Indium Complexes of 1,3-Diphenyltriazene \dagger

John T. Leman, Henry A. Roman and Andrew R. Barron*
Department of Chemistry, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA

The reaction of InCl_{3} with 1,3-diphenyltriazene (Hdpt) in the presence of NEt_{3} gives the six-co-ordinate indium complex $\left[\mathrm{NHEt}_{3}\right]\left[\mathrm{InCl}_{2}(\mathrm{dpt})_{2}\right] \mathbf{1 a}$. The interaction of 1 a with $\left[\mathrm{NEt}_{4}\right] \mathrm{Cl}$ and $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{Cl}$ allows for the isolation of the appropriate salts, $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{InCl}_{2}(\mathrm{dpt})_{2}\right] \mathbf{1 b}$ and $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\operatorname{lnCl}(\mathrm{dpt})_{2}\right] \mathbf{1 c}$. Reaction of Lewis bases, L, with 1 a yields $\left[\mathrm{InCl}_{2}(\mathrm{dpt}) \mathrm{L}_{2}\right], \mathrm{L}=$ pyridine 2, 3,5-dimethylpyridine 3, $\mathrm{PEt}_{3} 4, \mathrm{~L}_{2}=2,2^{\prime}$ bipyridine 5, 1,10 -phenanthroline $6, \mathrm{Me}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PMe}_{2} 7$ or $\mathrm{Et}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PEt}_{2} 8$. The mechanism for these reactions is discussed. No reaction is observed between $\mathbf{1 b}$ and 3,5 -dimethylpyridine. The X -ray structures of 1a, 3, 4 and 5 have been determined. Compounds 2-4 are readily soluble in aromatic hydrocarbon solvents, while 5-8 are insoluble as a consequence of the presence of a supramolecular architecture involving dipolar $\mathrm{In}-\mathrm{Cl} \cdots \mathrm{N}$ interactions in the solid state. All new compounds have been characterised by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR and IR spectroscopy.

The triazenide anion, $\mathrm{RN}=\mathrm{N}-\mathrm{NR}^{-}$, has been reported to act as a monodentate (I), chelate (II) or bridging (III) ligand towards transition metals, ${ }^{1}$ suggesting a formal analogy to the carboxylate anion, $\mathrm{O}=\mathrm{C}(\mathrm{R})-\mathrm{O}^{-}$.

I

II

III

Despite this analogy and the wide range of Group 13 carboxylates reported in the literature, ${ }^{2}$ the only examples of Group 13 triazenides were until recently those of thallium, i.e., $\left[\mathrm{Tl}(\mathrm{dpt})_{3}\right], \quad \mathrm{Hdpt}=1,3$-diphenyltriazene and $\left[\mathrm{Tl}(\mathrm{ppt})_{3}\right]$, $\mathrm{Hppt}=1$-phenyl-3-(2^{\prime}-pyridyl)triazene, which were characterised as tris-chelate complexes by IR spectroscopy, ${ }^{3}$ and the dimeric $[\mathrm{Tl}(\mathrm{dpt})]_{2}$ whose structure was determined by X-ray crystallography. ${ }^{4}$ We have reported that the reaction of AlMe_{3} with Hdpt leads to a single product, $\left[\mathrm{Al}(\mathrm{dpt})_{3}\right]$ [equation (1)],

$$
\begin{equation*}
\mathrm{AlMe}_{3}+3 \mathrm{Hdpt} \longrightarrow\left[\mathrm{Al}(\mathrm{dpt})_{3}\right]+3 \mathrm{MeH} \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& \mathrm{AlMe}_{3}+2 \mathrm{Hdpt} \frac{3,5 \mathrm{Me}_{e_{2}}-\mathrm{py}}{1 \text { equivalent }} \\
& \quad\left[\mathrm{AlMe}(\mathrm{dpt})_{2}\left(3,5 \mathrm{Me}_{2}-\mathrm{py}\right)\right]+2 \mathrm{MeH} \tag{2}
\end{align*}
$$

even when a large excess of AlMe_{3} is employed. ${ }^{5}$ If, however, the reaction is carried out in the presence of a strong Lewis base, such as 3,5 -dimethylpyridine ($3,5 \mathrm{Me}_{2}$-py) a less highly substituted compound cis-[$\mathrm{AlMe}(\mathrm{dpt})_{2}\left(3,5 \mathrm{Me}_{2}\right.$-py $\left.)\right]$ can be isolated, equation (2). ${ }^{6}$

X-Ray crystallographic characterisation of $\left[\mathrm{AlMe}(\mathrm{dpt})_{2}(3,5-\right.$ Me_{2}-py)] revealed it to be the first example of a monomeric six-co-ordinate aluminium alkyl. In addition, a large trans influence was observed for the Al-N distance trans to the methyl ligand, the first observation of such an effect for an aluminium complex.

The possibility that the reactivity of six-co-ordinate Group 13 alkyls would be different from the more usual four-co-ordinate tetrahedral geometry ${ }^{7}$ prompted further study, however this was hindered by the fact that $\left[\mathrm{AlMe}(\mathrm{dpt})_{2}\left(3,5 \mathrm{Me}_{2}-\mathrm{py}\right)\right]$ could only be isolated in low yield, $c a .30 \% .^{6}$ We, therefore,

[^0]investigated alternative syntheses of mono- and di-triazenido complexes from AlCl_{3}. However, the reaction of AlCl_{3} with Hdpt in the presence of NEt_{3} yielded the tris-chelate complex, [$\mathrm{Al}(\mathrm{dpt})_{3}$], as the only isolable product. Since the presence of facile ligand-exchange reactions accounts for the isolation of a number of highly substituted aluminium complexes, ${ }^{8}$ and similar reactions are known to be less accessible for the heavier Group 13 elements, we have investigated the synthesis of 1,3diphenyltriazenide complexes of indium(III). The results of this study are reported herein.

Results and Discussion

Interaction of InCl_{3} with either 1 or 2 equivalents of Hdpt in the presence of NEt_{3} does not yield either of the expected substitution products, i.e., $\left[\mathrm{InCl}_{2}(\mathrm{dpt})\right]$ and $\left[\mathrm{InCl}(\mathrm{dpt})_{2}\right]$, nor their amine complexes. Instead the ionic complex [NHEt_{3}]$\left[\mathrm{InCl}_{2}(\mathrm{dpt})_{2}\right] \mathbf{1 a}$ is formed in near quantitative yield as the only isolated indium-triazenide complex, equation (3). Compound

$\left[\mathrm{NHEt}_{3}\right] \mathrm{Cl}$
1a is soluble in MeCN , tetrahydrofuran (thf), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and CHCl_{3}, and has been fully characterised by elemental analysis, IR and NMR spectroscopy (see Experimental section) and X-ray crystallography.

The tetraethylammonium and $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]+$ salts of $\left[\mathrm{InCl}_{2}(\mathrm{dpt})_{2}\right]^{-}$may readily be prepared by cation exchange [see Experimental section and equation (4)]. All the salts
$\left[\mathrm{NHEt}_{3}\right]\left[\mathrm{InCl}_{2}(\mathrm{dpt})_{2}\right]+\mathrm{MCl} \longrightarrow[\mathrm{M}]\left[\mathrm{InCl}_{2}(\mathrm{dpt})_{2}\right]+$
$\left[\mathrm{NHEt}_{3}\right] \mathrm{Cl}$

$$
\begin{equation*}
\mathrm{M}=\mathrm{NEt}_{4} \mathbf{l b} \text { or } \mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2} \mathbf{1 c} \tag{4}
\end{equation*}
$$

show conductivities in MeCN consistent with 1:1 electrolytes (see Experimental section). ${ }^{9}$

The structure of compound 1a is shown in Fig. 1; selected bond lengths and angles are given in Table 1. Compound 1a consists of a $\left[\mathrm{InCl}_{2}(\mathrm{dpt})_{2}\right]^{-}$anion hydrogen-bonded via one of the chlorides to a triethylammonium cation $[\mathrm{Cl}(2) \cdots \mathrm{H}(10 \mathrm{a})$ 1.94(2) $\AA, \mathrm{Cl}(2) \cdots \mathrm{N}(7) 3.142(9) \AA]$. The co-ordination geometry around indium is a highly trigonally distorted octahedron [$\mathrm{Cl}(1)-\mathrm{In}-\mathrm{N}(1) 154.8(2), \mathrm{Cl}(2)-\mathrm{In}-\mathrm{N}(3) 151.6(2)$,

Fig. 1 The structure of $\left[\mathrm{NHEt}_{3}\right]\left[\operatorname{InCl}_{2}(\mathrm{dpt})_{2}\right]$ 1a. Thermal ellipsoids are drawn at the 40% level, and all carbon-bound hydrogens are omitted for clarity

Table 1 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{NHEt}_{3}\right]$ $\left[\mathrm{InCl}_{2}(\mathrm{dpt})_{2}\right] \mathbf{1 a}$

$\mathrm{In}-\mathrm{Cl}(1)$	$2.428(3)$	$\mathrm{In}-\mathrm{Cl}(2)$	$2.474(3)$
$\mathrm{In}-\mathrm{N}(1)$	$2.272(8)$	$\mathrm{In}-\mathrm{N}(2)$	$2.272(7)$
$\mathrm{In}-\mathrm{N}(3)$	$2.283(7)$	$\mathrm{In}-\mathrm{N}(4)$	$2.250(7)$
$\mathrm{N}(1)-\mathrm{N}(12)$	$1.294(10)$	$\mathrm{N}(1)-\mathrm{C}(11)$	$1.431(13)$
$\mathrm{N}(2)-\mathrm{N}(12)$	$1.284(10)$	$\mathrm{N}(2)-\mathrm{C}(21)$	$1.452(11)$
$\mathrm{N}(3)-\mathrm{N}(34)$	$1.289(10)$	$\mathrm{N}(3)-\mathrm{C}(31)$	$1.436(12)$
$\mathrm{N}(4)-\mathrm{N}(34)$	$1.276(10)$	$\mathrm{N}(4)-\mathrm{C}(41)$	$1.427(11)$
$\mathrm{Cl}(1)-\mathrm{In}-\mathrm{Cl}(2)$	$96.3(1)$	$\mathrm{Cl}(1)-\mathrm{In}-\mathrm{N}(1)$	$154.8(2)$
$\mathrm{Cl}(1)-\mathrm{In}-\mathrm{N}(2)$	$100.4(2)$	$\mathrm{Cl}(1)-\mathrm{In}-\mathrm{N}(3)$	$95.4(2)$
$\mathrm{Cl}(1)-\mathrm{In}-\mathrm{N}(4)$	$103.0(2)$	$\mathrm{Cl}(2)-\mathrm{In}-\mathrm{N}(1)$	$89.1(2)$
$\mathrm{Cl}(2)-\mathrm{In}-\mathrm{N}(2)$	$108.2(2)$	$\mathrm{Cl}(2)-\mathrm{In}-\mathrm{N}(3)$	$151.6(2)$
$\mathrm{Cl}(2)-\mathrm{In}-\mathrm{N}(4)$	$97.4(2)$	$\mathrm{N}(1)-\mathrm{In}-\mathrm{N}(2)$	$54.8(3)$
$\mathrm{N}(1)-\mathrm{In}-\mathrm{N}(3)$	$91.3(3)$	$\mathrm{N}(1)-\mathrm{In}-\mathrm{N}(4)$	$100.6(3)$
$\mathrm{N}(2)-\mathrm{In}-\mathrm{N}(3)$	$95.0(2)$	$\mathrm{N}(2)-\mathrm{In}-\mathrm{N}(4)$	$142.9(3)$
$\mathrm{N}(3)-\mathrm{In}-\mathrm{N}(4)$	$54.7(2)$	$\mathrm{In}-\mathrm{N}(1)-\mathrm{N}(12)$	$98.3(5)$
$\mathrm{In}-\mathrm{N}(1)-\mathrm{C}(11)$	$144.9(6)$	$\mathrm{N}(12)-\mathrm{N}(1)-\mathrm{C}(11)$	$166.8(8)$
$\mathrm{In}-\mathrm{N}(2)-\mathrm{N}(12)$	$98.6(5)$	$\mathrm{In}-\mathrm{N}(2)-\mathrm{C}(21)$	$145.0(6)$
$\mathrm{N}(12)-\mathrm{N}(2)-\mathrm{C}(21)$	$116.3(7)$	$\mathrm{In}-\mathrm{N}(3)-\mathrm{N}(34)$	$97.3(5)$
$\mathrm{In}-\mathrm{N}(3)-\mathrm{C}(31)$	$146.7(6)$	$\mathrm{N}(31)-\mathrm{C}(3)-\mathrm{C}(31)$	$115.9(7)$
$\mathrm{In}-\mathrm{N}(4)-\mathrm{N}(34)$	$99.3(5)$	$\mathrm{In}-\mathrm{N}(4)-\mathrm{C}(41)$	$143.2(6)$
$\mathrm{N}(34)-\mathrm{N}(4)-\mathrm{C}(41)$	$116.7(7)$	$\mathrm{N}(1)-\mathrm{N}(12)-\mathrm{N}(2)$	$108.3(7)$
$\mathrm{N}(3)-\mathrm{N}(34)-\mathrm{N}(4)$	$108.6(8)$		

