortho or meta), 5.0 (2 H, m, meta or ortho), 4.75 (1 H, m, para), 2.8 (3 H, s, C ₆ H ₅ Me), 2.1 (18 H, vct, PMe ₂), 1.3 (6 H, br s, PCH ₂), 0.0 (3 H, s, SiMe), -7.6 (1 H, q, $J_{HW} = 46$, WH) ³¹ P (CD ₂) - CO ₂ : -33.3 (s, $L = -260$)
7 a [W(η^{5} -C ₆ H ₆ Me)(η^{3} -C ₃ H ₅)(dmpe)] ⁴	Off-white	41.00 (41.05)	6.35 (6.4)	¹ H (500 MHz): 5.77 (1 H, t, $J_{HH} = 7.5$, H _a), 4.18 (1 H, m, H _b), 3.8 (1 H, m, H _f), 3.38 (1 H, m, H _f), 3.38 (1 H, d, $J_{HH} = 5.0$, H _c), 2.4 (1 H, m, H _e), 1.95 (3 H, s, Me), 1.93 (1 H, m, H _d) ¹³ C: 97.7 (CH, C _a), 97.6 (CH, C _c), 78.4 (CH, C _b), 29.5 (CH ₂ , C _{eff}), 26.3 (ring Me), 25.2 (CH, C _d) ³¹ P (202 MHz): 15.05 (d, $J_{PP} = 8.3$, $J_{PW} = 303$), 7.78 (d, $J_{eff} = 8.3$, $J_{eff} = -224$)
7b [W(η^{5} -C ₆ H ₆ Me)(η^{3} -C ₃ H ₅)(dmpe)] ⁴ H _B -H _C +H _E				¹ H (500 MHz): 5.68 (1 H, d, $J_{HH} = 5.3$, H_a), 4.18 (1 H, q, $J_{HH} = 6.0$, H_b), 3.8 (1 H, m, H_f), 2.90 (1 H, m, H_c), 2.40 (1 H, m, H_d), 2.27 (1 H, m, H_d), 1.96 (1 H, m, H_c), 1.72 (3 H, s, Me), 1.15 (1 H, dq, H_E), 0.80 (1 H, m, H_b), 0.29 (1 H, m, H_d), 0.20 (1 H, dd, $J_{HH} = 1.7$, 3.5, H_A) ¹³ C: 99.3 (CH, C_a), 76.0 (CH, C_b), 30.6 (CH ₂ , $C_{b/f}$), 30.5 (CH, C_c), 25.0 (CH, C_c), 19.6 (ring Me) ³¹ P (202 MHz): 13.93 (d, $J_{PP} = 8.4$, $J_{PW} = 305$), 7.06 (d,
$7c \left[W(\eta^{5}-C_{6}H_{6}Me)(\eta^{3}-C_{3}H_{5})(dmpe)\right]^{d}$ $H_{B} \xrightarrow{H_{A} H_{D}} H_{E}$ $H_{B} \xrightarrow{H_{A} H_{D}} H_{E}$				$J_{PP} = 8.4, J_{PW} = 224$) ¹ H (500 MHz): 4.02 (1 H, dt, H _e), 3.8 (1 H, m, H _f), 3.66 (1 H, d, J _{HH} = 6.4, H _g), 2.75 (1 H, m, H _c), 2.68 (1 H, m, H _d), 2.4 (1 H, m, H _b), 2.4 (3 H, s, Me), 1.95 (1 H, m, H _c), 1.35 (2 H, 2 × m, H _B , H _E), 0.55 (1 H, m, H _A), 0.4 (1 H, m, H _D) ¹³ C: 96.7 (CH, C _g), 77.3 (CH, C _e), 29.6 (CH ₂ , C _{t/b}), 27.6 (CH, C _d), 25.0 (CH, C _c), 22.1 (ring Me) ³¹ P (202 MHz): 14.95 (d, J _{PP} = 7.4, J _{PW} = 302), 7.39 (d,
8 [W(η -C ₆ H ₅ Me)(dmpe)H(F)]	Red			$J_{PP} - 1.4, J_{PW} = 22.5$ ¹ H: 4.33 (2 H, td, $J_{HH} = 5, J_{FH} = 2.2, meta$), 4.17 (2 H, t, $J_{FH} = 2.2, ortho), 3.00$ (1 H, t, $J_{FH} = 5.4, para$), 1.80 (3 H, d, $J_{FH} = 0.79, C_6H_3Me$), 1.50 (6 H, m, MeP), 1.41 (6 H, m, MeP), -4.80 (1 H, td, $J_{PH} = 56, J_{FH} = 23, WH$) ³¹ P: 24 [d, $J_{PF} = 66, J_{PW} = 139.3$) ¹⁹ F (282 MHz): 158 (1 F t J = 67)
9 [W(η -C ₆ H ₅ Me)(dmpe) ₂][PF ₆] ₂	Green	25.7 (26.3)	4.6 (4.6)	¹ H [(CD ₃) ₂ SO]: 6.18 (1 H, t, $J_{HH} = 5.3$, para), 5.5 (4 H, m, ortho and meta), 2.28 (4 H, br s, PCH ₂), 2.15 (3 H, s, C ₆ H ₅ Me), 1.84 (16 H, br s, PMe and PCH ₂), 1.65 (12 H, s, PMe)

