Facile Chalcogenide Elimination Reactions: The Crystal Structures of $\left[\mathrm{Pt}\left\{\left(\mathrm{Ph}_{2} \mathrm{PO}\right)_{2} \mathrm{H}\right\}\left\{\left(\mathrm{Ph}_{2} \mathrm{PSeO}\right)_{2} \mathrm{H}\right\}\right] \cdot 1.25 \mathrm{CHCl}_{3}$ and $\left[\mathrm{Pt}_{3}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)_{3} \mathrm{~S}_{2}\right]\left[\left(\mathrm{Ph}_{2} \mathrm{PSO}\right)_{2} \mathrm{H}\right][\mathrm{OH}] \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$

Mark J. Pilkington, Alexandra M. Z. Slawin, David J. Williams and J. Derek Woollins* Department of Chemistry, Imperial College, South Kensington, London SW7 2AY, UK

Reaction of $\mathrm{Ph}_{2} \mathrm{PSeOH}$ with $\left[\mathrm{PtCl}_{2}\left(\mathrm{PR}_{3}\right)_{2}\right]\left(\mathrm{PR}_{3}=\mathrm{PEt}_{3}\right.$ or $\mathrm{PMe} \mathrm{Ph}_{2} \mathrm{Ph}$ gives $\left[\mathrm{Pt}\left\{\left(\mathrm{Ph} \mathrm{PO}_{2}\right)_{2} \mathrm{H}\right\}\left\{\left(\mathrm{Ph}_{2} \mathrm{PSeO}\right)_{2} \mathrm{H}\right\}\right]$ 1, whereas the analogous sulfur compound $\mathrm{Ph}_{2} \mathrm{PSOH}$ with $\left[\mathrm{PtCl}_{2}\right.$ (dppe)] (dppe $=\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}$) gives the bipyramidal $\mathrm{Pt}_{3} \mathrm{~S}_{2}$ containing cluster $\left[\mathrm{Pt}_{3}(\text { dppe })_{3} \mathrm{~S}_{2}\right]^{2+}$.

The co-ordination chemistry of $\mathrm{R}_{2} \mathrm{PE}^{-}(\mathrm{E}=\mathrm{O}, \mathrm{S}$ or Se$)$ and $\mathrm{R}_{2} \mathrm{PE}_{2}^{-}$is well established ${ }^{1-4}$ whereas that of mixed-donor ligands has been little investigated. We have recently reported ${ }^{5}$ the heterobimetallic compound $\left[\left(\mathrm{Me}_{2} \mathrm{PhP}\right)_{2} \mathrm{Pt}\left\{\mathrm{SP}\left(\mathrm{OPr}^{\mathrm{i}}\right)_{2} \mathrm{O}\right\}_{2^{-}}\right.$ ZnCl_{2}] which makes use of the hard oxygen and soft sulfur atoms of the thiophosphate ligand to co-ordinate to zinc and platinum respectively. Here, we report that the related free acids $\mathrm{Ph}_{2} \mathrm{PSeOH}$ and $\mathrm{Ph}_{2} \mathrm{PSOH}$ react with $\left[\mathrm{PtCl}_{2}\left(\mathrm{PR}_{3}\right)_{2}\right]$ with elimination of selenium and sulfur to form $\left[\mathrm{Pt}\left\{\left(\mathrm{Ph}_{2} \mathrm{PO}\right)_{2} \mathrm{H}\right\}\right.$ $\left.\left\{\left(\mathrm{Ph}_{2} \mathrm{PSeO}\right)_{2} \mathrm{H}\right\}\right] 1$ and the triangulo cluster $\left[\mathrm{Pt}_{3}(\mathrm{dppe})_{3} \mathrm{~S}_{2}\right]^{2+}$ (dppe $=\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}$) respectively.

Reaction of cis-[$\left.\mathrm{PtCl}_{2}\left(\mathrm{PR}_{3}\right)_{2}\right]$ (ca. 0.25 mmol) with $\mathrm{Ph}_{2} \mathrm{PSeOH}$ (1 mmol) in refluxing toluene proceeds as described in equation (1) (typical yield 63% for $\mathrm{PR}_{3}=\mathrm{PEt}_{3}$) with

```
[PtCl ( }\mp@subsup{\textrm{PR}}{3}{}\mp@subsup{)}{2}{}]+4\mp@subsup{\textrm{Ph}}{2}{}\mp@subsup{\textrm{PSeOH}}{}{\longrightarrow
[Pt{(Ph}\mp@subsup{2}{2}{}\textrm{PO}\mp@subsup{)}{2}{}\textrm{H}}{(\mp@subsup{\textrm{Ph}}{2}{}\textrm{PSeO}\mp@subsup{)}{2}{}\textrm{H}}]+2\textrm{HCl}+2\mp@subsup{\textrm{SePR}}{3}{
```

elimination of $\mathrm{Se}=\mathrm{PR}_{3}$ providing a new route to co-ordinated phosphinite.