$\left.\mathrm{N}(2)-\mathrm{In}-\mathrm{N}(4) 142.9(3)^{\circ}\right]$, with the chloride ligands mutually cis, and the two triazenides acting as bidentate chelating ligands. It is unclear as to whether this conformation is retained in solution, since only a single set of resonances is observed for the triazenide ligands in the ${ }^{1} \mathrm{H}$ NMR spectrum. The $\mathrm{N}-\mathrm{In}-\mathrm{N}$ chelate angles [$\left.\mathrm{N}(1)-\mathrm{In}-\mathrm{N}(2) 54.8(3), \mathrm{N}(3)-\mathrm{In}-\mathrm{N}(4) 54.7(2)^{\circ}\right]$ are larger than those observed for aluminium triazenide compounds [64.1-64.2 ${ }^{\circ}$, ${ }^{10}$ consistent with the increased ionic radii for $\mathrm{In}^{3+}(0.81 \AA)$ versus $\mathrm{Al}^{3+}(0.51 \AA) .{ }^{11}$ The $\mathrm{In}-\mathrm{N}$ distances in 1a [2.250(7)-2.283(7) \AA] are comparable to those reported for other six-co-ordinate indium complexes [2.233(6)$2.299(4) \AA]^{12,13}$ as well as the axial substituents in the trigonalbipyramidal complex $\left[\operatorname{InCl}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{NMe}_{2}\right)\right\}_{2}\right]$ [2.442(3) and $2.482(2) \AA],{ }^{14}$ and the four-co-ordinate pyrazolylborate
complexes reported by Reger et al. ${ }^{15}$ [2.131(2)-2.257(3) $\left.\AA\right]$. The range of values, and their relatively high estimated standard deviations, do not allow the confirmation of any significant trans influence (see below). The $\mathrm{In}-\mathrm{Cl}$ distances in 1 a [$\mathrm{In}-\mathrm{Cl}(1)$ $2.428(3), \mathrm{In}-\mathrm{Cl}(2) 2.474(3) \AA]$ are significantly larger than found for the four-co-ordinate compounds $\left[\mathrm{InMeCl}_{2}\right][2.384(1) \AA]^{16}$ and $[\mathrm{InMeCl} 3]^{-}[2.394(3), 2.397(4)$ and 2.409(3) $\AA] .{ }^{17}$ This difference is as would be expected from a consideration of both steric and electronic factors. The $\mathrm{In}-\mathrm{Cl}$ distances in $1 \mathbf{1 a}$ are dissimilar, with that hydrogen bonded to the triethylammonium cation being $0.046 \AA$ longer. Since the chlorides are similarly oriented to their trans ligands we can assume this difference is real and possibly due to the presence of the hydrogen bonding to the triethylammonium cation. We have observed similar differences in $\mathrm{M}-\mathrm{Cl}$ distances for anionic aluminium dichloride complexes in which hydrogen bonding interactions are present. ${ }^{18}$ The $\mathrm{In}-\mathrm{Cl}$ distance for the chloride not involved in hydrogen bonding [2.428(3) \AA] is identical to those in the six-co-ordinate indium pyrazolylborate complex $\left[\mathrm{InCl}_{2}(\mathrm{NCMe})\right.$ $\left.\left\{\left(3,5 \mathrm{Me}_{2}-\mathrm{pz}\right)_{3} \mathrm{BH}\right\}\right][2.428(2)$ and $2.429(2) \AA]\left(3,5 \mathrm{Me}_{2}-\mathrm{pz}=\right.$ 3,5-dimethylpyrazolyl). ${ }^{13}$

The insolubility of 1 a in the reaction solvents toluene (the medium of choice, see Experimental section), pentane and diethyl ether cannot be responsible for the isolation of 1a, in the absence of $\left[\operatorname{In}(\mathrm{dpt})_{3}\right]$ or any other intermediate products, irrespective of the $\mathrm{InCl}_{3} / \mathrm{Hdpt}$ ratio, since if the reaction is carried out in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, MeCN or thf a homogeneous solution is obtained in which $1 \mathbf{1 a}$ is the only isolated indium-triazenide complex. Therefore the stability of $\mathbf{1 a}$ towards further reaction is in contrast to the analogous reaction between $\mathrm{AlCl}_{3}, \mathrm{Hdpt}$ and NEt_{3} where $\left[\mathrm{Al}(\mathrm{dpt})_{3}\right.$] is the only product observed.

Although we have no direct evidence for the mechanism of the reaction leading to $1 \mathbf{a}$, we propose the following based on analogy with other Group 13 systems. We have observed that NEt_{3} does not deprotonate Hdpt , in fact $\left[\mathrm{NHEt}_{3}\right]^{+}$is sufficiently acidic to react with $\mathrm{Na}(\mathrm{dpt})$ to yield Hdpt, i.e., equation (5). We must therefore assume that Hdpt reacts

$$
\begin{equation*}
\mathrm{Na}(\mathrm{dpt})+\left[\mathrm{NHEt}_{3}\right]^{+} \longrightarrow \mathbf{H d p t}+\mathrm{Na}^{+}+\mathrm{NEt}_{3} \tag{5}
\end{equation*}
$$

directly with InCl_{3} to yield the four-co-ordinate complex

Fig. 2 The molecular structure of $\left[\mathrm{InCl}_{2}(\mathrm{dpt})\left(3,5 \mathrm{Me}_{2}-\mathrm{py}\right)_{2}\right]$ 3. Thermal ellipsoids are drawn at the 50% level, and all hydrogens are omitted for clarity

Fig. 3 The molecular structure of $\left[\operatorname{InCl}_{2}(\mathrm{dpt})\left(\mathrm{PEt}_{3}\right)_{2}\right]$ 4. Thermal ellipsoids are drawn at the 40% level, and all hydrogen atoms are omitted for clarity
$\left[\mathrm{InCl}_{2}(\mathrm{dpt})\right]$ and HCl [equation (6)], the latter being trapped by the triethylamine.

$$
\begin{equation*}
\mathrm{Hdpt}+\mathrm{InCl}_{3} \xrightarrow{-\mathrm{HCl}}\left[\mathrm{InCl}_{2}(\mathrm{dpt})\right] \tag{6}
\end{equation*}
$$

The mono-dpt complex may be converted to the five-coordinate bis-dpt complex $\left[\operatorname{InCl}(\mathrm{dpt})_{2}\right]$, the obvious precursor to 1, by two possible routes. First, $\left[\mathrm{InCl}_{2}(\mathrm{dpt})\right]$ reacts with a second equivalent of Hdpt, i.e., equation (7). Secondly, a ligand disproportionation may occur as per equation (8).

$$
\begin{equation*}
\left[\mathrm{InCl}_{2}(\mathrm{dpt})\right] \xrightarrow[-\mathrm{HCl}]{+\mathrm{Hdpt}}\left[\mathrm{InCl}(\mathrm{dpt})_{2}\right] \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
2\left[\operatorname{InCl}_{2}(\mathrm{dpt})\right] \longrightarrow\left[\operatorname{InCl}(\mathrm{dpt})_{2}\right]+\mathrm{InCl}_{3} \tag{8}
\end{equation*}
$$

Given that the isolation of 1 a is independent of the order of reactant addition during the reaction, and the observation of similar exchange reactions for other Group 13 complexes, we believe the latter option to be the more likely. The subsequent reassociation of chloride to the co-ordinatively unsaturated monochloride $\left[\mathrm{InCl}(\mathrm{dpt})_{2}\right]$ leads to 1a, equation (9).

$$
\begin{equation*}
\left[\mathrm{InCl}(\mathrm{dpt})_{2}\right]+\mathrm{Cl}^{-} \longrightarrow\left[\mathrm{InCl}_{2}(\mathrm{dpt})_{2}\right]^{-} \tag{9}
\end{equation*}
$$

We presume therefore that in the case of the reaction of AlCl_{3} with Hdpt and NEt_{3} the five-co-ordinate monochloride complex $\left[\mathrm{AlCl}(\mathrm{dpt})_{2}\right]$ undergoes further ligand exchange to give the tris-triazenide complex, equation (10). Similar reactivity is also

$$
\begin{equation*}
2\left[\mathrm{AlCl}(\mathrm{dpt})_{2}\right] \longrightarrow\left[\mathrm{Al}(\mathrm{dpt})_{3}\right]+\left[\mathrm{AlCl}_{2}(\mathrm{dpt})\right] \tag{10}
\end{equation*}
$$

observed for aryloxide and acetylacetonate complexes of aluminium. ${ }^{8,19}$

Reaction of $\left[\mathrm{NHEt}_{3}\right]\left[\mathrm{InCl}_{2}(\mathrm{dpt})_{2}\right]$ with Lewis Bases.Treatment of compound la with monodentate Lewis base, L, results in a nearly quantitative yield of $\left[\mathrm{InCl}_{2}(\mathrm{dpt}) \mathrm{L}_{2}\right][\mathrm{L}=$ pyridine (py) 2, 3,5Me - py 3 or $\mathrm{PEt}_{3} 4$)] [equation (11)]. No

$$
\begin{equation*}
\left[\mathrm{NHEt}_{3}\right]\left[\mathrm{InCl}_{2}(\mathrm{dpt})\right] \xrightarrow[-\mathrm{Hdpt}]{+\mathrm{L} \text { (xcess })}\left[\mathrm{InCl}_{2}\left({\mathrm{dpt}) \mathrm{L}_{2}}\right]\right. \tag{11}
\end{equation*}
$$

reaction is observed between 1 a and $\mathrm{MeCN}, \mathrm{NEt}_{3}, \mathrm{P}(\mathrm{OMe})_{3}$, $\mathrm{PPh}_{3}, \mathrm{PPh}_{2} \mathrm{Me}, \mathrm{PPhMe} e_{2}, \mathrm{PBu}_{3}$ or thf.

Compounds 2-4 are all soluble in thf, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$ and MeCN (3 only sparingly), and in the latter show conductivities consistent with molecular species. In addition, 2 and 4 are sufficiently soluble in benzene to obtain NMR spectra. Each compound has been characterised by IR and NMR spectroscopy (see Experimental section). The presence of a single set of resonances for the Lewis base ligand L, in ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$, and for $4^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$, NMR spectra suggests that they are either mutually trans, with the chloride ligands cis (IV) or trans (V). The problem of assessing the relative stabilities of $\operatorname{In} X_{2} L_{4}$ species has been discussed by Carty and Tuck ${ }^{20}$ using the model of ligand steric angles developed by Zahrobsky, ${ }^{21}$ the conclusion being that the cis dichloro isomer IV is more stable than the trans dichloro isomer \mathbf{V}. In addition, structure IV should be favoured over V due to a co-operativity between the highly basic triazenide ligand and the electronegative chlorides. Such effects are often found in the structural Lewis acid-base chemistry of the heavier main-group elements as a result of the nature of the acceptor orbitals at the metal centre. The structures of 3 and 4 have been determined by X-ray crystallography, and have shown structure IV to be correct.

