Alkyne Addition and Coupling Reactions of [$\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} R\right)_{2} \mathrm{X}_{4}$] ($\mathrm{X}=\mathbf{C l}$ or Br) ${ }^{*}$

Qian Feng, Malcolm L. H. Green and Philip Mountford Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, UK

Abstract

The $\mathrm{W} \equiv \mathrm{W}$ triply bonded dimers $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{r}}\right)_{2} \mathrm{X}_{4}\right](\mathrm{X}=\mathrm{Cl}$ or Br$)$ react with alkynes $\mathrm{C}_{2} \mathrm{R}_{2}$ to afford the dimetallatetrahedrane complexes $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{X}_{4}\left(\mu-\mathrm{C}_{2} \mathrm{R}_{2}\right)\right]\left(\mathrm{X}=\mathrm{Cl}, \mathrm{R}=\mathrm{Et}\right.$ or $\mathrm{SiMe}_{3} ; \mathrm{X}=\mathrm{Br}, \mathrm{R}=\mathrm{Me}$, Et or Pht) or poorly defined polynuclear complexes $\left[\left\{W\left(\eta-C_{5} H_{4} P^{\prime}\right) B r_{2}(C R)\right\}_{3 x}\right] \quad(R=M e \quad o r ~ E t) ~$ depending upon the reaction conditions. Treatment of $\left[W_{2}\left(\eta-C_{5} H_{4} R\right)_{2} X_{4}\right](X=C I, R=\operatorname{Pr}$ or $\mathrm{Me} ; X=\mathrm{Br}$, $\left.R=P r^{\prime}\right)$ with an excess of but-2-yne affords the corresponding flyover bridge complexes $\left[W_{2}(\eta\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{R}\right)_{2} \mathrm{X}_{4}\left(\mu-\mathrm{C}_{4} \mathrm{Me}_{4}\right)\right]$; treatment of $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\prime}\right)_{2} \mathrm{Cl}_{4}\right]$ with pent-2-yne gives a mixture of the isomers $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\prime}\right)_{2} \mathrm{Cl}_{4}\left\{\mu-(2,3)-\mathrm{C}_{4} \mathrm{Et}_{2} \mathrm{Me}_{2}\right\}\right]$ and $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\prime}\right)_{2} \mathrm{Cl}_{4}\left\{\mu-(1,4)-\mathrm{C}_{4} \mathrm{Et}_{2} \mathrm{Me}_{2}\right\}\right]$. The planar bridging $\mathrm{C}_{4} \mathrm{Me}_{4}$ moiety in the crystallographically characterised trans- $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2} \mathrm{Cl}_{4}\left(\mu-\mathrm{C}_{4} \mathrm{Me}_{4}\right)\right] \dagger$ is found to be perpendicular to the W-W bond and bound to each metal atom in a tetrahapto fashion. Treatment of $\left[W_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\prime}\right)_{2} \mathrm{Cl}_{4}\left(\mu-\mathrm{C}_{2} \mathrm{Et}_{2}\right)\right]$ or $\left[\left\{\mathrm{W}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\prime}\right) \mathrm{Br}_{2}(\mathrm{CEt})\right\}_{3 \mathrm{x}}\right]$ with an excess of but-2-yne affords the mixed-alkyne flyover bridge complexes $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\prime}\right)_{2} \mathrm{X}_{4}\left\{\mu-(1,2)-\mathrm{C}_{4} \mathrm{Et}_{2} \mathrm{Me}_{2}\right\}\right]$ ($\mathrm{X}=\mathrm{Cl}$ or Br). The complexes $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{R}\right)_{2} \mathrm{Cl}_{4}\left(\mu-\mathrm{C}_{4} \mathrm{Me}_{4}\right)\right]\left(\mathrm{R}=\mathrm{Me}\right.$ or $\left.\mathrm{Pr}^{\prime}\right)$ are readily hydrolysed in wet acetone to form the corresponding monooxo complexes $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{R}\right)_{2} \mathrm{Cl}_{2} \mathrm{O}\left(\mu-\mathrm{C}_{4} \mathrm{Me}_{4}\right)\right] \dagger$. Complexes labelled \dagger have been crystallographically characterised.

The reactions of alkynes $\mathrm{C}_{2} \mathrm{R}_{2}$ with unsupported metal-metal triple bonds have received considerable attention over recent years, particularly with respect to the $\left[\mathrm{M}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{4}\right]$ $(\mathrm{M}=\mathrm{Cr}, \mathrm{W} \text { or especially } \mathrm{Mo})^{1}$ and $\left[\mathrm{M}_{2}(\mathrm{OR})_{6}(\mathrm{py})_{x}\right](\mathrm{M}=$ Mo or $\mathbf{W} ; \mathbf{R}=\operatorname{Pr}^{\mathbf{i}}, \mathrm{CH}_{2} \mathrm{Bu}^{\mathrm{t}}$ or $\mathrm{Bu}^{\mathrm{t}} ;$ py $=$ pyridine; $x=0$ or 2) systems. ${ }^{2}$ The range of products obtained from these studies is too extensive to catalogue here, but include the 'simple' $4 \pi+4 \pi$ cycloaddition products (dimetallatetrahedranes) which contain a $\mathrm{M}\left(\mu-\mathrm{C}_{2} \mathrm{R}_{2}\right) \mathrm{M}$ unit, the so-called flyover-bridge complexes which contain a $\mathrm{M}\left(\mu-\mathrm{C}_{2 n} \mathrm{R}_{2 n}\right) \mathrm{M}$ unit (where n is most commonly 2 but may take values of 3 or 4 , i.e. equivalent to four coupled alkyne units), and the alkylidyne derivatives (containing a $\mathrm{M} \equiv \mathrm{CR}$ unit) in which complete $\mathrm{M} \equiv \mathrm{M}$ and $\mathrm{C} \equiv \mathrm{C}$ bond rupture has occurred. ${ }^{2}$ However, of the large number of metal-metal triply bonded complexes known, relatively few undergo reactions with alkynes to form products of these types.
We have recently reported the $\mathrm{W} \equiv \mathrm{W}$ triply bonded complexes $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{R}\right)_{2} \mathrm{X}_{4}\right]\left(\mathrm{X}=\mathrm{Cl}, \mathrm{R}=\operatorname{Pr}^{\mathrm{i}} \mathbf{1 a}\right.$ or Me 1b; $\mathrm{X}=\mathrm{Br}$, $\mathrm{R}=\mathrm{Me} 2)^{3}$ and describe herein their reactions with alkynes. Part of this work has been communicated. ${ }^{4}$

Results and Discussion

Alkyne Addition Reactions.-Treatment of toluene solutions of the complexes $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{X}_{4}\right](\mathrm{X}=\mathrm{Cl} 1 \mathrm{a}$ or Br 2$)$ with ca. 1 equivalent \ddagger of alkyne $\mathrm{C}_{2} \mathrm{R}_{2}\left(\mathrm{R}=\mathrm{Me}, \mathrm{Et}, \mathrm{Ph}\right.$ or $\left.\mathrm{SiMe}_{3}\right)$ gave a colour change from emerald green to red-brown or greenbrown (for $\mathrm{X}=\mathrm{Cl}, \mathrm{R}=\mathrm{Et}$) and the monoalkyne adducts $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{X}_{4}\left(\mu-\mathrm{C}_{2} \mathrm{R}_{2}\right)\right]\left(\mathrm{X}=\mathrm{Cl}, \mathrm{R}=\mathrm{Et} \mathbf{3}\right.$ or $\mathrm{SiMe}_{3} \mathbf{4}$; $\mathrm{X}=\mathrm{Br}, \mathrm{R}=\mathrm{Me} 5, \mathrm{Et} 6$ or Ph 7) were isolated in $40-70 \%$ yield. The new compounds 3-7 were characterised by elemental analysis and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy; for 7 an X-ray structure determination was undertaken. Characterising data and the proposed structures for 3-7 and all the new

[^0]compounds described are given in Table 1 and Scheme 1 respectively.
Two views of the molecular structure of $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2}-\right.$ $\left.\mathrm{Br}_{4}\left(\mu-\mathrm{C}_{2} \mathrm{Ph}_{2}\right)\right] 7$ are given in Fig. 1, selected bond lengths and angles are listed in Table 2 and fractional atomic coordinates in Table 3. The compound may be described as a dimetallatetrahedrane in which the $\mu-\mathrm{C}_{2} \mathrm{Ph}_{2}$ moiety does not bond symmetrically to the two tungsten atoms, the differences in the $\mathrm{W}-\mathrm{C}_{\mathrm{ac}}$ (where C_{ac} refers to the ligating atoms of the alkyne ligand) bond lengths being $c a .0 .40 \AA$. This difference represents a deviation of $\theta=c a$. 26° from the ideal perpendicular bridge geometry (where the four $\mathrm{M}-\mathrm{C}_{\mathrm{ac}}$ bond lengths are equal to each other and hence $\theta=0^{\circ}$).

The terminal Br ligands $[\mathrm{Br}(2)$ and $\mathrm{Br}(4)$ in Fig. 1] cis to the $\mu-\mathrm{C}_{2} \mathrm{Ph}_{2}$ fragment lie either side of the imaginary plane containing the two W atoms and the centroid of the $\mathrm{C}_{\mathrm{ac}}-\mathrm{C}_{\mathrm{ac}}$ bond and are related by a dihedral angle $\operatorname{Br}(2)-\mathrm{W}(1)-\mathrm{W}(2)-$ $\mathrm{Br}(4)$ of 62.9°. In contrast the Br and $\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}$ ligands trans to the $\mu-\mathrm{C}_{2} \mathrm{Ph}_{2}$ moiety are mutually eclipsed. The angles $\mathrm{W}-\mathrm{W}-\mathrm{Br}$ for the Br ligands cis to the alkyne ligand [i.e. $\operatorname{Br}(2)$ and $\operatorname{Br}(4)$] (average 122.4°) are substantially more obtuse than those for the Br ligands [i.e. $\mathrm{Br}(1)$ and $\mathrm{Br}(3)]$ which lie trans to the alkyne ligand (average 100.5°). We presume that this reflects steric congestion imposed by the bulky bridging ligand. The movement of the cis Br ligands out of the $\mathrm{W}-\mathrm{W}$ plane and away from the $\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}$ groups may arise from additional steric repulsion by these proximal $\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}$ ligands. The deviation of the μ-alkyne ligand in 7 from the ideal perpendicular bridging geometry may also be due to steric congestion around the metal centre.
Alternatively, Cotton ${ }^{5}$ and others ${ }^{6,7}$ have suggested on the basis of semi-empirical molecular orbital calculations that the deviation of a bridging alkyne from an identical perpendicular