^a Given as Found (Calculated). ^b Unless otherwise stated all spectra are recorded at 293 K in C_6D_6 with ¹H at 300 MHz, ¹³C at 75.43 MHz and ³¹P at 121.5 MHz; J in Hz; s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, vct = virtual coupled triplet and br = broad. ^c As the chloride salt. ^d Approximate ratio of isomers 7a:7b:7c = 1:2:4.

strongly deshielded (the methylene is taken as position 1). Accordingly, the bands at δ 5.77 and 5.68 in the spectrum of 7 are assigned to the 4 hydrogens of 7a and 7b. In the spectrum associated with isomer 7a the doublet at δ 3.38 is assigned to the

proton labelled c (see Scheme 1 for labelling system) which is consistent with the methyl group being located in the 6 position of the ring. The two geminal protons f and e of the methylene unit show a mutual coupling constant of 10 Hz, the largest of the

Table 2 Selected bond lengths (Å) and angles (°) for $[W(\eta - C_6H_5 - M_6)(PMe_3)_3H_2][PF_6]_2$ 3 with estimated standard deviations (e.s.d.s) in parentheses. Cent refers to the computed η -C₆H₅Me ring centroid

W-P(1)	2.503(4)	W-P(2)	2.537(3)
W-P(3)	2.506(3)	W-C(1)	2.29(2)
W-C(2)	2.31(1)	W-C(3)	2.40(1)
W-C(4)	2.33(2)	W-C(5)	2.28(1)
W-C(6)	2.41(1)	P(1)-C(8)	1.83(2)
P(1)-C(9)	1.82(2)	P(1)-C(10)	1.87(2)
P(2)-C(11)	1.82(2)	P(2)-C(12)	1.81(2)
P(2)-C(13)	1.86(2)	P(3)-C(14)	1.81(1)
P(3)-C(15)	1.82(2)	P(3)-C(16)	1.81(1)
P-F(average)	1.59	W(1)-Cent	1.87
P(2)-W-P(1)	90.3(1)	P(3)-W-P(1)	126.7(1)
P(3)-W-P(2)	91.7(1)	C (8)–P(1)–W	111.3(7)
C(9)-P(1)-W	117.9(7)	C(9)-P(1)-C(8)	101.5(10)
C(10) - P(1) - W	116.3(7)	C(10)-P(1)-C(8)	106.0(13)
C(10-P(1)-C(9)	102.2(9)	C(11)-P(2)-W	119.8(7)
C(12)-P(2)-W	113.8(6)	C1(2)-P(2)-C(11)	100.4(12)
C(13)–P(2)–W	114.2(6)	C(13)-P(2)-C(11)	101.8(9)
C(13)-P(2)-C(12)	104.7(10)	C(14) - P(3) - W	119.7(6)
C(15)-P(3)-W	117.6(6)	C(15)-P(3)-C(14)	99.8(8)
C(16)-P(3)-W	111.2(5)	C(16)-P(3)-C(14)	103.2(8)
C(16)-P(3)-C(15)	103.2(9)	Cent-W-P(1)	114.6
Cent-W-P(2)	114.1	Cent-W-P(3)	112.9
F-P-F (cis, average	e) 90.0	F-P-F(trans, average)) 180.0

Table 3 Fractional atomic coordinates for $[W(\eta-C_6H_5Me)(PMe_3)_3-H_2][PF_6]_2$ 3 with e.s.d.s in parentheses

Atom	X	y	Ξ
W	0.198 28(3)	0.147 51(2)	0.101 56(2)
P(1)	0.205 3(4)	0.110 7(2)	-0.0201(2)
P(2)	0.311 8(2)	0.059 9(2)	0.138 5(2)
P(3)	0.311 2(2)	0.225 5(1)	0.156 3(2)
C(1)	0.031(1)	0.140 5(7)	0.076(2)
C(2)	0.058(1)	0.085 8(8)	0.114(1)
C(3)	0.093(1)	0.093 5(8)	0.181(1)
C(4)	0.113(1)	0.149 8(8)	0.206(1)
C(5)	0.089(1)	0.203 7(7)	0.166 3(9)
C(6)	0.038(1)	0.198 8(8)	0.103(1)
C(7)	0.001(1)	0.254 6(8)	0.067(1)
C(8)	0.165(3)	0.170 2(9)	-0.079 6(9)
C(9)	0.124(2)	0.047 1(8)	-0.044 4(9)
C(10)	0.331(2)	0.084(1)	-0.052(1)
C(11)	0.439(1)	0.054 7(9)	0.104(1)
C(12)	0.337(2)	0.059(1)	0.229 6(9)
C(13)	0.261(1) -	-0.018 0(6)	0.119(1)
C(14)	0.299(1)	0.241 7(8)	0.247 1(8)
C(15)	0.446(1)	0.212 5(8)	0.151(1)
C(16)	0.296(2)	0.300 2(7)	0.117 1(9)
P(4)	0.266 9(2)	0.125 0(2)	0.425 8(2)
F(1)	0.183 5(6)	0.104 6(4)	0.479 4(4)
F(2)	0.350 3(6)	0.145 4(4)	0.372 2(4)
F(3)	0.227 6(6)	0.193 7(3)	0.429 7(5)
F(4)	0.306 1(6)	0.056 4(3)	0.421 9(5)
F(5)	0.191 4(6)	0.111 6(4)	0.364 5(4)
F(6)	0.342 4(6)	0.138 4(4)	0.487 1(4)
P(5)	0.500 0	0.417 2(2)	0.250 0
F(7)	0.500 0	0.490 1(3)	0.250 0
F(8)	0.500 0(9)	0.417 2(2)	0.331 4(3)
F(9)	0.380 9(4)	0.417 2(2)	0.250 0(9)
F(10)	0.500 0	0.344 2(3)	0.250 0
P(6)	0.000 0	0.373 8(3)	0.250 0
F(11) -	- 0.066 9(9)	0.373 8(3)	0.317 4(5)
F(12)	0.069 6(5)	0.322 2(3)	0.282 4(4)
F(13)	0.069 6(5)	0.425 4(3)	0.282 3(4)