IV

v
The molecular structures of 3 and 4 are shown in Figs. 2 and 3 respectively; selected bond lengths and angles are given in Tables 2 and 3. Both compounds are monomeric with no unusual intermolecular contacts. The indium atoms are six-coordinate equatorially distorted octahedral with the chlorides cis, and the $3,5 \mathrm{Me}$-py (3) and PEt_{3} (4) ligands mutually transaxial. In each case the triazenide ligand is bidentate and chelating. The In-Cl and In-N distances in both compounds are comparable to those in 1a. The In-P distances in 4 [In-P(1) $2.647(8)$, In $-\mathrm{P}(1) 2.650(8) \AA]$ are as expected slightly larger than those found for four-co-ordinate indium complexes

Table 2 Selected bond lengths (\AA) and angles (${ }^{\circ}$) for $\left[\operatorname{lnCl}_{2}(\mathrm{dpt})\right.$ $\left.\left(3,5 \mathrm{Me}_{2}-\mathrm{py}\right)_{2}\right] 3$

In-Cl(1)	$2.426(4)$	$\mathrm{In}-\mathrm{Cl}(2)$	$2.414(4)$
$\mathrm{In}-\mathrm{N}(1)$	$2.276(6)$	$\mathrm{In}-\mathrm{N}(2)$	$2.304(6)$
$\mathrm{In}-\mathrm{N}(3)$	$2.312(6)$	$\mathrm{In}-\mathrm{N}(4)$	$2.301(6)$
$\mathrm{N}(1)-\mathrm{N}(12)$	$1.300(7)$	$\mathrm{N}(1)-\mathrm{C}(11)$	$1.404(7)$
$\mathrm{N}(2)-\mathrm{N}(12)$	$1.296(7)$	$\mathrm{N}(2)-\mathrm{C}(21)$	$1.403(7)$
$\mathrm{Cl}(1)-\mathrm{In}-\mathrm{Cl}(2)$	$102.4(1)$	$\mathrm{Cl}(1)-\mathrm{In}-\mathrm{N}(1)$	$104.2(2)$
$\mathrm{Cl}(1)-\mathrm{In}-\mathrm{N}(2)$	$159.2(2)$	$\mathrm{Cl}(1)-\mathrm{In}-\mathrm{N}(3)$	$92.0(2)$
$\mathrm{Cl}(1)-\mathrm{In}-\mathrm{N}(4)$	$90.6(2)$	$\mathrm{Cl}(2)-\mathrm{In}-\mathrm{N}(1)$	$153.4(1)$
$\mathrm{Cl}(2)-\mathrm{In}-\mathrm{N}(2)$	$98.5(2)$	$\mathrm{Cl}(2)-\mathrm{In}-\mathrm{N}(3)$	$92.7(2)$
$\mathrm{Cl}(2)-\mathrm{In}-\mathrm{N}(4)$	$91.7(2)$	$\mathrm{N}(1)-\mathrm{In}-\mathrm{N}(2)$	$55.0(2)$
$\mathrm{N}(1)-\mathrm{In}-\mathrm{N}(3)$	$88.4(2)$	$\mathrm{N}(1)-\mathrm{In}-\mathrm{N}(4)$	$86.1(2)$
$\mathrm{N}(2)-\mathrm{In}-\mathrm{N}(3)$	$87.1(2)$	$\mathrm{N}(2)-\mathrm{In}-\mathrm{N}(4)$	$88.6(2)$
$\mathrm{N}(3)-\mathrm{In}-\mathrm{N}(4)$	$174.3(2)$	$\mathrm{In}-\mathrm{N}(1)-\mathrm{N}(12)$	$98.5(3)$
$\mathrm{In}-\mathrm{N}(1)-\mathrm{C}(11)$	$114.4(4)$	$\mathrm{N}(12)-\mathrm{N}(1)-\mathrm{C}(11)$	$117.1(5)$
$\mathrm{In}-\mathrm{N}(2)-\mathrm{N}(12)$	$97.2(3)$	$\mathrm{In}-\mathrm{N}(2)-\mathrm{C}(21)$	$145.8(4)$
$\mathrm{N}(12)-\mathrm{N}(2)-\mathrm{C}(21)$	$116.9(4)$	$\mathrm{N}(1)-\mathrm{N}(12)-\mathrm{N}(2)$	$109.2(4)$

Table 3 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\operatorname{InCl}_{2}(\mathrm{dpt})-\right.$ $\left.\left(\mathrm{PEt}_{3}\right)_{2}\right] 4$

In-Cl(1)	$2.467(7)$	$\mathrm{In}-\mathrm{Cl}(2)$	$2.467(7)$
$\mathrm{In}-\mathrm{P}(1)$	$2.647(8)$	$\mathrm{In}-\mathrm{P}(2)$	$2.650(8)$
$\mathrm{In}-\mathrm{N}(1)$	$2.317(8)$	$\mathrm{In}-\mathrm{N}(2)$	$2.338(8)$
$\mathrm{P}(1)-\mathrm{C}(111)$	$1.822(9)$	$\mathrm{P}(1)-\mathrm{C}(113)$	$1.832(8)$
$\mathrm{P}(1)-\mathrm{C}(115)$	$1.804(8)$	$\mathrm{P}(2)-\mathrm{C}(211)$	$1.774(9)$
$\mathrm{P}(2)-\mathrm{C}(213)$	$1.804(8)$	$\mathrm{P}(2)-\mathrm{C}(215)$	$1.847(9)$
$\mathrm{N}(1)-\mathrm{N}(12)$	$1.309(8)$	$\mathrm{N}(1)-\mathrm{C}(11)$	$1.400(9)$
$\mathrm{N}(2)-\mathrm{N}(12)$	$1.304(8)$	$\mathrm{N}(2)-\mathrm{C}(21)$	$1.406(9)$
$\mathrm{Cl}(1)-\mathrm{In}-\mathrm{Cl}(2)$	$106.4(2)$	$\mathrm{Cl}(1)-\mathrm{In}-\mathrm{P}(1)$	$88.9(2)$
$\mathrm{Cl}(1)-\mathrm{In}-\mathrm{P}(2)$	$90.0(2)$	$\mathrm{Cl}(1)-\mathrm{In}-\mathrm{N}(1)$	$153.7(2)$
$\mathrm{Cl}(1)-\mathrm{In}-\mathrm{N}(2)$	$99.8(2)$	$\mathrm{Cl}(2)-\mathrm{In}-\mathrm{P}(1)$	$90.6(2)$
$\mathrm{Cl}(2)-\mathrm{In}-\mathrm{P}(2)$	$91.7(2)$	$\mathrm{Cl}(2)-\mathrm{In}-\mathrm{N}(1)$	$99.6(2)$
$\mathrm{Cl}(2)-\mathrm{In}-\mathrm{N}(2)$	$153.6(2)$	$\mathrm{P}(1)-\mathrm{In}-\mathrm{P}(2)$	$177.6(2)$
$\mathrm{P}(1)-\mathrm{In}-\mathrm{N}(1)$	$87.1(2)$	$\mathrm{P}(1)-\mathrm{In}-\mathrm{N}(2)$	$92.6(2)$
$\mathrm{P}(2)-\mathrm{In}-\mathrm{N}(1)$	$92.9(2)$	$\mathrm{P}(2)-\mathrm{In}-\mathrm{N}(2)$	$85.5(2)$
$\mathrm{N}(1)-\mathrm{In}-\mathrm{N}(2)$	$54.5(2)$	$\mathrm{In}-\mathrm{P}(1)-\mathrm{C}(111)$	$115.2(3)$
$\mathrm{In}-\mathrm{P}(1)-\mathrm{C}(113)$	$110.9(3)$	$\mathrm{In}-\mathrm{P}(1)-\mathrm{C}(115)$	$113.8(3)$
$\mathrm{C}(111)-\mathrm{P}(1)-\mathrm{C}(113)$	$107.3(3)$	$\mathrm{C}(111)-\mathrm{P}(1)-\mathrm{C}(115)$	$103.5(3)$
$\mathrm{C}(113)-\mathrm{P}(1)-\mathrm{C}(115)$	$105.4(4)$	$\mathrm{In}-\mathrm{P}(2)-\mathrm{C}(211)$	$115.4(3)$
$\mathrm{In}-\mathrm{P}(2)-\mathrm{C}(213)$	$111.9(3)$	$\mathrm{In}-\mathrm{P}(2)-\mathrm{C}(215)$	$112.7(3)$
$\mathrm{C}(211)-\mathrm{P}(2)-\mathrm{C}(213)$	$106.5(4)$	$\mathrm{C}(21)-\mathrm{P}(2)-\mathrm{C}(215)$	$105.7(4)$
$\mathrm{C}(213)-\mathrm{P}(2)-\mathrm{C}(215)$	$103.7(4)$	$\mathrm{In}-\mathrm{N}(1)-\mathrm{N}(12)$	$98.6(4)$
$\mathrm{In}-\mathrm{N}(1)-\mathrm{C}(11)$	$144.0(4)$	$\mathrm{N}(12)-\mathrm{N}(1)-\mathrm{C}(11)$	$116.9(5)$
$\mathrm{In}-\mathrm{N}(2)-\mathrm{N}(12)$	$97.7(4)$	$\mathrm{In}-\mathrm{N}(2)-\mathrm{C}(21)$	$145.5(4)$
$\mathrm{N}(12)-\mathrm{N}(2)-\mathrm{C}(21)$	$116.7(5)$	$\mathrm{N}(1)-\mathrm{N}(12)-\mathrm{N}(2)$	$109.2(5)$

[2.481(3)-2.58(1) $\AA] .{ }^{22} \mathrm{~A}$ comparison of the bond distances and angles around the indium centre for 3 and 4 indicates that while the triazenide ligation is essentially identical, the $\mathrm{In}-\mathrm{Cl}$ and In -N (triazenide) distances, and the $\mathrm{Cl}(1)-\mathrm{In}-\mathrm{Cl}(2)$ angle, are larger in 4 than in 3 (see Tables 2 and 3). These differences are all consistent with greater steric congestion around the indium atom in 4 , due to PEt_{3} being sterically larger than $3,5 \mathrm{Me}_{2}$-py.

Given that the reaction of $1 \mathbf{1 a}$ with monodentate Lewis-base ligands yields complexes with two mutually trans Lewis bases per indium then the reaction with bidentate Lewis bases, L-L would be expected to yield the corresponding complexes $\left[\mathrm{InCl}_{2}(\mathrm{dpt})(\mathrm{L}-\mathrm{L})\right]$. This is indeed observed for $\mathrm{L}-\mathrm{L}=2,2^{\prime}$-bipyridine (bipy) 5, 1,10-phenanthroline (phen) 6, 1,2-bis(dimethylphosphino)ethane (dmpe) 7 and 1,2-bis(diethylphosphino)ethane (depe) 8 [equation (12)]. No reaction is observed

$$
\begin{equation*}
\left[\mathrm{InCl}_{2}(\mathrm{dpt})\right]^{-} \xrightarrow[{-[\mathrm{dpl}]^{-}}]{+\mathrm{L}-\mathrm{L}(\text { eccss })}\left[\mathrm{InCl}_{2}(\mathrm{dpt})(\mathrm{L}-\mathrm{L})\right] \tag{12}
\end{equation*}
$$

between 1a and 1,2-dimethoxyethane (dme), 1,2-bis(diphenylphosphino) ethane (dppe), $\mathrm{PhN=NPh}$ or $\mathrm{Me}_{2} \mathrm{NN}=\mathrm{NNMe}_{2}$.

Despite their low solubility in all common solvents (see
below), compounds 5-8 were characterised by IR and NMR spectroscopy. The solid-state ${ }^{31} \mathrm{P}$ CP MAS NMR spectra of 7 and 8 (see Experimental section) show the presence of a single very broad resonance. Thus the existence of either a cis-dichloro (VI) or trans-dichloro (VII) configuration for 5-8 cannot be differentiated. However, from comparison with $\left[\mathrm{InCl}_{2}(\mathrm{acac})\right.$ (bipy)] (acac $=$ acetylacetonate) and from a consideration of ligand sterics the former would be expected to be the more stable. ${ }^{20,21}$ This is confirmed for compound 5 by X-ray crystallography

VI

VII

The molecular structure of $\left[\mathrm{InCl}_{2}(\mathrm{dpt})\right.$ (bipy) $] 5$ is shown in Fig. 4; selected bond lengths and angles are given in Table 4. Compound 5 is monomeric with a six-co-ordinate indium centre. The geometry around indium in 5 is less distorted from a regular octahedron than in $\mathbf{1 a}$ as a consequence of the larger bite angle of bipy [71.7(2) ${ }^{\circ}$] compared to dpt [54.7(2)-55.6(1) ${ }^{\circ}$. The In-N distance associated with the triazenide ligand nitrogen trans to chloride [$\ln -\mathrm{N}(2) 2.301(4) \AA$] is significantly longer than that trans to the bipy nitrogen $[\operatorname{In}-\mathrm{N}(1) 2.253(4) \AA$]. This lengthening is undoubtedly due to the trans influence of the chloride. Although the In-N distances associated with the bipy ligand are within the 3σ condition we note that the distance trans to chloride [$\mathrm{N}(4)$] is the larger, consistent with a slightly larger trans influence for chloride versus the triazenide nitrogen. From a comparison of the indium-ligand distances in 5 and $\left[\mathrm{InCl}_{2}(\text { acac) }(\text { bipy })]^{12}\right.$ the relative ordering of trans influences may be determined as acac $>\mathrm{Cl}>$ bipy $>\mathrm{dpt}$. It is perhaps surprising that bipy shows a greater trans influence than the triazenido ligand, however the difference may be explained in terms of a 'nearly trans' influence, ${ }^{23}$ i.e., $\mathrm{Cl}(2)$ is more nearly trans to $\mathrm{N}(4)$ than $\mathrm{Cl}(1)$ is to $\mathrm{N}(2)$ [164.3(1) versus 157.5(1) ${ }^{\circ}$].