Table 1 Analytical and spectroscopic data

		Analysis ${ }^{\text {a }}$ (\%)			NMR data ${ }^{\text {b }}$
Compound	Colour	C	H	Halide	
3	Olive green	$\begin{gathered} 32.6 \\ (32.8) \end{gathered}$	$\begin{gathered} 3.85 \\ (4.0) \end{gathered}$	$\begin{gathered} 17.6 \\ (17.6) \end{gathered}$	${ }^{1} \mathrm{H}:{ }^{\text {c.d }} 7.52,6.79,6.43,5.68\left(4 \times\right.$ virtual $\left.\mathrm{q}, 4 \times 2 \mathrm{H}, \eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right), 5.28,4.25(2 \times \mathrm{d}$ of q, $\left.2 \times 2 \mathrm{H},{ }^{2} J 13.6,{ }^{3} J 7.6, \mathrm{CH}_{2} \mathrm{Me}\right), 2.50\left(\mathrm{spt}, 2 \mathrm{H}, J 6.9, \mathrm{C} H \mathrm{Me}_{2}\right), 1.28(\mathrm{t}, 6 \mathrm{H}, J$ $\left.7.6, \mathrm{CH}_{2} \mathrm{Me}\right), 1.12,0.95\left(2 \times \mathrm{d}, 2 \times 6 \mathrm{H}, J 6.9, \mathrm{CH} M e_{2}\right)$ ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}{ }^{c \cdot d} 238.2\left(\mu-C_{2} \mathrm{Et}_{2}\right), 140.6\left(C \mathrm{Pr}^{\mathrm{i}}\right), 108.7,107.9$ (2 signals overlapping), $101.7\left(4 \times \mathrm{CH}\right.$ of $\left.\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right), 35.0\left(\mathrm{CH}_{2} \mathrm{Me}\right), 27.2\left(\mathrm{CHMe}_{2}\right), 22.6,19.3$ $\left.(2 \times \mathrm{CHMe})_{2}\right), 12.6\left(\mathrm{CH}_{2} \mathrm{Me}\right)$
4	Brown	$\begin{gathered} 32.0 \\ (32.2) \end{gathered}$	$\begin{gathered} 4.4 \\ (4.5) \end{gathered}$	$\begin{gathered} 16.2 \\ (15.9) \end{gathered}$	${ }^{1} \mathrm{H}: 7.89,7.38,5.94,5.43\left(4 \times\right.$ virtual $\left.\mathrm{q}, 4 \times 2 \mathrm{H}, \eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right), 2.56(\mathrm{spt}, 2 \mathrm{H}, J 6.9$, $\left.\mathrm{C} H \mathrm{Me}_{2}\right), 0.91,0.86\left(2 \times \mathrm{d}, 2 \times 6 \mathrm{H}, J 6.9, \mathrm{CH} M e_{2}\right), 0.75\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{SiMe}_{3}\right)$ ${ }^{13} \mathrm{C}: 237.3\left(\mathrm{~s}, C \mathrm{SiMe}_{3}\right), 141.5\left(\mathrm{~s}, C \mathrm{Pr}^{\mathrm{i}}\right), 114.1,111.0,105.7,105.5(4 \times \mathrm{d}, J \mathrm{ca} .182$, CH of $\left.\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)$, $28.1\left(\mathrm{~d}, J 132, C \mathrm{HMe}_{2}\right), 23.3,20.7\left(2 \times \mathrm{q}, J 128, \mathrm{CHMe} e_{2}\right), 4.9$ (q, $J 120, \mathrm{SiMe}_{3}$)
5	Orange-red	$\begin{gathered} 25.0 \\ (25.1) \end{gathered}$	$\begin{aligned} & 2.9 \\ & (2.95) \end{aligned}$	$\begin{gathered} 33.1 \\ (33.4) \end{gathered}$	${ }^{1} \mathrm{H}$: ${ }^{c} 7.00,6.86,6.15,4.98\left(4 \times\right.$ virtual $\mathrm{q}, 4 \times 2 \mathrm{H}, \eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}$), $3.68(\mathrm{~s}, 6 \mathrm{H}, \mu-$ $\mathrm{C}_{2} \mathrm{Me}_{2}$), 3.14 ($\mathrm{spt}, 2 \mathrm{H}, \mathrm{CH} \mathrm{Me}_{2}$), $\left.1.44,1.29(2 \times \mathrm{d}, 2 \times 6 \mathrm{H}, \mathrm{CHMe})^{2}\right)$ ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}:^{c} 221.7\left(\mu-C_{2} \mathrm{Me}_{2}\right), 142.4\left(C \operatorname{Pr}^{\mathrm{i}}\right), 115.1,112.7,111.3,105.5(4 \times \mathrm{CH}$ of $\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}$), 27.0 (overlapping $\mu-\mathrm{C}_{2} \mathrm{Me}_{2}$ and $\mathrm{CHMe} \mathrm{H}_{2}$), 22.0, $21.2\left(2 \times \mathrm{CHMe}{ }_{2}\right.$)
6	Orange-red	$\begin{gathered} 26.8 \\ (26.9) \end{gathered}$	$\begin{gathered} 3.3 \\ (3.3) \end{gathered}$	$\begin{gathered} 32.1 \\ (32.5) \end{gathered}$	${ }^{1} \mathrm{H}: 6.63,6.51,5.84,4.86\left(4 \times\right.$ virtual $\left.\mathrm{q}, 4 \times 2 \mathrm{H}, \eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right), 4.51,4.25(2 \times \mathrm{d}$ of $\left.\mathrm{q}, 2 \times 2 \mathrm{H},{ }^{2} \mathrm{~J} 14.9,{ }^{3} \mathrm{~J} 7.5, \mathrm{CH}_{2} \mathrm{Me}\right), 2.99\left(\mathrm{spt}, 2 \mathrm{H}, \mathrm{CH} \mathrm{Me}_{2}\right), 1.34(\mathrm{t}, 6 \mathrm{H}, \mathrm{J} 7.5$, $\left.\mathrm{CH}_{2} \mathrm{Me}\right), 1.21,0.97\left(2 \times \mathrm{d}, 2 \times 6 \mathrm{H}, \mathrm{CHMe} \mathrm{C}_{2}\right)$ ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}: 223.9\left(\mu-C_{2} \mathrm{Et}_{2}\right), 144.7\left(\mathrm{CPr}^{\mathrm{i}}\right), 117.5,113.4,108.9,102.5(4 \times \mathrm{CH}$ of $\left.\eta-C_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right), 37.3\left(\mathrm{CH}_{2} \mathrm{Me}\right), 26.7\left(\mathrm{CHMe}_{2}\right), 22.2,20.5\left(2 \times \mathrm{CH} \mathrm{Me}_{2}\right), 13.3$ ($\mathrm{CH}_{2} \mathrm{Me}$)
$7{ }^{\text {e }}$	Orange-Red	$\begin{gathered} 31.8 \\ (32.0) \end{gathered}$	$\begin{aligned} & 2.9 \\ & (2.95) \end{aligned}$		${ }^{1} \mathrm{H}^{\text {c }}{ }^{2} 7.47,7.26\left(2 \times \mathrm{m}, 4 \mathrm{H}+6 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.10,6.98,5.38,5.22(4 \times$ virtual q , $\left.4 \times 2 \mathrm{H}, \eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right), 3.05\left(\mathrm{spt}, 2 \mathrm{H}, \mathrm{CH} \mathrm{Me}_{2}\right), 1.50,1.26(2 \times \mathrm{d}, 2 \times 6 \mathrm{H}$, $\mathrm{CHMe} \mathrm{H}^{\text {) }}$ ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}:{ }^{c} 212.1\left(\mu-C_{2} \mathrm{Ph}_{2}\right), 146.3\left(\right.$ ipso -C of $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 144.6\left(\mathrm{CPr}{ }^{\mathrm{i}}\right), 129-127(\mathrm{CH}$ of $\mathrm{C}_{6} \mathrm{H}_{5}$), 120.6, 113.0, 107.2, $106.7\left(4 \times \mathrm{CH}\right.$ of $\left.\eta-C_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right), 26.2\left(\mathrm{CHMe}_{2}\right)$, 22.6, $19.8\left(2 \times \mathrm{CH} \mathrm{Me}_{2}\right)$
8	Green-brown	$\begin{gathered} 25.0 \\ (25.1) \end{gathered}$	$\begin{aligned} & 2.9 \\ & (2.95) \end{aligned}$	$\begin{gathered} 33.1 \\ (33.4) \end{gathered}$	${ }^{1} \mathrm{H}$: ${ }^{\text {c.f }} 7.60,6.66,6.60,5.85,5.72,5.64,5.59,5.45,5.38,4.94,4.92,4.70(12 \times$ virtual $\mathrm{q}, 12 \times 1 \mathrm{H}, \eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}$), 4.12, 3.70, $3.58(3 \times \mathrm{s}, 3 \times 3 \mathrm{H}, \mathrm{CMe}), 2.79$ (two signals overlapping), $2.56\left(3 \times \mathrm{spt}, 2 \mathrm{H}+1 \mathrm{H}, \mathrm{C} H \mathrm{Me}_{2}\right.$), $1.38-1.09\left(18 \mathrm{H}, \mathrm{CH} M e_{2}\right)$
9	Green-brown	$\begin{gathered} 26.8 \\ (26.9) \end{gathered}$	$\begin{gathered} 3.3 \\ (3.3) \end{gathered}$	$\begin{gathered} 32.1 \\ (32.5) \end{gathered}$	${ }^{1} \mathrm{H}:{ }^{c, f} 7.70,6.88,6.51,5.84\left(4 \times\right.$ virtual $q, 4 \times 1 \mathrm{H}, \eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}$), 5.81 (overlapping $2 \times$ virtual $\left.\mathrm{q}, 2 \mathrm{H}, \eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right), 5.71,5.57,5.44,5.19,5.06,4.76(6 \times$ virtual q , $\left.6 \times 1, \eta-\mathrm{C}_{5} H_{4} \mathrm{Pr}^{\mathrm{i}}\right), 4.70,4.53,4.48,4.00\left(4 \times \mathrm{d}\right.$ of $\left.\mathrm{q}, 4 \times 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}\right), 3.68(\mathrm{spt}, 1$ $\mathrm{H}, \mathrm{CHMe} \mathrm{M}_{2}$), 3.35 (d of q, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}$), $2.77,2.44\left(2 \times \mathrm{spt}, 2 \times 1 \mathrm{H}, \mathrm{C} H \mathrm{Me}_{2}\right.$), $1.38\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}\right), 1.34,1.30,1.22,1.14(4 \times \mathrm{d}, 4 \times 3 \mathrm{H}, \mathrm{CHMe}), 1.13(\mathrm{t}, 3 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{Me}$), $1.10\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH} \mathrm{Me}_{2}\right), 1.09\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}\right), 0.97(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CHMe})^{g}$ ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}{ }^{c, 5}$ 238.7, 220.2, $161.5(3 \times C \mathrm{Et}), 141.5,136.7,127.7\left(3 \times C \mathrm{Pr}^{\mathrm{i}}\right), 110.4$, 109.5 (two signals overlapping) 109.2, 106.5, 103.5, 99.9, $98.5,97.5,95.7,94.9,88.0$ $\left(12 \times \mathrm{CH}\right.$ of $\left.\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right), 41.9,39.7,34.0\left(3 \times \mathrm{CH}_{2} \mathrm{Me}\right)$, 29.3, 28.8 (two signals overlapping) ($3 \times \mathrm{CHMe}_{2}$), 22.4, 21.4, $20.2(3 \times \mathrm{CHMe}$) , 17.8 (two signals overlapping), $14.1\left(3 \times \mathrm{CH}_{2} \mathrm{Me}\right)$
10a	Purple	$\begin{gathered} 34.3 \\ (34.6) \end{gathered}$	$\begin{gathered} 4.0 \\ (4.1) \end{gathered}$	$\begin{gathered} 16.6 \\ (17.0) \end{gathered}$	${ }^{1} \mathrm{H}:{ }^{\text {h }} 5.66,5.11\left(2 \times\right.$ virtual $\left.\mathrm{t}, 2 \times 4 \mathrm{H}, \eta-\mathrm{C}_{5} H_{4} \operatorname{Pr}^{\mathrm{i}}\right), 3.53[\mathrm{~s}, 6 \mathrm{H}, \mu-(1)$ - and $\mu-(4)-$ $\mathrm{C}_{4} \mathrm{Me}_{4}$], 3.21 ($\mathrm{spt}, 2 \mathrm{H}, \mathrm{CH} \mathrm{Me}_{2}$), 1.75 [s, $6 \mathrm{H}, \mu-(2)$ - and μ-(3) $\left.-\mathrm{C}_{4} \mathrm{Me}_{4}\right], 1.29$ (d, 12 $\mathrm{H}, \mathrm{CHMe} \mathrm{I}_{2}$) ${ }^{13} \mathrm{C}:{ }^{h} 188.3$ [s, $\mu-(1)-$ and $\left.\mu-(4)-C_{4} \mathrm{Me}_{4}\right], 143.7$ (s, $C \operatorname{Pr}^{\mathrm{i}}$), 102.1 (d, $J 181, \mathrm{CH}$ of $\left.\eta-C_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right), 101.3$ [s, μ-(2)- and μ-(3)- $\left.C_{4} \mathrm{Me}_{4}\right]$, 99.1 (d, $J 184, \mathrm{CH}$ of $\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}$), 33.3 [q, $J 128, \mu-(1)-$ and μ-(4)- $\left.\mathrm{C}_{4} M e_{4}\right], 22.5\left(\mathrm{q}, J 126, \mathrm{CHMe} e_{2}\right), 15.8[\mathrm{q}, J 131, \mu-$ (2)- and μ-(3) $-\mathrm{C}_{4} \mathrm{Me}_{4}$]
10b	Purple	$\begin{array}{r} 30.95 \\ (30.7) \end{array}$	$\begin{gathered} 3.3 \\ (3.4) \end{gathered}$	$\begin{gathered} 18.0 \\ (18.3) \end{gathered}$	${ }^{1} \mathrm{H}:{ }^{h} 5.52,5.32\left(2 \times\right.$ virtual $\left.\mathrm{t}, 2 \times 4 \mathrm{H}, \eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right), 3.46[\mathrm{~s}, 6 \mathrm{H}, \mu-(1)-$ and μ-(4)$\mathrm{C}_{4} \mathrm{Me}_{4}$], 2.36 ($\mathrm{s}, 6 \mathrm{H}, \eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}$), 1.75 [s, $6 \mathrm{H}, \mu$-(2)- and μ-(3) $-\mathrm{C}_{4} \mathrm{Me}_{4}$]
11	Purple	$\begin{gathered} 28.4 \\ (28.6) \end{gathered}$	$\begin{gathered} 3.4 \\ (3.4) \end{gathered}$	$\begin{gathered} 31.8 \\ (31.7) \end{gathered}$	${ }^{1} \mathrm{H}^{c}{ }^{c} 5.36,4.82\left(2 \times\right.$ virtual $\left.\mathrm{t}, 2 \times 4 \mathrm{H}, \eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right), 3.66[\mathrm{~s}, 6 \mathrm{H}, \mu-(1)$ - and $\mu-(4)-$ $\left.\mathrm{C}_{4} \mathrm{Me}_{4}\right], 3.51\left[\mathrm{~s}, 6 \mathrm{H}, \mu\right.$-(2)- and μ-(3)- $\left.\mathrm{C}_{4} \mathrm{Me}_{4}\right], 2.30\left(\mathrm{spt}, 2 \mathrm{H}, \mathrm{C} H \mathrm{Me}_{2}\right.$), $1.30(\mathrm{~d}, 12$ $\mathrm{H}, \mathrm{CHMe} \mathrm{C}^{\text {) }}$ ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}:{ }^{c} 185.7\left[J\left({ }^{13} \mathrm{C}-{ }^{183} \mathrm{~W}\right) 44\left(27 \%\right.\right.$ by area), $\mu-(1)-$ and $\left.\mu-(4)-C_{4} \mathrm{Me}_{4}\right], 141.5$ $\left(C \operatorname{Pr}^{1}\right), 100.4,97.7\left(2 \times \mathrm{CH}\right.$ of $\left.\eta-C_{5} \mathrm{H}_{4} \operatorname{Pr}^{\mathrm{i}}\right)$, 95.2 [$\mu-(2)-$ and $\left.\mu-(3)-C_{4} \mathrm{Me}_{4}\right], 37.1$ $\left[\mu-(1)-\right.$ and μ-(4)- $\left.\mathrm{C}_{4} \mathrm{Me}_{4}\right], 30.4$ (CHMe_{2}), 22.6 ($\mathrm{CHMe} \mathrm{C}_{2}$), 15.8 [μ-(2)- and μ-(3)$\mathrm{C}_{4} M e_{4}$]
12a	Orange	$\begin{gathered} 34.4 \\ (34.6) \end{gathered}$	$\begin{gathered} 4.2 \\ (4.1) \end{gathered}$	$\begin{gathered} 17.2 \\ (17.0) \end{gathered}$	${ }^{1} \mathrm{H}:{ }^{\text { }}$ 5.88, 5.35, 5.25, $5.12\left(4 \times\right.$ virtual t, $4 \times 2 \mathrm{H}, \eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}$), 3.52 [s, $6 \mathrm{H}, \mu-(1)-$ and $\left.\mu-(4)-\mathrm{C}_{4} \mathrm{Me}_{4}\right], 3.33,2.87\left(2 \times \mathrm{spt}, 2 \times 1 \mathrm{H}, \mathrm{CH} \mathrm{Me}_{2}\right), 2.15[\mathrm{~s}, 6 \mathrm{H}, \mu$-(2)- and $\left.\mu-(3)-\mathrm{C}_{4} \mathrm{Me}_{4}\right], 1.32,1.25\left(2 \times \mathrm{d}, 2 \times 6 \mathrm{H}, \mathrm{CHMe} e_{2}\right)$ ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}:{ }^{h}{ }^{185.4}\left[J\left({ }^{13} \mathrm{C}-{ }^{183} \mathrm{~W}\right) 49\left(25 \%\right.\right.$ by area), $\mu-(1)$ - and $\left.\mu-(4)-C_{4} \mathrm{Me}_{4}\right], 148.3$, $142.9\left(2 \times C\right.$ Pr$\left.^{\mathrm{i}}\right), 103.1,100.0,95.2,94.1\left(4 \times \mathrm{CH}\right.$ of $\left.\eta-C_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right), 90.6[\mu-(2)$ - and $\left.\mu-(3)-C_{4} \mathrm{Me}_{4}\right], 33.6\left[\mu-(1)-\right.$ and $\left.\mu-(4)-\mathrm{C}_{4} \mathrm{Me}_{4}\right], 22.5,22.0\left(2 \times \mathrm{CHMe} \mathrm{e}_{2}\right), 15.8[\mu-$ (2)- and μ-(3) $-\mathrm{C}_{4} \mathrm{Me}_{4}$]
12b	Orange	$\begin{array}{r} 30.55 \\ (30.7) \end{array}$	$\begin{gathered} 3.2 \\ (3.4) \end{gathered}$	$\begin{gathered} 18.6 \\ (18.3) \end{gathered}$	${ }^{1} \mathrm{H}:{ }^{\mathrm{h}} 5.79,5.52,5.21,5.03\left(4 \times\right.$ virtual t, $\left.4 \times 2 \mathrm{H}, \eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right), 3.42[\mathrm{~s}, 6 \mathrm{H}, \mu-(1)-$ and $\left.\mu-(4)-\mathrm{C}_{4} \mathrm{Me}_{4}\right], 2.21,2.05\left(2 \times \mathrm{s}, 2 \times 3 \mathrm{H}, \eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right), 1.85[\mathrm{~s}, 6 \mathrm{H}, \mu-(2)$ - and μ-(3) $\left.-\mathrm{C}_{4} \mathrm{Me}_{4}\right]$

Table 1 (continued)

		Analysis $^{a}(\%)$		
		C	H	Halide
Compound	Colour	28.5	3.4	31.5
13	Orange	(28.6)	(3.4)	(31.7)