system. The coupling network for **7b** is similar. The doublet resonance at δ 5.68 is assigned to proton a which is consistent with the presence of a methyl group in the 5 position of the ring. Again a geminal mutual coupling constant of 10 Hz is observed

Fig. 2 Molecular structure of $[W(\eta-C_6H_5Me)(dmpe)H(F)]$ 8. Hydrogen atoms bonded to carbon atoms omitted for clarity

between the methylene protons (f and d). Assignment of the cyclohexadienyl system of 7c begins by noting the presence of a further multiplet at δ ca. 3.8 (overlapping with those of 7a and 7b) containing a geminal coupling constant of 10 Hz, and which we may assign to f. Further assignment is straightforward. We note that no coupling from the protons in either the 2 or the 6 positions to the f proton of the methylene is observed in either 7a, 7b or 7c. This must be attributed to a Karplus angle of ca. 90°. We cannot assign the f resonance further than to say that it is due to either the endo or the exo proton (the latter choice is illustrated in Scheme 1).

In the COSY spectrum and the ¹H and ¹³C NMR spectra of the isomers 7 there are bands which may be identified readily with the presence of two asymmetric η -allyl groups, as shown in Table 1. The most deshielded bands at δ 2.90 and δ 2.75 are assigned to the central (methine) protons of 7b and 7c respectively, on the basis of their integrals. The allyl protons of 7a could not be located in the COSY spectrum, presumably due to a combination of severe overlap and low intensity. The ¹H resonances due to the CH₂ and Me groups of the dmpe ligands have also not been assigned, the resonances due to all three isomers being essentially coincident in the regions δ 1.3–0.8 (CH₂), 0.7–0.3 (Me) and 1.25–1.0 (Me).

The ¹³C NMR spectrum of the isomers 7 was assigned with the aid of the ¹³C–¹H heteronuclear shift correlation spectrum and edited ¹³C-{¹H} distortionless enhancements by polarisation transfer (DEPT) spectra. Again, the resonances due to the CH₂ and CH₃ groups of the dmpe ligands could not be assigned due to severe overlap of resonances.

In the course of a synthesis of compound 7 we isolated an unexpected product. After hydrolysis of the excess of LiAlH₄ red crystals of $[W(\eta-C_6H_5Me)(dmpe)H(F)]$ 8 were obtained. The ¹H NMR spectrum of 8 shows a triplet of doublets ($J_{PH} = 56$, $J_{\rm FH} = 23$ Hz) assigned to the hydride at $\delta = -4.80$. Compound 8 was further characterized by single-crystal X-ray diffraction. The molecular structure of 8 is shown in Fig. 2, selected bond lengths and angles in Table 4 and fractional atomic coordinates in Table 5. The hydride ligand was located from a Fourier difference synthesis in a position trans to the fluoride ligand and its isotropic thermal parameter and fractional atomic coordinates could be successfully refined. One of the methylenic carbons of the dmpe ligand was disordered over two sites and only the major conformer is shown in Fig. 2. The structure may essentially be described as a four-legged piano-stool geometry, with the chelating dmpe ligand spanning two trans sites.

Table 4 Selected bond lengths (Å) and angles (°) for $[W(\eta-C_6H_5Me)(dmpe)H(F)]$ **8** with e.s.d.s in parentheses.* Cent refers to the computed $\eta-C_6H_5Me$ ring centroid