Whereas compounds 2-4 show significant solubilities in non-co-ordinating solvents, compounds 5-8 are essentially insoluble in all solvents. It is not apparent, however, from a consideration of the trans (IV) versus cis (VI) Lewis-base structures why this difference is observed. A study of the crystal packing diagram of compound 5 (Fig. 5) reveals the presence of small intermolecular distances between $\mathrm{Cl}(1)$ and $\mathrm{N}(12)$ of the adjoining molecule $\left[\mathrm{Cl}(1) \cdots \mathrm{N}\left(12^{\prime}\right) 3.280(9) \AA\right]$ resulting in the formation of a supramolecular architecture consisting of two parallel chains within the unit cell running along the y axis. Since the $\mathrm{Cl} \cdots \mathrm{N}$ distances are outside any expected covalent interaction, and there is no possibility of hydrogen bonding, an interesting question arises. If there is a bonding interaction between the chloride and triazenide ligand, what is the nature of the interaction? Although at present we cannot confirm the presence and/or extent of any $\mathrm{Cl} \ldots \mathrm{N}$ interaction we propose the following models.
(i) The $\mathrm{In}-\mathrm{Cl}$ bond is most certainly polarised towards the chloride resulting in the presence of a signficant dipole, viz. $\mathrm{In}^{6+}-\mathrm{Cl}^{6-}$. In contrast, the polarisation of the N_{3} unit of the co-ordinated triazenido ligand (VIII) is such as to place the

VIII

IX

Fig. 4 The molecular structure of $\left[\mathrm{InCl}_{2}(\mathrm{dpt})(\right.$ bipy $\left.)\right]$ 5. Thermal ellipsoids are drawn at the 50% level, and all hydrogen atoms are omitted for clarity

Table 4 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\operatorname{InCl}_{2}(\mathrm{dpt})(\right.$ bipy $\left.)\right]$ 5

			$2.456(2)$
$\mathrm{In}-\mathrm{Cl}(1)$	$2.403(2)$	$\mathrm{In}-\mathrm{Cl}(2)$	$2.301(4)$
$\mathrm{In}-\mathrm{N}(1)$	$2.253(4)$	$\mathrm{In}-\mathrm{N}(2)$	$2.295(4)$
$\mathrm{In}-\mathrm{N}(3)$	$2.274(5)$	$\mathrm{In}-\mathrm{N}(4)$	$1.415(7)$
$\mathrm{N}(1)-\mathrm{N}(12)$	$1.300(5)$	$\mathrm{N}(1)-\mathrm{C}(11)$	$1.416(6)$
$\mathrm{N}(2)-\mathrm{N}(12)$	$1.294(6)$	$\mathrm{N}(2)-\mathrm{C}(21)$	$1.345(7)$
$\mathrm{N}(3)-\mathrm{C}(31)$	$1.331(6)$	$\mathrm{N}(4)-\mathrm{C}(41)$	
$\mathrm{C}(31)-\mathrm{C}(41)$	$1.497(8)$		
$\mathrm{Cl}(1)-\mathrm{In}-\mathrm{Cl}(2)$	$97.9(1)$	$\mathrm{Cl}(1)-\mathrm{In}-\mathrm{N}(1)$	$102.0(1)$
$\mathrm{Cl}(1)-\mathrm{In}-\mathrm{N}(2)$	$157.5(1)$	$\mathrm{Cl}(1)-\mathrm{In}-\mathrm{N}(3)$	$99.3(1)$
$\mathrm{Cl}(1)-\mathrm{In}-\mathrm{N}(4)$	$90.5(1)$	$\mathrm{Cl}(2)-\mathrm{In}-\mathrm{N}(1)$	$102.8(1)$
$\mathrm{Cl}(2)-\mathrm{In}-\mathrm{N}(2)$	$88.6(1)$	$\mathrm{Cl}(2)-\mathrm{In}-\mathrm{N}(3)$	$93.6(1)$
$\mathrm{Cl}(2)-\mathrm{In}-\mathrm{N}(4)$	$164.3(1)$	$\mathrm{N}(1)-\mathrm{In}-\mathrm{N}(2)$	$55.6(1)$
$\mathrm{N}(1)-\mathrm{In}-\mathrm{N}(3)$	$150.9(1)$	$\mathrm{N}(1)-\mathrm{In}-\mathrm{N}(4)$	$88.4(1)$
$\mathrm{N}(2)-\mathrm{In}-\mathrm{N}(3)$	$101.7(1)$	$\mathrm{N}(2)-\mathrm{In}-\mathrm{N}(4)$	$88.8(1)$
$\mathrm{N}(3)-\mathrm{In}-\mathrm{N}(4)$	$71.7(2)$	$\mathrm{In}-\mathrm{N}(1)-\mathrm{N}(12)$	$98.3(3)$
$\mathrm{In}-\mathrm{N}(1)-\mathrm{C}(11)$	$144.1(3)$	$\mathrm{N}(12)-\mathrm{N}(1)-\mathrm{C}(11)$	$117.5(4)$
$\mathrm{In}-\mathrm{N}(2)-\mathrm{N}(12)$	$96.2(3)$	$\mathrm{In}-\mathrm{N}(2)-\mathrm{C}(21)$	$147.1(3)$
$\mathrm{N}(12)-\mathrm{C}(2)-\mathrm{C}(21)$	$116.6(4)$	$\mathrm{In}-\mathrm{N}((3)-\mathrm{C}(31)$	$118.3(4)$
$\mathrm{In}-\mathrm{N}(4)-\mathrm{C}(41)$	$116.9(3)$	$\mathrm{N}(3)-\mathrm{C}(31)-\mathrm{C}(41)$	$116.1(5)$
$\mathrm{N}(4)-\mathrm{C}(41)-\mathrm{C}(31)$	$116.2(4)$		

greatest negative charge on the terminal nitrogens, and therefore the central nitrogen, in the present case $\mathrm{N}(12)$, may be considered to be relatively electronic deficient. Thus, the interaction may be considered to be dipole-dipole (IX).
(ii) The $\operatorname{In}(1)-\mathrm{Cl}(1)$ vector is close to perpendicular to the $\operatorname{In} \mathrm{N}_{3}$ plane of the adjacent molecule (119.6 ${ }^{\circ}$. Such an orientation would be consistent with donation of electron density from a lone-pair chlorine in the $\mathrm{N}(12)$ centred π^{*} orbital of the triazenido ligand (X). ${ }^{24}$

We are at present further investigating this interesting effect, however we note that we have observed a related solid-state interaction between an aromatic $\mathrm{C}-\mathrm{H}$ bond of the $\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}$ cation and the semi-filled π^{*} orbital of the ligand-centred radical anion $\left[\mathrm{Al}(\mathrm{dpt})_{3}\right]^{-.9}$

Unfortunately we have been unable to obtain X-ray quality crystals of compounds $6-8$, to confirm the presence of

Fig. 5 Unit-cell packing diagram for $\left[\mathrm{InCl}_{2}(\mathrm{dpt})(\right.$ bipy $\left.)\right]$ 5, viewed down the z axis. The $\mathrm{In}-\mathrm{Cl} \cdots \mathrm{N}$ dipolar interactions are indicated by broken lines
analogous intermolecular architecture, however based solely on their insolubility it appears as though such structure may be a common motif for the cis,cis,cis configuration of $\left[\mathrm{InCl}_{2}(\mathrm{dpt})(\mathrm{L}-\mathrm{L})\right]$.

The formation of compounds $2-8$ from $1 \mathbf{a}$ is intriguing. Since the anion $\left[\mathrm{InCl}_{2}(\mathrm{dpt})_{2}\right]^{-}$may be considered as the complex of the Lewis acid $\left[\operatorname{InCl}(\mathrm{dpt})_{2}\right]$ and a chloride ion, the reaction with Lewis bases, L, may be expected to yield the neutral complexes $\left[\operatorname{InCl}(\mathrm{dpt})_{2} \mathrm{~L}\right]$. However, the observed reactivity involves loss of a triazenide ligand.

Although we have little direct evidence for the reaction mechanism of this unusual transformation we propose the following: while the uncomplexed triazenide anion is clearly a stronger base than NEt_{3}, and thus equation (13) lies sufficiently

$$
\begin{equation*}
\mathrm{Hdpt}+\mathrm{NEt}_{3} \rightleftharpoons\left[\mathrm{NHEt}_{3}\right][\mathrm{dpt}] \tag{13}
\end{equation*}
$$

far to the left that [NHEt_{3}][dpt] cannot be isolated, it is obvious that the co-ordinated triazenide anion is a considerably weaker base, viz. the isolation of compound 1a. The inertness of 1b towards reactions with $3,5 \mathrm{Me}_{2}$-py (see above) indicates, however, that the reaction of 1a with Lewis bases cannot follow either a simple associative or dissociative mechanism, but must involve the triethylammonium protons. Thus, while in the solid state the proton is clearly associated with the triethylamine, as confirmed by IR spectroscopy and X-ray crystallography, in solution, we propose it to be in rapid equilibrium, i.e., equation (14).

$$
\begin{equation*}
\left[\mathrm{NHEt}_{3}\right]\left[\mathrm{InCl}_{2}\left(\mathrm{dpt}_{2}\right] \stackrel{\rightharpoonup}{\mathrm{NEt}_{3}}+\left[\mathrm{InCl}_{2}(\mathrm{dpt})(\mathrm{Hdpt})\right]\right. \tag{14}
\end{equation*}
$$

An obvious consequence of the formation of a protonated dpt would be its conversion into a monodentate ligand. The resulting five-co-ordinate indium complex reacts with the Lewis base leading to the eventual substitution of the Hdpt ligand for two equivalents of L. Supporting evidence for such a protonation-substitution reaction is obtained from the following:
(i) While compound 1 b does not react with $3,5 \mathrm{Me}_{2}$-py even under forcing conditions ($12 \mathrm{~h}, c a .83{ }^{\circ} \mathrm{C}$), the addition of either $\left[\mathrm{NHEt}_{3}\right] \mathrm{Cl}$ or 2,6-dimethylpyridinium chloride results in the slow formation of 3, albeit in low yield, ca. 25%, after a 24 h reaction time ($25^{\circ} \mathrm{C}$).
(ii) The reaction of $\mathbf{1 b}$ with $3,5 \mathrm{Me}_{2}$-py in the presence of trifluoroacetic acid results in the formation of 3 in $\mathrm{ca} .90 \%$ yield [equation (15)].

$$
\begin{align*}
& {\left[\mathrm{NEt}_{4}\right]\left[\mathrm{InCl}_{2}(\mathrm{dpt})_{2}\right]+\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H} \frac{+23,5 \mathrm{Me}_{2}-\mathrm{py}}{-\left[\mathrm{NE}_{4}\right]\left[\mathrm{O}_{2} \mathrm{CCF}_{3}\right]}} \\
& \qquad\left[\mathrm{InCl}_{2}(\mathrm{dpt})\left(3,5 \mathrm{Me}_{2}-\mathrm{py}\right)_{2}\right]+\mathrm{Hdpt} \tag{15}
\end{align*}
$$

(iii) While the reaction of 1a with the Lewis bases may conceivably proceed via the protonated base, such a reaction is highly unlikely in light of their relative proton basicities as compared to $\mathrm{NEt}_{3} ; \mathrm{p} K_{\mathrm{B}} \mathrm{NEt}_{3}$ (3.36) versus $3,5 \mathrm{Me}_{2}$-py (7.85), PEt_{3} (8.69), py (8.75), phen (9.16) and bipy (9.56). ${ }^{25}$

Experimental

Microanalyses were performed by Oneida Research Services, Inc., Whitesboro, New York. Melting points were determined in sealed capillaries and are uncorrected. Infrared spectra (4000$400 \mathrm{~cm}^{-1}$) were recorded on a Nicolet 205 FT-IR spectrometer in KBr pellets, NMR spectra on Bruker AM-250 (${ }^{1} \mathrm{H}$) and AM$500\left({ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}\right.$ and $\left.{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}\right)$ spectrometers [δ relative to external $\mathrm{SiMe}_{4}\left({ }^{1} \mathrm{H}\right.$ and $\left.{ }^{13} \mathrm{C}\right)$ and $\left.95 \%{ }_{3} \mathrm{H}_{3} \mathrm{PO}_{4}\left({ }^{31} \mathrm{P}\right)\right]$. Solidstate ${ }^{31} \mathrm{P}$ cross-polarisation magic angle spinning (CP MAS) NMR spectra were obtained on a Chemagnetics CMC-200A spectrometer. Conductivities were determined on approximately $1 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ solutions with an A. H. Thomas Co. Serfas AC conductivity bridge RCM 15B1 using a cathode-ray oscillograph as a null detector. All manipulations were carried out under nitrogen. Solvents were dried, distilled and degassed before use. Acetonitrile for conductivity measurements was specially purified by successive distillation from $\mathrm{CaH}_{2}, \mathrm{P}_{2} \mathrm{O}_{5}$ and CaH_{2}. 1,3-Diphenyltriazene was prepared following the literature method. ${ }^{26}$ All remaining Lewis bases were used as received from commercial sources.