NMR data ${ }^{b}$

${ }^{1} \mathrm{H}^{\text {: }}$ 5.60, 5.21, $4.95\left(3 \times\right.$ virtual $\left.\mathrm{t}, 3 \times 2 \mathrm{H}, \eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right), 3.70[\mathrm{~s}, 6 \mathrm{H}, \mu-(1)$ - and $\mu-$ (4) $-\mathrm{C}_{4} \mathrm{Me}_{4}$], 3.29 (overlapping $2 \times \mathrm{spt}, 2 \mathrm{H}, \mathrm{CH} \mathrm{Me}_{2}$), $2.18[\mathrm{~s}, 6 \mathrm{H}, \mu$-(2)- and μ (3) $\left.\left.-\mathrm{C}_{4} \mathrm{Me}_{4}\right], 1.28,1.31(2 \times \mathrm{d}, 2 \times 6 \mathrm{H}, \mathrm{CHMe})^{2}\right)^{j}$
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}:{ }^{c} 181.8\left[J\left({ }^{13} \mathrm{C}-{ }^{183} \mathrm{~W}\right) 49(25 \%\right.$ by area $), \mu-(1)-$ and $\left.\mu-(4)-C_{4} \mathrm{Me}_{4}\right], 146.0$, $143.2\left(2 \times C \operatorname{Pr}^{\mathrm{i}}\right), 101.5,98.7,94.5,93.1\left(4 \times \mathrm{CH}\right.$ of $\left.\eta-C_{5} \mathrm{H}_{4} \operatorname{Pr}^{\mathrm{i}}\right), 84.2$ [μ-(2)- and $\left.\mu-(3)-C_{4} \mathrm{Me}_{4}\right], 37.6\left[\mu\right.$-(1)- and $\left.\mu-(4)-\mathrm{C}_{4} \mathrm{Me}_{4}\right], 30.7,30.4\left(2 \times C \mathrm{He}_{2}\right), 22.6,22.1$ ($2 \times \mathrm{CHMe} e_{2}$), $16.6\left[\mu-(2)\right.$ - and $\left.\mu-(3)-\mathrm{C}_{4} \mathrm{Me}_{4}\right]$
${ }^{1} \mathrm{H}:{ }^{c} 5.96,5.81,5.31,5.24,5.14,5.11,5.09,5.01(8 \times$ virtual $\mathrm{q}, 8 \times 1 \mathrm{H}, \eta$ $\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right), 4.79$ [d of q, $\left.1 \mathrm{H},{ }^{2} \mathrm{~J} 15.4,{ }^{3} \mathrm{~J} 7.2, \mu-(1)-\mathrm{C}_{4}\left(\mathrm{CH}_{2} \mathrm{Me}\right)_{2} \mathrm{Me}_{2}\right], 3.45[\mathrm{~s}, 3 \mathrm{H}, \mu-$ (4) $-\mathrm{C}_{4} \mathrm{Et}_{2} \mathrm{Me}_{2}$], 3.37 [d of q, $1 \mathrm{H},{ }^{2} \mathrm{~J} 15.4,{ }^{3} J 7.2, \mu-(1)-\mathrm{C}_{4}\left(\mathrm{CH}_{2} \mathrm{Me}_{2} \mathrm{Me}_{2}\right.$], 3.09, $2.92\left(2 \times \mathrm{spt}, 2 \times 1 \mathrm{H}, \mathrm{CH} \mathrm{Me}_{2}\right), 2.61\left[\mathrm{q}, 2 \mathrm{H}, J 7.7, \mu-(2)-\mathrm{C}_{4}\left(\mathrm{CH}_{2} \mathrm{Me}\right)_{2} \mathrm{Me}_{2}\right]$, $2.16\left[\mathrm{~s}, 3 \mathrm{H}, \mu-(3)-\mathrm{C}_{4} \mathrm{Et}_{2} \mathrm{Me}_{2}\right], 1.34\left[\mathrm{t}, 3 \mathrm{H}, J 7.2, \mu-(1)-\mathrm{C}_{4}\left(\mathrm{CH}_{2} \mathrm{Me}\right)_{2} \mathrm{Me}_{2}\right], 1.32[\mathrm{t}$, $3 \mathrm{H}, J 7.7, \mu-(2)-\mathrm{C}_{4}\left(\mathrm{CH}_{2} \mathrm{Me}_{2} \mathrm{Me}_{2}\right], 1.30,1.27,1.21,1.17(4 \times \mathrm{d}, 4 \times 3 \mathrm{H}$, $\mathrm{CH} \mathrm{Me}_{2}$)
${ }^{13} \mathrm{C}^{c}{ }^{c} 193.7,185.5\left[2 \times \mathrm{s}, \mu-(1)-\right.$ and $\left.\mu-(4)-C_{4} \mathrm{Et}_{2} \mathrm{Me}_{2}\right], 146.9,144.2\left(2 \times \mathrm{s}, C \operatorname{Pr}^{\mathrm{i}}\right)$, 105.6, 103.5, 101.6, 97.5, $95.9\left(5 \times \mathrm{d}, J c a .180, \mathrm{CH}\right.$ of $\left.\eta-C_{5} \mathrm{H}_{4} \mathrm{Pr}^{i}\right), 93.9[\mathrm{~s}, \mu$-(2)- or μ-(3) $-C_{4} \mathrm{Et}_{2} \mathrm{Me}_{2}$], 92.8, $91.3,\left(2 \times \mathrm{d}, J c a .180, \mathrm{CH}\right.$ of $\left.\eta-C_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right), 89.8[\mathrm{~s}, \mu$-(3)- or $\left.\mu-(2)-C_{4} \mathrm{Et}_{2} \mathrm{Me}_{2}\right], 89.4$ (d, J 179, CH of $\eta-C_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}$), 39.6 [t, J 130, $\mu-$ (1) $-\mathrm{C}_{4}\left(\mathrm{CH}_{2} \mathrm{Me}\right)_{2} \mathrm{Me}_{2}$], 33.3 [q, $J 128, \mu$-(4) $-\mathrm{C}_{4} \mathrm{Et}_{2} \mathrm{Me}_{2}$], 29.4, $29.1(2 \times \mathrm{d}, J c a$. 130, $C \mathrm{HMe}_{2}$), $25.8\left[\mathrm{t}, J 129, \mu-(2)-\mathrm{C}_{4}\left(\mathrm{CH}_{2} \mathrm{Me}_{2} \mathrm{Me}_{2}\right], 22.2,21.7(2 \times \mathrm{q}, J \mathrm{ca} .127\right.$, $\mathrm{CH} \mathrm{Me}_{2}$), 21.2 ($2 \times$ overlapping q, $J \mathrm{ca} .128, \mathrm{CH} \mathrm{Me}_{2}$), 16.9 [q, J 131, μ-(3)$\mathrm{C}_{4} \mathrm{Et}_{2} \mathrm{Me}_{2}$], 14.8, $10.0\left[2 \times \mathrm{q}, J\right.$ ca. $130, \mu-(1)$ - and $\left.\mu-(2)-\mathrm{C}_{4}\left(\mathrm{CH}_{2} \mathrm{Me}\right)_{2} \mathrm{Me}_{2}\right]$
${ }^{1} \mathrm{H}:{ }^{c} 5.92,4.40\left(2 \times\right.$ virtual $\left.\mathrm{t}, 2 \times 4 \mathrm{H}, \eta-\mathrm{C}_{5} H_{4} \operatorname{Pr}^{\mathrm{i}}\right), 4.36[\mathrm{q}, 4 \mathrm{H}, J 7.5, \mu-(1)-$ and μ-(4)- $\mathrm{C}_{4}\left(\mathrm{CH}_{2} \mathrm{Me}\right)_{2} \mathrm{Me}_{2}$], 3.27 ($\mathrm{spt}, 2 \mathrm{H}, J 7.0, \mathrm{CH} \mathrm{Me}_{2}$), $1.80[\mathrm{~s}, 6 \mathrm{H}, \mu$-(2)- and μ (3) $\left.-\mathrm{C}_{4} \mathrm{Et}_{2} \mathrm{Me}_{2}\right], 1.33\left(\mathrm{~d}, 12 \mathrm{H}, J 7.0, \mathrm{CH} M e_{2}\right), 1.09[\mathrm{t}, 6 \mathrm{H}, J, 7.5, \mu$-(1)- and μ-(4)$\left.\mathrm{C}_{4}\left(\mathrm{CH}_{2} \mathrm{Me}\right)_{2} \mathrm{Me}_{2}\right]$
${ }^{1} \mathrm{H}:{ }^{c} 6.59,5.18,5.07\left(3 \times\right.$ virtual $\left.\mathrm{t}, 3 \times 2 \mathrm{H}, \eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right), 4.78$ [d of $\mathrm{q}, 2 \mathrm{H},{ }^{2} J 16.1$, ${ }^{3} J 7.3, \mu-(1)-$ and $\mu-(4)-\mathrm{C}_{4}\left(\mathrm{CH}_{2} \mathrm{Me}_{2} \mathrm{Me}_{2}\right.$], 4.76 (virtual t, $2 \mathrm{H}, \eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}$), 3.37 (spt, $1 \mathrm{H}, J 6.9, \mathrm{C} H \mathrm{Me}_{2}$), 3.14 [d, of $\mathrm{q}, 2 \mathrm{H},{ }^{2} J 16.1,{ }^{3} J 7.3, \mu$-(1)- and μ-(4)$\mathrm{C}_{4}\left(\mathrm{CH}_{2} \mathrm{Me}\right)_{2} \mathrm{Me}_{2}$], $2.91\left(\mathrm{spt}, 1 \mathrm{H}, J 6.9, \mathrm{CH} \mathrm{Me}_{2}\right), 2.11[\mathrm{~s}, 6 \mathrm{H}, \mu$-(2)- and μ-(3)$\left.\mathrm{C}_{4} \mathrm{Et}_{2} \mathrm{Me}_{2}\right], 1.33\left(\mathrm{~d}, 6 \mathrm{H}, J 6.9, \mathrm{CH} M e_{2}\right), 1.28[\mathrm{t}, 6 \mathrm{H}, J 7.3, \mu$-(1)- and μ-(4)$\mathrm{C}_{4}\left(\mathrm{CH}_{2} \mathrm{Me}\right)_{2} \mathrm{Me}_{2}$], 1.18 (d, $6 \mathrm{H}, J 6.9, \mathrm{CHMe}{ }_{2}$)
${ }^{1} \mathrm{H}$: ${ }^{c} 6.02,5.70,5.29,5.22\left(4 \times\right.$ virtual q, $4 \times 1 \mathrm{H}, \eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}$), ca. 5.18 (obscured $\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}$), 5.09 (virtual q, $1 \mathrm{H}, \eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}$), ca. $4.8-4.7$ (obscured $2 \times \eta$ $\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right), 4.68$ [d of q, $1 \mathrm{H},{ }^{2} J 15.8,{ }^{3} J 6.9, \mu-(2)-\mathrm{C}_{4}\left(\mathrm{CH}_{2} \mathrm{Me}\right)_{2} \mathrm{Me}_{2}$], $3.63[\mathrm{~s}, 3 \mathrm{H}, \mu-$ (4) $-\mathrm{C}_{4} \mathrm{Et}_{2} \mathrm{Me}_{2}$], 3.22 [d of q, $1 \mathrm{H},{ }^{2} \mathrm{~J} 15.8,{ }^{3} \mathrm{~J} 6.9, \mu-(1)-\mathrm{C}_{4}\left(\mathrm{CH}_{2} \mathrm{Me}\right)_{2} \mathrm{Me}_{2}$], 3.12, $2.93\left(2 \times \mathrm{spt}, 2 \times 1 \mathrm{H}, J 7.0, \mathrm{C} H \mathrm{Me}_{2}\right), 2.65,2.25\left[2 \times \mathrm{d}\right.$ of $\mathrm{q}, 2 \times 1 \mathrm{H},{ }^{2} J 16.0,{ }^{3} J$ $\left.6.9, \mu-(3)-\mathrm{C}_{4}\left(\mathrm{CH}_{2} \mathrm{Me}\right)_{2} \mathrm{Me}_{2}\right], 1.33\left[\mathrm{t}, 3 \mathrm{H}, J 6.9, \mu-(1)-\mathrm{C}_{4}\left(\mathrm{CH}_{2} \mathrm{Me}\right)_{2} \mathrm{Me}_{2}\right]$, ca. $1.3-$ 1.2 [obscured $2 \times \mathrm{CHMe} e_{2}$ and μ-(3) $-\mathrm{C}_{4}\left(\mathrm{CH}_{2} \mathrm{Me}\right)_{2} \mathrm{Me}_{2}$], ca. 1.17 (overlapping $2 \times \mathrm{d}, 6 \mathrm{H}, J 7.0,2 \times \mathrm{CH} \mathrm{Me}_{2}$)
${ }^{1} \mathrm{H}^{\text {c }} 5.96,5.81,5.31,5.24,5.14,5.11,5.09,5.01(8 \times$ virtual $\mathrm{q}, 8 \times 1 \mathrm{H}, \eta$ $\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right), 4.79$ [d of q, $1 \mathrm{H},{ }^{2} J 15.4,{ }^{3} J 7.2, \mu-(1)-\mathrm{C}_{4}\left(\mathrm{CH}_{2} \mathrm{Me}\right)_{2} \mathrm{Me}_{2}$], $3.45[\mathrm{~s}, 3 \mathrm{H}, \mu-$ (4) $-\mathrm{C}_{4} \mathrm{Et}_{2} \mathrm{Me}_{2}$], 3.37 [d of q, $1 \mathrm{H},{ }^{2} J 15.4,{ }^{3} J 7.2, \mu-(1)-\mathrm{C}_{4}\left(\mathrm{CH}_{2} \mathrm{Me}\right)_{2} \mathrm{Me}_{2}$], 3.09, $2.92\left(2 \times \mathrm{spt}, 2 \times 1 \mathrm{H}, \mathrm{CH} \mathrm{Me}_{2}\right), 2.61\left[\mathrm{q}, 2 \mathrm{H}, J 7.7, \mu-(2)-\mathrm{C}_{4}\left(\mathrm{CH}_{2} \mathrm{Me}\right){ }_{2} \mathrm{Me}_{2}\right]$, $2.16\left[\mathrm{~s}, 3 \mathrm{H}, \mu-(3)-\mathrm{C}_{4} \mathrm{Et}_{2} \mathrm{Me}_{2}\right], 1.34\left[\mathrm{t}, 3 \mathrm{H}, J 7.2, \mu-(1)-\mathrm{C}_{4}\left(\mathrm{CH}_{2} \mathrm{Me}\right)_{2} \mathrm{Me}_{2}\right], 1.32[\mathrm{t}$ $\left.3 \mathrm{H}, J 7.7, \mu-(2)-\mathrm{C}_{4}\left(\mathrm{CH}_{2} \mathrm{Me}\right)_{2} \mathrm{Me}_{2}\right], 1.30,1.27,1.21,1.17(4 \times \mathrm{d}, 4 \times 3 \mathrm{H}$, $\mathrm{CH} \mathrm{Me}_{2}$)
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}:^{c} 195.3,184.8\left[\mu-(1)-\right.$ and $\left.\mu-(4)-C_{4} \mathrm{Et}_{2} \mathrm{Me}_{2}\right], 142.1\left(C \operatorname{Pr}^{\mathrm{i}}\right), 103.6,102.2$, 99.9, 95.7, 95.4, 95.3 ($4 \times \mathrm{CH}$ of $\eta-C_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}$ and $\mu-(2)$ - and $\left.\mu-(3)-\mathrm{C}_{4} \mathrm{Et}_{2} \mathrm{Me}_{2}\right], 42.8$ $37.1\left[\mu-(1)-\mathrm{C}_{4}\left(\mathrm{CH}_{2} \mathrm{Me}\right)_{2} \mathrm{Me}_{2}\right.$ and $\left.\mu-(4)-\mathrm{C}_{4} \mathrm{Et}_{2} \mathrm{Me}_{2}\right], 30.4\left(\mathrm{CHMe}_{2}\right), 27.7[\mu-(2)-$ $\left.\left.\mathrm{C}_{4}\left(\mathrm{CH}_{2} \mathrm{Me}\right)_{2} \mathrm{Me}_{2}\right], 22.2,21.7(2 \times \mathrm{CHMe})_{2}\right), 18.5\left[\mu-(3)-\mathrm{C}_{4} \mathrm{Et}_{2} \mathrm{Me}_{2}\right], 14.8,10.0$ [μ-(1)- and μ-(2) $-\mathrm{C}_{4}\left(\mathrm{CH}_{2} \mathrm{Me}\right)_{2} \mathrm{Me}_{2}$]
${ }^{1} \mathrm{H}$: ${ }^{c} 6.07,5.93,5.46\left(3 \times\right.$ virtual $\mathrm{q}, 3 \times 1 \mathrm{H}, \eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}$), 5.29 (overlapping $2 \times$ virtual $q, 2 \mathrm{H}, \eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}$), 5.22 [d of $\mathrm{q}, 1 \mathrm{H},{ }^{2} \mathrm{~J} 15.0,{ }^{3} \mathrm{~J} 7.5, \mu-(1)$ $\left.\mathrm{C}_{4}\left(\mathrm{CH}_{2} \mathrm{Me}\right)_{2} \mathrm{Me}_{2}\right], 5.16$ (overlapping $2 \times$ virtual $\left.\mathrm{q}, 2 \mathrm{H}, \eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right), 4.99$ (virtual $\mathrm{q}, 1 \mathrm{H}, \eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}$), 3.68 [s, $3 \mathrm{H}, \mu-(4)-\mathrm{C}_{4} \mathrm{Et}_{2} \mathrm{Me}_{2}$], 3.51 [d of $\mathrm{q}, 1 \mathrm{H},{ }^{2} \mathrm{~J}$ $15.0,{ }^{3} \mathrm{~J} 7.5, \mu-(1)-\mathrm{C}_{4}\left(\mathrm{CH}_{2} \mathrm{Me}_{2} \mathrm{Me}_{2}\right], 3.40,3.23\left(2 \times \mathrm{spt}, 2 \times 1 \mathrm{H}, \mathrm{CH} \mathrm{Me}_{2}\right), 2.73$ $\left[\mathrm{q}, 2 \mathrm{H}, J 7.6, \mu-(2)-\mathrm{C}_{4}\left(\mathrm{CH}_{2} \mathrm{Me}\right)_{2} \mathrm{Me}_{2}\right], 2.34\left[\mathrm{~s}, 3 \mathrm{H}, \mu-(3)-\mathrm{C}_{4} \mathrm{Et}_{2} \mathrm{Me}_{2}\right], 1.36-1.18$ [overlapping $2 \times \mathrm{t}$ and $4 \times \mathrm{d}, \mu-(1)-$ and $\mu-(2)-\mathrm{C}_{4}\left(\mathrm{CH}_{2} \mathrm{Me}\right)_{2} \mathrm{Me}_{2}$ and $4 \times \mathrm{CHMe}{ }_{2}$
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}::^{\mathrm{c}}$ 192.2, 183.9 [μ-(1)- and μ-(4) $-\mathrm{C}_{4} \mathrm{Et}_{2} \mathrm{Me}_{2}$], 145.3, 144.3 ($\left.2 \times C \operatorname{Pr}^{\mathrm{i}}\right)$, 106.7, 103.6, 102.2, 97.3, 95.6, 92.6, 92.0, 89.6, 88.9, $84.8\left[8 \times \mathrm{CH}\right.$ of $\eta-C_{5} \mathrm{H}_{4} \mathrm{Pr}^{i}$ and μ-(2)- and μ-(3)- $\left.\mathrm{C}_{4} \mathrm{Et}_{2} \mathrm{Me}_{2}\right], 43.0,38.3\left[\mu-(1)-\mathrm{C}_{4}\left(\mathrm{CH}_{2} \mathrm{Me}\right)_{2} \mathrm{Me}_{2}\right.$ and μ-(4)$\left.\mathrm{C}_{4} \mathrm{Et}_{2} \mathrm{Me}_{2}\right], 30.7,30.2\left(2 \times C \mathrm{HMe}_{2}\right), 27.1\left[\mu-(2)-\mathrm{C}_{4}\left(\mathrm{CH}_{2} \mathrm{Me}\right)_{2} \mathrm{Me}_{2}\right], 22.9$, 22.6, 22.1, 21.9 ($4 \times \mathrm{CHMe} \mathrm{C}_{2}$), $17.9\left[\mu-(3)-\mathrm{C}_{4} \mathrm{Et}_{2} \mathrm{Me}_{2}\right], 16.3,11.6$ [μ-(1)- and μ-(2)$\mathrm{C}_{4}\left(\mathrm{CH}_{2} \mathrm{Me}\right)_{2} \mathrm{Me}_{2}$]
${ }^{1} \mathrm{H}: 5.67,5.25,5.08,4.59\left(4 \times\right.$ virtual $\left.\mathrm{t}, 4 \times 2 \mathrm{H}, \eta-\mathrm{C}_{5} \mathrm{H}_{4} \operatorname{Pr}^{\mathrm{i}}\right), 3.48[\mathrm{~s}, 6 \mathrm{H}, \mu-(1)-$ and μ-(4) $\left.-\mathrm{C}_{4} \mathrm{Me}_{4}\right], 3.48$ (spt, $1 \mathrm{H}, \mathrm{C} H \mathrm{Me}_{2}$), $3.27\left[\mathrm{~s}, 6 \mathrm{H}, \mu\right.$-(2)- and μ-(3) $\left.-\mathrm{C}_{4} \mathrm{Me}_{4}\right]$, 2.75 (spt, $1 \mathrm{H}, \mathrm{CH} \mathrm{Me}_{2}$), 1.18, $1.12\left(2 \times \mathrm{d}, 2 \times 6 \mathrm{H}, \mathrm{CHM} e_{2}\right)$
${ }^{13} \mathrm{C}:{ }^{h} 158.1\left[\mathrm{~s}, J\left({ }^{13} \mathrm{C}-{ }^{183} \mathrm{~W}\right) 114(14 \%\right.$ by area $), \mu-(1)$ - and $\left.\mu-(4)-C_{4} \mathrm{Me}_{4}\right], 131.9$, 127.3 ($2 \times \mathrm{s}, C \mathrm{Pr}^{\mathrm{i}}$), 101.4 [s, μ-(2)- and μ-(3) $-C_{4} \mathrm{Me}_{4}$], 103.1, 100.0, 95.2, 94.1 $\left(4 \times \mathrm{d}, J c a .180, \mathrm{CH}\right.$ of $\left.\eta-C_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right), 34.7$ [q, $J 129, \mu-(1)-$ and $\left.\mu-(4)-\mathrm{C}_{4} M e_{4}\right], 28.0$, $27.5\left(2 \times \mathrm{d}, J\right.$ ca. 132, $\left.\mathrm{CH} M e_{2}\right), 22.9,22.7\left(2 \times \mathrm{q}, J 129, \mathrm{CH} M e_{2}\right), 13.8(\mathrm{q}, J 128, \mu-$ (2)- and $\left.\mu-(3)-\mathrm{C}_{4} \mathrm{Me}_{4}\right]$

