Chemistry of Polynuclear Metal Complexes with Bridging Carbene or Carbyne Ligands. Part 114. ${ }^{1}$ Ditungsten-Digold Compounds having two $W\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)$ -$(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)$ Fragments linked by $\mathrm{AuP}(\mathrm{Ph})_{2}\left(\mathrm{CH}_{2}\right)_{n}(\mathrm{Ph})_{2} \mathrm{PAu}(\boldsymbol{n}=\mathbf{2 - 6})$ Groups ${ }^{*}$

Justin E. Goldberg, Donald F. Mullica, Eric L. Sappenfield and F. Gordon A. Stone
Department of Chemistry, Baylor University, Waco, TX 76798-7348, USA

Abstract

Treatment of 1 equivalent of the reagent $\left[\mathrm{NEt}_{4}\right]\left[W(\equiv C R)(C O)_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right]\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)$, in the presence of TIBF_{4}, with 0.5 equivalent of the compounds $\left[\mathrm{Au}_{2} \mathrm{Cl}_{2}\left\{\mu-\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{PPh}_{2}\right\}\right]$] $(n=2-6)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ affords the complexes $\left[\mathrm{W}_{2} \mathrm{Au}_{2}(\mu-\mathrm{CR})_{2}\left\{\mu-\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{PPh}_{2}\right\}(\mathrm{CO})_{4}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)_{2}\right]$. The crystal structure of the species with $n=4$ has been determined by X -ray crystallography, confirming that the molecule has two $\mathrm{RC} \equiv \mathrm{W}(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)$ fragments bridged by an $\mathrm{AuP}(\mathrm{Ph})_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}(\mathrm{Ph})_{2} \mathrm{PAu}$ unit, with a centre of inversion at the midpoint of the chain of methylene groups. The W -Au bonds [2.798(1) \AA] are asymmetrically bridged by the p-tolylmethylidyne ligands [W- $\mu-\mathrm{C}$ 1.870(9), Au- μ-C $2.194(9) \AA$]. In a similar manner, the compounds $\left[\mathrm{W}_{2} \mathrm{Au}_{2}(\mu-\mathrm{CR})_{2}\left(\mu-Z\right.\right.$ or $\left.E-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}\right)(\mathrm{CO})_{4}\left(\eta^{5}-\right.$ $\left.\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)_{2}$] have been prepared from reactions between the gold compounds [$\mathrm{Au}_{2} \mathrm{Cl}_{2}\left(\mu-Z\right.$ or $E-\mathrm{Ph}_{2}-$ $\mathrm{PCH}=\mathrm{CHPPh} 2)]$ and the salt $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{W}(\equiv \mathrm{CR})(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{3} \mathrm{H}_{3} \mathrm{Me}_{2}\right)\right]$. Addition of $\left[\mathrm{Pt}(\operatorname{cod})_{2}\right](\operatorname{cod}=$ cycloocta-1,5-diene) to the complexes $\left[\mathrm{W}_{2} \mathrm{Au}_{2}(\mu-\mathrm{CR})_{2}\left\{\mu-\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{PPh}\right\}(\mathrm{CO})_{4}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)_{2}\right]$ affords the chain cluster compounds $\left[\mathrm{W}_{2} \mathrm{Pt}_{2} \mathrm{Au}_{2}\left(\mu_{3}-\mathrm{CR}\right)_{2}\left\{\mu-\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{PPh}\right\}(\mathrm{CO})_{4}(\mathrm{cod})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9}-\right.\right.$ $\left.\mathrm{Me}_{2}\right)_{2}$]. The NMR data (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\},{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{11} \mathrm{~B}-\left\{{ }^{1} \mathrm{H}\right\}$) for the new complexes are reported and discussed.

Salts of the anionic alkylidyne metal complexes $[M(\equiv C R)$ (CO) $\left.)_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{R}^{\prime}\right)\right]^{-}(\mathrm{M}=\mathrm{W}$ or Mo; $\mathrm{R}=$ alkyl, aryl or alkynyl; $\mathbf{R}^{\prime}=\mathbf{M e}$ or \mathbf{H}) afford a variety of structurally interesting di- or tri-nuclear mixed-metal compounds upon treatment with low-valent metal species. ${ }^{2}$ One of the first reactions of this type investigated was that between $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ $\left[\mathrm{W}(\equiv \mathrm{CR})(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right] \quad\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \quad$ and [$\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)$] in thf (tetrahydrofuran) in the presence of $\mathrm{TlPF}_{6} .{ }^{3}$ The structure of the product, [WAu $(\mu-\mathrm{CR})(\mathrm{CO})_{2}{ }^{-}$ $\left.\left(\mathrm{PPh}_{3}\right)\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right]$ 1, was established by X-ray crystallography, a study which revealed that the tungsten-gold bond was semibridged by the p-tolylmethylidyne group [$\mu-\mathrm{C}-\mathrm{W}$ 1.88(3), μ-C-Au $2.19(3) \AA]$. Following this initial study several other compounds have been isolated having W -Au bonds and bridging p-tolylmethylidyne groups, and with the W atoms ligated by nido-icosahedral $\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}$ fragments. The complexes $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{WAuCl}(\mu-\mathrm{CR})(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right] 2$, ${ }^{4 a}$ $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{W}_{2} \mathrm{Au}(\mu-\mathrm{CR})_{2}(\mathrm{CO})_{4}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)_{2}\right] \quad 3,{ }^{3}$ $\left[\mathrm{W}_{2} \mathrm{Au}(\mu-\mathrm{CR})_{2}(\mathrm{CO})_{4}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] 4$, [WPtAu-$\left.\left(\mu_{3}-\mathrm{CR}\right)(\mathrm{CO})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right] 5$ and $\left[\mathrm{W}_{2} \mathrm{PtAu}-\right.$ $\left.(\mu-\mathrm{CR})\left(\mu_{3}-\mathrm{CR}\right)(\mathrm{CO})_{4}(\operatorname{cod})\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] \quad 6$ $(\operatorname{cod}=\text { cycloocta-1,5-diene) })^{4 b}$ exemplify the diverse nature of the products that have been obtained.
In this paper we describe the synthesis of ditungsten-digold compounds in which two $\mathrm{AuW}(\mu-\mathrm{CR})(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)$ moieties are linked by bidentate $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{PPh}_{2}(n=2-6)$ or $\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}$ ligands. The primary motive for preparing these complexes was to establish whether the $\mathrm{W}(\mu-\mathrm{CR}) \mathrm{Au}$ groups at the ends of these molecules would ligate other metalligand fragments to afford a new class of chain-like metal species.

[^0]

1

3

$\mathrm{PMe}_{2} \mathrm{Ph}$
5

2

4

$R=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4, \mathrm{cp}=\eta-\mathrm{C}_{5} \mathrm{H}_{5}$
OBH - CMe

Results and Discussion

The method of synthesis of the desired complexes was based on that employed earlier to obtain complex $1 .{ }^{3}$ To prepare

Table 1 Analytical ${ }^{a}$ and physical data for the complexes

			Analysis (\%)
(\%			
Compound			

${ }^{a}$ Calculated values are given in parentheses. ${ }^{b} \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$. ${ }^{c}$ Measured in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ unless otherwise stated. All the complexes show a broad band in the range $2500-2550 \mathrm{~cm}^{-1}$ due to $v(\mathrm{BH}) .{ }^{d}$ Measured in thf. ${ }^{e}$ Satisfactory microanalytical data not available.