Triethylammonium cis-Dichlorobis(1,3-diphenyltriazenido)indate(iII) 1a.-A solution of 1,3-diphenyltriazene ($2.83 \mathrm{~g}, 14.3$ $\mathrm{mmol})$ and $\mathrm{NEt}_{3}\left(1.45 \mathrm{~g}, 2.00 \mathrm{~cm}^{3}, 14.5 \mathrm{mmol}\right)$ in toluene (20 cm^{3}) was added dropwise via cannula over a period of 30 min to a suspension of $\mathrm{InCl}_{3}(1.59 \mathrm{~g}, 7.19 \mathrm{mmol})$ in toluene $\left(30 \mathrm{~cm}^{3}\right)$. The resulting bright orange slurry was heated at $80^{\circ} \mathrm{C}$ for 30 min following the addition. After standing overnight at $-24^{\circ} \mathrm{C}$ in a freezer, the reaction mixture was filtered, washed with pentane ($2 \times 50 \mathrm{~cm}^{3}$) and vacuum dried. Yield: 5.38 g of an approximately equimolar mixture of $\mathbf{1 a}$ and $\left[\mathrm{NHEt}_{3}\right] \mathrm{Cl}(92 \%$ of theoretical). Crystallisation of this crude precipitate from a saturated solution of MeCN gave large, bright-orange, X-ray quality crystals of $\mathbf{1}$. An analytically pure sample was obtained by briefly washing with cold methanol ($20 \mathrm{~cm}^{3}$) to remove a small quantity of $\left[\mathrm{NHEt}_{3}\right] \mathrm{Cl}$ that had co-crystallised with the product: yield $2.79 \mathrm{~g}, 57 \%$; m.p. $170^{\circ} \mathrm{C}$ (Found: C, $52.90 ; \mathrm{H}, 5.35$; $\mathrm{N}, 14.50$. Calc. for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{Cl}_{2} \mathrm{InN}_{7}: \mathrm{C}, 52.95 ; \mathrm{H}, 5.35 ; \mathrm{N}$, 14.40%. IR (cm^{-1}): $3450(\mathrm{br}) \mathrm{m}, \mathrm{v}(\mathrm{N}-\mathrm{H}), 3026 \mathrm{~m}, 2818 \mathrm{w}, 2736 \mathrm{w}$, 2546(br) w, 1948w, 1875w, 1801w, 1738w, 1592s, 1498m, 1483s, $1459 \mathrm{~m}, 1416 \mathrm{w}, 1392 \mathrm{w}, 1363 \mathrm{~s}, 1334 \mathrm{~s}$, 1310s, 1280s, 1237s, 1218s, $1168 \mathrm{~m}, 1156 \mathrm{~m}, 1074 \mathrm{~m}, 1010 \mathrm{~m}, 905 \mathrm{~m}, 833 \mathrm{w}, 763 \mathrm{~s}, 693 \mathrm{~s}, 661 \mathrm{~s}$, $613 \mathrm{w}, 517 \mathrm{~m}, 487 \mathrm{~m}$ and 412 w . NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right){ }^{1} \mathrm{H}, \delta 7.54[8 \mathrm{H}$, d, $\left.J(\mathrm{H}-\mathrm{H}) 6.8, o-\mathrm{C}_{6} \mathrm{H}_{5}\right], 7.25[4 \mathrm{H}$, apparent $\mathrm{t}, J(\mathrm{H}-\mathrm{H}) 6.2, m-$ $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right], 7.04$ [2 H , apparent $\left.\mathrm{t}, J(\mathrm{H}-\mathrm{H}) 5.8, p-\mathrm{C}_{6} \mathrm{H}_{5}\right], 3.11[6 \mathrm{H}, \mathrm{q}$, $\left.J(\mathrm{H}-\mathrm{H}) 6.1 \mathrm{~Hz}, \mathrm{NCH}_{2}\right]$ and $1.22[9 \mathrm{H}, \mathrm{t}, J(\mathrm{H}-\mathrm{H}) 6.1 \mathrm{~Hz}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{3}\right] ;{ }^{13} \mathrm{C}, \delta 148.2(\mathrm{~N}-\mathrm{C}), 130.1\left(m-\mathrm{C}_{6} \mathrm{H}_{5}\right), 124.8(p-$ $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 119.7\left(o-\mathrm{C}_{6} \mathrm{H}_{5}\right), 48.1\left(\mathrm{NCH}_{2} \mathrm{CH}_{3}\right)$ and $9.3\left(\mathrm{NCH}_{2} \mathrm{CH}_{3}\right)$. Conductivity: $\Lambda_{M} 120 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.

Tetraethylammonium cis-Dichlorobis(1,3-diphenyltriazenido)indate(III) 1b.-Compound 1a ($5.103 \mathrm{~g}, 7.54 \mathrm{mmol}$) was dissolved in $\mathrm{MeCN}\left(90 \mathrm{~cm}^{3}\right)$ and $\left[\mathrm{NEt}_{4}\right] \mathrm{Cl}(1.243 \mathrm{~g}, 7.50 \mathrm{mmol})$ added in one portion. After stirring for 10 min a voluminous precipitate appeared. The reaction was heated to effect dissolution and the volume of the solvent reduced to $50 \mathrm{~cm}^{3}$ under vacuum. Slow cooling to $-24^{\circ} \mathrm{C}$, followed by washing with $\mathrm{Et}_{2} \mathrm{O}\left(2 \times 20 \mathrm{~cm}^{3}\right)$ and vacuum drying gave orange crystals, yield $3.20 \mathrm{~g}, 60 \%$; m.p. $213-214^{\circ} \mathrm{C}$ (Found: C, $54.25 ; \mathrm{H}$, 5.60; N, 13.90. Calc. for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{Cl}_{2} \mathrm{InN}_{7}$: C, $54.25 ; \mathrm{H}, 5.70 ; \mathrm{N}$, 13.85%). IR (cm^{-1}): $3071 \mathrm{w}, 2989 \mathrm{w}, 1590 \mathrm{~s}, 1497 \mathrm{~m}, 1482 \mathrm{~s}, 1458 \mathrm{~m}$, $1438 \mathrm{w}, 1392 \mathrm{~m}, 1365 \mathrm{~m}, 1331 \mathrm{~s}, 1307 \mathrm{~s}$, 1280s, $1233 \mathrm{~s}, 1217 \mathrm{~m}$, $1187 \mathrm{w}, 1172 \mathrm{~m}, 1152 \mathrm{w}, 1072 \mathrm{w}, 996 \mathrm{~m}, 900 \mathrm{~m}, 766 \mathrm{~s}, 751 \mathrm{~s}, 694 \mathrm{~s}$, $663 \mathrm{~s}, 613 \mathrm{w}, 518 \mathrm{~m}, 486 \mathrm{~m}$ and 415 w . NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right)$: ${ }^{1} \mathrm{H}, \delta 7.54$
$\left[8 \mathrm{H}, \mathrm{d}, J(\mathrm{H}-\mathrm{H}) 6.6, o-\mathrm{C}_{6} \mathrm{H}_{5}\right], 7.26[8 \mathrm{H}$, apparent, $J(\mathrm{H}-\mathrm{H}) 6.5, m$ $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right], 7.06\left[4 \mathrm{H}\right.$, apparent $\left.\mathrm{t}, J(\mathrm{H}-\mathrm{H}) 6.2, p-\mathrm{C}_{6} \mathrm{H}_{5}\right], 3.12[8 \mathrm{H}, \mathrm{q}$, $\left.J(\mathrm{H}-\mathrm{H}) 6.1, \mathrm{NCH}_{2}\right], 1.18[12 \mathrm{H}, \mathrm{t}$ of $\mathrm{t}, J(\mathrm{H}-\mathrm{H}) 7.3, J(\mathrm{~N}-\mathrm{H}) 1.8$ $\left.\mathrm{Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right] ;{ }^{13} \mathrm{C}, \delta 148.4(\mathrm{~N}-\mathrm{C}), 130.1\left(m-\mathrm{C}_{6} \mathrm{H}_{5}\right), 124.8(p-$ $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 119.8\left(o-\mathrm{C}_{6} \mathrm{H}_{5}\right), 53.4\left(\mathrm{NCH}_{2} \mathrm{CH}_{3}\right)$ and $7.8\left(\mathrm{NCH}_{2} \mathrm{CH}_{3}\right)$. Conductivity: $\Lambda_{\mathrm{M}} 124 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.