Table 1 (continued)

Compound	Colour Cherry-red	Analysis ${ }^{\text {a }}$ (\%)			NMR data ${ }^{\text {b }}$
		C	H	Halide	
20b		$\begin{gathered} 33.0 \\ (33.3) \end{gathered}$	$\begin{gathered} 3.5 \\ (3.6) \end{gathered}$	$\begin{gathered} 9.9 \\ (9.8) \end{gathered}$	${ }^{1} \mathrm{H}: ~ 6.15,5.18,5.06,4.97\left(4 \times\right.$ virtual $\left.\mathrm{t}, 4 \times 2 \mathrm{H}, \eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right), 3.24[\mathrm{~s}, 6 \mathrm{H}, \mu-(1)-$ and $\left.\mu-(4)-\mathrm{C}_{4} \mathrm{Me}_{4}\right], 2.29,2.16\left(2 \times \mathrm{s}, 2 \times 3 \mathrm{H}, \eta-\mathrm{C}_{5} \mathrm{H}_{4} M e\right), 1.64[\mathrm{~s}, 6 \mathrm{H}, \mu-(2)$ - and $\left.\mu-(3)-\mathrm{C}_{4} \mathrm{Me}_{4}\right]$

${ }^{a}$ Calculated values given in parentheses; halide $=\mathrm{Cl}$ or Br as appropriate. ${ }^{b}$ At $25^{\circ} \mathrm{C}$ in $\left[{ }^{2} \mathrm{H}_{6}\right.$]benzene unless stated otherwise. Data given as: chemical shift (δ), multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{spt}=$ septet, $\mathrm{m}=$ multiplet), relative intensity, coupling constant (in Hz) and assignment; for virtually coupled multiplets the apparent coupling constant is not given; for ${ }^{1} \mathrm{H}$ NMR spectra J refers to the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ coupling constant, for ${ }^{13} \mathrm{C}$ NMR to the ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ coupling constant unless stated otherwise. ${ }^{c}$ In $\left[{ }^{2} \mathrm{H}_{2}\right.$] dichloromethane. ${ }^{d} \mathrm{At}-30^{\circ} \mathrm{C}$. ${ }^{e}$ Analysis for 7. $\mathrm{CH}_{2} \mathrm{Cl}_{2} .{ }^{s} \mathrm{At}-40^{\circ} \mathrm{C}$. ${ }^{g}$ A further d of $\mathrm{q} \mathrm{CH} \mathrm{C}_{2} \mathrm{Me}$ resonance is partially obscured by the residual protio-solvent resonance. ${ }^{\mathrm{h}}$ In $\left[{ }^{2} \mathrm{H}_{6}\right]$ acetone. ${ }^{i}$ The $C \mathrm{HMe}_{2}$ resonance is obscured by the residual solvent CD_{3} resonance. ${ }^{j}$ A further $\eta-\mathrm{C}_{5} H_{4} \mathrm{Pr}^{i}$ ligand proton is obscured by the residual protio-solvent resonance. ${ }^{k}$ This compound was characterised as the major component of a $c a .2: 1$ mixture of 17 and 16 by ${ }^{1} \mathrm{H}$ NMR spectroscopy only.
11 $X=C, R=\operatorname{Pr}, R^{1}=R^{2}=R^{3}=R^{4}=M e$
10b $X=C l, R=M e, R^{1}=R^{2}=R^{3}=R^{4}=M e$
$11 X=B r, R=P r^{i}, R^{1}=R^{2}=R^{3}=R^{4}=M e$
$15 \mathrm{X}=\mathrm{Cl}, \mathrm{R}=\mathrm{Pr}^{\prime}, \mathrm{R}^{1}=\mathrm{R}^{4}=\mathrm{Et}, \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{Me}$
$18 \mathrm{X}=\mathrm{Br}, \mathrm{R}=\mathrm{Pr}^{i}, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Et}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{Me}$

Me
$1(v i)$

> R
> 20a Pr^{i}
> 20b Me
> 12a $X=C l, R=P r^{i}, R^{1}=R^{2}=R^{3}=R^{4}=M e$ 12b $X=C l, R=M e, R^{1}=R^{2}=R^{3}=R^{4}=M e$ $13 X=B r, R=P^{i}, R^{1}=R^{2}=R^{3}=R^{4}=M e$ $14 \mathrm{X}=\mathrm{Cl}, \mathrm{R}=\mathrm{Pr}^{i}, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Et}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{Me}$ $16 X=C l, R=P r^{j}, R^{1}=R^{4}=E t, R^{2}=R^{3}=M e$ $17 X=C l, R=\operatorname{Pr}, R^{1}=R^{3}=E t, R^{2}=R^{4}=M e$
> $19 \mathrm{X}=\mathrm{Br}, \mathrm{R}=\mathrm{Pr}^{i}, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Et}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{Me}$

Scheme 1 (i) $\mathrm{R}^{1} \mathrm{C} \equiv \mathrm{CR}^{2}$, toluene, yield $40-70 \%$; (ii) $\mathrm{C}_{2} \mathrm{Me}_{2}$ or $\mathrm{C}_{2} \mathrm{Et}_{2}$, diethyl ether, $>90 \%$; (iii) excess of $\mathrm{C}_{2} \mathrm{Me}_{2}$ or $\mathrm{EtC}_{2} \mathrm{Me}$, toluene, 60 or 20%; (iv) $\mathrm{C}_{2} \mathrm{Me}_{2}$, thf, $>80 \%$; (v) $\mathrm{C}_{2} \mathrm{Me}_{2}$, thf; (vi) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or thf solution, $2 \mathrm{~h}-2 \mathrm{~d},>90 \%$; also (for $\mathrm{X}=\mathrm{Cl}$) solid state, $c a .250{ }^{\circ} \mathrm{C}$, $>95 \%$; (vii) water-acetone, $>80 \%$
geometry may be due to a small gap between the highest occupied (HOMO) and lowest unoccupied (LUMO) molecular orbitals (in the idealised pe-pendicular geometry) from which a second-order Jahn-Teller effect arises. We cannot discount such an explanation of the geometry found for the $\mathrm{W}_{2}\left(\mu-\mathrm{C}_{2} \mathrm{Ph}_{2}\right)$ unit in 7.

The W-W and $\mathrm{C}_{\mathrm{ac}}-\mathrm{C}_{\mathrm{ac}}$ bond lengths in compound 7 are
suggestive of substantial back donation of π-electron density from the W_{2} centre to the π^{*} orbitals of the μ-alkyne ligand. The metal-metal bond length $[W(1)-W(2) 2.795(3) \AA]$ is somewhat shorter than that found in the related carbonyl-supported complexes $\left[\mathrm{M}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{4}\left(\mu-\mathrm{C}_{2} \mathrm{H}_{2}\right)\right](\mathrm{M}=\mathrm{Mo}$ or W , $\mathbf{M}-\mathrm{M} \approx 2.98 \AA)^{8}$ and longer than those in the alkoxidesupported complexes $\left[\mathrm{W}_{2}(\mathrm{OR})_{6}\left(\mu-\mathrm{C}_{2} \mathrm{H}_{2}\right)(\mathrm{py})_{x}\right] \quad\left(\mathrm{R}=\mathrm{Pr}^{\mathrm{i}}\right.$,
$\mathrm{CH}_{2} \mathrm{Bu}^{\mathrm{t}}$ or $\mathrm{Bu}^{\mathrm{t}} ; x=1$ or $2 ; \mathrm{W}-\mathrm{W} \approx 2.57-2.67 \AA$) of Chisholm et al. ${ }^{9}$ The $\mathrm{C}_{\mathrm{ac}}-\mathrm{C}_{\mathrm{ac}}$ bond length in $7[\mathrm{C}(1)-\mathrm{C}(2) 1.41(4) \AA]$ is subsantially longer than that found for the free alkyne ($\mathrm{C}_{\mathrm{ac}}-\mathrm{C}_{\mathrm{ac}}$ $c a .1 .20 \AA$) and apparently closer to those of the co-ordinated alkyne in the alkoxide-supported ($\mathrm{C}_{\mathrm{ac}}-\mathrm{C}_{\mathrm{ac}} c a .1 .40 \AA$) than in the carbonyl-supported complexes $\left(\mathrm{C}_{\mathrm{ac}}-\mathrm{C}_{\mathrm{ac}} \quad c a . \quad 1.34 \AA \AA\right)$. However, the relatively large experimental errors associated with the $\mathrm{C}_{\mathrm{ac}}-\mathrm{C}_{\mathrm{ac}}$ values available compared to the differences between successive values from one complex to the next make comparisons of these data less reliable.
The NMR spectroscopic data for compound 7 indicate that the molecular structure found in the solid state is maintained in solution. Furthermore, the spectroscopic data for 3-6 (Table 1) suggest that these complexes have similar structures to that of 7. The ${ }^{13} \mathrm{C}$ NMR resonances of the C_{ac} atoms for the complexes $3-7$ are found in the range $\delta 212-237$. These values are substantially downfield of those reported for carbonyl-(δ ca. 70) or alkoxide-supported μ-alkyne complexes ($\delta 120-166$). They are, however, similar to those for other predominantly halidesupported complexes such as $\left[\mathrm{W}_{2} \mathrm{Cl}_{4}\left(\mu-\mathrm{NMe}_{2}\right)_{2}\left(\mu-\mathrm{C}_{2} \mathrm{Me}_{2}\right)\right.$ $\left.(\mathrm{py})_{2}\right]\left[\delta\left(\mathrm{C}_{\mathrm{ac}}\right) 214\right]^{10}$ or $\left[\mathrm{W}_{2} \mathrm{Cl}_{4}(\mu-\mathrm{Cl})_{2}\left(\mu-\mathrm{C}_{2} \mathrm{R}_{2}\right)(\text { thf })_{2}\right](\mathrm{R}=$ H, Me or Et ; thf $=$ tetrahydrofuran $\left[\delta\left(\mathrm{C}_{\mathrm{ac}}\right) 230-235\right] .{ }^{11}$
It was not possible to isolate an intermediate monoalkyne adduct $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{Cl}_{4}\left(\mu-\mathrm{C}_{2} \mathrm{Me}_{2}\right)\right]$ from the reaction of

Table 2 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with estimated standard deviations (e.s.d.s) in parentheses and dihedral angles $\left(^{\circ}\right.$) for $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{Br}_{4}\left(\mu-\mathrm{C}_{2} \mathrm{Ph}_{2}\right)\right] 7 ; \mathrm{Cp}_{\text {cent(1) }}$ and $\mathrm{Cp}_{\text {cent(2) }}$ refer to the computed $\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{i}$ ring centroids for $W(1)$ and $W(2)$ respectively

W(1)-W(2)	2.795(3) W	$W(1)-\mathrm{C}(1)$	1.988(9)
$W(1)-\operatorname{Br}(1)$	2.589(5) W	$W(1)-\mathrm{C}(2)$	2.38(1)
$\mathrm{W}(1)-\mathrm{Br}(2)$	2.649(6) W	$W(2)-C(1)$	2.39(1)
$\mathrm{W}(2)-\mathrm{Br}(3)$	2.594(5) W	W(2)-C(2)	1.979(9)
$\mathrm{W}(2)-\mathrm{Br}(4)$	$2.638(5) \quad C($	C(1)-C(2)	1.41(4)
$\mathrm{W}(1)-\mathrm{Cp}_{\text {cent(1) }}$	2.02 W	$\mathrm{W}(2)-\mathrm{C} \mathrm{p}_{\text {cent(2) }}$	2.03
$\mathrm{W}(2)-\mathrm{W}(1)-\mathrm{Br}(1)$	100.2(1) W	$\mathrm{W}(1)-\mathrm{W}(2)-\operatorname{Br}(3)$	100.7(1)
$\mathrm{W}(2)-\mathrm{W}(1)-\mathrm{Br}(2)$	124.2(1) W	$\mathrm{W}(1)-\mathrm{W}(2)-\mathrm{Br}(4)$	120.6(1)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(11)$	132.5(15) C($\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(21)$	130.2(15)
$\mathrm{W}(2)-\mathrm{W}(1)-\mathrm{Cp}_{\text {cent(1) }}$	126.4 W	$\mathrm{W}(1)-\mathrm{W}(2)-\mathrm{Cp}_{\mathrm{cent}(2)}$	130.2
$\mathrm{Br}(2)-\mathrm{W}(1)-\mathrm{W}(2)-\mathrm{Br}(4)$		62.9	
$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(21)$		37.8	
$\operatorname{Br}(1)-\mathrm{W}(1)-\mathrm{W}(2)-\mathrm{Br}(3)$		131.4	
$\mathrm{Br}(1)-\mathrm{W}(1)-\mathrm{W}(2)-\mathrm{Cp}_{\text {centi }}$		(2) 0.7	
$\operatorname{Br}(3)-\mathrm{W}(2)-\mathrm{W}(1)-\mathrm{Cp}_{\text {cent(1) }}$		(1) 2.7	

complex 1a with $\mathrm{C}_{2} \mathrm{Me}_{2}$ (although the bromide-supported analogue 5 has been obtained). Addition of a single equivalent of $\mathrm{C}_{2} \mathrm{Me}_{2}$ to a toluene solution of $\mathbf{1 a}$ afforded only coupled alkyne product (see below) and unreacted 1 a .
In contrast to the reactions of $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{Br}_{4}\right] 2$ with $\mathrm{C}_{2} \mathrm{Me}_{2}$ or $\mathrm{C}_{2} \mathrm{Et}_{2}$ in toluene solution it was found that treatment of a suspension of 2 in diethyl ether with an excess of $\mathrm{C}_{2} \mathrm{Me}_{2}$ (at $-20^{\circ} \mathrm{C}$) or $\mathrm{C}_{2} \mathrm{Et}_{2}$ (at room temperature) gave grey-green solids which analysed for $\left[\left\{W\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \operatorname{Pr}^{i}\right) \mathrm{Br}_{2}(\mathrm{CR})\right\}_{x}\right](\mathrm{R}=\mathrm{Me} 8$ or Et 9) and were further characterised by ${ }^{1} \mathrm{H}(8)$ or ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ (9) NMR spectroscopy. The ${ }^{1} \mathrm{H}$ NMR spectra of complexes 8 and 9 showed that they are fluxional at room temperature but static (on the NMR time-scale) at 230 K when the spectra revealed three types of R group (intensities $1: 1: 1$) and three diastereotopic $\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}$ ring environments (intensities $1: 1: 1$). Furthermore, the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 9 showed, in addition to resonances characteristic of three types of R and $\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}$ ligands, three further resonances assignable to C_{ac} atoms at $\delta 238.7,220.2$ and 161.6. There was no evidence for a $v(\mathrm{C} \equiv \mathrm{C})$ absorption in the IR spectra of either 8 or 9. Unfortunately it was not possible further to characterise these materials. Repeated attempts to grow single crystals suitable for an X-ray diffraction analysis proved unsuccessful, and attempts to determine the molecular weight by mass spectral or solution techniques failed to give reproducible results. The ratios of the $\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}$ and R group resonances do not change with successive recrystallisations and we can thus far only characterise 8 and 9 as having the general formula $[\{W(\eta-$ $\left.\left.\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right) \mathrm{Br}_{2}(\mathrm{CR})\right\}_{3 x}\right]$ where x represents an integer.