Table 2 Hydrogen-1 and carbon-13 NMR data ${ }^{a}$ for the complexes

Compound $\quad{ }^{1} \mathbf{H}^{b}(\delta)$
7a $\quad 2.20(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CMe}), 2.32(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}-4), 2.84(\mathrm{~s}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 7.13$ [half of $(\mathrm{AB})_{2}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}, J(\mathrm{AB}) 8$], $7.46-$ $7.60\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{Ph}\right.$ and $\mathrm{C}_{6} \mathrm{H}_{4}$)
$7 \mathrm{~b} \quad 1.96\left(\mathrm{~m}, 2 \mathrm{H}, \boldsymbol{\beta}-\mathrm{CH}_{2}\right), 2.12(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CMe}), 2.32(\mathrm{~s}, 6$ $\mathrm{H}, \mathrm{Me}-4), 2.81\left(\mathrm{~m}, 4 \mathrm{H}, \alpha-\mathrm{CH}_{2}\right), 7.10$ [half of $(\mathrm{AB})_{2}, 4$ $\left.\mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{~J}(\mathrm{AB}) 8\right], 7.42-7.55\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{Ph}\right.$ and $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right)$

7c $\quad 1.81\left(\mathrm{~m}, 4 \mathrm{H}, \beta-\mathrm{CH}_{2}\right), 2.20(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CMe}), 2.34(\mathrm{~s}, 6$ $\mathrm{H}, \mathrm{Me}-4), 2.59\left(\mathrm{~m}, 4 \mathrm{H}, \alpha-\mathrm{CH}_{2}\right), 7.17$ [half of $(\mathrm{AB})_{2}, 4$ $\left.\mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}, J(\mathrm{AB}) 8\right], 7.49-7.65\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{Ph}\right.$ and $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right)$

7d
$7 \mathbf{7}$

8a $\quad 1.97,{ }^{*} 1.98(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CMe}), 2.27,{ }^{*} 2.29(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}-4)$, $6.77,7.06\left[(\mathrm{AB})_{2}, 8 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}, J(\mathrm{AB}) 8\right], * 6.83$, * 7.09 $\left[(\mathrm{AB})_{2}, 8 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}, J(\mathrm{AB}) 9\right], 7.34-7.55(\mathrm{~m}, 20 \mathrm{H}$, $\mathrm{Ph}), 7.73, * 7.74$ [(AA'XX'), $2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}, J(\mathrm{AX}) 21$, $\left.J\left(\mathrm{AX}^{\prime}\right) 21, J\left(\mathrm{AA}^{\prime}\right) 42, J\left(\mathrm{XX}^{\prime}\right) 21\right]$
8b $\quad 2.17(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CMe}), 2.32(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}-4), 7.10$ [half of $\left.(\mathrm{AB})_{2}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}, J(\mathrm{AB}) 8\right], 7.53-7.63(\mathrm{~m}, 26 \mathrm{H}$, $\mathrm{CH}=\mathrm{CH}, \mathrm{Ph}$ and $\mathrm{C}_{6} \mathrm{H}_{4}$)
$1.78\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right.$ of cod$), 2.14,2.18,2.35(\mathrm{~s} \times 3,18$ H, CMe and $\mathrm{Me}-4), 2.55\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right.$ of cod), 2.74 $\left(\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 4.65(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}$ of cod), $5.16,5.47$ $(\mathrm{m} \times 2,4 \mathrm{H}, \mathrm{CH}$ of $\operatorname{cod}), 7.08,7.14\left[(\mathrm{AB})_{2}, 8 \mathrm{H}\right.$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}, J(\mathrm{AB}) 8\right], 7.44-7.51(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph})$
$9 b^{d} \quad 1.72\left(\mathrm{~m}, 2 \mathrm{H}, \beta-\mathrm{CH}_{2}\right), 1.87\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right.$ of cod$), 2.14$, 2.17, 2.33 ($\mathrm{s} \times 3,18 \mathrm{H}, \mathrm{CMe}$ and $\mathrm{Me}-4$), $2.46(\mathrm{~m}, 8 \mathrm{H}$, CH_{2} of cod), $2.61\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right.$ of $\left.\operatorname{cod}\right), 2.76(\mathrm{~m}, 4 \mathrm{H}$, $\left.\alpha-\mathrm{CH}_{2}\right), 4.59,4.68,5.18,5.44(\mathrm{~m} \times 4,8 \mathrm{H}, \mathrm{CH}$ of cod), $7.03,7.13\left[(\mathrm{AB})_{2}, 8 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}, J(\mathrm{AB}) 8\right], 7.19$ 7.76 (m, $20 \mathrm{H}, \mathrm{Ph}$)
$9 \mathrm{c}^{\text {d }} \quad 1.58\left(\mathrm{~m}, 4 \mathrm{H}, \beta-\mathrm{CH}_{2}\right), 1.89\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right.$ of $\left.\operatorname{cod}\right), 2.14$, 2.20, 2.34 ($\mathrm{s} \times 3,18 \mathrm{H}, \mathrm{CMe}$ and $\mathrm{Me}-4$), $2.47(\mathrm{~m}, 8 \mathrm{H}$, $\alpha-\mathrm{CH}_{2}$ and CH_{2} of cod $), 4.66,4.79,5.24,5.44(\mathrm{~m} \times 4$, $8 \mathrm{H}, \mathrm{CH}$ of cod), $7.11,7.18\left[(\mathrm{AB})_{2}, 8 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}, J(\mathrm{AB})\right.$ 8], 7.35-7.68 (m, $20 \mathrm{H}, \mathrm{Ph}$)
$9 d^{d}$
$9 \mathbf{e}^{d}$ $1.51\left(\mathrm{~m}, 6 \mathrm{H}, \beta\right.$ - and $\left.\gamma-\mathrm{CH}_{2}\right), 1.90\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right.$ of cod), 2.14, 2.19, 2.31 ($\mathrm{s} \times 3,18 \mathrm{H}, \mathrm{CMe}$ and Me-4), $2.47\left(\mathrm{~m}, 8 \mathrm{H}, \alpha-\mathrm{CH}_{2}\right.$ and CH_{2} of cod), $4.63,4.77,5.22$, $5.43\left(\mathrm{~m} \times 4,8 \mathrm{H}, \mathrm{CH}\right.$ of cod), $7.08,7.17\left[(\mathrm{AB})_{2}, 8 \mathrm{H}\right.$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}, J(\mathrm{AB}) 8\right], 7.35-7.65(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph})$ $1.35\left(\mathrm{~m}, 4 \mathrm{H}, \gamma-\mathrm{CH}_{2}\right), 1.51\left(\mathrm{~m}, 4 \mathrm{H}, \beta-\mathrm{CH}_{2}\right), 1.90(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{CH}_{2}$ of cod), 2.14, 2.22, $2.35(\mathrm{~s} \times 3,18 \mathrm{H}, \mathrm{CMe}$ and $\mathrm{Me}-4), 2.47\left(\mathrm{~m}, 8 \mathrm{H}, \alpha-\mathrm{CH}_{2}\right.$ and CH_{2} of cod), 4.67, 4.78, $5.25,5.44(\mathrm{~m} \times 4,8 \mathrm{H}, \mathrm{CH}$ of $\operatorname{cod}), 7.11$, $7.19\left[(\mathrm{AB})_{2}, 8 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}, J(\mathrm{AB}) 8\right], 7.23-7.55(\mathrm{~m}, 20$ H, Ph)
${ }^{13} \mathrm{C}^{\mathrm{c}}$ (δ)
292.8 [(AXX'), $\left.\mu-\mathrm{C},\left|J(\mathrm{AX})+J\left(\mathrm{AX}^{\prime}\right)\right| 25\right], 219.1$ [CO, $J(\mathrm{WC})$ 162], 149.0 [$\left.\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 142.3-127.8\left(\mathrm{Ph}\right.$ and $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 66.5(\mathrm{CMe}), 31.1$ (CMe), 24.6 $\left.\left[\left(\mathrm{AXX}^{\prime}\right), \mathrm{CH}_{2}, \mid J(\mathrm{AX})+\mathrm{AX}^{\prime}\right) \mid 38\right], 22.0(\mathrm{Me}-4)$
*295.5 (μ-C), 292.6 [d, μ-C, $J(\mathrm{PC}) 26], * 221.1$ [CO, $J(\mathrm{WC}) 164], 219.6$ [CO, $J(\mathrm{WC})$ 163], * 149.0, 148.4 [$\left.\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 142.3-127.4\left(\mathrm{Ph}\right.$ and $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right)$, ${ }^{*} 66.8$, $66.6(C \mathrm{Me}), 31.2$, * $30.9(\mathrm{CMe}), 29.6\left[\left(\mathrm{AXX}^{\prime}\right), \alpha-\mathrm{CH}_{2},\left|J(\mathrm{AX})+J\left(\mathrm{AX}^{\prime}\right)\right| 46\right]$, 22.0, * 21.9 (Me-4), $21.4\left[\mathrm{t}, \beta-\mathrm{CH}_{2}, J(\mathrm{PC}) 5\right]$
*295.5 (μ-C), 292.4 [d, $\mu-\mathrm{C}, J(\mathrm{PC}) 27, J(\mathrm{WC})$ 146], * 221.5 (CO), 219.7 [CO, $J(W C) 163], 149.1,{ }^{*} 148.4\left[\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 142.2-129.0\left(\mathrm{Ph}\right.$ and $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 66.6$, * 66.4 (CMe), 31.2, * 30.9 (CMe), 28.3 [d, $\left.\alpha-\mathrm{CH}_{2}, J(\mathrm{PC}) 33\right], 27.5$ [(AXX'), β $\left.\mathrm{CH}_{2},\left|J(\mathrm{AX})+J\left(\mathrm{AX}^{\prime}\right)\right| 23\right], 22.0, * 21.1(\mathrm{Me}-4)$