W-P(1)	2.420(2)	W-P(2)	2.418(2)
W-F	2.044(3)	W-C(1)	2.302(6)
W-C(2)	2.208(7)	W-C(3)	2.331(6)
W-C(4)	2.244(7)	WC(5)	2.253(6)
W-C(6)	2.374(6)	W-H(27)	1.79(2)
P(1)-C(8)	1.815(6)	P(1) - C(9)	1.804(8)
P(1)-C(10)	1.827(7)	P(2)-C(12)	1.809(9)
P(2)-C(13)	1.816(8)	P(2)-C(111)	1.824(8)
P(2)-C(112)	1.828(9)	C(1)-C(2)	1.45(1)
C(1)-C(6)	1.395(9)	C(2)-C(3)	1.40(1)
C(3) - C(4)	1.40(1)	C(4)-C(5)	1.41(1)
C(5)-C(6)	1.428(9)	C(6)-C(7)	1.49(1)
C(10)-C(111)	1.510(8)	C(10)-C(112)	1.505(9)
C(111)-C(112)	1.00(2)	W-Cent	1.79
P(2)-W-P(1)	80.02(6)	F-W-P(1)	81.3(1)
F-W-P(2)	80.3(1)	H(27) - W - P(1)	64.1(22)
H(27) - W - P(2)	71.0(20)	H(27) - W - F(1)	137.8(21)
C(8) - P(1) - W	118.4(2)	C(9) - P(1) - W	119.0(3)
C(9)-P(1)-C(8)	102.5(4)	C(10-P(1)-W)	111.5(2)
C(10)-P(1)-C(8)	101.5(4)	C(10)-P(1)-C(9)	101.4(5)
C(12) - P(2) - W	118.0(3)	C(13)-P(2)-W	120.1(3)
C(13)-P(2)-C(12)	101.3(4)	C(111)-P(2)-W	110.0(3)
C(111)-P(2)-C(12)	110.4(5)	C(111)-P(2)-C(13)	94.4(5)
C(112)-P(2)-W	112.3(5)	C(112)-P(2)-C(12)	82.9(6)
C(112)-P(2)-C(13)	116.1(7)	C(111)-C(10)-P(1)	114.1(6)
C(112–C(10)–P(1)	115.0(8)	C(10)-C(111)-P(2)	111.4(6)
C(10)-C(112)-P(2)	111.4(7)	Cent-W-F	115.1
Cent-W-P(1)	138.2	Cent-W-P(2)	138.3
Cent-W-H(27)	106.9		

* The occupancy factors of C(111) and C(112) are 0.62 and 0.38 respectively.

Table 5 Fractional atomic coordinates for $[W(\eta-C_6H_5Me)(dmpe)-H(F)]$ 8 with e.s.d.s in parentheses

Atom	X	у	z	
W	0.020 49(2)	0.137 22(1)	0.135 50(1)	
P(1)	0.183 5(2)	0.184 5(1)	0.056 27(8)	
P(2)	0.057 1(2)	0.276 3(1)	0.181 67(9)	
F	-0.0888(3)	0.205 5(2)	0.068 3(2)	
C(1)	-0.1439(7)	0.084 4(4)	0.200 5(3)	
C(2)	-0.022 6(8)	0.067 5(5)	0.232 6(4)	
C(3)	0.064 1(8)	0.015 2(4)	0.198 3(5)	
C(4)	0.049 4(8)	-0.001 8(4)	0.126 9(4)	
C(5)	-0.064 9(6)	0.018 2(3)	0.093 3(4)	
C(6)	-0.165 2(6)	0.054 5(4)	0.132 9(4)	
C(7)	-0.286 9(7)	0.072 6(5)	0.097 2(5)	
C(8)	0.143 1(7)	0.200 2(4)	-0.035 2(3)	
C(9)	0.328 2(8)	0.125 6(7)	0.050 7(5)	
C(10)	0.241 9(9)	0.288 3(5)	0.080 5(4)	
C(12)	-0.061 (1)	0.355 9(4)	0.165 4(5)	
C(13)	0.086(1)	0.290 9(6)	0.274 6(4)	
C(111) ^a	0.212 3(8)	0.313 5(7)	0.155 0(5)	
C(112) ^b	0.151(2)	0.340 8(8)	0.122 4(9)	
H(27)	0.176(3)	0.142(4)	0.171(3)	
^a Occupancy factor 0.62. ^b Occupancy factor 0.38.				

The mechanism of formation of compound **8** is unknown, and could not be investigated as the preparation was not reproducible. However we note that fluoride abstraction from PF₆⁻ and BF₄⁻ has occasionally been observed ¹³ and protonation of [W(PMe₃)₄(η^2 -CH₂PMe₂)H] with either HF or HPF₆ gives the salts [W(PMe₃)₄F(H)₂(H₂O)]X (X = F or PF₆).¹⁴ Further, the protonation of [Mo(PMe₂Ph)₄H₄] with HBF₄ gives [{Mo(PMe₂Ph)₃H₂}₂(μ -F₃)]¹⁵ and fluoride-ion abstraction from [Zr(η -C₅H₅)₂Me(thf)]PF₆ gives rise to [Zr(η -C₅H₅)₂Me(F)].¹⁶ It was observed that solutions of compound 7 slowly turned orange when exposed to sunlight. Photolysis of a C_6D_6 solution of 7 in an NMR tube caused the solution to become deep red after several hours. The ¹H NMR spectrum of the solution indicated the presence of $[W(\eta-C_6H_5Me)(dmpe)H_2]$ by comparison with an authentic sample.³ When $[W(\eta-C_6H_5Me)_2]$ -PF₆ was stirred for 24 h at 40 °C with dmpe a green solution was formed together with a grey solid. The green solution was shown to consist of $[W(\eta-C_6H_5Me)_2]$ by comparison with an authentic sample. Extraction of the grey residue with acetone followed by chromatography on alumina gave a red solution which could be recrystallised from liquid SO₂--CH₂Cl₂ to give green needles of $[W(\eta-C_6H_5Me)(dmpe)_2][PF_6]_2$ 9. This complex is presumably formed by disproportionation of the starting material in the presence of excess of the chelating diphosphine.