Alkyne Coupling Reactions.-When a toluene solution of $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{i}\right)_{2} \mathrm{Cl}_{4}\right]$ 1a was treated with an excess of $\mathrm{C}_{2} \mathrm{Me}_{2}$ at room temperature over 12 h a purple microcrystalline compound 10a which analysed as $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{Cl}_{4}\left(\mathrm{C}_{2^{-}}\right.\right.$ $\left.\mathrm{Me}_{2}\right)_{2}$] was obtained in 60% yield. The ${ }^{1} \mathrm{H}$ NMR spectrum showed signals assignable to a $\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{i}$ ring and two further resonances at $\delta 3.53$ and 1.75 both of which integrate as 3 H relative to each Pr^{i} group. The ${ }^{13} \mathrm{C}$ NMR spectrum showed, in addition to signals characteristic of a $\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{i}$ ligand, two quartets at $\delta 33.3$ and 15.8 and two singlets at $\delta 188.3$ and 101.3 assignable to quaternary carbon atoms.
Similarly, treatment of complex 1b or 2 with an excess of $\mathrm{C}_{2} \mathrm{Me}_{2}$ in toluene or diethyl ether at room temperature afforded purple compounds $\mathbf{1 0 b}$ or $\mathbf{1 1}$ which analysed as $\left[W_{2}(\eta-\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{R}\right)_{2} \mathrm{X}_{4}\left(\mathrm{C}_{2} \mathrm{Me}_{2}\right)_{2}\right] \quad\left(\mathrm{R}=\mathrm{Me}, \mathrm{X}=\mathrm{Cl} ; \mathrm{R}=\mathrm{Pr}^{\mathrm{i}}, \mathrm{X}=\mathrm{Br}\right.$,

Table 3 Fractional atomic coordinates for the non-hydrogen atoms of $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{Br}_{4}\left(\mu-\mathrm{C}_{2} \mathrm{Ph}_{2}\right)\right] \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2} 7 \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$

Atom	x	y	z	Atom	x	y	z
W(1)	0.1903(2)	0.0757(2)	0.3418(2)	C(101)	-0.073(5)	-0.056(2)	0.242(3)
W(2)	0.3679(2)	0.0293(2)	0.2044(2)	C(102)	-0.065(4)	-0.016(3)	0.348(3)
$\operatorname{Br}(1)$	0.2743(6)	-0.0053(5)	0.4572(4)	C(103)	-0.025(4)	0.097(3)	0.392(2)
$\mathrm{Br}(2)$	0.2850(6)	0.2482(4)	0.5243(4)	C(104)	-0.003(4)	0.132(2)	0.318(3)
$\mathrm{Br}(3)$	0.1674(6)	-0.0577(4)	0.0316(4)	C(105)	-0.031(5)	0.038(3)	0.225(2)
$\mathrm{Br}(4)$	0.4726 (6)	$0.1635(4)$	0.1276(4)	C(106)	-0.095(4)	-0.171(2)	0.166 (3)
C(1)	0.302(3)	0.184(1)	0.299(2)	C(107)	-0.246(5)	-0.206(4)	0.091 (4)
C(2)	0.434(2)	0.167(1)	0.333(1)	C(108)	-0.103(6)	-0.244(4)	0.219(4)
C(11)	0.284(4)	$0.277(2)$	0.282(3)	C(201)	0.438(3)	-0.126(2)	0.203(2)
$\mathrm{C}(12)$	$0.185(4)$	$0.254(2)$	0.192(3)	C(202)	0.538(3)	-0.024(2)	0.284(2)
C(13)	$0.155(4)$	$0.338(3)$	0.180(2)	C(203)	0.613(3)	0.040(2)	0.242(2)
C(14)	0.223(4)	$0.445(2)$	$0.257(3)$	C(204)	0.563(3)	-0.016(2)	$0.136(2)$
$\mathrm{C}(15)$	0.321(4)	0.468(2)	0.346(2)	C(205)	0.453(3)	-0.119(2)	0.111(2)
$\mathrm{C}(16)$	$0.352(4)$	$0.384(3)$	0.359(2)	C(206)	0.332(3)	-0.217(2)	0.217 (3)
C(21)	0.581(2)	0.244(2)	0.411(2)	C(207)	0.225(5)	-0.300(4)	$0.112(3)$
$\mathrm{C}(22)$	$0.698(3)$	0.320 (2)	0.389(2)	C(208)	$0.435(5)$	-0.266(4)	0.254(4)
$\mathrm{C}(23)$	0.826 (3)	$0.378(2)$	0.449(3)	C(301)*	0.359(6)	0.513(7)	0.780 (3)
$\mathrm{C}(24)$	$0.877(2)$	0.359(3)	0.529(2)	$\mathrm{Cl}(1)^{*}$	0.436(3)	0.526(2)	0.902(2)
$\mathrm{C}(25)$	$0.781(3)$	$0.282(3)$	0.550(2)	$\mathrm{Cl}(2)$ *	0.191(3)	0.545(2)	0.786(2)
C(26)	0.633(3)	0.225(2)	0.491(2)				

(a)

(b)

Fig. 1 Two views of the molecular structure of $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{i}\right)_{2} \mathrm{Br}_{4}-\right.$ $\left.\left(\mu-\mathrm{C}_{2} \mathrm{Ph}_{2}\right)\right]$ 7: (a) nearly perpendicular to the $\mathrm{W}-\mathrm{W}$ bond, (b) along the molecular C_{2} axis. Hydrogen atoms omitted for clarity

Fig. 2 Molecular structure of trans-[W $\mathbf{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}_{2} \mathrm{Cl}_{4}\left(\mu-\mathrm{C}_{4} \mathrm{Me}_{4}\right)\right]$ 12b. Hydrogen atoms omitted for clarity
respectively). The NMR spectra (Table 1) were very similar to those of 10 a . The compounds $10 \mathrm{a}, 10 \mathrm{~b}$ and 11 isomerise in solution at room temperature over several days to give orange compounds $\mathbf{1 2 a}, \mathbf{1 2 b}$ and 13 respectively of identical empirical

Table 4 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.s in parentheses for $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2} \mathrm{Cl}_{4}\left(\mu-\mathrm{C}_{4} \mathrm{Me}_{4}\right)\right]$ 12b; $\mathrm{Cp}_{\text {cent(1) }}$ and $\mathrm{Cp}_{\text {cent(2) }}$ refer to the computed $\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}$ ring centroids for $\mathrm{W}(1)$ and W(2) respectively

$\mathrm{W}(1)-\mathrm{Cl}(1)$	$2.486(3)$	$\mathrm{W}(2)-\mathrm{Cl}(3)$	$2.481(1)$
$\mathrm{W}(1)-\mathrm{Cl}(2)$	$2.474(4)$	$\mathrm{W}(2)-\mathrm{Cl}(4)$	$2.471(4)$
$\mathrm{W}(1)-\mathrm{C}(1)$	$2.11(1)$	$\mathrm{W}(2)-\mathrm{C}(1)$	$2.11(1)$
$\mathrm{W}(1)-\mathrm{C}(2)$	$2.39(1)$	$\mathrm{W}(2)-\mathrm{C}(2)$	$2.38(2)$
$\mathrm{W}(1)-\mathrm{C}(3)$	$2.36(2)$	$\mathrm{W}(2)-\mathrm{C}(3)$	$2.38(1)$
$\mathrm{W}(1)-\mathrm{C}(4)$	$2.10(2)$	$\mathrm{W}(2)-\mathrm{C}(4)$	$2.10(1)$
$\mathrm{W}(1)-\mathrm{C} p_{\text {ceni(1) }}$	1.99	$\mathrm{~W}(2)-\mathrm{Cp}$ cent(2)	2.06
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.46(2)$	$\mathrm{C}(1)-\mathrm{C}(11)$	$1.52(2)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.44(2)$	$\mathrm{C}(2)-\mathrm{C}(12)$	$1.50(2)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.43(2)$	$\mathrm{C}(3)-\mathrm{C}(13)$	$1.51(2)$
$\mathrm{C}(4)-\mathrm{C}(14)$	$1.53(2)$	$\mathrm{W}(1)-\mathrm{W}(2)$	$2.9295(7)$
$\mathrm{Cl}(1)-\mathrm{W}(1)-\mathrm{W}(2)$	$125.7(1)$	$\mathrm{Cl}(2)-\mathrm{W}(1)-\mathrm{W}(2)$	$125.4(1)$
$\mathrm{Cl}(3)-\mathrm{W}(2)-\mathrm{W}(1)$	$98.8(8)$	$\mathrm{Cl}(4)-\mathrm{W}(2)-\mathrm{W}(1)$	$96.8(1)$
$\mathrm{Cl}(2)-\mathrm{W}(1)-\mathrm{Cl}(1)$	$77.7(2)$	$\mathrm{Cl}(3)-\mathrm{W}(2)-\mathrm{Cl}(4)$	$78.6(1)$
$\mathrm{W}(1)-\mathrm{C}(1)-\mathrm{W}(2)$	$88.0(5)$	$\mathrm{W}(1)-\mathrm{C}(2)-\mathrm{W}(2)$	$75.6(4)$
$\mathrm{W}(1)-\mathrm{C}(3)-\mathrm{W}(2)$	$76.3(4)$	$\mathrm{W}(1)-\mathrm{C}(4)-\mathrm{W}(2)$	$88.4(6)$
$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(2)$	$121.3(13)$	$\mathrm{C}(12)-\mathrm{C}(2)-\mathrm{C}(1)$	$121.9(15)$
$\mathrm{C}(13)-\mathrm{C}(3)-\mathrm{C}(4)$	$122.2(16)$	$\mathrm{C}(14)-\mathrm{C}(4)-\mathrm{C}(3)$	$121.9(16)$
$\mathrm{C}(12)-\mathrm{C}(2)-\mathrm{C}(3)$	$119.4(15)$	$\mathrm{C}(13)-\mathrm{C}(3)-\mathrm{C}(2)$	$117.2(13)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$118.6(13)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$120.6(15)$

Angle between least-squares plane $\mathrm{C}(1) \mathrm{C}(4)$ and plane containing $W(1)$ and $W(2)$ is 89.8°.

Table 5 Fractional atomic coordinates $\left(\times 10^{4}\right)$ for the non-hydrogen atoms of $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2} \mathrm{Cl}_{4}\left(\mu-\mathrm{C}_{4} \mathrm{Me}_{4}\right)\right]$ 12b

Atom	x	y	z
W(1)	9 928.3(5)	937.7(4)	$6561.6(2)$
W(2)	$10063.8(5)$	2 547.0(4)	$5819.9(2)$
$\mathrm{Cl}(1)$	9 997(5)	$1052(3)$	7 548(1)
$\mathrm{Cl}(2)$	11500 (3)	-153(4)	$6787(2)$
$\mathrm{Cl}(3)$	8028 (3)	2 954(3)	5774(2)
$\mathrm{Cl}(4)$	$9475(3)$	1 660(3)	$5017(1)$
C(1)	$11009(11)$	$1287(10)$	5 922(5)
C(2)	$11553(13)$	$1868(12)$	$6332(6)$
C(3)	$10853(12)$	$2415(12)$	6 687(6)
C(4)	9 650(11)	2 417(13)	6 628(6)
C(11)	1 697(13)	691(13)	5 535(6)
C(12)	12 808(11)	$1871(15)$	6 408(8)
C(13)	$11441(16)$	2 970(16)	7 123(7)
C(14)	$8886(16)$	$3009(14)$	6 991(6)
C(101)	$9065(13)$	-630(11)	6 426(6)
C(102)	9 049(14)	-70(11)	$5957(6)$
C(103)	$8365(11)$	749(12)	6 062(7)
C(104)	8 026(10)	737(12)	6 598(7)
C(105)	$8482(13)$	-109(13)	$6816(9)$
C(106)	9590 (14)	- $1599(11)$	6 467(7)
C(201)	$10232(12)$	4 262(10)	$5771(5)$
C(202)	11 295(12)	3 836(11)	$5876(7)$
C(203)	11 664(15)	3 279(14)	$5438(7)$
C(204)	$10840(15)$	3 366(13)	5 033(7)
C(205)	9 956(16)	3 912(11)	5 258(5)
C(206)	599(21)	$4951(13)$	$6100(9)$

formulae to those of their precursors. The NMR spectra of the orange compounds were largely similar to those of their purple precursors but now revealed two spectroscopically inequivalent $\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{R}$ rings. For 12a and 13, ${ }^{183} \mathrm{~W}$ satellites $\left[{ }^{1} J\left(\mathrm{C}-{ }^{183} \mathrm{~W}\right)\right.$ $49 \mathrm{~Hz}, 25 \%$ of total signal intensity; ${ }^{183} \mathrm{~W}, I=\frac{1}{2}$, natural abundance $=14.5 \%$] of the correct intensity for a carbon bonded to two tungsten atoms could be observed for the lowestfield quaternary carbon resonances. Single crystals of 12b were obtained by slow diffusion of diethyl ether into a thf solution and an X-ray diffraction analysis was undertaken. The molecular structure is shown in Fig. 2, selected bond lengths and angles are given in Table 4 and fractional atomic coordinates in Table 5.

The solid-state structure of complex 12b consists of two staggered, mutually trans $\mathrm{W}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right) \mathrm{Cl}_{2}$ fragments linked by a metal-metal bond [W(1)-W(2) 2.9295(7) \AA] which is bridged by a planar $\mathrm{C}_{4} \mathrm{Me}_{4}$ fragment. The $\mu-\mathrm{C}_{4} \mathrm{Me}_{4}$ moiety is symmetrically bound to each tungsten atom in a tetrahapto fashion and is perpendicular to the $\mathrm{W}-\mathrm{W}$ bond. Its planarity and the trigonal geometry about each internal (quaternary) carbon atom (as indicated by each of the six $\mathrm{Me}-\mathrm{C}-\mathrm{C}$ angles being very close to 120°) suggests that each internal carbon atom is formally sp^{2} hybridised. These observations, together with the equivalence of the three internal carbon-carbon bond lengths (within experimental error), indicate a high degree of delocalisation of the π electrons of this fragment. The X-ray and ${ }^{13} \mathrm{C}$ NMR data suggest a description intermediate between a buta-1,3-dienyl(2-) and but-2-enyl(4-) representation for the $\mu-\mathrm{C}_{4} \mathrm{Me}_{4}$ moiety. The similarity of the NMR data of 12 a and 13 to those of 12b suggests that the former have similar formulations, i.e. $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{X}_{4}\left(\mu-\mathrm{C}_{4} \mathrm{Me}_{4}\right)\right](\mathrm{X}=\mathrm{Cl} 12 \mathrm{a}$ or Br 13$)$.

The ${ }^{13} \mathrm{C}$ NMR chemical shifts for the terminal quaternary carbon atoms of the $\mu-\mathrm{C}_{4} \mathrm{Me}_{4}$ fragment in complexes 12a and 13 ($\delta 185.4$ and 181.8 respectively) are suggestive of some degree of alkylidene character. In general, such shifts for authentic bridging alkylidene carbon atoms [$\left.\mathrm{M}\left(\mu-C \mathrm{R}^{\prime}\right) \mathrm{M}\right]$ fall in the range $\delta 100-210 .{ }^{12}$ In the flyover bridge complex $\left[\mathrm{Cr}_{2}(\eta-\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})\left(\mu-\mathrm{C}_{4} \mathrm{Ph}_{4}\right)\right]$ the terminal carbon atoms of the $\mu-\mathrm{C}_{4} \mathrm{Ph}_{4}$ fragment are equidistant from each Cr atom and their ${ }^{13} \mathrm{C}$ chemical shift ($\delta 210$) suggests that these too have substantial alkylidene character. ${ }^{13}$

Given the similarity of their NMR spectra to those of 12a, 12b and 13 , we propose that the purple compounds $10 \mathrm{a}, 10 \mathrm{~b}$ and 11 are the corresponding isomers cis- $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{R}\right)_{2} \mathrm{X}_{4}(\mu\right.$ $\left.\left.\mathrm{C}_{4} \mathrm{Me}_{4}\right)\right]\left(\mathrm{X}=\mathrm{Cl}, \mathrm{R}=\operatorname{Pr}^{\mathrm{i}} \mathbf{1 0 a}\right.$ or $\mathrm{Me} 10 \mathrm{~b} ; \mathrm{X}=\mathrm{Br}, \mathrm{R}=\operatorname{Pr}^{\mathrm{i}}$ 11). However, the spectroscopic data alone do not allow one to distinguish between the two possible isomers possessing the $C_{2 v}$ symmetry required by the NMR spectra in which the $\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{R}$ rings are either cis or trans to the flyover bridge moiety (see Scheme 1).