The X-ray crystal structure analysis of $\mathbf{1} \dagger$ shows (Fig. 1) the molecule to have non-crystallographic C_{2} symmetry about an

[^0]axis passing through the platinum atom and bisecting the $\mathrm{Se}-\mathrm{Pt}-\mathrm{Se}$ angle. The platinum is square planar with a maximum deviation from planarity for the co-ordination shell of $0.02 \AA$ (for Pt); $\mathrm{O}(3)$ and $\mathrm{O}(4)$ lie 0.15 and $0.11 \AA$ above and below this plane. The Pt -Se distances [2.530(2) and 2.513(2) \AA] are noticeably larger than those in $\left[\mathrm{Pt}\left(\mathrm{Se}_{3} \mathrm{PPh}\right)(\mathrm{dppe})\right] \mathbf{2 ~}^{7}$ [2.465(1) and 2.471(1) \AA], whereas the P -Se distances in 1 are shortened [2.177(5) and 2.188(4), cf. 2.215(3) and 2.239(3) \AA in 2]. The $\mathrm{P}-\mathrm{O}$ bonds in the selenophosphinate are both marginally shorter ($0.02 \AA$) than those in the phosphinite ligands, possibly reflecting the difference in formal oxidation number of the phosphorus atoms.

There are two very strong intramolecular $\mathrm{O} \ldots \mathrm{H} \ldots \mathrm{O}$

Fig. 1 The crystal structure of compound 1. Selected distances (\AA) and angles (${ }^{\circ}$: $\mathrm{Pt}-\mathrm{Se}(1) 2.530(2), \mathrm{Pt}-\mathrm{Se}(2) 2.513(2), \mathrm{Pt}-\mathrm{P}(3) 2.271(4)$, $\mathrm{Pt}-\mathrm{P}(4)$ 2.255(4), $\mathrm{Se}(1)-\mathrm{P}(1)$ 2.178(5), $\mathrm{Se}(2)-\mathrm{P}(2)$ 2.187(4), $\mathrm{P}(1)-$ $\mathrm{O}(1) 1.533(13), \mathrm{P}(2)-\mathrm{O}(2) 1.529(10), \mathrm{P}(3)-\mathrm{O}(3) 1.553(12), \mathrm{P}(4)-\mathrm{O}(4)$ $1.550(11), \mathrm{O}(1) \cdots \mathrm{O}(2) 2.42$ and $\mathrm{O}(3) \cdots \mathrm{O}(4) 2.39$; $\mathrm{Se}(1)-\mathrm{Pt}-\mathrm{Se}(2)$ 94.4(1), $\mathrm{P}(3)-\mathrm{Pt}-\mathrm{P}(4) 92.8(1), \mathrm{Pt}-\mathrm{P}(3)-\mathrm{O}(3) 116.3(5), \mathrm{Pt}-\mathrm{P}(4)-\mathrm{O}(4)$ 116.0(5), $\mathrm{Pt}-\mathrm{Se}(1)-\mathrm{P}(1)$ 107.4(1), $\mathrm{Pt}-\mathrm{Se}(2)-\mathrm{P}(2) 104.4$ (1), $\mathrm{Se}(1)-\mathrm{P}(1)-$ $\mathrm{O}(1)$ 115.7(5), $\mathrm{Se}(2)-\mathrm{P}(2)-\mathrm{O}(2)$ 114.6(4), $\mathrm{P}(1)-\mathrm{O}(1) \cdots \mathrm{O}(2)$ and $\mathrm{P}(2)-\mathrm{O}(2) \cdots \mathrm{O}(1)$ mean $120, \mathrm{P}(3)-\mathrm{O}(3) \cdots \mathrm{O}(4)$ and $\mathrm{P}(4)-\mathrm{O}(4) \cdots$ O(3) mean 106