The reactions and new compounds are shown in Scheme 1.

Experimental

Except where otherwise stated all reactions and manipulations were carried out under dinitrogen using standard Schlenk or glove-box techniques. Dinitrogen was purified by passage through a column containing 4 Å molecular sieves and Fluka BTS catalyst. All solvents were thoroughly deoxygenated before use by repeated pumping followed by admission of dinitrogen. Solvents were pre-dried over molecular sieves and distilled from suitable drying agents before use. Toluene and light petroleum (b.p. 100-120 °C) were dried over molten sodium, benzene and tetrahydrofuran over molten potassium; diethyl ether and light petroleum (b.p. 40-60 °C) over sodium-potassium alloy (3:1 w/w), and dichloromethane over P_2O_5 . Deuteriated solvents for NMR spectroscopy were stored in Young's ampoules over activated molecular sieves [except D₂O and (CD₃)₂CO] and transferred either by vacuum distillation or by glass pipette in a glove-box.

Proton, ³¹P and ¹³C NMR spectra were acquired on Brüker spectrometers at 500, 202.4 and 125.8 MHz (AM-500), at 300, 121.4 and 75.5 MHz (AM-300 and WH-300) or at 250, 101.2 and 62.9 MHz (AM-250), ¹⁹F NMR spectra at 282 MHz on a Brüker WH-300 spectrometer. Two-dimensional spectra were obtained using standard Brüker software on AM-300 or AM-500 spectrometers. One-dimensional ¹H-{³¹P} spectra were acquired on an AM-300 in inverse mode using a Brüker BFX-5 fast switching unit or on an AM-300 spectrometer using an external broad-band ³¹P decoupler, two-dimensional [¹H-¹H]-{³¹P} spectra on either AM-250 or AM-300 spectrometers using an external broad-band ³¹P decoupler. Proton and ¹³C spectra were calibrated internally relative to residual protio-solvent (¹H) or solvent (¹³C) resonances and reported relative to tetramethylsilane; ¹⁹F and ³¹P spectra were referenced externally and chemical shifts are reported relative to (CF₃)₂CO and PO(OMe)₃, downfield shifts being taken as positive.

Infrared spectra were run as KBr discs or Nujol mulls using either a Unicam SP 2000 or a Mattson Polaris spectrometer. Mass spectra were recorded on an AEI MS 902 spectrometer updated with a data-handling system supplied by Mass Spectroscopy Services. Elemental analyses were carried out by the analytical service of this laboratory, or, in the case of very air-sensitive samples, by Analytische Laboratorien, Elbach, Germany.

The compounds $[W(\eta-C_6H_5Me)_2]$ and $[W(\eta-C_6H_6)_2]$ were prepared by metal-atom synthesis using an electron gun operating in the positive hearth mode as previously described.² The phosphines PMe₃,¹⁷ dmpe,¹⁸ and SiMe(CH₂PMe₂)₃¹⁹ were prepared by the published procedures.

Preparations.— $[W(\eta-C_6H_5Me)(PMe_3)_3]$ 2. The compound $[W(\eta-C_6H_5Me)_2]$ (2.8 g, 7.6 mmol) was transferred into a glass ampoule and an excess of trimethylphosphine (*ca.* 20 cm³) condensed onto the solid under reduced pressure. The ampoule was sealed and placed in a steel pressure tube filled with light

petroleum (b.p. 40–60 °C) and heated to 200 °C for 18 h giving an orange solution. After removal of the excess of phosphine the residue was extracted with thf. The extract was filtered and pumped to dryness. The orange residue was extracted with light petroleum (b.p. 40–60 °C, 3×30 cm³). The solution was concentrated under reduced pressure and cooled to -20 °C for 2 h to give orange crystals. The crystals were filtered off cold, washed with cold light petroleum and dried *in vacuo*. Yield: 3.6 g (93%).

 $[W(\eta-C_6H_5Me)(PMe_3)_3H_2][PF_6]_2$ 3. A solution of the compound $[W(\eta-C_6H_5Me)(PMe_3)_3]$ (0.5 g, 0.99 mmol) in light petroleum (b.p. 40–60 °C, 30 cm³) was treated with hydrogen chloride gas. A purple solid was formed initially, which then turned yellow. The colourless light petroleum layer was decanted off and the yellow solid washed with light petroleum ether (b.p. 40–60 °C, 3 × 30 cm³). The solid was dried under reduced pressure and dissolved in deoxygenated water. An aqueous solution of NH₄PF₆ was added to the extract and a yellow precipitate was obtained. This was filtered off, washed with water and extracted into acetone. The extract was filtered and recrystallised from water–acetone giving yellow crystals. Yield: 0.75 g (95%).