* 295.5 ($\mu-\mathrm{C}$), 292.6 [d, $\mu-\mathrm{C}, J(\mathrm{PC}) 27],{ }^{*} 221.4(\mathrm{CO}), 219.9$ [CO, J(WC) 163], 149.1, * $148.4\left[\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right.$], 142.2-129.3 (Ph and $\mathrm{C}_{6} \mathrm{H}_{4}$), 66.6, * 66.2 (CMe), $32.3\left[\mathrm{t}, \gamma-\mathrm{CH}_{2}, J(\mathrm{PC}) 16\right], 31.2, * 30.9$ (CMe), $28.4\left[\mathrm{~d}, \alpha-\mathrm{CH}_{2}, J(\mathrm{PC}) 33\right], 25.5$ [d, $\left.\beta-\mathrm{CH}_{2}, J(\mathrm{PC}) 5\right], * 22.7,22.0(\mathrm{Me}-4)$
*295.5($\mu-\mathrm{C}$), 292.6 [d, $\mu-\mathrm{C}, J(\mathrm{PC}) 27], * 221.7(\mathrm{CO}), 219.9$ [CO, $J(\mathrm{WC})$ 162], 149.1, ${ }^{*} 148.5\left[\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 142.1-129.4\left(\mathrm{Ph}\right.$ and $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 66.6, * 65.4(\mathrm{CMe})$, $31.2(\mathrm{CMe}), 30.7\left[\mathrm{~d}, \gamma-\mathrm{CH}_{2}, J(\mathrm{PC}) 16\right], 28.4\left[\mathrm{~d}, \alpha-\mathrm{CH}_{2}, J(\mathrm{PC}) 33\right], 26.0[\mathrm{~d}, \beta-$ $\left.\mathbf{C H}_{2}, J(\mathrm{PC}) 3\right], 22.0,{ }^{*} 21.0(\mathrm{Me}-4)$
* 303.3 (μ-C), 303.1 [(AXX'), $\left.\mu-\mathrm{C},\left|J(\mathrm{AX})+J\left(\mathrm{AX}^{\prime}\right)\right| 34\right], 222.2$ [CO, $J(\mathrm{WC})$ 165], * $220.4(\mathrm{CO}), 155.5$ [($\left.\left.\mathrm{AXX}^{\prime}\right), \mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right),\left|J(\mathrm{AX})+J\left(\mathrm{AX}^{\prime}\right)\right| 8\right],{ }^{*} 155.0$ $\left[\left(\mathrm{AXX}^{\prime}\right), \mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right),\left|J(\mathrm{AX})+J\left(\mathrm{AX}^{\prime}\right)\right| 7\right], 147.1,{ }^{*} 147.0\left[\left(\mathrm{AXX}^{\prime}\right), \mathrm{CH}=\mathrm{CH}\right.$, $\left.\left|J(\mathrm{AX})+J\left(\mathrm{AX}^{\prime}\right)\right| 62\right], 138.5-127.8\left(\mathrm{Ph}\right.$ and $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 64.7, * 59.6(C \mathrm{Me}), 31.1$, * 30.8 (CMe), *21.9, 21.4 (Me-4)
$293.1\left[\left(\mathrm{AXX}^{\prime}\right), \mu-\mathrm{C},\left|J(\mathrm{AX})+J\left(\mathrm{AX}^{\prime}\right)\right| 26\right], 219.1[\mathrm{CO}, J(\mathrm{WC}) 162], 148.9$ $\left[\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 142.4\left[\mathrm{C}^{4}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 141.9\left[\left(\mathrm{AXX}^{\prime}\right), \mathrm{CH}=\mathrm{CH},\left|J(\mathrm{AX})+J\left(\mathrm{AX}^{\prime}\right)\right|\right.$ 50], $134.1-127.0\left(\mathrm{Ph}\right.$ and $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 66.8(\mathrm{CMe}), 31.2(\mathrm{CMe}), 22.0(\mathrm{Me}-4)$
290.4 [d, $\mu_{3}-\mathrm{C}, J(\mathrm{PC})$ 14], 231.5, 219.1 (CO), 153.5 [$\left.\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right]$ 136.4-124.5 (Ph and $\mathrm{C}_{6} \mathrm{H}_{4}$), 106.5, 106.2, 99.6, $93.8(\mathrm{CH}$ of cod) $66.3,64.8(\mathrm{CMe}), 32.4[\mathrm{t}$, $\left.\gamma-\mathrm{CH}_{2}, J(\mathrm{PC}) 16\right], 31.0,30.8,30.5\left(\mathrm{CH}_{2}\right.$ of cod$), 30.2(\mathrm{br}, \mathrm{CMe}), 28.7$ [d, $\alpha-$ $\left.\mathrm{CH}_{2}, J(\mathrm{PC}) 32\right], 28.4\left(\mathrm{CH}_{2}\right.$ of cod), $25.3\left[\mathrm{~d}, \beta-\mathrm{CH}_{2}, J(\mathrm{PC}) 5\right], 21.2(\mathrm{Me}-4)$
289.8 [d, $\left.\mu_{3}-\mathrm{C}, J(\mathrm{PC}) 15, J(\mathrm{PtC}) 571\right], 231.4,219.6(\mathrm{CO}), 153.5\left[\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right]$, 136.4-124.5 Ph and $\mathrm{C}_{6} \mathrm{H}_{4}$), 106.7, 106.1, $99.7,93.6(\mathrm{CH}$ of cod), $66.3,64.9$ (CMe), 32.0, $30.9\left(\mathrm{CH}_{2}\right.$ of cod), 30.7 [d, $\left.\gamma-\mathrm{CH}_{2}, J(\mathrm{PC}) 16\right], 30.5,30.2\left(\mathrm{CH}_{2}\right.$ of cod), $30.0\left(\mathrm{CMe}\right.$), 28.7 [d, $\left.\alpha-\mathrm{CH}_{2}, J(\mathrm{PC}) 32\right], 25.8\left[\mathrm{~d}, \beta-\mathrm{CH}_{2}, J(\mathrm{PC}) 3\right], 21.2$ (Me-4)
${ }^{a}$ Chemical shifts δ in ppm, coupling constants in Hz , measurements at ambient temperatures in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. Asterisked peaks are due to minor isomer (see text). ${ }^{b}$ Resonances for $\mathrm{B}-\mathrm{H}$ protons are not resolved, due to ${ }^{11} \mathrm{~B}-{ }^{1} \mathrm{H}$ coupling, and occur as very broad, weak signals in the range $\delta 0-3$. ${ }^{c}$ Hydrogen-1 decoupled, chemical shifts are positive to high frequency of $\mathrm{SiMe}_{4}(\delta 0.0)$. ${ }^{d}$ Some $\mathrm{CH}_{2}($ cod) signals are obscured by other peaks. Signals due to CH groups of cod ligands show ${ }^{195} \mathrm{Pt}$ satellite peaks in ${ }^{1} \mathrm{H}$ spectra $[J(\mathrm{PtH}) c a .45-75 \mathrm{~Hz}]$, and also in ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ spectra $[J(\mathrm{PtC}) c a .105-145$ Hz], where the solubility of the complex allowed the latter spectra to be measured (see text).
platinum complexes, ${ }^{5 b}$ results in a widening of the $\mathrm{W}-\mu-\mathrm{C}-\mathrm{C}^{1}$ (aryl) angle. In compound $7 c$ this angle $[W-C(20)-C(21)$ $161.7(7)^{\circ}$] is very close to that found previously in 1 [163(2) ${ }^{\circ}$, and both are appreciably less than the corresponding angle $\left[175(1)^{\circ}\right]$ observed for $\left[\mathrm{WPt}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{3} \mathrm{Me}_{2}-2,6\right)\left(\mu-\sigma, \eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9}-\right.\right.$ $\left.\left.\mathrm{H}_{8} \mathrm{Me}_{2}\right)(\mathrm{CO})_{2}\left(\mathrm{PEt}_{3}\right)\right] .{ }^{5 b}$