Fig. 2 The crystal structure of the cation in 3, phenyl rings have been omitted for clarity. Selected bond lengths and non-bonding distances (\AA) and angles $\left({ }^{\circ}\right): \operatorname{Pt}(1) \cdots \operatorname{Pt}(2) 3.132(3), \mathrm{Pt}(2) \cdots \operatorname{Pt}(3)$ 3.093(3), $\mathrm{Pt}(1) \cdots \mathrm{Pt}(3) \quad 3.140(3), \quad \mathrm{Pt}(1)-\mathrm{S}(1) \quad 2.378(5), \quad \mathrm{Pt}(2)-\mathrm{S}(1) \quad 2.363(4)$, $\mathrm{Pt}(3)-\mathrm{S}(1)$ 2.370(4), $\mathrm{Pt}(1)-\mathrm{S}(2)$ 2.355(5), $\mathrm{Pt}(2)-\mathrm{S}(2)$ 2.356(5), $\mathrm{Pt}(3)-\mathrm{S}(2)$ $2.375(4)$ and mean $\mathrm{Pt}-\mathrm{P}$ 2.25; $\mathrm{S}(1)-\mathrm{Pt}(1)-\mathrm{S}(2) 80.7(2), \mathrm{S}(1)-\mathrm{Pt}(2)-\mathrm{S}(2)$ 81.0(1), $\mathrm{S}(1)-\mathrm{Pt}(3)-\mathrm{S}(2) 80.5(1), \mathrm{P}(1)-\mathrm{Pt}(1)-\mathrm{P}(2)$ 85.6(2), $\mathrm{P}(3)-\mathrm{Pt}(2)-$ $\mathrm{P}(4)$ 86.4(2) and $\mathrm{P}(5)-\mathrm{Pt}(3)-\mathrm{P}(6) 84.4(2)$
hydrogen bonds, $\mathrm{O}(1) \cdots \mathrm{O}(2) 2.42$ and $\mathrm{O}(3) \cdots \mathrm{O}(4) 2.39 \AA$. The positions of the hydrogen atoms could not be unambiguously determined from the X-ray data but the shortness of each of these $\mathrm{O} \cdots \mathrm{O}$ interactions is indicative of a symmetric single-minimum proton potential, i.e. each pair of ligands is singly protonated. There is an additional intermolecular $\mathrm{C}-\mathrm{H} \ldots \mathrm{O}$ hydrogen bond ($3.1 \AA$) from one of the partial occupancy CHCl_{3} solvate molecules to $\mathrm{O}(3)$.

In contrast to reaction (1), reactions with thiophosphate did not occur for monodentate phosphines but when $2 \mathrm{PR}_{3}=$ dppe they resulted in $\mathrm{Ph}_{2} \mathrm{PSOH}$ acting as a source of sulfide with formation of $\left[\mathrm{Pt}_{3}(\mathrm{dppe})_{3} \mathrm{~S}_{2}\right]\left[\left(\mathrm{Ph}_{2} \mathrm{PSO}\right)_{2} \mathrm{H}\right][\mathrm{OH}]$ 3. A com-
pound formulated as $\left[\left\{\mathrm{Pt}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right\}_{3} \mathrm{~S}_{2}\right] \mathrm{X}_{2}\left(\mathrm{X}=\mathrm{Cl}, \mathrm{ClO}_{4}\right.$ or BF_{4}) was reported ${ }^{8}$ in 1970 from the reaction of $\mathrm{Na}_{2} \mathrm{~S}$ with $\left[\mathrm{PtCl}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ in ethanol. The X-ray crystal structure of the cation in 3 is shown in Fig. 2 The cation has molecular D_{3} symmetry being comprised of three fused, slightly distorted square-planar (dppe) PtS_{2} units. Each platinum co-ordination shell displays a twist (3-10 ${ }^{\circ}$, in the same sense, of each PtP_{2} plane with respect to its associated PtS_{2} plane. The $\mathrm{Pt}-\mathrm{P}$ distances are normal and in the range $2.238(5)$ [for $\mathrm{Pt}(2)-\mathrm{P}(3)]-$ $2.259(6) \AA$ [for $\mathrm{Pt}(1)-\mathrm{P}(2)$]. The central $\mathrm{Pt}_{3} \mathrm{~S}_{2}$ core is a nearly regular trigonal bipyramid with $\mathrm{Pt} \cdot \mathrm{Pt}$ distances in the range 3.093(3)-3.140(3) \AA and an average $\mathrm{Pt}-\mathrm{S}$ distance of $2.37 \AA$. Atoms $S(1)$ and $S(2)$ lie equidistant above and below the Pt_{3} plane, the $\mathrm{S}(1) \cdots \mathrm{S}(2)$ distance being $3.07 \AA$. The two $\mathrm{Ph}_{2} \mathrm{PSO}^{-}$anions exhibit a very short approach of their oxygen atoms $(2.34 \AA)$ analogous to those seen in 1 . This indicates the presence of an $\mathrm{O} \cdots \mathrm{H} \cdots \mathrm{O}$ hydrogen bond. Two 50% occupancy oxygen atoms were located in the difference electrondensity map. Thus the overall charge balance for $\mathbf{3}$ is satisfied if these are regarded as being two 50% occupancy OH^{-}groups.