 $[W(\eta-C_6H_5Me)(PMe_3)_3H]PF_6$. A solution of the compound $[W(\eta-C_6H_5Me)(PMe_3)_3]$ (0.5 g, 0.99 mmol) in light petroleum (b.p. 40–60 °C, 30 cm³) was treated with hydrogen chloride gas giving a yellow precipitate as before (see above). The clear supernatant was decanted and the solid washed with light petroleum (b.p. 40–60 °C, 2 × 20 cm³) and dried *in vacuo*. Dissolution of the solid in deoxygenated water and dropwise addition of 30% aqueous KOH gave a purple solution. Addition of NH₄PF₆ gave a purple solid which was separated and recrystallised from dichloromethane. Yield: 0.6 g (93%).

 $[W(\eta-C_6H_5Me)(PMe_3)_3H]BF_4$. A solution of the compound $[W(\eta-C_6H_5Me)(PMe_3)_3]$ (0.5 g, 0.99 mmol) in thf was added to solid NH₄BF₄ (32 mg, 1 mmol) and the mixture was stirred for 12 h. A purple solid was produced, the colourless supernatant was decanted and the solid dried *in vacuo*. The solid was recrystallised from acetone. Yield: 0.6 g (93%).

 $[W(\eta-C_6H_5Me){SiMe(CH_2PMe_2)_3}]$ 5. The compound $[W-(\eta-C_6H_5Me)_2]$ (0.42 g, 1.13 mmol) was placed in a thick-walled glass ampoule and neat SiMe(CH_2PMe_2)_3 (0.6 g, 2.25 mmol) added. The sealed ampoule was placed in a steel pressure tube, filled with toluene, and heated at 200 °C for 2 d, giving an orange solution. This was washed from the ampoule with light petroleum (b.p. 40–60 °C, 20 cm³) and the volatiles removed under reduced pressure. The excess of silane was removed by sublimation to a cold-finger at -196 °C. The residue was extracted into light petroleum (b.p. 40–60 °C, 20 cm³), filtered and cooled to -80 °C giving green crystals identified as $[W(\eta-C_6H_6Me)_2]$; the supernatant was decanted and reduced in volume to *ca.* 10 cm³. Further cooling to -80 °C gave orange crystals which were isolated and washed with a little cold light petroleum. Yield: 400 mg (70%).

[$W(\eta-C_6H_5Me)$ {SiMe(CH₂PMe₂)₃}H]BF₄ 6. A solution of the compound [$W(\eta-C_6H_5Me)$ {SiMe(CH₂PMe₂)₃] (0.18 g, 0.33 mmol) in thf (20 cm³) was added to an excess of solid NH₄BF₄ and the mixture stirred for 12 h. The orange solution slowly turned purple. The solution was filtered and the volatiles removed under reduced pressure. The residue was extracted with thf (10 cm³) and the soluble portion reduced in volume to 5 cm³. Cooling to -80 °C for 12 h afforded purple crystals, which were collected, washed with a small quantity of cold thf and dried *in vacuo*. Yield: 0.14 g (75%).

 $[W(\eta^5-C_6H_6Me)(\eta^3-C_3H_5)(dmpe)]$ 7. A suspension of the compound $[W(\eta-C_6H_5Me)(\eta-C_3H_5)(dmpe)]PF_6$ (0.5 g, 0.8 mmol) in dry thf (30 cm³) was stirred at room temperature with an excess of LiAlH₄ (0.1 g, 2.6 mmol) for 12 h, after which time all the orange solid had reacted. The solvent was removed under reduced pressure to give a grey-white solid. This was extracted with light petroleum (b.p. 40–60 °C, 3 × 30 cm³) with vigorous shaking giving a pale yellow solution which was filtered and

the solvent removed under reduced pressure. The residue was extracted with light petroleum (b.p. 40–60 °C) to give a pale yellow solution. On concentrating to 5–10 cm³ the solution showed a slight orange colour (due to the presence of photo-decomposition products) and was cooled to -20 °C for 30 min affording an off-white solid with an orange impurity which was washed away at -78 °C with light petroleum (b.p. 40–60 °C) until the washings were colourless. Yield: 0.3 g (78%).

 $[W(\eta - C_6H_5Me)(dmpe)H(F)]$, 8. The salt $[W(\eta - C_6H_5Me)(\eta - C_6H_5Me)(\eta - C_6H_5Me)]$ C₃H₅)(dmpe)]PF₆ (0.4 g, 0.6 mmol) was suspended in dry thf (30 cm^3) at -30 °C. An excess of LiAlH₄ (0.2 g, 5.2 mmol) was added, also as a suspension in thf. The solution was stirred and allowed to warm to room temperature while being stirred for 1 h. After cooling to -78 °C, deoxygenated water was added to hydrolyse the excess of LiAlH₄. The product was extracted with benzene giving an orange solution and a white sticky precipitate. The orange solution was filtered, the solvent removed under reduced pressure and stored under argon for a few days. Over this period it became red. The red compound was extracted with light petroleum (b.p. 40-60 °C, 50 cm³) giving a deep red solution which was concentrated and cooled to -20 °C giving air-sensitive red crystals. This reaction was not reproducible (see text). All subsequent attempts to repeat this synthesis yielded $[W(\eta^5-C_6H_6Me)(\eta^3-C_3H_5)(dmpe)].$