The tungsten atoms in compound 7 c carry two essentially terminally bound CO groups. The nido-icosahedral $7,8-\mathrm{C}_{2} \mathrm{~B}_{9}$ $\mathrm{H}_{9} \mathrm{Me}_{2}$ cages ligating the tungsten atoms form closo-1,2-di-carba-3-tungstadodecaborane structures with the metal atoms. Since the open pentagonal face of the cage may be regarded as
occupying three co-ordination sites, the cage, together with the two CO groups, the gold atom, and the alkylidyne carbon atom give a seven-co-ordinate tungsten. However, overall the ligands about the metal atom adopt a distorted squarepyramidal or 'four-legged piano stool' arrangement. The distance between the tungsten atoms and the centroids of the pentagonal rings is $1.919 \AA$. The $\mathrm{W}-\mathrm{B}(1,2,3)$ and $\mathrm{W}-\mathrm{C}(1,3)$ distances are given in Table 4. A least-squares planes program verified the planarity of the open face of the nido- $\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}$ cage [ring $\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{B}(1)-\mathrm{B}(2)-\mathrm{B}(3)$ deviation $0.017 \AA$], and within the pentagonal ring the average bond angle is 108°.

The mean $\mathrm{P}-\mathrm{C}$ bond length is $1.81(1) \AA$, and all other determined bond distances are internally consistent and in good agreement with other experimental values. ${ }^{6}$ The phosphorus atoms are tetrahedrally co-ordinated with an average $\mathrm{Au}-\mathrm{P}-\mathrm{C}$ angle $\left(112^{\circ}\right)$ slightly larger than ideality and an average $\mathrm{C}-\mathrm{P}-\mathrm{C}$ bond angle (107°) discernibly less than ideal. These differences can be attributed to steric hindrance caused by the bulkiness of the $\mathrm{AuW}(\mu-\mathrm{CR})(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9}\right.$ Me_{2}) moieties.

The NMR data (Tables 2 and 3) for compound 7c are in

Table 3 Boron-11 and phosphorus-31 NMR data ${ }^{a}$ for the complexes

Compound	${ }^{11} \mathrm{~B}^{6}$ (δ)	${ }^{31} \mathrm{P}^{\mathrm{c}}$ (δ)
7a	$\begin{aligned} & -2.9 \text { (3 B), }-5.8(6 \mathrm{~B}), \\ & -7.2 \text { (6 B), }-9.6(3 \mathrm{~B}) \end{aligned}$	55.3 (s)
7b	$\begin{aligned} & -2.8(3 \mathrm{~B}),-5.8(6 \mathrm{~B}), \\ & -7.5(6 \mathrm{~B}),-9.6(3 \mathrm{~B}) \end{aligned}$	51.4 (s)
7c	$\begin{aligned} & -2.8(3 \mathrm{~B}),-5.8(6 \mathrm{~B}), \\ & -7.4(6 \mathrm{~B}),-8.1(3 \mathrm{~B}) \end{aligned}$	53.9 (s)
7d	$\begin{aligned} & -2.8(3 \mathrm{~B}),-5.8(6 \mathrm{~B}), \\ & -7.5(6 \mathrm{~B}),-9.8(3 \mathrm{~B}) \end{aligned}$	53.0 (s)
7 e	$\begin{aligned} & -2.7 \text { (3 B), }-5.7 \text { (6 B), } \\ & -7.6 \text { (6 B), }-9.6 \text { (3 B) } \end{aligned}$	53.5 (s)
8a	$\begin{aligned} & -4.0(3 \mathrm{~B}),-7.0 \text { (6 B), } \\ & -8.3 \text { (6 B), }-10.7 \text { (3 B) } \end{aligned}$	* 42.5 (s), 40.1 (s)
8b	$\begin{aligned} & -2.7(3 \mathrm{~B}),-5.7(6 \mathrm{~B}), \\ & -7.3(6 \mathrm{~B}),-9.5(3 \mathrm{~B}) \end{aligned}$	53.8 (s)
9a	$\begin{aligned} & -1.4(3 \mathrm{~B}),-6.5(11 \mathrm{~B}), \\ & -10.7(4 \mathrm{~B}) \end{aligned}$	$\begin{aligned} & 51.5[\mathrm{~s}, J(\mathrm{PtP}) 72, \\ & J(\mathrm{WP}) 32] \end{aligned}$
9b	$\begin{aligned} & -1.5(3 \mathrm{~B}),-6.8(11 \mathrm{~B}), \\ & -9.6(4 \mathrm{~B}) \end{aligned}$	$\begin{aligned} & 48.6[\mathrm{~s}, J(\operatorname{PtP}) 110] \\ & * 48.0[\mathrm{~s}, J(\operatorname{PtP}) 100] \end{aligned}$
9c	$\begin{aligned} & -1.4(3 \mathrm{~B}),-6.7(11 \mathrm{~B}), \\ & -9.7(4 \mathrm{~B}) \end{aligned}$	$\begin{aligned} & 50.7[\mathrm{~s}, J(\mathrm{PtP}) 96, \\ & J(\mathrm{WP}) 22] \end{aligned}$
9d	$\begin{aligned} & -1.2(3 \mathrm{~B}),-6.8(11 \mathrm{~B}), \\ & -9.4(4 \mathrm{~B}) \end{aligned}$	49.8 [s, J(PtP) 99]
9e	$\begin{aligned} & -1.1(3 \mathrm{~B}),-6.7(11 \mathrm{~B}), \\ & -9.8(4 \mathrm{~B}) \end{aligned}$	$\begin{aligned} & 50.4[\mathrm{~s}, J(\mathrm{PtP}) 95 \\ & J(\mathrm{WP}) 11] \end{aligned}$