The compounds 10-13 are uncommon examples of binuclear flyover bridge compounds in which the $\mu-\mathrm{C}_{4} \mathrm{R}_{4}$ fragment bonds symmetrically in a tetrahapto fashion to both metal atoms, the only other example being $\left[\mathrm{Mo}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{C}_{4} \mathrm{Ph}_{4}\right)\right] .{ }^{14}$ By far the most common form of co-ordination found for a flyover bridge arrangement is as $\left[L_{n} M\left\{\mu-\left(\sigma^{2}: \eta^{4}\right)-C_{4} R_{4}\right\} \mathrm{ML}_{m}\right]$ which may be described as containing a metallacyclopentadiene ($L_{n} \mathrm{MC}_{4} \mathrm{R}_{4}$) fragment bound in pentahapto fashion to a second metal centre. ${ }^{1,2}$ Cotton and Shang ${ }^{15}$ have recently described a tetranuclear niobium complex in which two $\mathrm{Nb}-\mathrm{Nb}$ bonds are bridged by symmetrically $\left(\mu-\eta^{4}: \eta^{4}\right)$ bound $\mathrm{C}_{4} \mathrm{Ph}_{4}$ units.
We note that the cis \longrightarrow trans isomerisation of $\left[\mathrm{W}_{2}(\eta-\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{R}\right)_{2} \mathrm{Cl}_{4}\left(\mu-\mathrm{C}_{4} \mathrm{Me}_{4}\right)\right]$ also occurs quantitatively in the solid state at ca. $250^{\circ} \mathrm{C}$ and is a very rare example of the solid-state isomerisation of an organometallic species.

Treatment of a toluene solution of pure $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2}-\right.$ $\left.\mathrm{Cl}_{4}\left(\mu-\mathrm{C}_{2} \mathrm{Et}_{2}\right)\right] 3$ with an excess of $\mathrm{C}_{2} \mathrm{Me}_{2}$ gave orange microcrystals of trans- $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{Cl}_{4}\left\{\mu-(1,2)-\mathrm{C}_{4} \mathrm{Et}_{2}-\right.\right.$ Me_{2} \}] 14* which were characterised by elemental analysis and by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy. Thus the ${ }^{1} \mathrm{H}$ NMR spectrum showed resonances typical of two diastereotopic η $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{i}$ rings together with two additional singlets at $\delta 2.16$ and 3.45 assignable to two inequivalent methyl groups. There are also resonances arising from two independent ethyl groups, the methylene linkage for one of them appearing as a pair of mutually coupled doublets of quartets. The ${ }^{13} \mathrm{C}$ NMR spectra similarly revealed resonances assignable to two diastereotopic $\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}$ groups and to two inequivalent methyl and ethyl groups. Four further singlet carbon resonances were observed at $\delta 193.7$ and 185.5 (assigned as the 1- and 4-quaternary

[^1]carbon atoms of a $\mu-\mathrm{C}_{4} \mathrm{R}_{2} \mathrm{R}^{\prime}{ }_{2}$ fragment) and at $\delta 93.9$ and 89.8 (assigned as the 2 - and 3-quaternary carbon atoms of a μ $\mathrm{C}_{4} \mathrm{R}_{2} \mathrm{R}_{2}$ fragment). On the basis of these data the structure illustrated in Scheme 1 is proposed for 14 in which a $\mathrm{C}_{2} \mathrm{Me}_{2}$ fragment has inserted into one of the $\mathrm{W}-\mathrm{C}_{\mathrm{ac}}$ bonds of 3 ; this is consistent with the mechanisms postulated for other coupled alkyne systems. ${ }^{1,2}$

When the reaction between complex 3 and $\mathrm{C}_{2} \mathrm{Me}_{2}$ was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy, resonances assignable to the cis isomer of 14 were observed, but this compound was not isolated. Moreover, no resonances were observed for compounds containing a $\mu-\mathrm{C}_{4} \mathrm{Me}_{4}$ unit (i.e. compounds 10a or 12a), suggesting that if alkyne exchange of the monoalkyne adduct 3 occurs at all then it is at a very slow rate compared to that of the alkyne coupling reaction. Products containing a $\mu-(1,3)$ $\mathrm{C}_{4} \mathrm{Et}_{2} \mathrm{Me}_{2}$ or μ-(1,4)- $\mathrm{C}_{4} \mathrm{Et}_{2} \mathrm{Me}_{2}$ linkage were not observed but may be prepared from the reaction of 1 a with pent-2-yne.

Thus treatment of a toluene solution of complex 1a with an excess of $\mathrm{EtC}_{2} \mathrm{Me}$ at room temperature gave a small quantity of a purple solid 15 and an orange supernatant. Compound 15 was identified as $c i s-\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{Cl}_{4}\left\{\mu-(1,4)-\mathrm{C}_{4} \mathrm{Et}_{2} \mathrm{Me}_{2}\right\}\right]$ by elemental analysis and ${ }^{1} \mathrm{H}$ NMR spectroscopy. The ${ }^{1} \mathrm{H}$ NMR spectrum showed resonances assignable to two equivalent η $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}$ rings, a further two equivalent methyl groups at $\delta 1.80$ and to two equivalent ethyl groups, the overall appearance of the spectrum showing that 15 has $C_{2 v}$ symmetry. Briefly heating solid 15 in vacuo at ca. $250^{\circ} \mathrm{C}$ effected a colour change from purple to orange. The ${ }^{1} \mathrm{H}$ NMR spectrum of the product 16 now showed resonances characteristic of two $\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{i}$ ligand environments, and the protons of methylene linkages of the two equivalent ethyl groups appeared as a pair of mutually coupled doublets of quartets, the overall symmetry of the molecule now being C_{s}. On the basis of these data and a satisfactory elemental analysis, the compound is proposed to be the trans isomer of 15, trans-[$\left.\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{Cl}_{4}\left\{\mu-(1,4)-\mathrm{C}_{4} \mathrm{Et}_{2} \mathrm{Me}_{2}\right\}\right]$ 16.

Concentration of the orange supernatant from the above reaction under reduced pressure and cooling to $-25^{\circ} \mathrm{C}$ gave an orange microcrystalline material identified by ${ }^{1} \mathrm{H}$ NMR spectroscopy as a mixture of 16 and trans- $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{Cl}_{4}\{\mu-(1,3)-\right.$ $\left.\left.\mathrm{C}_{4} \mathrm{Et}_{2} \mathrm{Me}_{2}\right\}\right] 17$ in approximately $1: 2$ ratio. It was not possible to separate the μ-(1,3) and μ-(1,4) isomers, but signals due to 17 could be unambiguously assigned since the ${ }^{1} \mathrm{H}$ NMR spectrum of pure 16 was known. The ${ }^{1} \mathrm{H}$ NMR spectrum of 17 shows resonances assignable to two types of diastereotopic $\eta-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Pr}^{\mathrm{i}}$ ligands, two different methyl groups, and to two different ethyl groups, the methylene protons of which appeared as doublets of quartets.

Monitoring the reaction of complex 1 a with pent-2-yne by ${ }^{1} \mathrm{H}$ NMR spectroscopy showed no evidence for the corresponding μ-(2,3)- or μ-(1,2) (i.e. compound 14) isomers. In none of the alkyne coupling reactions could a third alkyne molecule be introduced into the μ-hydrocarbyl bridge.
In contrast to the reactions of $\left[W_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{Cl}_{4}(\mu\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{Et}_{2}\right)\right] 3$ described above, treatment of toluene solutions of the bromide-supported analogues [$\left.\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \operatorname{Pr}^{\mathrm{i}}\right)_{2} \mathrm{Br}_{4}\left(\mu-\mathrm{C}_{2} \mathrm{R}_{2}\right)\right]$ ($\mathrm{R}=\mathrm{Me} 5$ or Et 6) with an excess of but- 2 -yne surprisingly gave no reaction even after prolonged heating. However, it was found that the poorly defined fluxional complexes [$\{W(\eta-$ $\left.\left.\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{i}\right) \mathrm{Br}_{2}(\mathrm{CR})\right\}_{3 x}\right](\mathrm{R}=\mathrm{Me} 8$ or Et 9$)$ do react readily with added but-2-yne to give the flyover bridge complexes cis- and trans- $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{Br}_{4}\left(\mu-\mathrm{C}_{4} \mathrm{Me}_{4}\right)\right]$ (see above) or cis- $\left[\mathrm{W}_{2}-\right.$ $\left.\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{Br}_{4}\left\{\mu-(1,2)-\mathrm{C}_{4} \mathrm{Et}_{2} \mathrm{Me}_{2}\right\}\right] 18$ in ca. 80% yield. The latter complex isomerised slowly in dichloromethane solution over 2 h at room temperature (r.t.) to give the corresponding isomer trans- $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{Br}_{4}\left\{\mu-(1,2)-\mathrm{C}_{4} \mathrm{Et}_{2} \mathrm{Me}_{2}\right\}\right] 19$ in quantitative yield. The compounds 18 and 19 were characterised by elemental analysis and by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy (see Table 1). No evidence was found for formation of compounds containing $\mu-(1,3)$-, $\mu-(2,3)$ - or $\mu-(1,4)-\mathrm{C}_{4} \mathrm{Et}_{2} \mathrm{Me}_{2}$ linkages.

Fig. 3 Molecular structure of $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2} \mathrm{Cl}_{2} \mathrm{O}\left(\mu-\mathrm{C}_{4} \mathrm{Me}_{4}\right)\right] 20 \mathrm{~b}$. Hydrogen atoms omitted for clarity

Table 6 First-order rate constants $\left(k_{1}\right)$ and half-lives $\left(t_{\frac{1}{2}}\right)$ for the cis to trans isomerisation of related flyover-bridge complexes in $\left[{ }^{2} \mathrm{H}_{6}\right]$ acetone at 336 K

Complex
$\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{Br}_{4}\left(\mu-\mathrm{C}_{4} \mathrm{Me}_{4}\right)\right]^{a}$
$\left[\mathrm{~W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{Cl}_{4}\left(\mu-\mathrm{C}_{4} \mathrm{Me}_{4}\right)\right]^{b}$
$\left[\mathrm{~W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{Br}_{4}\left\{\mu-(1,2)-\mathrm{C}_{4} \mathrm{Et}_{2} \mathrm{Me}_{2}\right\}\right]^{c}$

$10^{4} k_{1} / \mathrm{s}^{-1}$	$t_{\frac{1}{2}} / \mathrm{min}$
1.67	71.0
2.70	42.2
9.90	11.7

${ }^{a}$ i.e. for $\mathbf{1 1} \longrightarrow 13{ }^{\text {b }}$ i.e for $10 \mathrm{a} \longrightarrow 12 \mathrm{a} .^{c}$ i.e. for $\mathbf{1 8} \longrightarrow 19$.

Table 7 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.s in parentheses for $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2} \mathrm{Cl}_{2} \mathrm{O}\left(\mu-\mathrm{C}_{4} \mathrm{Me}_{4}\right)\right]$ 20b, $\mathrm{Cp}_{\text {cent(1) }}$ and $\mathrm{C} p_{\text {ceni(2) }}$ refer to the computed $\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}$ ring centroids for $\mathrm{W}(1)$ and W(2) respectively

$\mathrm{W}(1)-\mathrm{Cl}(1)$	$2.472(3)$	$\mathrm{W}(1)-\mathrm{Cl}(2)$	$2.475(3)$
$\mathrm{W}(1)-\mathrm{W}(2)$	$2.9097(6)$	$\mathrm{W}(2)-\mathrm{O}$	$1.71(1)$
$\mathrm{W}(1)-\mathrm{C}(1)$	$2.14(1)$	$\mathrm{W}(2)-\mathrm{C}(1)$	$2.10(1)$
$\mathrm{W}(1)-\mathrm{C}(2)$	$2.35(1)$	$\mathrm{W}(2)-\mathrm{C}(2)$	$2.49(1)$
$\mathrm{W}(1)-\mathrm{C}(3)$	$2.36(1)$	$\mathrm{W}(2)-\mathrm{C}(3)$	$2.49(1)$
$\mathrm{W}(1)-\mathrm{C}(4)$	$2.16(1)$	$\mathrm{W}(2)-\mathrm{C}(4)$	$2.09(1)$
$\mathrm{W}(1)-\mathrm{C} \mathrm{p}_{\text {cent(1) }}$	1.99	$\mathrm{~W}(2)-\mathrm{Cp}$	2.10
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.46(1)$	$\mathrm{C}(1)-\mathrm{C}(5)$	$1.51(1)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.45(1)$	$\mathrm{C}(2)-\mathrm{C}(6)$	$1.52(1)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.44(1)$	$\mathrm{C}(3)-\mathrm{C}(7)$	$1.52(1)$
$\mathrm{C}(4)-\mathrm{C}(8)$	$1.50(1)$		
$\mathrm{Cl}(1)-\mathrm{W}(1)-\mathrm{W}(2)$	$127.51(8)$	$\mathrm{Cl}(2)-\mathrm{W}(1)-\mathrm{W}(2)$	$127.18(8)$
$\mathrm{Cl}(2)-\mathrm{W}(1)-\mathrm{Cl}(1)$	$79.3(1)$	$\mathrm{O}-\mathrm{W}(2)-\mathrm{W}(1)$	$97.5(3)$
$\mathrm{W}(2)-\mathrm{C}(1)-\mathrm{W}(1)$	$86.6(4)$	$\mathrm{W}(2)-\mathrm{C}(2)-\mathrm{W}(1)$	$74.0(3)$
$\mathrm{W}(2)-\mathrm{C}(3)-\mathrm{W}(1)$	$73.7(3)$	$\mathrm{W}(2)-\mathrm{C}(4)-\mathrm{W}(1)$	$86.4(4)$
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2)$	$123.6(11)$	$\mathrm{C}(6)-\mathrm{C}(2)-\mathrm{C}(1)$	$119.4(10)$
$\mathrm{C}(7)-\mathrm{C}(3)-\mathrm{C}(4)$	$120.9(11)$	$\mathrm{C}(8)-\mathrm{C}(4)-\mathrm{C}(3)$	$122.8(11)$
$\mathrm{C}(6)-\mathrm{C}(2)-\mathrm{C}(3)$	$120.3(10)$	$\mathrm{C}(7)-\mathrm{C}(3)-\mathrm{C}(2)$	$119.6(10)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$120.3(9)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$119.6(9)$

Angle between least-squares plane $\mathrm{C}(1)-\mathrm{C}(4)$ and plane containing $\mathrm{W}(1)$ and $\mathrm{W}(2)$ is 83.3°.

Further Studies of the cis \longrightarrow trans Isomerisation Reac-tions.-The activation energy $\left(E_{\mathrm{a}}\right)$ for the isomerisation of cis-$\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{Cl}_{4}\left(\mu-\mathrm{C}_{4} \mathrm{Me}_{4}\right)\right] \quad 10 \mathrm{a}$ to trans $-\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4}-\right.\right.$ $\left.\left.\mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{Cl}_{4}\left(\mu-\mathrm{C}_{4} \mathrm{Me}_{4}\right)\right]$ 12a has been determined by measuring the first-order rate constants $\left(k_{1}\right)$ for this process at four temperatures using ${ }^{1} \mathrm{H}$ NMR spectroscopy. The rate constants were then fitted to the Arrhenius equation to yield $E_{\mathrm{a}}=23.6(2) \mathrm{kcal}$ $\mathrm{mol}^{-1}\left[98.8(8) \mathrm{kJ} \mathrm{mol}^{-1}\right]$. The magnitude of E_{a} is consistent with the mechanism of the isomerisation process involving a 'simple' rotation of one $\mathrm{W}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{i}\right) \mathrm{Cl}_{2}$ fragment and

Table 8 Fractional atomic coordinates ($\times 10^{4}$) for the non-hydrogen atoms of $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2} \mathrm{Cl}_{2} \mathrm{O}\left(\mu-\mathrm{C}_{4} \mathrm{Me}_{4}\right)\right] \mathbf{2 0 b}$

Atom	x	y	z
W(1)	$7475.7(5)$	$1251.2(2)$	758.6(5)
W(2)	9813.6 (5)	$1021.5(2)$	$3091.5(5)$
$\mathrm{Cl}(1)$	7 643(4)	$1835(1)$	-1462(3)
$\mathrm{Cl}(2)$	5 273(4)	$1845(1)$	939(4)
O	9747 (12)	325(4)	$2981(12)$
C(1)	$9852(14)$	$1339(5)$	929(11)
C(2)	9 393(13)	$1858(4)$	$1548(11)$
C(3)	$8314(12)$	$1869(4)$	2660 (13)
C(4)	7 693(13)	$1365(5)$	3 144(12)
C(5)	$11010(18)$	1 291(7)	-184(18)
C(6)	$10028(18)$	$2387(6)$	990(16)
C(7)	$7834(18)$	2 413(6)	3 276(17)
$\mathrm{C}(8)$	6 570(15)	1342 (6)	$4285(15)$
C(9)	5 915(12)	756(5)	-816(14)
$\mathrm{C}(10)$	7 351(14)	585(6)	-1 093(14)
$\mathrm{C}(11)$	7 918(16)	336(6)	241(17)
C(12)	$6888(16)$	344(5)	1310 (15)
C(13)	$5607(15)$	590(5)	604(14)
C(14)	$4765(15)$	997(7)	-1980(16)
C(15)	$12112(14)$	850(5)	4 576(13)
$\mathrm{C}(16)$	12 264(15)	$1337(5)$	3782 (15)
C(17)	$11334(15)$	$1723(6)$	4 402(15)
C(18)	10 512(15)	$1454(5)$	$5458(14)$
C(19)	11 059(15)	916(5)	5580 (14)
C(20)	12 986(24)	325(8)	4325 (23)

effectively eliminates high-energy processes involving bond scission.