 $[W(\eta-C_6H_5Me)(dmpe)_2][PF_6]_2$ 9. The salt $[W(\eta-C_6H_5 Me_{2}$]PF₆ (1 g, 1.9 mmol) was suspended in neat dmpe (8 g, 53.3 mmol). The mixture was warmed to 40 °C for 2 d after which time the yellow solid had changed to dark grey and a green solution had formed. The green solution was filtered and the residue washed with light petroleum (b.p. 40-60 °C, 6 × 15 cm³). The solid was dried in vacuo and then washed with water. The residues were dissolved in acetone and the extract concentrated to about one third of its original volume and passed through a chromatography column packed with deactivated neutral alumina as an acetone slurry. The column was deoxygenated and eluted with acetone giving three bands. The first fraction yielded a red-orange solid (still impure), the second a yellow oil which was discarded and the third a grey-red dichroic solution which gave green crystals. The first fraction was chromatographed a second time but decomposed on the column. The pale green crystals were recrystallised from $SO_2(I)$ -CH₂Cl₂. As the SO₂ evaporated, green needles separated. Yield: ca. 100 mg (6%).

X-Ray Crystal Structure Determinations of Compounds 3 and 8.—Crystal data, data-collection and -processing parameters are given in Table 6. In each case a crystal was sealed in a Lindemann glass capillary and transferred to the goniometer head of an Enraf-Nonius CAD4 diffractometer. Unit-cell parameters were calculated from the setting angles of 25 carefully centred reflections. Three reflections were chosen as intensity standards and were measured every 3600 s of X-ray exposure time, and three orientation controls were measured every 250 reflections.

The data were corrected for Lorentz and polarisation effects and an empirical absorption correction²⁰ based on azimuthal scan data was applied. Equivalent reflections were merged and systematically absent reflections rejected. The heavy-atom positions were determined from Patterson syntheses. Subsequent Fourier difference syntheses revealed the positions of other non-hydrogen atoms. The crystals of compound 3 contained one PF₆ anion on a general position and two half PF_6 anions lying on the two-fold axis at 0, y, 0.25. Nonhydrogen atoms were refined with anisotropic thermal parameters by least-squares procedures, with the exception of the PF_6 atoms of compound 3 which were refined subject to soft restraints²¹ to conserve the octahedral symmetry. One of the methylene carbon atoms of the dmpe ligand of compound 8 was resolved as two peaks in the difference map [C(111) and C(112)]indicating site disorder. The site occupation factors were refined as 0.62 and 0.32 respectively for equivalent isotropic thermal

Table 6 Crystallographic data and experimental conditions for compounds 3 and 8^{a}

Compound	3	8
Formula	C ₁₆ H ₃₇ F ₁₂ P ₅ W	C ₁₃ H ₂₆ FP ₂ W
Μ	796.17	447.17
Crystal size/mm	$0.2 \times 0.15 \times 0.30$	0.5 × 0.38 × 0.30
Space group	Pbcn	Pbca
aÅ	13.322(2)	10.623(1)
hÅ	21.471(3)	15.948(2)
c Å	19.475(3)	19.086(3)
Ľ	5570	3233.5
$D_{\rm e}/{\rm g}~{\rm cm}^{-3}$	1.903	1.83
F(000)	3240	1736
µ/cm ⁻¹	46.04	74.85
Total data collected	7301	4246
No. of observations		
$[I > 3\sigma(I)]$	3503	2016
R _{merse}	0.032	0.015
No. of parameters	331	158
Weighting coefficients	23.2, -6.40, 15.4	6.03, -5.24, 4.71, -1.04
Maximum residual peak in final		
difference map/e Å ⁻³	1.4	0.83
Final residuals R, R'^{b}	0.075, 0.082	0.025, 0.029

^{*a*} Details in common: crystal system, orthorhombic; α , β , $\gamma = 90^{\circ}$; Z = 8; Mo-K α radiation ($\lambda = 0.710$ 69 Å); $\theta_{max} = 25^{\circ}$; scan mode ω -20; ω scan width 0.6 + 0.35 tan0; Chebyshev weighting scheme. ^{*b*} $R = \Sigma(|F_o| - |F_c|)/\Sigma(|F_o|)$, $R' = [\Sigma w(|F_o| - |F_c|)^2 / \Sigma w(|F_o|)^2]^{\frac{1}{2}}$.

parameters and then fixed. Atoms C(111) and C(112) were then refined isotropically with soft restraints on the bonds to C(10) and P(2) respectively. Disorder in the methylene linkages of coordinated dmpe ligands have been observed elsewhere.²² Hydrogen atoms were placed in estimated positions (C-H 1.00 Å) with an isotropic thermal parameter of 0.080 Å² and refined riding on their supporting carbon atoms. For compound **8** the hydride ligand was located from Fourier difference syntheses and its fractional coordinates and isotropic thermal parameter were refined. A Chebyshev weighting scheme²³ was applied, and the data were corrected for the effects of anomalous dispersion and isotropic extinction (*via* an overall isotropic extinction parameter²⁴) in the final stages of refinement.