${ }^{a}$ Chemical shifts δ in ppm, coupling constants in Hz , measurements in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at ambient temperatures. ${ }^{b}$ Hydrogen -1 decoupled, chemical shifts are positive to high frequency of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ (external). In fully coupled ${ }^{11} \mathrm{~B}-{ }^{1} \mathrm{H}$ spectra, $J(\mathrm{HB})$ values are $c a .115-135 \mathrm{~Hz}$. ${ }^{c}$ Hydrogen1 decoupled, chemical shifts are positive to high frequency of 85% $\mathrm{H}_{3} \mathrm{PO}_{4}$ (external). Asterisked peaks are due to a second isomer.
accord with the structure established by the X-ray diffraction study. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum revealed the expected singlet resonance which occured at $\delta 53.9$. For the precursor $\left[\mathrm{Au}_{2} \mathrm{Cl}_{2}\left\{\mu-\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{PPh}_{2}\right\}\right]$ the ${ }^{31} \mathrm{P}$ signal is at $\delta 30.2$ (see Experimental section). The ${ }^{11} \mathrm{~B}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 7 c , and the other compounds of similar type, displayed four broad peaks (Table 3). In fully coupled ${ }^{11} \mathrm{~B}$ spectra these resonances become doublets with $J(\mathrm{HB})$ values $(c a .115-135 \mathrm{~Hz})$ expected for BH cage vertices undisturbed by exopolyhedral $\mathrm{B}-\mathrm{H} \longrightarrow \mathrm{M}$ bonding. ${ }^{7}$

Signals in the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 7c were as expected. However, a duplication of certain peaks in the ${ }^{13} \mathrm{C}$ $\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum indicated the presence in solution of $c a$. 10% of a minor isomer. Thus two resonances were seen for $\mu-\mathrm{C}$ nuclei for the minor and major isomer at $\delta 295.5$ and 292.4, respectively. The latter signal was a doublet due to ${ }^{31} \mathrm{P}-{ }^{13} \mathrm{C}$ coupling (27 Hz) and there were ${ }^{183} \mathrm{~W}$ satellite peaks [$J(\mathrm{WC}$) $146 \mathrm{~Hz}]$. In the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 1 the $\mu-\mathrm{C}$ resonance is at $\delta 292.9$ with $J(\mathrm{PC}) 28 \mathrm{~Hz}$. These chemical shifts correlate with the semibridging nature of the p-tolylmethylidyne groups. When these ligands span heteronuclear metal-metal bonds more symmetrically the ${ }^{13} \mathrm{C}$ NMR resonances are appreciably more deshielded (δ ca. 325-380). ${ }^{5 b, 8}$ Moreover, in dimetal complexes with symmetrically bridging alkylidyne fragments, and with the ligated carbon atoms attached to a metal atom carrying a phosphine, the ${ }^{31} \mathrm{P}^{1}{ }^{13} \mathrm{C}$ couplings are larger, e.g. 59 Hz for $\left[\mathrm{WPt}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}-\right.$ $\left.\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right],{ }^{9}$ than that $(27 \mathrm{~Hz})$ found for the major isomer of 7 c .

The ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of compounds $\mathbf{7 b}, 7 \mathrm{~d}$ and 7 e also display duplicate resonances indicating the presence of isomers. Whereas with 7d and 7e the relative peak intensities showed that one of the isomers was present in small amounts ($c a .10 \%$), the spectrum of 7b revealed two isomers in ca. $4: 3$ ratio. In the spectrum of each compound two signals are seen for μ-C nuclei of the two isomers at $\delta 292.6$ and 295.5. Whereas the resonance for the principal isomer (Table 2) shows ${ }^{31} \mathrm{P}-{ }^{13} \mathrm{C}$ coupling, the signal for the less-abundant isomer does not, presumably due to weaker μ-C-Au bonding in the latter species. This same feature is shown by the spectrum of $\mathbf{7 c}$. The existence of isomers is attributed to the presence of rotamers, resulting from different conformations of the CH_{2} backbone.
In contrast with the four compounds $7 \mathbf{b}-7 \mathbf{e}$, the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 7a showed peaks corresponding to one

Table 4 Selected internuclear distances (\AA) and angles $\left({ }^{\circ}\right)$ for the complex $\left[W_{2} \mathrm{Au}_{2}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2}\left\{\mu-\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{PPh}\right\}(\mathrm{CO})_{4}\left(\eta^{5}-\right.\right.$ $\left.\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)_{2}$] 7 c

Fig. 1 The molecular structure of the complex $\left[\mathrm{W}_{2} \mathrm{Au}_{2}(\mu-\mathrm{CR})_{2}\left\{\mu-\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{PPh}_{2}\right\}(\mathrm{CO})_{4}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)_{2}\right] 7 \mathrm{c}$ showing the crystallographic numbering scheme
isomer only. An X-ray diffraction study of $\left[\mathrm{Au}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{Ph}_{2^{-}}\right.\right.$ $\mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}$)], the precursor to 7a, showed that in this molecule the two halves point away from one another. ${ }^{10} \mathrm{It}$ is possible that in 7 a , with only two CH_{2} units in the chain, the AuPPh_{2} groups carrying the bulky $\mathrm{RC} \equiv \mathrm{W}(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9}-\right.$ Me_{2}) fragments are constrained to one conformer. It is noteworthy that the crystal structure of 7 c reveals a transoid arrangement of $\mathrm{Au}-\mathrm{P}$ groups. $\mathrm{A}{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR study of the crystals recovered from the X-ray work showed that they were of the major isomer. With the longer chains in 7b-7e the existence of rotamers resulting from different orientations of the AuPPh_{2} groups with respect to the CH_{2} backbone seems probable. With 7b, having three CH_{2} groups in the chain, two conformers are apparently almost equally favoured.

The importance of steric effects in these syntheses is further indicated by the observation that the reaction between [NEt_{4}]$\left[\mathrm{W}(\equiv \mathrm{CR})(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right]$ and the species $\left[\mathrm{Au}_{2} \mathrm{Cl}_{2}(\mu\right.$ $\left.\left.\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}\right)\right]$ afforded 3 as its [$\left.\mathrm{NEt}_{4}\right]^{+}$salt rather than a product structurally similar to the complexes 7. An X-ray crystal structure study ${ }^{11}$ on $\left[\mathrm{Au}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}\right)\right]$ revealed a sterically crowded molecule, making it unlikely that the two Cl^{-}ligands could be successfully replaced by $\left[\mathrm{W}(\equiv \mathrm{CR})(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right]^{-}$moieties without breakdown of the five-atom AuPCPAu chain. Electronic effects also apparently play a part in the nature of the products isolated. Thus the reaction between $\left[\mathrm{Au}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{Me}_{2} \mathrm{PCH}_{2}-\right.\right.$ $\left.\left.\mathrm{CH}_{2} \mathrm{PMe}_{2}\right)\right]$ and $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{W}(\equiv \mathrm{CR})(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right]$ occurred only slowly and surprisingly yielded the tetraethylammonium salt of 3 , instead of an analogue of 7 a , despite $\mathrm{Me}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PMe}_{2}$ being less bulky than $\mathrm{Ph}_{2} \mathrm{PCH}_{2^{-}}$ $\mathrm{CH}_{2} \mathrm{PPh}_{2}$.