We have also compared the rates of $c i s \longrightarrow$ trans isomerisation (from ${ }^{1} \mathrm{H}$ NMR spectroscopy in [${ }^{2} \mathrm{H}_{6}$]acetone at 336 K) for the processes $10 \mathrm{a} \longrightarrow 12 \mathrm{a}, 11 \longrightarrow 13$ and $18 \longrightarrow 19$ and values obtained for k_{1} are listed in Table 6 along with the associated half-lives $\left(t_{\frac{1}{2}}\right)$. Comparison of the k_{1} (or $t_{\frac{1}{2}}$) values in Table 6 shows that the isomerisation of the complexes cis-$\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{X}_{4}\left\{\mu-(1,2)-\mathrm{C}_{4} \mathrm{R}_{2} \mathrm{Me}_{2}\right\}\right] \quad(\mathrm{X}=\mathrm{Cl}, \quad \mathrm{R}=\mathrm{Me}$ $10 \mathrm{a} ; \mathrm{X}=\mathrm{Br}, \mathrm{R}=\mathrm{Me} 11$ or Et 18) is faster when R is bulkier, but slower when X is bulkier.

Hydrolysis Reactions of cis- or trans-[$\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{R}\right)_{2} \mathrm{Cl}_{4}(\mu-$ $\left.\left.\mathrm{C}_{4} \mathrm{Me}_{4}\right)\right] 10$ or 12.-Acetone solutions of cis- or trans- $\left[\mathrm{W}_{2}(\eta-\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{i}\right)_{2} \mathrm{Cl}_{4}\left(\mu-\mathrm{C}_{4} \mathrm{Me}_{4}\right)\right] \mathbf{1 0 a}$ or 12 a are moderately stable in air for several hours. However, addition of a small amount of water led to an immediate reaction and the cherry-red oxo compound $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{Cl}_{2} \mathrm{O}\left(\mu-\mathrm{C}_{4} \mathrm{Me}_{4}\right)\right] \mathbf{2 0 a}$ was isolated in near-quantitative yield (see Scheme 1).

Compound 20a was characterised by elemental analysis, IR and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy, and also by fast atom bombardment (FAB) mass spectrometry. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were largely similar to those of trans- $\left[\mathrm{W}_{2}(\eta-\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\prime}\right)_{2} \mathrm{Cl}_{4}\left(\mu-\mathrm{C}_{4} \mathrm{Me}_{4}\right)$, showing resonances assignable to two inequivalent $\eta-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Pr}^{i}$ rings and to a $\mu-\mathrm{C}_{4} \mathrm{Me}_{4}$ fragment. Notably the ${ }^{13} \mathrm{C}$ chemical shift of the terminal quaternary carbon atoms of the $\mu-\mathrm{C}_{4} \mathrm{Me}_{4}$ fragment are shifted to substantially higher field ($\delta 158.1$ compared to 188.3, 185.4, 185.7 and 181.8 for the tetrachloro complexes 10a, 12a, 11 and 13 respectively). This may suggest a lesser degree of alkylidene character (although the different inductive effects of $\mathrm{O} v s . \mathrm{Cl}_{2}$ should also be considered). Moreover, ${ }^{1} J\left(\mathrm{C}-{ }^{183} \mathrm{~W}\right)$ for the terminal 1- and 4-) quaternary carbon atoms of the $\mu-\mathrm{C}_{4} \mathrm{Me}_{4}$ moiety in 20 a is 114 Hz (14% of total signal intensity), consistent with bonding predominantly to only one W atom. For the tetrachloro trans compounds 12 a and 13 , smaller ${ }^{1} J\left(\mathrm{C}-{ }^{183} \mathrm{~W}\right)$ coupling constants (49 Hz) for the terminal $\mu-\mathrm{C}_{4} \mathrm{Me}_{4}$ quaternary carbon atoms were observed and the magnitude of the ${ }^{183} \mathrm{~W}$ satellites (24% of total signal intensity) is consistent with equivalent bonding to both W atoms.

The FAB mass spectrum of complex 20a showed a parent
envelope centred around $m / z 776$ as expected for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{Cl}_{2}$ OW_{2}. The IR spectrum showed several bands in the region 950 $800 \mathrm{~cm}^{-1}$, but an unambiguous assignment of one of these as $v(W=O)$ was not possible. Single crystals of 20a suitable for an X-ray structure analysis could not be obtained. However, slow diffusion of pentane into a toluene solution of the methylcyclopentadienyl homologue $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2} \mathrm{Cl}_{2} \mathrm{O}\left(\mu-\mathrm{C}_{4}-\right.\right.$ Me_{4}) 20b, prepared from $\mathbf{1 0 b}$ or 12b, afforded dark red crystals and an X-ray structure determination was undertaken. The molecular structure is shown in Fig. 3, selected bond lengths and angles in Table 7, and fractional atomic coordinates in Table 8.

The overall molecular structure of complex 20b is similar to that of $\mathbf{1 2 b}$ (Fig. 2) and possesses a trans disposition of the η $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}$ rings with a terminal tungsten-oxygen double bond $[\mathrm{W}(2)-\mathrm{O}(1) 1.71(1) \AA]$ trans to a planar, bridging $\mu-\mathrm{C}_{4} \mathrm{Me}_{4}$ moiety. The $\mathrm{W}=\mathrm{O}$ bond length in $\mathbf{2 0 b}$ is similar to that found for other oxo tungsten systems. ${ }^{16}$ A particularly interesting feature is that the $\mu-\mathrm{C}_{4} \mathrm{Me}_{4}$ fragment is no longer symmetrically bound to each W atom. The terminal quaternary carbon atoms $[C(1)$ and $C(4)]$ bond more tightly to $W(2)$ whereas the internal quaternary carbon atoms $[C(2)$ and $C(3)]$ bond more tightly to W(1). These observations are consistent with the ${ }^{13} \mathrm{C}$ NMR data described above for the more soluble isopropylcyclopentadienyl homologue, 20a. The overall deviation (φ) of the $\mu-\mathrm{C}_{4} \mathrm{Me}_{4}$ fragment from perpendicular (i.e. to the $\mathrm{W}-\mathrm{W}$ bond) is $c a .7^{\circ}$.

The asymmetry of the $\mu-\mathrm{C}_{4} \mathrm{Me}_{4}$ fragment binding may reflect competition between the terminal oxo and $\mu-\mathrm{C}_{4} \mathrm{Me}_{4}$ fragment π-electron systems for vacant orbitals on the metal atom. Other structural evidence for the strong trans influence of a terminal oxo ligand on a η-hydrocarbyl moiety has recently been reported: the formally pentahapto pentamethylcyclopentadienyl ring in $\left[\mathrm{W}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{O}_{2}\left(\mathrm{OC}_{5} \mathrm{Me}_{5}\right)\right]$ exhibits a significant amount of σ, η^{4} character. ${ }^{17}$ The compounds 20 a and 20b are the first examples of hydrocarbyl-bridged oxoditungsten species. The μ_{3}-alkyne trinuclear cluster $\left[W\left(\eta-C_{5} H_{5}\right) O\right][W(\eta-$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}\right]\left[\mathrm{Fe}(\mathrm{CO})_{3}\right]\left\{\mu-\mathrm{C}_{2}\left(4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)_{2}\right\}$ has been described previously. ${ }^{18}$

Experimental

All manipulations of air- and moisture-sensitive materials were performed using either standard Schlenk-line techniques under an atmosphere of dinitrogen, which had been purified by passage over BASF catalyst and $4 \AA$ molecular sieves, or in an inert-atmosphere dry-box containing dinitrogen unless stated otherwise. Solvents (unless stated otherwise) were predried by standing over $4 \AA$ molecular sieves and then distilled under an atmosphere of dinitrogen from phosphorus pentaoxide (dichloromethane), sodium (toluene), potassium-benzophenone (thf), or sodium-potassium alloy ($1: 3 \mathrm{w} / \mathrm{w}$) [light petroleum (b.p. $40-60^{\circ} \mathrm{C}$ throughout), diethyl ether, pentane]. Deuteriated solvents for NMR studies were stored in Young's ampoules under an atmosphere of dinitrogen over sodium-potassium alloy ($\left[{ }^{2} \mathrm{H}_{6}\right]$ benzene), molecular sieves ($\left[{ }^{2} \mathrm{H}_{2}\right]$ dichloromethane) or as received ($\left[{ }^{2} \mathrm{H}_{6}\right]$ acetone).

Proton and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Brüker AM 300 spectrometer $\left({ }^{1} \mathrm{H} 300 \mathrm{MHz},{ }^{13} \mathrm{C} 75.5 \mathrm{MHz}\right)$, referenced internally using the residual protio solvent (${ }^{1} \mathrm{H}$) or solvent $\left({ }^{13} \mathrm{C}\right)$ resonances relative to tetramethylsilane $(\delta=0)$. Infrared spectra were recorded as CsI disks using a Perkin-Elmer 1510

FT interferometer. Elemental analyses were performed by the analytical department of this laboratory. The compounds $\left[W_{2}\left(\eta-C_{5} H_{4} R\right)_{2} X_{4}\right]\left(X=C l, R=\operatorname{Pr}^{\mathrm{i}}\right.$ or $\mathrm{Me} ; X=\mathrm{Br}, \mathrm{R}=$ Pr^{i}) were prepared as described previously. ${ }^{3}$

Preparations.- $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{Cl}_{4}\left(\mu-\mathrm{C}_{2} \mathrm{Et}_{2}\right)\right]$ 3. A solution of $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{Cl}_{4}\right](0.38 \mathrm{~g}, 0.53 \mathrm{mmol})$ in toluene $\left(15 \mathrm{~cm}^{3}\right)$ was treated with hex-3-yne $(0.8 \mathrm{~g}, 9.8 \mathrm{mmol})$ to give a finely divided grey-green precipitate. After 5 h the supernatant was decanted, the pale powder washed with toluene $\left(10 \mathrm{~cm}^{3}\right)$ and light petroleum ($2 \times 10 \mathrm{~cm}^{3}$) and dried in vacuo. Yield: 300 mg , 70%.
$\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{Cl}_{4}\left\{\mu-\mathrm{C}_{2}\left(\mathrm{SiMe}_{3}\right)_{2}\right\}\right]$ 4. A solution of $\left[W_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{Cl}_{4}\right](0.37 \mathrm{~g}, 0.51 \mathrm{mmol})$ in toluene $\left(20 \mathrm{~cm}^{3}\right)$ was treated with bis(trimethylsilyl)ethyne $(0.1 \mathrm{~g}, 0.59 \mathrm{mmol})$ in thf $\left(5 \mathrm{~cm}^{3}\right)$ to give a brown solution after 4 h . The volatiles were removed under reduced pressure and the residues washed thoroughly with light petroleum $\left(4 \times 15 \mathrm{~cm}^{3}\right)$. Extraction of the residues with diethyl ether $\left(3 \times 10 \mathrm{~cm}^{3}\right)$, reduction in volume to $c a .10 \mathrm{~cm}^{3}$ and subsequent cooling to $-80^{\circ} \mathrm{C}$ afforded brown microcrystals of complex 4. Yield: $180 \mathrm{mg}(40 \%)$.
$\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{i}\right)_{2} \mathrm{Br}_{4}\left(\mu-\mathrm{C}_{2} \mathrm{Me}_{2}\right)\right]$ 5. A solution of $\left[\mathrm{W}_{2}(\eta-\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{1}\right)_{2} \mathrm{Br}_{4}\right](0.2 \mathrm{~g}, 0.22 \mathrm{mmol})$ in toluene $\left(20 \mathrm{~cm}^{3}\right)$ was treated with 1 equivalent of but-2-yne ($12 \mathrm{mg}, 0.22 \mathrm{mmol}$) to give an orange-red solution after 1 d at r.t. Subsequent filtration, concentration to $c a .10 \mathrm{~cm}^{3}$ and addition of light petroleum gave orange-red microcrystals of complex 5 on cooling to $-20^{\circ} \mathrm{C}$. Yield: $130 \mathrm{mg}(60 \%)$.
$\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{Br}_{4}\left(\mu-\mathrm{C}_{2} \mathrm{Et}_{2}\right)\right]$ 6. A solution of $\left[\mathrm{W}_{2}(\eta-\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{Br}_{4}\right](0.2 \mathrm{~g}, 0.22 \mathrm{mmol})$ in toluene $\left(20 \mathrm{~cm}^{3}\right)$ was treated with 1 equivalent of hex-3-yne ($18 \mathrm{mg}, 0.22 \mathrm{mmol}$) to give an orange-red solution after 2 d at r.t. Subsequent filtration, concentration to $c a .10 \mathrm{~cm}^{3}$ and addition of light petroleum gave orange-red microcrystals of complex 6 on cooling to $-80^{\circ} \mathrm{C}$. Yield: $120 \mathrm{mg}(60 \%)$.
$\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{Br}_{4}\left(\mu-\mathrm{C}_{2} \mathrm{Ph}_{2}\right)\right]$ 7. A solution of $\left[\mathrm{W}_{2}(\eta-\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{Br}_{4}\right](0.2 \mathrm{~g}, 0.22 \mathrm{mmol})$ in toluene $\left(20 \mathrm{~cm}^{3}\right)$ was treated with 1 equivalent of diphenylethyne $(40 \mathrm{mg}, 0.22 \mathrm{mmol})$ to give an orange-red precipitate after 12 h at r.t. The supernatant was decanted and the precipitate was washed with light petroleum ($2 \times 10 \mathrm{~cm}^{3}$) and dried in vacuo. Recrystallisation from dichloromethane-light petroleum afforded orangered microcrystals of 7 . Yield: $160 \mathrm{mg}(70 \%)$.
$\left[\left\{\mathrm{W}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{i}\right) \mathrm{Br}_{2}(\mathrm{CMe})\right\}_{3 x}\right]$ 8. A suspension of $\left[\mathrm{W}_{2}(\eta-\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{Br}_{4}\right](0.2 \mathrm{~g}, 0.22 \mathrm{mmol})$ in diethyl ether $\left(20 \mathrm{~cm}^{3}\right)$ was treated with an excess of but-2-yne $(0.2 \mathrm{~g}, 3.7 \mathrm{mmol})$ to give a brown-green precipitate after stirring for 1 h at $-20^{\circ} \mathrm{C}$. The pale supernatant was decanted and the precipitate was washed with light petroleum $\left(2 \times 10 \mathrm{~cm}^{3}\right)$ and dried in vacuo to give compound 8. Yield: 180 mg .
$\left[\left\{\mathrm{W}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{i}\right) \mathrm{Br}_{2}(\mathrm{CEt})\right\}_{3 x}\right]$ 9. A suspension of $\left[\mathrm{W}_{2}(\eta-\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{Br}_{4}\right](0.2 \mathrm{~g}, 0.22 \mathrm{mmol})$ in diethyl ether $\left(20 \mathrm{~cm}^{3}\right)$ was treated with an excess of hex-3-yne ($0.1 \mathrm{~g}, 1.2 \mathrm{mmol}$) to give a grey-green precipitate after 1 h at r.t. The pale supernatant was decanted and the precipitate was washed with light petroleum $\left(2 \times 10 \mathrm{~cm}^{3}\right)$ and dried in vacuo to give compound 9 . Yield: 190 mg.
cis- $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{R}\right)_{2} \mathrm{Cl}_{4}\left(\mu-\mathrm{C}_{4} \mathrm{Me}_{4}\right)\right]\left(\mathrm{R}=\operatorname{Pr}^{\mathrm{i}} \mathbf{1 0 a}\right.$ or $\left.\mathrm{Me} \mathbf{1 0 b}\right)$. A solution of $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{R}\right)_{2} \mathrm{Cl}_{4}\right](0.3 \mathrm{mmol})$ in toluene (30 cm^{3}) was treated with an excess of but-2-yne and allowed to stand for 20 h . The red-brown supernatant was decanted and the purple solid washed with toluene $\left(10 \mathrm{~cm}^{3}\right)$ and light petroleum $\left(2 \times 10 \mathrm{~cm}^{3}\right)$ and dried in vacuo to give analytically pure complex 10 a or 10 b . Yield: $c a .60 \%$.
cis- $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{Br}_{4}\left(\mu-\mathrm{C}_{4} \mathrm{Me}_{4}\right)\right]$ 11. A solution of $\left[\mathrm{W}_{2}-\right.$ $\left.\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{Br}_{4}\right](0.2 \mathrm{~g}, 0.22 \mathrm{mmol})$ in diethyl ether $\left(20 \mathrm{~cm}^{3}\right)$ was treated with an excess of but-2-yne $(0.2 \mathrm{~g}, 3.7 \mathrm{mmol})$ to give a red-brown solution and purple precipitate after 30 min at r.t. The supernatant was decanted and the precipitate was washed with light petroleum $\left(2 \times 10 \mathrm{~cm}^{3}\right)$ and dried in vacuo to give analytically pure complex 11 . Yield: $148 \mathrm{mg}(60 \%)$.