Bis(triphenylphosphoranylidene)ammonium cis-Dichlorobis-(1,3-diphenyltriazenido)indate(III) 1c.--Prepared as for 1 lb using 1a $(0.50 \mathrm{~g}, 0.73 \mathrm{mmol})$ and $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{Cl}(0.422 \mathrm{~g}, 0.73 \mathrm{mmol})$ in $\mathrm{MeCN}\left(20 \mathrm{~cm}^{3}\right)$. No precipitate formed, so the solvent was reduced to half its initial volume and cooled. Yield: $0.728 \mathrm{~g}, 89 \%$, m.p. $148^{\circ} \mathrm{C}$. IR (cm^{-1}): $3061 \mathrm{w}, 1592 \mathrm{~m}, 1483 \mathrm{~s}, 1438 \mathrm{~m}, 1364 \mathrm{~m}$, 1330s, 1308s, 1280s, $1235 \mathrm{~m}, 1185 \mathrm{w}, 1167 \mathrm{w}, 1114 \mathrm{~m}, 1072 \mathrm{w}$, $1027 \mathrm{w}, 997 \mathrm{w}, 762 \mathrm{~m}, 724 \mathrm{~m}, 692 \mathrm{~s}, 662 \mathrm{~m}, 546 \mathrm{~m}, 533 \mathrm{~m}, 499 \mathrm{~m}$. NMR ($\mathrm{CD}_{3} \mathrm{CN}$): ${ }^{1} \mathrm{H}, \delta 7.52\left(38 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.23[8 \mathrm{H}$, apparent $\mathrm{t}, J(\mathrm{H}-\mathrm{H}) 7.9, m-\mathrm{C}_{6} \mathrm{H}_{5}$] and 7.01 [4 H , apparent t , $\left.J(\mathrm{H}-\mathrm{H}) 6.5 \mathrm{~Hz}, p-\mathrm{C}_{6} \mathrm{H}_{5}\right] ;{ }^{13} \mathrm{C}, \delta 148.3(\mathrm{NC}), 134.6,133.3,130.4$, $127.9\left[\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{~N}\left(\mathrm{PPh}_{3}\right)_{2}\right], 130.0\left(m-\mathrm{C}_{6} \mathrm{H}_{5}\right), 124.8\left(p-\mathrm{C}_{6} \mathrm{H}_{5}\right)$ and $119.7\left(o-\mathrm{C}_{6} \mathrm{H}_{5}\right)$. Conductivity: $\Lambda_{\mathrm{M}} 90 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
cis-Dichloro-trans-(1,3-diphenyltriazenido)di(pyridine)indium(III) 2.-Compound $1 \mathrm{la}(2.00 \mathrm{~g}, 2.94 \mathrm{mmol})$ was dissolved in MeCN $\left(30 \mathrm{~cm}^{3}\right)$ and an excess of pyridine ($2 \mathrm{~cm}^{3}$) added via syringe. The reaction solution was refluxed for 2 h . Removal of the solvent and excess pyridine, under vacuum, gave a fine granular orange-yellow solid which was washed with pentane ($2 \times 20 \mathrm{~cm}^{3}$) and vacuum dried. Yield: $0.83 \mathrm{~g}, 52 \%$; m.p. 193$194^{\circ} \mathrm{C}$. IR (cm^{-1}): $3080 \mathrm{w}, 1603 \mathrm{~m}, 1484 \mathrm{~s}, 1446 \mathrm{~s}, 1332 \mathrm{~s}, 1314 \mathrm{~s}$, $1283 \mathrm{~s}, 1244 \mathrm{w}, 1216 \mathrm{~m}, 1155 \mathrm{w}, 1067 \mathrm{~m}, 1040 \mathrm{~m}, 1012 \mathrm{~m}, 901 \mathrm{w}$, $758 \mathrm{~s}, 692 \mathrm{~s}, 657 \mathrm{~m}, 634 \mathrm{~m}, 513 \mathrm{w}$ and 488 w . NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right)$: ${ }^{1} \mathrm{H}, \delta$ $8.79\left[4 \mathrm{H}, \mathrm{d}, J(\mathrm{H}-\mathrm{H}) 4.8, o-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right], 7.99$ [2 H , apparent t , $\left.J(\mathrm{H}-\mathrm{H}) 7.7 \mathrm{~Hz}, p-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right], 7.76\left[4 \mathrm{H}, \mathrm{d}, J(\mathrm{H}-\mathrm{H}) 7.6, o-\mathrm{C}_{6} \mathrm{H}_{5}\right]$, $7.54\left[4 \mathrm{H}\right.$, apparent $\left.\mathrm{t}, J(\mathrm{H}-\mathrm{H}) 7.0, m-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right], 7.36[4 \mathrm{H}$, apparent $\mathrm{t}, J(\mathrm{H}-\mathrm{H}) 7.9, m-\mathrm{C}_{5} \mathrm{H}_{5}$] and $7.12[2 \mathrm{H}$, apparent t , $\left.J(\mathrm{H}-\mathrm{H}) 7.3 \mathrm{~Hz}, p-\mathrm{C}_{6} \mathrm{H}_{5}\right] ;{ }^{13} \mathrm{C}, \delta 148.7\left(o-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right), 148.2$ $\left(\mathrm{NC}_{6} \mathrm{H}_{5}\right), 141.4\left(p-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right), 130.4\left(m-\mathrm{C}_{6} \mathrm{H}_{5}\right), 126.6\left(m-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$, $125.7\left(p-\mathrm{C}_{6} \mathrm{H}_{5}\right)$ and $120.0\left(o-\mathrm{C}_{6} \mathrm{H}_{5}\right)$. Conductivity: $\Lambda_{\mathrm{M}} 10 \Omega^{-1}$ $\mathrm{cm}^{2} \mathrm{~mol}^{-1}$.
cis-Dichloro-trans-bis(3,5-dimethylpyridine)(1,3-diphenyltriazenido)indium(III) 3.-Compound $1 \mathbf{1 a}(1.22 \mathrm{~g}, 1.79 \mathrm{mmol})$ was dissolved in $\mathrm{MeCN}\left(30 \mathrm{~cm}^{3}\right.$) and 3,5-dimethylpyridine (0.45 $\mathrm{cm}^{3}, 0.42 \mathrm{~g}, 3.9 \mathrm{mmol}$) added via syringe. A yellow precipitate was instantly formed and the resulting suspension was stirred for 1 h . Removal of the solvent and excess 3,5-dimethylpyridine under vacuum gave a fine granular, orange-yellow solid which was washed with pentane $\left(2 \times 20 \mathrm{~cm}^{3}\right)$ and vacuum dried. Crystals suitable for study by X-ray diffraction were grown at $-24{ }^{\circ} \mathrm{C}$ from a saturated solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \mathrm{~cm}^{3}\right)$ layered with pentane ($15 \mathrm{~cm}^{3}$). Yield: $1.05 \mathrm{~g}, 98 \%$; m.p. $252{ }^{\circ} \mathrm{C}$ (Found: C, $51.20 ; \mathrm{H}, 4.65 ; \mathrm{N}, 11.55$. Calc. for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{InN}_{5}$: C, 52.35 ; H, 4.75; N, 11.75\%). IR (cm^{-1}): 3047(br) w, 2963w, 2921w, $1603 \mathrm{~m}, 1592 \mathrm{~s}, 1484 \mathrm{~s}, 1459 \mathrm{~m}, 1441 \mathrm{w}, 1384 \mathrm{~m}, 1354 \mathrm{w}, 1334 \mathrm{~s}$, $1307 \mathrm{~s}, 1281 \mathrm{~s}, 1215 \mathrm{w}, 1171 \mathrm{~m}, 1147 \mathrm{~m}, 1076 \mathrm{~m}, 1038 \mathrm{~m}, 910 \mathrm{~m}$, $865 \mathrm{~m}, 761 \mathrm{~s}, 696 \mathrm{~s}, 662 \mathrm{~m}, 537 \mathrm{w}, 522 \mathrm{w}, 485 \mathrm{~m}$, and 404 m . NMR $\left(\mathrm{CDCl}_{3}\right):{ }^{1} \mathrm{H}, \delta 8.43\left(4 \mathrm{H}, \mathrm{s}, o-\mathrm{CH}, 3,5 \mathrm{Me}_{2}-\mathrm{py}\right), 7.76[4 \mathrm{H}, \mathrm{d}$, $\left.J(\mathrm{H}-\mathrm{H}) 8.1, o-\mathrm{C}_{6} \mathrm{H}_{5}\right], 7.38\left(2 \mathrm{H}, \mathrm{s}, p-\mathrm{CH}, 3,5 \mathrm{Me}_{2}\right.$-py), $7.30[4, \mathrm{H}$, apparent $\left.\mathrm{t}, J(\mathrm{H}-\mathrm{H}) 8.2, m-\mathrm{C}_{6} \mathrm{H}_{5}\right], 7.05[2 \mathrm{H}$, apparent $\mathrm{t}, J(\mathrm{H}-\mathrm{H})$ $\left.7.3 \mathrm{~Hz}, p-\mathrm{C}_{6} \mathrm{H}_{5}\right] ;{ }^{13} \mathrm{C}, \delta 147.4\left(\mathrm{NC}_{6} \mathrm{H}_{5}\right), 145.4\left(o-\mathrm{CH}, 3,5 \mathrm{Me}_{2}{ }^{-}\right.$ рy), 140.6 ($p-\mathrm{CH}, 3,5 \mathrm{Me}_{2}$-py), 134.5 ($m-\mathrm{CH}, 3,5 \mathrm{Me}_{2}$-py), 129.2 $\left(m-\mathrm{C}_{6} \mathrm{H}_{5}\right), 124.2\left(p-\mathrm{C}_{6} \mathrm{H}_{5}\right), 119.2\left(o-\mathrm{C}_{6} \mathrm{H}_{5}\right)$ and $18.4\left(m-\mathrm{CH}_{3}\right.$, $3,5 \mathrm{Me}_{2}$-py). Conductivity: $\Lambda_{\mathrm{M}} 35 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
cis-Dichloro-trans-(1,3-diphenyltriazenido)bis(triethylphosphine) indium(III) 4.-Compound $1 \mathbf{1 a}(2.06 \mathrm{~g}, 3.03 \mathrm{mmol})$ was dissolved in MeCN ($20 \mathrm{~cm}^{3}$) and $\mathrm{PEt}_{3}\left(0.50 \mathrm{~cm}^{3}, 0.40 \mathrm{~g}, 3.4\right.$ $\mathrm{mmol})$ added via syringe. No precipitate formed in the reaction, so after 1 h at room temperature the solvent was gradually removed under vacuum to promote precipitation. After gently warming to redissolve the solid, the solution was cooled slowly

Table 5 Summary of X-ray diffraction data ${ }^{a}$

Compound	1a	3	4	5
Formula	$\begin{aligned} & \mathrm{C}_{30} \mathrm{H}_{36} \mathrm{Cl}_{2} \mathrm{InN}_{7} \\ & 680.4 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{26} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{InN}_{5} \\ & 596.3 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{24} \mathrm{H}_{40} \mathrm{Cl}_{2} \mathrm{InN}_{3} \mathrm{P}_{2} \\ & 618.3 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{22} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{InN}_{5} \\ & 538.1 \end{aligned}$
Crystal system	Monoclinic	Orthorhombic	Orthorhombic	Monoclinic
Space group	$P 2_{1} / n$	Pbca	Pbca	$P 2_{1} / \mathrm{n}$
a / \AA	9.883(3)	9.246(3)	18.80(1)	13.052(4)
b / \AA	15.405(2)	15.84(3)	15.84(1)	11.653(4)
c / \AA	20.926(4)	36.49(1)	19.45(6)	14.540(6)
$\beta{ }^{\circ}$	91.69(2)			104.91(3)
U / \AA^{3}	3183(5)	5344(4)	5801(4)	2137(1)
Z	4	8	8	4
$D_{\mathrm{c}} / \mathrm{g} \mathrm{cm}^{-3}$	1.171	1.482	1.416	1.672
$F(000)$	11484	2416	2544	1072
Crystal dimensions/mm	$0.24 \times 0.45 \times 0.41$	$0.33 \times 0.25 \times 0.4$	$0.20 \times 0.23 \times 0.30$	$0.24 \times 0.25 \times 0.27$
μ / cm^{-1}	0.76	0.11	0.11	0.13
2θ limits/ ${ }^{\circ}$	4.0-40.0	4.0-55.0	4.0-40.0	4.0-45.0
No. of collected data	3761	7664	3208	2379
No. of unique data	2980	6104	2699	1999
Observed data	2752	4414	2335	1809
$R^{\text {b }}$	0.0757	0.0559	0.0345	0.0283
$R^{\prime}{ }^{\text {c }}$	0.0811	0.0894	0.0474	0.0363
Maximum final residual/e \AA^{-3}	1.29	1.17	1.12	0.56

${ }^{a}$ Details in common: $T=-80^{\circ} \mathrm{C}$; Mo-K α radiation, $\lambda=0.71073 \AA$; criterion for observed data, $F>4 \sigma(F) .{ }^{b} R=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right| / \Sigma\right| F_{\mathrm{o}} \mid$.
${ }^{`} R^{\prime}=\left[\Sigma w\left(\left|F_{\mathrm{o}}\right|-\mid F_{\mathrm{c}}\right)^{2} / \Sigma w\left|F_{\mathrm{o}}\right|^{2}\right]^{\frac{1}{2}} ; w=\sigma^{2}\left(\left|F_{\mathrm{o}}\right|\right) \times x\left(\left|F_{\mathrm{o}}\right|^{2}\right), x=0.0105 \mathbf{1 a}, 0.008$ 3, 0.0004 4, 0.00035.

Table 6 Atomic coordinates $\left(\times 10^{4}\right)$ for $\left[\mathrm{NHEt}_{3}\right]\left[\mathrm{InCl}_{2}(\mathrm{dpt})_{2}\right] \mathbf{1 a}$

Atom			
In	$218(1)$	$8874(1)$	z
$\mathrm{Cl}(1)$	$-1872(3)$	$8530(2)$	$2944(1)$
$\mathrm{Cl}(2)$	$-238(3)$	$7974(2)$	$1482(1)$
$\mathrm{N}(1)$	$2471(8)$	$8759(5)$	$2273(3)$
$\mathrm{N}(12)$	$2807(7)$	$8304(5)$	$273(3)$
$\mathrm{N}(2)$	$1735(8)$	$8159(5)$	$3089(3)$
$\mathrm{C}(11)$	$3533(11)$	$8978(5)$	$1852(5)$
$\mathrm{C}(12)$	$4835(10)$	$8721(6)$	$1919(5)$
$\mathrm{C}(13)$	$5801(11)$	$8987(6)$	$1508(5)$
$\mathrm{C}(14)$	$5429(9)$	$9540(7)$	$1010(5)$
$\mathrm{C}(15)$	$4105(11)$	$9785(7)$	$923(5)$
$\mathrm{C}(16)$	$3156(10)$	$9525(7)$	$1328(4)$
$\mathrm{C}(21)$	$1920(9)$	$7677(6)$	$3681(4)$
$\mathrm{C}(22)$	$825(10)$	$7582(7)$	$4049(5)$
$\mathrm{C}(23)$	$982(11)$	$7147(7)$	$4634(5)$
$\mathrm{C}(24)$	$2207(10)$	$6842(6)$	$4839(5)$
$\mathrm{C}(25)$	$3324(10)$	$6939(7)$	$4476(5)$
$\mathrm{C}(26)$	$3174(9)$	$7365(7)$	$3881(5)$
$\mathrm{N}(3)$	$525(7)$	$10187(4)$	$2933(3)$
$\mathrm{N}(34)$	$97(7)$	$10664(6)$	$2463(3)$
$\mathrm{N}(4)$	$-228(7)$	$10173(5)$	$1992(3)$
$\mathrm{C}(31)$	$1025(10)$	$10644(6)$	$3489(5)$
$\mathrm{C}(32)$	$1331(14)$	$11517(7)$	$3504(6)$
$\mathrm{C}(33)$	$1824(17)$	$11897(8)$	$4050(7)$
$\mathrm{C}(34)$	$1913(17)$	$11423(9)$	$4621(5)$
$\mathrm{C}(35)$	$1561(12)$	$10578(9)$	$4613(6)$
$\mathrm{C}(36)$	$1114(12)$	$10163(7)$	$4055(5)$
$\mathrm{C}(41)$	$-863(9)$	$10579(6)$	$1449(4)$
$\mathrm{C}(42)$	$-923(9)$	$10122(6)$	$881(5)$
$\mathrm{C}(43)$	$-1502(9)$	$10489(7)$	$334(5)$
$\mathrm{C}(44)$	$-2073(11)$	$11318(7)$	$354(5)$
$\mathrm{C}(45)$	$-2015(10)$	$11773(7)$	$930(5)$
$\mathrm{C}(46)$	$-1433(11)$	$11425(7)$	$1462(5)$
$\mathrm{N}(5)$	$-922(11)$	$5994(6)$	$1631(5)$
$\mathrm{C}(51)$	$-2282(20)$	$5938(11)$	$1322(13)$
$\mathrm{C}(52)$	$-2729(25)$	$6364(14)$	$892(16)$
$\mathrm{C}(53)$	$-953(23)$	$5793(13)$	$2264(9)$
$\mathrm{C}(54)$	$349(34)$	$6082(11)$	$2597(9)$
$\mathrm{C}(55)$	$92(17)$	$5497(11)$	$1219(9)$
$\mathrm{C}(56)$	$-196(17)$	$4553(9)$	$1202(9)$

to $-24^{\circ} \mathrm{C}$, from which large orange, X-ray quality crystals grew overnight. Following solvent removal via cannula, the crystals