The NMR data for the two compounds 8 are in accord with the assigned structures, but 8 a with a $c i s-\mathrm{CH}=\mathrm{CH}$ group exists in solution as an isomeric mixture ($c a .4: 1$), a feature revealed in the ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$, and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra (Tables 2 and 3). The absence of any ${ }^{31} \mathrm{P}^{13} \mathrm{C}$ coupling on the alkylidyne carbon resonance ($\delta 303.3$) of the minor isomer may indicate that in this species steric constraints about the two
AuPPh_{2} units, due to the proximity of the bulky $\mathrm{W}(\mathrm{CO})_{2}\left(\eta^{5}-\right.$ $\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}$) groups, weaken the $\mathrm{Au}-\mu-\mathrm{C}$ bonds.
We have carried out preliminary work to establish whether the compounds 7 can be used as precursors to other polynuclear mixed-metal complexes by addition of metal-ligand fragments to the $\mathrm{C}=\mathrm{W}$ groups at both ends of the molecule. Because of earlier success in building chains based on combining $\mathrm{Pt}(\operatorname{cod})$ fragments with $\mathrm{C} \equiv \mathrm{W}$ groups, ${ }^{12}$ reactions between the complexes 7 and $\left[\mathrm{Pt}(\operatorname{cod})_{2}\right]$ were investigated. Addition of 7 a to an ethylene-saturated thf solution of $\left[\mathrm{Pt}(\operatorname{cod})_{2}\right]$ at $0^{\circ} \mathrm{C}$ followed by warming to room temperature, afforded $\left[\mathrm{W}_{2} \mathrm{Pt}_{2} \mathrm{Au}_{2}\left(\mu_{3}-\mathrm{CR}\right)_{2}-\right.$ $\left.\left\{\mu-\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{PPh}_{2}\right\}(\mathrm{CO})_{4}(\operatorname{cod})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)_{2}\right] \quad 9 \mathrm{a}$. Similar syntheses employing $7 \mathrm{~b}-7 \mathrm{e}$ with $\left[\mathrm{Pt}(\operatorname{cod})_{2}\right]$ yielded the hexanuclear metal complexes $9 \mathrm{~b}-9 \mathrm{e}$. Data characterising the compounds 9 are given in Tables 1-3. Although satisfactory microanalytical data were not obtained for 9c or 9e the spectroscopic properties of these two species were very similar to those of $9 \mathrm{a}, \mathbf{9 b}$ and 9 d , leaving little doubt that they have similar structures.
The IR spectra of the compounds 9 show three broad CO stretching bands, one of which ($c a .1800 \mathrm{~cm}^{-1}$) suggests the ${ }_{13}$ presence of semibridging carbonyl ligands, in agreement with ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ data discussed below. The ${ }^{1} \mathrm{H}$ NMR spectra were as expected, although in some cases not all the CH_{2} signals of the cod ligands were resolved. In the structures proposed the four CH groups of the cod ligands would be inequivalent. Accordingly, the spectra of $\mathbf{9 b - 9 e}$ show four distinct multiplets in the range $\delta 4.59-5.44$ for these groups, all displaying ${ }^{195} \mathrm{Pt}^{1}{ }^{1} \mathrm{H}$ coupling ($c a .45-75 \mathrm{~Hz}$). In the spectrum of 9 a two of the four CH (cod) multiplets overlap.
The ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of compounds $9 \mathrm{a}-9 \mathrm{c}$ could not be measured because these were relatively insoluble, and a poor signal-to-noise ratio prevented observation of all the peaks, particularly those due to the CO and $\mu_{3}-\mathrm{CR}$ groups. However, complexes 9d and 9e, with the longer CH_{2} chains, were appreciably more soluble, and their ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra could be successfully recorded (Table 2). As in the ${ }^{1} \mathrm{H}$ NMR spectra, and as expected based on the proposed structures, four
signals were seen (Table 2) for both the $\mathrm{CH}(\operatorname{cod})$ and CH_{2} (cod) groups, the former showing ${ }^{195} \mathrm{Pt}^{13} \mathrm{C}$ coupling (ca. 105-145 Hz) of the expected magnitude. ${ }^{12}$ In the CO region two resonances were observed for both compounds at $\delta c a .231$ and 219. The chemical shift of the former signal suggests that it is due to a semibridging CO group. It may be compared with the CO peak seen at $\delta 235.4$ in the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 6 , the other three resonances in this spectrum occurring at $\delta 215.7$, 212.7 and $212.1 .^{4 b}$

The $\mu_{3}-\mathrm{C}$ resonances in the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of compounds 9d and 9e occur at $\delta 290.4$ and 289.8 , respectively, to be compared with the corresponding signals in the spectra of 5 and 6 at $\delta 290.7$ and 284.9 respectively. ${ }^{4 b}$ The peaks for 9 d and 9 e appear as doublets $[J(\mathrm{PC}) c a .15 \mathrm{~Hz}$], while the spectrum of 9 e was of sufficient quality to measure ${ }^{195} \mathrm{Pt}$ satellite bands $[J(\mathrm{PtC}) 571 \mathrm{~Hz}]$. In the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}$ spectrum of $\left[W P t A u\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)(\operatorname{cod})\left(\eta^{5}-\right.\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right],{ }^{13}$ a compound structurally similar to 5 but having $\mathrm{Au}\left(\mathrm{PPh}_{3}\right)$ and $\mathrm{Pt}(\mathrm{cod})$ groups, the $\mu_{3}-\mathrm{C}$ resonance is at $\delta 291.1$ with $J(\mathrm{PC}) 15$ and $J(\mathrm{PtC}) 595 \mathrm{~Hz}$, data very similar to those for 9 e .
There can be little doubt that all the complexes 9 have the same basic structure in which two μ_{3}-CWPtAu fragments terminate a $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{PPh}_{2}$ chain. What remains at issue is whether the $\mu_{3}-\mathrm{CWPtAu}$ groups adopt a closo-trimetallatetrahedrane structure or a 'butterfly' arrangement with Pt and Au atoms at the wing-tip positions, and the $\mathrm{C}-\mathrm{W}$ linkage forming the body of the butterfly. The latter configuration occurs in $\left[\mathrm{WPtAu}\left(\mu_{3}-\mathrm{CR}\right)(\mathrm{CO})_{2}\left(\mathrm{PMe}_{3}\right)_{3}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left[\mathrm{PF}_{6}\right]$, the structure of which has been established by X-ray crystallography. ${ }^{14}$ Unfortunately, despite persistent efforts, it was not possible to grow crystals of any of the compounds 9 of suitable quality for an X-ray diffraction study. However, the data from the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra suggest that in these molecules there is a $\mathrm{Pt}-\mathrm{Au}$ connectivity. The spectra (Table 3) of 9 a and $9 \mathrm{c}-9 \mathrm{e}$ show a singlet resonance at $\delta c a$. 50 , with ${ }^{195} \mathrm{Pt}$ satellites. The ${ }^{31} \mathrm{PAu}-{ }^{195} \mathrm{Pt}$ coupling ($72-99 \mathrm{~Hz}$) is too large for a three-bond value. Moreover, the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[\mathrm{WPtAu}\left(\mu_{3}-\mathrm{CR}\right)(\mathrm{CO})_{2}\left(\mathrm{PMe}_{3}\right)_{3}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left[\mathrm{PF}_{6}\right]$ shows no $\mathrm{Me}_{3}{ }^{31} \mathrm{PAu}-{ }^{195} \mathrm{Pt}$ coupling. ${ }^{14}$ We conclude, therefore, that there is a degree of direct $\mathrm{Pt}-\mathrm{Au}$ bonding in the compounds $\mathbf{9}$, the AuP groups providing one valence electron and three valence orbitals in cluster bonding, as does the $\mathrm{Cu}\left(\mathrm{PPh}_{3}\right)$ moiety in $\left[\mathrm{W}_{2} \mathrm{Cu}\left(\mu_{3}-\mathrm{CR}\right)(\mathrm{CO})_{4}\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$ which has a closo structure for the core $\mu_{3}-\mathrm{CW}_{2} \mathrm{Cu}$ atoms. ${ }^{15}$