Table 9 Crystal data, data collection and processing parameters for $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{Br}_{4}\left(\mu-\mathrm{C}_{2} \mathrm{Ph}_{2}\right)\right] \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2} 7 \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$, trans- $\left[\mathrm{W}_{2}(\eta-\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2} \mathrm{Cl}_{4}\left(\mu-\mathrm{C}_{4} \mathrm{Me}_{4}\right)\right]$ 12b and $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2} \mathrm{Cl}_{2} \mathrm{O}\left(\mu-\mathrm{C}_{4} \mathrm{Me}_{4}\right)\right]$ 20b

$\mathbf{1 2 b}$	$\mathbf{2 0 b}$
$\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{Cl}_{4} \mathrm{~W}_{2}$	$\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{OW}_{2}$
775.94	721.03
$0.10 \times 0.30 \times 0.35$	Irregular
Orthorhombic	Monoclinic
Pbca	$P 2{ }_{1} / n$
$11.847(2)$	$9.006(3)$
$14.001(2)$	$24.271(5)$
$25.148(4)$	$9.005(3)$
	$94.51(3)$
4171.8	
8	1978.3
2.47	4
117.8	2.42
2896	121.6
$3-50$	1344
0.50	$3-50$
4945	0.55
3650	4407
2118	3469
0.047	3106
236	0.042
8.97	216
Unit weights	14.37
$0.9,-0.1$	$9.22,-0.13,5.79,2.91$
0.029	$1.2,-0.2$
0.031	0.068
	0.071

trans- $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{R}\right)_{2} \mathrm{Cl}_{4}\left(\mu-\mathrm{C}_{4} \mathrm{Me}_{4}\right)\right]\left(\mathrm{R}=\operatorname{Pr}^{\mathrm{i}}\right.$ 12a or Me 12b). Method (i). A solution of cis- $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{R}\right)_{2} \mathrm{Cl}_{4}(\mu-\right.$ $\left.\left.\mathrm{C}_{4} \mathrm{Me}_{4}\right)\right]\left(\mathrm{R}=\operatorname{Pr}^{\mathrm{i}} \mathbf{1 0 a}\right.$ or Me 10 b in thf was allowed to stand for 96 h at r.t. to give an orange solution. The volatiles were removed under reduced pressure and the residues extracted with toluene. Subsequent reduction in volume and cooling to $-80^{\circ} \mathrm{C}$ afforded orange microcrystals of complex 12a or $\mathbf{1 2 b}$. Yield: ca. 80%.

Method (ii). Solid cis- $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathbf{R}\right)_{2} \mathrm{Cl}_{4}\left(\mu-\mathrm{C}_{4} \mathrm{Me}_{4}\right)\right](\mathrm{R}=$ $\operatorname{Pr}^{\mathrm{i}} 10 \mathrm{a}$ or Me 10b was placed in a Schlenk tube and briefly heated under reduced pressure with a cool blue flame. The colour changed immediately from purple to orange affording analytically pure complex $\mathbf{1 2 a}$ or 12 b in quantitative yield.
trans $-\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{Br}_{4}\left(\mu-\mathrm{C}_{4} \mathrm{Me}_{4}\right)\right]$ 13. A purple solution of cis- $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{Br}_{4}\left(\mu-\mathrm{C}_{4} \mathrm{Me}_{4}\right)\right] 11$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was allowed to stand for 12 h at r.t. to give an orange-red solution. The volatiles were removed under reduced pressure and the residues extracted with toluene $\left(2 \times 10 \mathrm{~cm}^{3}\right)$. Subsequent filtration, concentration to $c a .10 \mathrm{~cm}^{3}$ and addition of light petroleum gave orange-red microcrystals of complex 11 on cooling to $-80^{\circ} \mathrm{C}$. Yield: ca. 80%.
trans- $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{Cl}_{4}\left\{\mu-(1,2)-\mathrm{C}_{4} \mathrm{Et}_{2} \mathrm{Me}_{2}\right\}\right]$ 14. A solution of $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{Cl}_{4}\left(\mu-\mathrm{C}_{2} \mathrm{Et}_{2}\right)\right] 3(0.22 \mathrm{~g}, 0.27 \mathrm{mmol})$ in thf $\left(15 \mathrm{~cm}^{3}\right)$ was treated with an excess of but-2-yne $(0.4 \mathrm{~g}, 7$ mmol) to give a cherry-red solution. After 7 h the volatiles were removed under reduced pressure and the residues extracted with toluene $\left(3 \times 15 \mathrm{~cm}^{3}\right)$. Reduction in volume and cooling to $-80^{\circ} \mathrm{C}$ afforded orange microcrystals of complex 14 which were washed with cold toluene ($5 \mathrm{~cm}^{3}$) and light petroleum $\left(2 \times 10 \mathrm{~cm}^{3}\right)$ and dried in vacuo. Yield: $180 \mathrm{mg}(77 \%)$.
cis- $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{Cl}_{4}\left\{\mu-(1,4)-\mathrm{C}_{4} \mathrm{Et}_{2} \mathrm{Me}_{2}\right\}\right]$ 15. A solution of $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{Cl}_{4}\right](0.4 \mathrm{~g}, 0.55 \mathrm{mmol})$ in toluene $\left(20 \mathrm{~cm}^{3}\right)$ was treated with pent-2-yne $(0.7 \mathrm{~g}, 10 \mathrm{mmol})$ to give an orangebrown solution and a small quantity of purple solid after 30 h at r.t. The supernatant was decanted and the solid washed with
toluene and light petroleum and dried in vacuo to give analytically pure complex 15 . Yield: $85 \mathrm{mg}(20 \%)$.
trans $-\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{Cl}_{4}\left\{\mu-(1,4)-\mathrm{C}_{4} \mathrm{Et}_{2} \mathrm{Me}_{2}\right\}\right]$ 16. Solid cis- $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{Cl}_{4}\left\{\mu-(1,4)-\mathrm{C}_{4} \mathrm{Et}_{2} \mathrm{Me}_{2}\right\}\right] 15$ was placed in a Schlenk tube and briefly heated under reduced pressure with a cool blue flame. The colour changed immediately from purple to orange affording analytically pure complex 16 in quantitative yield.
trans- $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \operatorname{Pr}^{\mathrm{i}}\right)_{2} \mathrm{Cl}_{4}\left\{\mu-(1,3)-\mathrm{C}_{4} \mathrm{Et}_{2} \mathrm{Me}_{2}\right\}\right]$ 17. This compound was obtained as the major component of a ca. 1:2 mixture of 16 and 17 . Concentration of the orange-brown supernatant from the preparation of 15 (see above) and cooling to $-80^{\circ} \mathrm{C}$ afforded a ca. 1:2 (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) mixture of 16 and 17 as orange microcrystals. These were washed with cold toluene ($2 \times 5 \mathrm{~cm}^{3}$) and light petroleum $\left(2 \times 10 \mathrm{~cm}^{3}\right)$ and dried in vacuo. Yield: 230 mg .
cis- $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{Br}_{4}\left\{\mu-(1,2)-\mathrm{C}_{4} \mathrm{Et}_{2} \mathrm{Me}_{2}\right\}\right]$ 18. A solution of $\left[\left\{W\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right) \mathrm{Br}_{2}(\mathrm{CEt})\right\}_{3 x}\right] 9(0.2 \mathrm{~g})$ in thf $\left(20 \mathrm{~cm}^{3}\right)$ was treated with but-2-yne $(0.2 \mathrm{~g}, 3.7 \mathrm{mmol})$ to give a red-purple solution after 12 h at r.t. Subsequent filtration, concentration to $c a .10 \mathrm{~cm}^{3}$ and addition of light petroleum gave red-purple microcrystals of complex 18 on cooling to $-80^{\circ} \mathrm{C}$. Yield: 168 $\mathrm{mg}(80 \%)$.
trans $-\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \operatorname{Pr}^{\mathrm{i}}\right)_{2} \mathrm{Br}_{4}\left\{\mu-(1,2)-\mathrm{C}_{4} \mathrm{Et}_{2} \mathrm{Me}_{2}\right\}\right]$ 19. A purple solution of cis-[W $\left.\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{Br}_{4}\left\{\mu-(1,2)-\mathrm{C}_{4} \mathrm{Et}_{2} \mathrm{Me}_{2}\right\}\right] \mathbf{1 8}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was allowed to stand for 1 d at r.t. to give an orange-red solution. The volatiles were removed under reduced pressure and the residues extracted with toluene $\left(2 \times 10 \mathrm{~cm}^{3}\right)$. Reduction in volume and cooling to $-80^{\circ} \mathrm{C}$ afforded orangered microcrystals of complex 19. Yield: ca. 80%.
$\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{R}\right)_{2} \mathrm{Cl}_{2} \mathrm{O}\left(\mu-\mathrm{C}_{4} \mathrm{Me}_{4}\right)\right]\left(\mathrm{R}=\operatorname{Pr}^{\mathrm{i}} \mathbf{2 0 a}\right.$ or Me 20 b$) . \mathrm{A}$ solution of cis- or trans- $\left[\mathrm{W}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{R}\right)_{2} \mathrm{Cl}_{4}\left(\mu-\mathrm{C}_{4} \mathrm{Me}_{4}\right)\right](0.36$ mmol) in acetone ($15 \mathrm{~cm}^{3}$, technical grade) was treated in air with water $\left(2 \mathrm{~cm}^{3}\right)$ to give a cherry-red solution after 2 h . The volatiles were removed under reduced pressure and the residues
crystallised from toluene (20a) or dichloromethane-toluene $(1: 1 \mathrm{v} / \mathrm{v}, \mathbf{2 0 b})$ to give the required compounds as dark red microcrystals. Yield: ca. 80%.

X-Ray Crystal Structure Determinations of Complexes 7, 12b and 20b.-Crystal data and data collection and processing parameters are given in Table 9. The general procedure was as follows. A crystal was sealed in a Lindemann glass capillary and transferred to the goniometer head of an Enraf-Nonius CAD4 diffractometer interfaced to a PDP $11 / 23$ minicomputer. Unitcell parameters were calculated from the setting angles of 25 reflections. Three reflections were chosen as intensity standards and were measured every 3600 s of X-ray exposure time, and three orientation controls were measured every 250 reflections. The data were measured using graphite-monochromated Mo- $\mathrm{K} x$ radiation $(\lambda=0.71069 \AA$) and an $\omega-2 \theta$ scan mode. An apparent unit cell transformation for complex 20b was investigated but found not to possess full orthorhombic symmetry.

The data were corrected for Lorentz and polarisation effects and an empirical absorption correction ${ }^{19}$ based on azimuthal scan data was applied. Equivalent reflections were merged and systematically absent reflections rejected. The tungsten atom positions were determined from a Patterson synthesis. Subsequent Fourier difference syntheses revealed the positions of other non-hydrogen atoms. For complexes $\mathbf{1 2 b}$ and $\mathbf{2 0 b}$ nonhydrogen atoms were refined with anisotropic thermal parameters by full-matrix least-squares procedures. Data collection and structure refinement for 7 proved to be problematic. Isotropic crystal decay during data collection (as monitored by three intensity controls) was ca. 65% and data could only be collected to $2 \theta_{\max }=36^{\circ}$. Only the heavy atoms (W and Br) could be successfully subjected to anisotropic refinement; the remainder of the molecule was refined using 'rigid body' approximations (applied to the $\mathrm{C}_{6} \mathrm{H}_{5}, \operatorname{Pr}^{\mathrm{i}}$ and $\mathrm{C}_{5} \mathrm{H}_{4}$ fragments) and self-consistent 'soft restraints' ${ }^{20}$ to preserve the molecular C_{2} symmetry. A final Fourier difference synthesis revealed substantial residual electron density which was successfully modelled as a molecule of dichloromethane of one half occupancy per asymmetric unit. The final residuals (Table 9) are satisfactory given the difficulties described above. For all three molecules, hydrogen atoms were placed in estimated positions ($\mathrm{C}-\mathrm{H} 0.96 \AA$) with fixed isotropic thermal parameters and refined riding their supporting carbon atoms.

For complexes 7 and $\mathbf{2 0 b}$ a Chebyshev weighting scheme ${ }^{21}$ was applied and for all the compounds the data were corrected for the effects of anomalous dispersion and isotropic extinction (via an overall isotropic extinction parameter ${ }^{22}$) in the final stages of refinement. All crystallographic calculations were performed using the CRYSTALS suite ${ }^{23}$ on a Micro VAX 3800 computer in the Chemical Crystallography Laboratory, Oxford. Neutral atom scattering factors were taken from ref. 24.

Additional material available from the Cambridge Crystallo-
graphic Data Centre comprises H-atom coordinates, thermal parameters, and remaining bond lengths and angles.

Acknowledgements

We thank the Chinese Government for support (to Q. F.), the SERC and BP plc for a CASE award (to P. M.) and P. C. McGowan for assistance with measuring NMR spectra.

References

1 M. J. Winter, Adv. Organomet. Chem., 1989, 29, 101.
2 W. A. Buhro and M. H. Chisholm, Adv. Organomet. Chem., 1987, 27, 311.

3 M. L. H. Green, J. D. Hubert and P. Mountford, J. Chem. Soc., Dalton Trans., 1990, 3793.
4 M. L. H. Green and P. Mountford, Organometallics, 1990, 9, 886.
5 F. A. Cotton and X. Feng, Inorg. Chem., 1990, 29, 3187.
6 D. L. Thorn and R. Hoffmann, Inorg. Chem., 1978, 17, 126.
7 M. J. Calhorda and R. Hoffmann, Organometallics, 1986, 5, 2181.
8 W. I. Bailey, M. H. Chisholm, F. A. Cotton and L. A. Rankel, J. Am. Chem. Soc., 1978, 100, 5764; D. S. Ginley, C. R. Bock, M. S. Wrighton, B. Fischer, D. T. Tipton and R. Bau, J. Organomet. Chem., 1978, 157, 41.
9 M. H. Chisholm, K. Folting, D. M. Hoffman and J. C. Huffman, J. Am. Chem. Soc., 1984, 106, 6974.

10 K. J. Ahmed, M. H. Chisholm, K. Folting and J. C. Huffman, Organometallics, 1986, 5, 2171.
11 S. G. Bott, D. L. Clark, M. L. H. Green and P. Mountford, J. Chem. Soc., Dalton Trans., 1991, 471.
12 W. A. Herrman, Adv. Organomet. Chem., 1982, 20, 160.
13 S. A. R. Knox, R. F. D. Stansfield, F. G. A. Stone, M. J. Winter and P. Woodward, J. Chem. Soc., Chem. Commun., 1978, 221.

14 W. Hispo and M. D. Curtis, J. Am. Chem. Soc., 1988, 110, 5218.
15 F. A. Cotton and M. Shang, J. Am. Chem. Soc., 1990, 112, 1584.
16 F. Bottomley and L. Sutin, Adv. Organomet. Chem., 1988, 28, 339; W. A. Nugent and J. M. Mayer, Metal-Ligand Multiple Bonds, Wiley-Interscience, New York, 1988.
17 G. Parkin, R. E. March, W. P. Schaefer and J. E. Bercaw, Inorg. Chem., 1988, 27, 3262.
18 L. Busetto, J. C. Jeffrey, R. M. Mills, F. G. A. Stone, M. J. Went and P. Woodward, J. Chem. Soc., Dalton Trans., 1983, 101.

19 A. C. T. North, D. C. Philips and F. S. Mathews, Acta Crystallogr., Sect. A, 1968, 24, 351.
20 D. J. Watkin, Crystallographic Computing 4: Techniques and New Techniques, eds. N. W. Isaacs and M. R. Taylor, Oxford University Press, Oxford, 1988 and refs. therein.
21 J. S. Rollet, Computing Methods in Crystallography, Pergamon, Oxford, 1965.
22 A. C. Larson, Acta Crystallogr., Sect. A, 1967, 23, 664.
23 D. J. Watkin, J. R. Carruthers and P. W. Betteridge, CRYSTALS User Guide, Chemical Crystallography Laboratory, University of Oxford, 1985.
24 International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4.

[^0]: * Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1992, Issue 1, pp. xx-xxv.
 \ddagger Except for $\mathrm{X}=\mathrm{Cl}, \mathrm{R}=\mathrm{Et}$ where an excess of $\mathrm{C}_{2} \mathrm{Et}_{2}$ may be used since the monoalkyne adduct 3 is insoluble in toluene and thus does not react further with any excess of $\mathrm{C}_{2} \mathrm{Et}_{2}$.

[^1]: *The (x, y) notation refers to the positions of the Et groups in the μ $\mathrm{C}_{4} \mathrm{Et}_{2} \mathrm{Me}_{2}$ fragment.