All crystallographic calculations were performed using the CRYSTALS suite²⁵ on either a Vax 11/750 or Micro Vax 3800 computer in the Chemical Crystallography Laboratory, Oxford. Scattering factors were taken from the usual sources.²⁶

Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom coordinates, thermal parameters and remaining bond lengths and angles.

Acknowledgements

We thank the SERC (for support to A. K. H.), the Gas Research Institute and Balliol College, Oxford (for support to A. S.), Wolfson College, Oxford (for Junior Research Fellowships to P. M. and L.-L. W.) and the Universidad Nacional Autonoma de Mexico (for support to J. J. M.-P.).

References

- 1 E. O. Fischer, F. Scherer and H. O. Stahl, Chem. Ber., 1960, 93, 2065.
- 2 F. G. N. Cloke and M. L. H. Green, J. Chem. Soc., Dalton Trans., 1981, 1938.
- 3 P. R. Brown, F. G. N. Cloke, M. L. H. Green and N. Hazel, J. Chem. Soc., Dalton Trans., 1983, 1075.
- 4 M. L. H. Green, D. O'Hare and G. Parkin, J. Chem. Soc., Chem. Commun., 1985, 356.
- 5 M. L. H. Green and G. Parkin, J. Chem. Soc., Chem. Commun., 1985, 771.
- 6 S. N. Anderson, R. L. Richards and D. N. Hughes, J. Chem. Soc., Dalton Trans., 1986, 245.
- 7 M. L. H. Green, L. C. Mitchard and W. E. Silverthorn, J. Chem. Soc. A, 1971, 2930.
- 8 M. L. H. Green, D. O'Hare, P. Mountford and J. G. Watkin, J. Chem. Soc., Dalton Trans., 1991, 1705.
- 9 (a) N. Dudeney, Part II Thesis, Oxford, 1983; (b) J. C. Green, personal communication.
- 10 A. H. Liu, R. C. Murray, J. C. Dewan, B. D. Santesiero and R. R. Schrock, J. Am. Chem. Soc., 1987, 109, 4282.
- 11 M. L. H. Green, L. C. Mitchard and W. E. Silverthorn, J. Chem. Soc., Dalton Trans., 1973, 2177.
- 12 D. A. White, Organomet. Chem. Rev. A, 1968, 3, 497.
- V. Desobry and E. P. Kundig, *Helv. Chim. Acta*, 1961, **61**, 1288; B. Demersman, G. Bouquet and M. Bigorge, *J. Organomet. Chem.*, 1972, **35**, 125; H. Nakazawa, K. Morimasa, Y. Yushi and H. Yoneda, *Organometallics*, 1988, **7**, 458; R. H. Morris, J. F. Sawyer, C. T. Schweitzer and A. Sella, *Organometallics*, 1989, **8**, 2099.
- 14 M. L. H. Green, G. Parkin, C. Mingqin and K. Prout, J. Chem. Soc., Chem. Commun., 1984, 1400.
- 15 R. H. Crabtree, G. Hlatky and E. M. Holt, J. Am. Chem. Soc., 1983, 105, 7302.
- 16 R. F. Jordan, W. E. Dasher and S. F. Echols, J. Am. Chem. Soc., 1986, 108, 1718.
- 17 V. C. Gibson, C. E. Graimann, P. M. Hare, M. L. H. Green, J. A. Bandy, P. D. Grebenik and K. Prout, J. Chem. Soc., Dalton Trans., 1985, 2025.
- 18 R. A. Henderson, W. Hussain, G. J. Leigh and F. B. Normanton, Inorg. Synth., 1986, 23, 141.
- 19 H. H. Karsch and A. Appelt, Z. Naturforsch., Teil B, 1983, 38, 1399.
- 20 A. C. T. North, D. C. Philips and F. S. Mathews, Acta Crystallogr., Sect. A, 1968, 24, 351.
- 21 See D. J. Watkin, in Crystallographic Computing 4: Techniques and New Techniques, eds. N. W. Isaacs and M. R. Taylor, Oxford University Press, Oxford, 1988.
- 22 See, for example, Z. Dawoodi, M. L. H. Green, V. S. B. Mtetwa, K. Prout, A. J. Schultz, J. M. Williams and T. F. Koetzle, J. Chem. Soc., Dalton Trans., 1986, 1629.
- 23 J. S. Rollet, Computing Methods in Crystallography, Pergamon, Oxford, 1965.
- 24 A. C. Larson, Acta Crystallogr., Sect. A, 1967, 23, 664.
- 25 D. J. Watkin, J. R. Carruthers and P. W. Betteridge, CRYSTALS User Guide, Chemical Crystallography Laboratory, University of Oxford, 1985.
- 26 International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4.

Received 19th February 1992; Paper 2/00882C