The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound 9 b differed from those of the other complexes in showing two singlet resonances at $\delta 48.0$ and 48.6 of approximately equal intensity, with ${ }^{195} \mathrm{Pt}-{ }^{31} \mathrm{P}$ couplings of 100 and 110 Hz , respectively. This may be explained by the presence of a chromatographically inseparable mixture of two sets of diastereoisomers. As has been discussed previously in other chain systems, ${ }^{12 b}$ the $\mu-\mathrm{C} \equiv \mathrm{W}$ groups in the species 7 are prochiral and approach of the $\mathrm{Pt}(\mathrm{cod})$ reagent from one side or the other would give rise to a chiral $\mu_{3}-C$ centre. Since $9 b$ has two such chiral groups this results in the possibility of a mixture of two diastereoisomeric pairs. It is noteworthy that the observed ratio of isomers from the ${ }^{31} P_{-}\left\{{ }^{1} \mathbf{H}\right\}$ NMR data approaches the theoretically expected value of $1: 1$. It is to be expected that the chemical shift difference for the two isomeric pairs would be greater in the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ than in the ${ }^{1} \mathrm{H}$ NMR spectrum and this, together with the broadness of the observed signals in the latter due to overlapping peaks, might account for the observation of duplicate resonances in the former spectrum only. As mentioned above, unfortunately a satisfactory ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 9 b could not be measured. The apparent presence of only one species in the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $9 \mathrm{c}-9 \mathrm{e}$ may be due to the greater separation of the chiral centres resulting in the two sets of peaks being unresolved. Moreover, conformer constraints imposed on 7a, discussed above, may favour only one face for approach of the $\mathrm{Pt}(\mathrm{cod})$ groups, leading to the formation of only
one set of diastereoisomers for 9 a , and therefore the observation of a single ${ }^{31} \mathrm{P}$ resonance.

During the course of the work described herein some reactions were investigated between the compounds 7 and $[\mathrm{Pt}(\mathrm{nb})(\mathrm{P}$ $\left.\left.\mathrm{Me}_{2} \mathrm{Ph}\right)_{2}\right](\mathrm{nb}=$ norbornene $)$, generated in situ from [$\left.\mathrm{Pt}(\mathrm{nb})_{3}\right]$ and two equivalents of $\mathrm{PMe}_{2} \mathrm{Ph}$. Both 7 a and 7 e reacted with $\left[\mathrm{Pt}(\mathrm{nb})\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ to give the previously reported compound $5{ }^{4 b}$ Evidently these reactions proceed with displacement of the $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{PPh}_{2}$ ligands from the gold centres in 7 a or 7 e by free $\mathrm{PMe}_{2} \mathrm{Ph}$ present in the mixtures, thus affording the kinetically more stable product 5 . Despite this result, it is likely that the compounds 7 can be used as precursors to more complex cluster species via addition of metal-ligand fragments to the $\mathrm{RC} \equiv \mathrm{W}$ groups. In this manner new types of metal clusters should be accessible, provided the ligands attached to the metal fragments do not dissociate and attack the gold centres.

Experimental

Light petroleum refers to that fraction of b.p. $40-60^{\circ} \mathrm{C}$, and all solvents were freshly distilled over appropriate drying agents before use. Chromatography columns ca. 15 cm long and 3 cm in diameter were packed with alumina (Brockman activity II), and all experiments were done under oxygen-free nitrogen using Schlenk-tube techniques. The NMR measurements were made using a Bruker AMX 360 spectrometer and IR spectra were recorded with a Bruker IFS 25 spectrophotometer. The reagents $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{W}(\equiv \mathrm{CR})(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right],{ }^{3,13}\left[\mathrm{Pt}(\operatorname{cod})_{2}\right]$ and $\left[\mathrm{Pt}(\mathrm{nb})_{3}\right]^{16}$ were prepared by procedures described earlier.

The compounds [$\left.\mathrm{Au}_{2} \mathrm{Cl}_{2}\left\{\mu-\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{PPh}_{2}\right\}\right]$ ($n=2-6$) and $\left[\mathrm{Au}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}\right)\right]$ were prepared in quantitative yield by treating $[\mathrm{AuCl}(\mathrm{tht})]$ (tht $=$ tetrahydrothiophene) ${ }^{17}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with 0.5 equivalent of the appropriate bidentate phosphine. Addition of light petroleum or trituration with diethyl ether affords the desired products, which were dried in vacuo. The compounds $\left[\mathrm{Au}_{2} \mathrm{Cl}_{2}\left\{\mu-\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{PPh}_{2}\right\}\right][n=$ 2 and 6) and $\left[\mathrm{Au}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh} 2\right)\right]$ have been obtained previously by alternative syntheses. ${ }^{18}$ The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra display singlet resonances at $\delta 31.9$ (for $n=2$, lit., ${ }^{18 b} \delta 31.5$), 27.2 (for $n=3$), 30.2 (for $n=4$), 30.0 (for $n=5$ and 6), and at $\delta 13.2$ and 29.6 for the cis and trans isomers of $\left[\mathrm{Au}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CH} \mathrm{PPh}_{2}\right)\right]$, respectively.