Acknowledgements

We are grateful to the SERC for an equipment grant and for an earmarked studentship (for M. J. P.).

References

1 D. M. Roundhill, R. P. Sperline and W. B. Beaulieu, Coord. Chem. Rev., 1978, 26, 263.
2 B. Walther, Coord. Chem. Rev., 1984, 60, 67.
3 N, Burford, Coord. Chem. Rev., 1992, 112, 1.
4 J. R. Wasson, G. M. Waltermann and A. J. Stoklosa, Top. Curr. Chem., 1973, 35, 65.
5 J. C. Poat, A. M. Z. Slawin, D. J. Williams and J. D. Woollins, J. Chem. Soc., Chem. Commun., 1990, 1036.
6 SHELXTL Version 4.2, Siemens X-Ray Analytical Instruments, 1990.
7 I. P. Parkin, M. J. Pilkington, A. M. Z. Slawin, D. J. Williams and J. D. Woollins, Polyhedron, 1990, 9, 987.
8 J. Chatt and D. M. P. Mingos, J. Chem. Soc. A, 1970, 1243.
Received 9th April 1992; Communication 2/01879I

[^0]: \dagger Crystal data. $1, \mathrm{C}_{48} \mathrm{H}_{42} \mathrm{O}_{4} \mathrm{P}_{4} \mathrm{PtSe}_{2} \cdot 1.25 \mathrm{CHCl}_{3}, M=1308.9$, monoclinic, space group $C 2 / c, a=24.884(11), b=12.003(4), c=37.211(14)$ $\AA, \beta=99.03(3)^{\circ}, U=10977(7) \AA^{3}, Z=8, D_{\mathrm{c}}=1.584 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda=$ $1.54178 \AA, \mu(\mathrm{Cu}-\mathrm{K} x)=94.0 \mathrm{~cm}^{-1}, F(000)=5124$. Data were measured on a Nicolet R 3 m diffractometer with graphite-monochromated $\mathrm{Cu}-\mathrm{K} \alpha$ radiation using ω scans, crystal dimensions $0.17 \times 0.23 \times 0.24 \mathrm{~mm}$. The structure was solved by the heavy-atom method and refined anisotropically using absorption-corrected data to give $R=0.064$, $R^{\prime}=0.064$ for 5652 independent observed reflections $\left[\left|F_{\mathrm{o}}\right|>3 \sigma\left(\left|F_{\mathrm{o}}\right|\right)\right.$, $\left.20 \leqslant 116^{\circ}\right], w^{1}=\sigma^{2}(F)+0.0005 F^{2}$.
 3. $\mathrm{C}_{102} \mathrm{H}_{94} \mathrm{O}_{3} \mathrm{P}_{8} \mathrm{~S}_{4} \mathrm{Pt}_{3} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}, M=2371.5$, triclinic, space group $P \overline{1}, \quad a=13.589(10), \quad b=16.782(13), \quad c=24.13(2) \AA, \quad x=$ 79.46(6), $\beta=89.35(6), \gamma=68.55(6)^{\circ}, U=5026(3) \AA^{3}, Z=2, D_{c}=$ $1.567 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda=1.54178 \AA, \mu(\mathrm{Cu}-\mathrm{K} x)=102.5 \mathrm{~cm}^{-1}, F(000)=2338$. Data were measured as above using a crystal of dimensions $0.30 \times 0.30 \times 0.42 \mathrm{~mm}$. The structure was solved by direct methods and refined anisotropically using absorption-corrected data to give $R=$ $0.070, R^{\prime}=0.068$ for 9054 independent observed reflections $\left[\left|F_{\mathrm{o}}\right|>3 \sigma\right.$ $\left.\left(\left|F_{0}\right|\right), 2 \theta \leqslant 100^{\circ}\right] w^{-1}=\sigma^{2}(F)+0.0003 F^{2}$. Computations of both structures were carried out on an IBM PS70 386 computer using the SHELXTL PC program. ${ }^{6}$ For both structures, atomic coordinates, thermal parameters and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre. See Instructions for Authors, J. Chem. Soc., Dalton Trans., 1992, Issue 1, pp. xx-xxv.