Table 7 Atomic coordinates $\left(\times 10^{4}\right)$ for $\left[\operatorname{InCl}_{2}(\mathrm{dpt})\left(3,5 \mathrm{Me}_{2}-\mathrm{py}\right)_{2}\right] 3$

Atom	x	l l	
In	$6185(1)$	$1234(1)$	$8039(1)$
$\mathrm{Cl}(1)$	$7270(1)$	$-419(1)$	$8588(1)$
$\mathrm{Cl}(2)$	$4484(1)$	$230(1)$	$7470(1)$
$\mathrm{N}(1)$	$6624(3)$	$1662(3)$	$6678(3)$
$\mathrm{N}(12)$	$6002(3)$	$2540(3)$	$6421(3)$
$\mathrm{N}(2)$	$5488(3)$	$2743(3)$	$7056(3)$
$\mathrm{C}(11)$	$7252(4)$	$1318(4)$	$6065(3)$
$\mathrm{C}(12)$	$8086(4)$	$578(4)$	$6423(4)$
$\mathrm{C}(13)$	$8726(4)$	$213(4)$	$5852(4)$
$\mathrm{C}(14)$	$8538(4)$	$584(4)$	$4919(4)$
$\mathrm{C}(15)$	$7696(4)$	$1313(4)$	$4562(4)$
$\mathrm{C}(16)$	$7062(4)$	$1687(4)$	$5128(3)$
$\mathrm{C}(21)$	$4764(4)$	$3672(4)$	$6872(3)$
$\mathrm{C}(22)$	$4799(4)$	$4530(4)$	$6224(4)$
$\mathrm{C}(23)$	$4057(5)$	$5383(5)$	$6074(4)$
$\mathrm{C}(24)$	$3278(4)$	$5416(5)$	$6560(4)$
$\mathrm{C}(25)$	$3248(4)$	$4578(5)$	$7211(4)$
$\mathrm{C}(26)$	$3985(4)$	$3692(4)$	$7367(4)$
$\mathrm{N}(3)$	$5839(3)$	$1776(3)$	$9432(3)$
$\mathrm{C}(31)$	$6576(4)$	$2370(4)$	$10052(4)$
$\mathrm{C}(32)$	$6450(5)$	$2685(5)$	$10928(4)$
$\mathrm{C}(33)$	$5542(5)$	$2369(5)$	$11188(4)$
$\mathrm{C}(34)$	$4786(5)$	$1742(5)$	$10551(4)$
$\mathrm{C}(35)$	$4942(4)$	$1457(5)$	$9675(4)$
$\mathrm{N}(4)$	$7525(3)$	$2422(3)$	$8830(3)$
$\mathrm{C}(41)$	$7525(4)$	$2726(4)$	$9722(4)$
$\mathrm{C}(42)$	$8341(4)$	$3348(4)$	$10282(4)$
$\mathrm{C}(43)$	$9163(4)$	$3704(4)$	$9907(4)$
$\mathrm{C}(44)$	$9156(4)$	$3403(4)$	$8990(4)$
$\mathrm{C}(45)$	$8323(4)$	$2760(4)$	$8472(4)$

were washed with $\mathrm{Et}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3}\right)$ and vacuum dried. Yield: 1.27 g, 68%; m.p. $165-167^{\circ} \mathrm{C}$ (Found: C, $46.95 ; \mathrm{H}, 6.60 ; \mathrm{N}, 6.95$. Calc. for $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{Cl}_{2} \mathrm{InN}_{3} \mathrm{P}_{2}$: C, 46.60; H, 6.50; N, 6.80%). IR $\left(\mathrm{cm}^{-1}\right)$: 3036 (br) w, 2967s, 2937s, 2909 s , 2879s, 1961w, 1883w, 1809w, $1744 \mathrm{w}, 1592 \mathrm{~s}, 1503 \mathrm{~m}, 1482 \mathrm{~s}, 1458 \mathrm{~s}, 1414 \mathrm{~s}, 1382 \mathrm{~m}, 1351 \mathrm{~s}, 1332 \mathrm{~s}$, $1308 \mathrm{~s}, 1276 \mathrm{~s}, 1236 \mathrm{~s}, 1167 \mathrm{~m}, 1155 \mathrm{~m}, 1073 \mathrm{~m}, 1035 \mathrm{~m}, 908 \mathrm{~s}, 765 \mathrm{~s}$, $726 \mathrm{~s}, 694 \mathrm{~s} 660 \mathrm{~s}, 613 \mathrm{~m}, 517 \mathrm{~m}$ and 184 m . NMR $\left(\mathrm{CDCl}_{3}\right):{ }^{1} \mathrm{H}, \delta$ $7.78\left[4 \mathrm{H}, \mathrm{d}, J(\mathrm{H}-\mathrm{H}) 7.6, o-\mathrm{C}_{6} \mathrm{H}_{5}\right], 7.30[4 \mathrm{H}$, apparent t, $J(\mathrm{H}-\mathrm{H})$ $\left.7.9, m-\mathrm{C}_{6} \mathrm{H}_{5}\right], 7.04\left[2 \mathrm{H}\right.$, apparent $\left.\mathrm{t}, J(\mathrm{H}-\mathrm{H}) 7.9 \mathrm{~Hz}, p-\mathrm{C}_{6} \mathrm{H}_{5}\right]$, $1.69\left(12 \mathrm{H} \mathrm{m}, \mathrm{PCH}_{2} \mathrm{CH}_{3}\right)$ and $0.99\left(18 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$, $\delta 147.8\left(\mathrm{NC}_{6} \mathrm{H}_{5}\right), 129.9\left(m-\mathrm{C}_{6} \mathrm{H}_{5}\right), 123.9\left(p-\mathrm{C}_{6} \mathrm{H}_{5}\right), 119.0(o-$

Table 8 Atomic coordinates $\left(\times 10^{4}\right)$ for $\left[\operatorname{InCl}_{2}(\mathrm{dpt})\left(\mathrm{PEt}_{3}\right)_{2}\right] 4$

Atom	x	y	z
In	$6800(1)$	$1147(1)$	$3628(1)$
$\mathrm{Cl}(1)$	$7530(1)$	$2007(1)$	$4416(1)$
$\mathrm{Cl}(2)$	$7625(1)$	$176(1)$	$3039(1)$
$\mathrm{N}(1)$	$5754(3)$	$799(3)$	$3067(2)$
$\mathrm{N}(12)$	$5316(3)$	$1269(3)$	$3423(3)$
$\mathrm{N}(2)$	$5671(3)$	$1668(3)$	$3898(2)$
$\mathrm{C}(11)$	$5473(3)$	$384(4)$	$2492(3)$
$\mathrm{C}(12)$	$4780(3)$	$459(3)$	$2264(3)$
$\mathrm{C}(13)$	$4557(4)$	$43(4)$	$1680(3)$
$\mathrm{C}(14)$	$5017(4)$	$-463(5)$	$1309(3)$
$\mathrm{C}(15)$	$5709(4)$	$-535(5)$	$1535(3)$
$\mathrm{C}(16)$	$5945(3)$	$-124(4)$	$2118(3)$
$\mathrm{C}(21)$	$5278(3)$	$2197(4)$	$4337(3)$
$\mathrm{C}(22)$	$5640(3)$	$2624(4)$	$4851(3)$
$\mathrm{C}(23)$	$5289(4)$	$3141(4)$	$5304(3)$
$\mathrm{C}(24)$	$4557(4)$	$3251(4)$	$5255(3)$
$\mathrm{C}(25)$	$4192(4)$	$2835(4)$	$4737(3)$
$\mathrm{C}(26)$	$4544(3)$	$2315(4)$	$4276(3)$
$\mathrm{P}(1)$	$7000(1)$	$2299(1)$	$2661(1)$
$\mathrm{C}(111)$	$6360(3)$	$3163(4)$	$2660(3)$
$\mathrm{C}(112)$	$5636(3)$	$2982(5)$	$2357(3)$
$\mathrm{C}(113)$	$6980(4)$	$1819(4)$	$1804(3)$
$\mathrm{C}(114)$	$7167(4)$	$2394(5)$	$1213(3)$
$\mathrm{C}(115)$	$7846(3)$	$2829(4)$	$2717(3)$
$\mathrm{C}(116)$	$8494(3)$	$2263(5)$	$2676(4)$
$\mathrm{P}(2)$	$6571(1)$	$41(1)$	$4626(1)$
$\mathrm{C}(211)$	$7264(4)$	$-699(5)$	$4765(4)$
$\mathrm{C}(212)$	$7968(4)$	$-307(6)$	$4992(5)$
$\mathrm{C}(213)$	$6414(4)$	$553(5)$	$5441(3)$
$\mathrm{C}(214)$	$63215)$	$8(5)$	$6077(3)$
$\mathrm{C}(215)$	$5758(4)$	$-591(5)$	$4488(3)$
$\mathrm{C}(216)$	$5816(4)$	$-1207(4)$	$3919(4)$

$\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 13.2\left(\mathrm{PCH}_{2} \mathrm{CH}_{3}\right)$ and $7.30\left(\mathrm{PCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}, \delta-5.7$. Conductivity: $\Lambda_{\mathrm{M}} 33 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
cis-(2,2'-Bipyridine)dichloro(1,3-diphenyltriazenido)indium(iii) 5.-Prepared in an analogous manner to 2, with $1 \mathbf{1 a}(0.50 \mathrm{~g}$, $0.73 \mathrm{mmol}), \mathrm{MeCN}\left(20 \mathrm{~cm}^{3}\right)$ and bipy ($0.114 \mathrm{~g}, 0.730 \mathrm{mmol}$). Yield: 0.25 g of orange crystals, 64%; m.p. $280^{\circ} \mathrm{C}$ (decomp.) (Found: C, 49.45; H, 3.45; N, 13.20. Calc. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{InN}_{5}$: C , $49.10 ; \mathrm{H}, 3.35 ; \mathrm{N}, 13.00 \%$). IR (cm^{-1}) 3062(br) w, 1593m, 1578 w , $1496 \mathrm{w}, 1483 \mathrm{~m}, 1443 \mathrm{~m}, 1361 \mathrm{w}, 1330 \mathrm{~m}, 1306 \mathrm{~s}, 1283 \mathrm{~s}, 1249 \mathrm{w}$, $1238 \mathrm{w}, 1217 \mathrm{w}, 1177 \mathrm{~m}, 1170 \mathrm{~m}, 1025 \mathrm{~m}, 898 \mathrm{w}, 772 \mathrm{w}, 759 \mathrm{~s}, 730 \mathrm{w}$, $692 \mathrm{~s}, 517 \mathrm{w}, 487 \mathrm{w}$ and 416 w . Conductivity: $\Lambda_{\mathrm{M}} 10 \Omega^{-1} \mathrm{~cm}^{2}$ mol^{-1}.
cis-Dichloro(1,3-diphenyltriazenido)(1,10-phenanthroline)indium(III) 6.-Prepared in an analogous manner to 2, with 1a $(0.60 \mathrm{~g}, 0.88 \mathrm{mmol})$ and 1,10 -phenanthroline hydrate $(0.175 \mathrm{~g}$, 0.88 mmol). Yield: $0.349 \mathrm{~g}, 70 \%$; m.p. $281^{\circ} \mathrm{C}$ (decomp.) (Found: C, $51.65 ; \mathrm{H}, 3.15 ; \mathrm{N}, 12.75$. Calc. for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{InN}_{5}$: C, $51.30 ; \mathrm{H}, 3.25 ; \mathrm{N}, 12.45 \%$). IR (cm^{-1}): 3059 (br) mw, 1593 m , $1586 \mathrm{~m}, 1523 \mathrm{w}, 1493 \mathrm{~m}, 1481 \mathrm{~m}, 1431 \mathrm{~m}, 1360 \mathrm{w}, 1329 \mathrm{~s}, 1307 \mathrm{~s}$, 1283s, $1239 \mathrm{w}, 1227 \mathrm{w}, 1167 \mathrm{w}, 1144 \mathrm{w}, 1106 \mathrm{w}, 853 \mathrm{~m}, 761 \mathrm{~m}$, $722 \mathrm{~m}, 692 \mathrm{~m}, 661 \mathrm{~m}, 515 \mathrm{w}$ and 486 w . Conductivity: $\Lambda_{\mathrm{M}} 8.6 \Omega^{-1}$ $\mathrm{cm}^{2} \mathrm{~mol}^{-1}$.
cis-[1,2-Bis(dimethylphosphino)ethane]dichloro(1,3-diphenyltriazenido)indium(iII) 7.-Prepared in an analogous manner to 2, with $1 \mathrm{a}(1.00 \mathrm{~g}, 1.5 \mathrm{mmol})$ and dmpe ($0.27 \mathrm{~cm}^{3}, 0.24 \mathrm{~g}, 1.6$ mmol). Yield $0.736 \mathrm{~g}, 94 \%$; m.p. $216^{\circ} \mathrm{C}$ (decomp.). IR (cm^{-1}): $3272 \mathrm{w}, 3062 \mathrm{w}, 2977 \mathrm{w}, 1601 \mathrm{~m}, 1591 \mathrm{~s}, 1507 \mathrm{w}, 1497 \mathrm{w}, 1481 \mathrm{~s}$, $1468 \mathrm{w}, 1459 \mathrm{w}, 1421 \mathrm{~m}, 1352 \mathrm{w}, 1332 \mathrm{~s}, 1308 \mathrm{~s}, 1277 \mathrm{~s}, 1167 \mathrm{~m}$, $1153 \mathrm{w}, 1111 \mathrm{~m}, 1073 \mathrm{w}, 950 \mathrm{~m}, 906 \mathrm{~s}, 763 \mathrm{~s}, 755 \mathrm{~s}, 691 \mathrm{~s}, 660 \mathrm{~s}, 518 \mathrm{w}$ and 483 w . CP MAS NMR: ${ }^{31} \mathrm{P}, \delta-14.5$. Conductivity: $\Lambda_{\mathrm{M}} 51$ $\Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.

Table 9 Atomic coordinates $\left(\times 10^{4}\right)$ for $\left[\operatorname{InCl}_{2}(\mathrm{dpt})(\right.$ bipy $\left.)\right] 5$

Atom	x	y	z
In	634(1)	5534(1)	1258(1)
$\mathrm{Cl}(1)$	364(2)	4379(1)	827(1)
$\mathrm{Cl}(2)$	-264(2)	4925(1)	1820(1)
N(1)	1513(5)	6615(3)	913(1)
N(12)	1644(5)	7177(3)	1170(1)
N(2)	1199(5)	6858(3)	1478(1)
C(11)	1914(6)	6859(4)	557(2)
C(12)	2611(7)	7624(4)	479(2)
C(13)	3022(9)	7809(5)	119(2)
C(14)	2728(8)	7246(5)	-159(2)
C(15)	2011(8)	6497(5)	-83(2)
C(16)	1614(7)	6300(4)	268(2)
C(21)	1278(7)	7379(3)	1788(2)
C(22)	419(8)	7148(4)	2092(2)
C(23)	418(9)	7641(5)	2403(2)
C(24)	1270(9)	8357(4)	2424(2)
C(25)	2148(8)	8577(4)	2130(2)
C(26)	2127(6)	8118(3)	1810(2)
N(3)	2994(5)	5156(3)	1389(1)
C(31)	3744(6)	4751(4)	1162(2)
C(32)	5156(7)	4283(3)	1239(2)
C(33)	5782(7)	5665(4)	1561(2)
C(34)	4998(6)	5189(4)	1799(2)
C(35)	3611(7)	5416(3)	1697(2)
C(36)	5927(8)	3799(4)	983(2)
C(37)	5649(8)	5476(5)	2156(2)
N(4)	-1625(5)	6035(3)	1108(1)
C(41)	-2265(7)	6595(4)	1334(2)
C(42)	-3623(7)	6945(4)	1272(2)
C(43)	-4321(7)	6701(5)	954(2)
C(44)	-3701(7)	6116(4)	715(2)
C(45)	-2328(7)	5811(4)	800(2)
C(46)	-4226(8)	7565(5)	1540(2)
C(47)	-4467(8)	5820(6)	377(2)

cis-[1,2-Bis(diethylphosphino)ethane]dichloro(1,3-diphenyltriazenido)indium(iii) 8.--Prepared in an analogous manner to 2, with $1 \mathrm{a}(2.65 \mathrm{~g}, 3.89 \mathrm{mmol})$ and depe $\left(1.00 \mathrm{~cm}^{3}, 0.884 \mathrm{~g}, 4.29\right.$ mmol). Yield $1.92 \mathrm{~g}, 84 \%$; m.p. $235^{\circ} \mathrm{C}$ (Found: C, $44.45 ; \mathrm{H}, 6.05$; $\mathrm{N}, 7.00$. Calc. for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{Cl}_{2} \mathrm{InN}_{3} \mathrm{P}_{2}$: C, $44.90 ; \mathrm{H}, 5.85 ; \mathrm{N}$, 7.15%). IR (cm^{-1}): $2967 \mathrm{~m}, 2938 \mathrm{~m}, 2905 \mathrm{~m}, 2882 \mathrm{~m}, 1592 \mathrm{~s}, 1483 \mathrm{~s}$, $1457 \mathrm{~m}, 1408 \mathrm{~m}, 1388 \mathrm{w}, 1352 \mathrm{w}, 1332 \mathrm{~s}, 1306 \mathrm{~s}, 1281 \mathrm{~s}, 1216 \mathrm{w}$, $1194 w, 1185 w, 1165 w, 1107 \mathrm{~m}, 1073 \mathrm{w}, 1050 \mathrm{w}, 1027 \mathrm{w}, 905 \mathrm{~m}$, 763s, 694 s , $659 \mathrm{~s}, 614 \mathrm{w}, 517 \mathrm{w}$ and 481 w . CP MAS NMR: ${ }^{31} \mathrm{P}$, $\delta-9.5$. Conductivity: $\Lambda_{\mathrm{M}} 43 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
X-Ray Crystallographic Studies.-A crystal data summary is given in Table 5; fractional actomic coordinates are listed in Tables 6-9. Crystals of compounds 1a, 3, 4 and 5 were mounted directly onto the goniometer with silicon grease. Unit-cell parameters and intensity data were obtained by following previously detailed procedures, ${ }^{27}$ using a Nicolet R3m/v diffractometer operating in the $\theta-2 \theta$ scan mode. Data collection was controlled by using the Nicolet P3 program. ${ }^{28}$ Empirical absorption corrections were applied to the data using the program PSICOR. Further experimental data are given in Table 5.
The structures were solved using the direct methods program XS, which revealed the position of most of the heavy atoms. Most but not all of the hydrogens were visible in the final difference map. Hydrogens were included as fixed atom contributors in the final cycles, $d(\mathrm{C}-\mathrm{H}) 0.96 \AA$ and U (iso) $0.08 \AA^{2}$. Details of the refinement are given in Table 5. Atomic scattering factors and anomalous scattering parameters were as given in ref. 29.

Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom coordinates, thermal parameters and remaining bond lengths and angles.

Acknowledgements

Financial support was provided by the Aluminum Research Board and Harvard Faculty Aid via an undergraduate fellowship (to H. A. R.). Professor R. M. Kren (University of Michigan-Flint) is acknowledged for providing the impetus to this work. Morton-Thiokol are gratefully acknowledged for the gift of InCl_{3}.

References

1 D. S. Moore and S. D. Robinson, Adv. Inorg. Chem. Radiochem., 1986, 30, 1.
2 M. J. Taylor, Comprehensive Coordination Chemistry, eds. G. Wilkinson, R. D. Gillard and J. A. McCleverty, Pergamon, Oxford, 1989, vol. 3.
3 D. St. C. Black, V. C. Davis, G. B. Deacon and R. J. Schultze, Inorg. Chim. Acta, 1979, 37, L528.
4 J. Beck and J. Strahle, Z. Naturforsch., Teil B, 1986, 41, 1381.
5 J. T. Leman, A. R. Barron, J. W. Ziller and R. M. Kren, Polyhedron, 1989, 8, 1909.
6 J. T. Leman and A. R. Barron, Organometallics, 1989, 8, 1828.
7 M. D. Healy, J. W. Ziller and A. R. Barron, J. Am. Chem. Soc., 1990, 112, 2549.
8 A. P. Shreve, R. Mullhaupt, W. Fultz, J. Calabrese, W. Robbins and S. D. Ittel, Organometallics, 1988, 7, 409.

9 W. J. Geary, Coord. Chem. Rev., 1971, 7, 81.
10 J. Braddock-Wilking, J. T. Leman and A. R. Barron, unpublished work.
11 D. R. Lide, Handbook of Chemistry and Physics, CRC Press, Boston, 71st edn., 1990, p. 12-1.
12 J. G. Contreras, F. W. B. Einstein and D. G. Tuck, Can. J. Chem., 1974, 52, 3793.
13 A. H. Cowley, C. J. Carrano, R. L. Geerts, R. A. Jones and C. M. Nunn, Angew. Chem., Int. Ed. Engl., 1988, 27, 277.
14 M. Khan, R. C. Steevenz, D. G. Tuck, J. G. Noltes and P. W. R. Cornfield, Inorg. Chem., 1980, 19, 3407.

15 D. L. Reger, S. J. Knox, A. L. Rheingold and B. S. Haggerty, Organometallics, 1990, 9, 2581
16 K. Mertz, W. Schwartz, F. Zettler and H. D. Hausen, Z. Naturforsch., Teil B, 1975, 30, 159.
17 H. J. Guder, W. Schwartz, J. Weidlein, H. J. Widler and H. D. Hausen, Z. Naturforsch., Teil B, 1976, 31, 1185.
18 M. D. Healy, J. W. Ziller and A. R. Barron, Organometallics, in the press.
19 J. Wengrovius, M. V. Gavbauskas, E. A. Williams, R. C. Goring, P. E. Donahue and J. F. Smith, J. Am. Chem. Soc., 1986, 108, 982.
20 A. J. Carty and D. G. Tuck, Prog. Inorg. Chem., 1975, 19, 243.
21 R. F. Zahrobsky, J. Am. Chem. Soc., 1971, 93, 3313.
22 O. T. Beachley, jun., J. P. Kopasz, H. Zhang, W. E. Hunter and J. L. Atwood, J. Organomet. Chem., 1987, 325, 69; N. W. Alcock, I. A. Degnan, M. G. H. Wallbridge, H. R. Powell, M. McPartlin and G. M. Sheldrick, J. Organomet. Chem., 1989, 361, C33; K. A. Aitchison, J. D. J. Backer-Dirks, D. C. Bradley, M. M. Faktor, D. M. Frigo, M. B. Hursthouse, B. Hussain and R. L. Short, J. Organomet. Chem., 1989, 366, 11; T. Douglas, K. H. Theopold, B. S. Haggerty and A. L. Rheingold, Polyhedron, 1990, 9, 329.

23 D. Lyons, G. Wilkinson. M. Thornton-Pett and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1984, 695; A. R. Barron, G. Wilkinson, M. Motevalli and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1987, 837.

24 W. M. Cleaver and A. R. Barron, unpublished work.
25 C. A. Streuli, Anal. Chem., 1960, 32, 985; D. D. Perrin, Dissociation Constants of Organic Bases in Aqueous Solution, Butterworths, London, 1965.
26 W. W. Hartman and J. B. Dickey, Org. Synth., 1943, 2, 163.
27 M. D. Healy, D. A. Wierda and A. R. Barron, Organometallics, 1988, 7, 2543.
28 P3/R3 Data Collection Manual, Nicolet Instrument Corp., Madison, WI, 1987.
29 International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4.

Received 10th March 1992; Paper 2/01301K

[^0]: \dagger Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1992, Issue 1, pp. xx-xxv.