Synthesis of the Complexes $\left[\mathrm{W}_{2} \mathrm{Au}_{2}(\mu-\mathrm{CR})_{2}\left\{\mu-\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{n^{-}}\right.\right.$ $\left.\left.\mathrm{PPh}_{2}\right\}(\mathrm{CO})_{4}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)_{2}\right]$.-In a typical preparation, $\left[\mathrm{Au}_{2} \mathrm{Cl}_{2}\left\{\mu-\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{PPh}_{2}\right\}\right](0.36 \mathrm{~g}, 0.39 \mathrm{mmol})$ was added to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ solution containing $\left[\mathrm{NEt}_{4}\right][\mathrm{W}(\equiv \mathrm{CR})$ -$\left.(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right](0.50 \mathrm{~g}, 0.79 \mathrm{mmol})$ and $\mathrm{TlBF}_{4}(0.25 \mathrm{~g}$, 0.87 mmol), and the mixture was stirred for ca. 40 min . The colour changed from orange to brown and a grey precipitate of TlCl was observed. The mixture was filtered through a Celite plug ($c a .3 \mathrm{~cm}$) and solvent was removed in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum ($5 \mathrm{~cm}^{3}, 3: 2$) and chromatographed at $-20^{\circ} \mathrm{C}$. Elution with the same solvent mixture yielded an orange-brown fraction which was collected. Removal of solvent in vacuo gave a red-brown residue which was crystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum ($c a .40 \mathrm{~cm}^{3}$, $1: 20$) to afford brown microcrystals of $\left[\mathrm{W}_{2} \mathrm{Au}_{2}(\mu-\mathrm{CR})_{2^{-}}\right.$ $\left.\left\{\mu-\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{PPh}_{2}\right\}(\mathrm{CO})_{4}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)_{2}\right] 7 \mathrm{e}(0.30 \mathrm{~g})$, washed with light petroleum ($3 \times 15 \mathrm{~cm}^{3}$) and dried in vacuo. Further elution of the chromatography column with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave a second brown fraction which, after removal of solvent in vacuo, was identified by IR spectrescopy as $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{W}_{2} \mathrm{Au}(\mu\right.$ -$\left.\mathrm{CR})_{2}(\mathrm{CO})_{4}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)_{2}\right]$ (ca. 0.15 g), the tetraethylammonium salt of 3 .

A similar procedure was used to obtain the compounds 7a $(0.43 \mathrm{~g}), 7 \mathrm{~b}(0.065 \mathrm{~g}), 7 \mathrm{c}(0.14 \mathrm{~g})$ and $7 \mathrm{~d}(0.27 \mathrm{~g})$. The quantities of $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{W}(\equiv \mathrm{CR})(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right]$ employed were 0.79 , $0.40,0.40$ and 0.95 mmol , respectively, together with, in each synthesis, 0.5 equivalent of the appropriate $\left[\mathrm{Au}_{2} \mathrm{Cl}_{2}\left\{\mu-\mathrm{Ph}_{2} \mathrm{P}\right.\right.$ $\left.\left.\left(\mathrm{CH}_{2}\right)_{n} \mathrm{PPh}_{2}\right\}\right]$ compound and excess of TlBF_{4}.

Synthesis of the Complexes $\left[\mathrm{W}_{2} \mathrm{Au}_{2}(\mu-\mathrm{CR})_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{PCH}=\right.\right.$ $\left.\left.\mathrm{CHPPh}_{2}\right)(\mathrm{CO})_{4}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)_{2}\right]$. $-\mathrm{A} \quad \mathrm{CH}_{2} \mathrm{Cl}_{2} \quad\left(20 \mathrm{~cm}^{3}\right)$ solution containing a mixture of $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{W}(\equiv \mathrm{CR})(\mathrm{CO})_{2}\left(\eta^{5}\right.\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right](0.25 \mathrm{~g}, 0.40 \mathrm{mmol})$ and $\mathrm{TlBF}_{4}(0.13 \mathrm{~g}, 0.45$ $\mathrm{mmol})$ was treated with $\left.\left[\mathrm{Au}_{2} \mathrm{Cl}_{2}\left(\mu-Z-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}\right)_{2}\right)\right]$ $(0.17 \mathrm{~g}, 0.20 \mathrm{mmol})$, and the mixture was stirred for $c a .30 \mathrm{~min}$. After filtration through a Celite pad (ca. 3 cm), solvent was removed in vacuo. The brown residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ light petroleum ($5 \mathrm{~cm}^{3}, 3: 2$) and chromatographed at $-20^{\circ} \mathrm{C}$. Elution with the same solvent mixture gave initially a trace of an unidentified yellow fraction. Further elution removed an orangebrown band. Removal of solvent in vacuo from the eluate afforded a brown solid which was crystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ light petroleum ($30 \mathrm{~cm}^{3}, 1: 15$) to yield orange microcrystals of $\left[\mathrm{W}_{2} \mathrm{Au}_{2}(\mu-\mathrm{CR})_{2}\left(\mu-Z-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}\right)(\mathrm{CO})_{4}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9}-\right.\right.$

Table 5 Data for crystal structure analysis of compound 7c

Molecular formula	$\mathrm{C}_{56} \mathrm{H}_{72} \mathrm{Au}_{2} \mathrm{~B}_{18} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{~W}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$
M	1912.3
Crystal system	Monoclinic
Space group	$P 2_{1} / c$ (no. 14)
a / \AA	16.7386(12)
b / \AA	$14.1585(10)$
c / \AA	15.6820(9)
$\boldsymbol{\beta} /{ }^{\circ}$	90.828(5)
U / \AA^{3}	3709.2(4)
Z	2
$D_{\mathrm{c}} / \mathrm{Mg} \mathrm{m}^{-3}$	1.712
$F(000)$	1816
$\mu(\mathrm{Mo}-\mathrm{K} \alpha) / \mathrm{cm}^{-1}$	72.49
T/K	292
Diffractometer	Enraf-Nonius CAD4-F
Scan type	$\omega-2 \theta$
Scan speed/ ${ }^{\circ} \min ^{-1}$	0.43-3.44
Scan range ($\omega /{ }^{\circ}$)	$1.15+0.34 \tan \theta$
2θ range $/^{\circ}$	$3.0-40.0$
Radiation	Mo-K $\alpha(\bar{\lambda}=0.71073 \AA)$
Observed data $[F \geqslant 4.0 \sigma(F)]$	3000
Data-to-parameter ratio	7.2:1
$R, R^{\prime}\left(R_{\mathrm{aII}}\right)$	$0.0296,0.0352$ (0.0462)
$R_{\text {int }}$	0.033
S	1.03
Residual density (maximum, minimum)/e \AA^{-3}	0.95, -0.60

$\left.\left.\mathrm{Me}_{2}\right)_{2}\right] 8 \mathrm{a}(0.045 \mathrm{~g})$, washed with light petroleum ($3 \times 10 \mathrm{~cm}^{3}$) and dried in vacuo. Elution of the chromatography column with neat $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ led to the recovery of $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{W}_{2} \mathrm{Au}(\mu-\mathrm{CR})_{2}-\right.$ $\left.(\mathrm{CO})_{4}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)_{2}\right](c a .0 .13 \mathrm{~g})$, formed as a by-product.
The compound $\left[\mathrm{W}_{2} \mathrm{Au}_{2}(\mu-\mathrm{CR})_{2}\left(\mu-E-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}\right)\right.$ -$\left.(\mathrm{CO})_{4}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)_{2}\right] \mathbf{8 b}(0.16 \mathrm{~g})$ was similarly obtained from $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{W}(\equiv \mathrm{CR})(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathbf{B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right](0.40 \mathrm{mmol})$, $\left[\mathrm{Au}_{2} \mathrm{Cl}_{2}\left(\mu-E-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}\right)\right](0.20 \mathrm{mmol})$ and TlBF_{4} (0.45 mmol).

Synthesis of the Complexes $\left[\mathrm{W}_{2} \mathrm{Pt}_{2} \mathrm{Au}_{2}\left(\mu_{3}-\mathrm{CR}\right)_{2}\left\{\mu-\mathrm{Ph}_{2} \mathrm{P}-\right.\right.$ $\left.\left.\left(\mathrm{CH}_{2}\right)_{n} \mathrm{PPh}_{2}\right\}(\mathrm{CO})_{4}(\mathrm{cod})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)_{2}\right]$.-In a representative synthesis of this type of compound a three-necked roundbottom flask ($100 \mathrm{~cm}^{3}$) was charged with thf ($20 \mathrm{~cm}^{3}$) and maintained at $0^{\circ} \mathrm{C}$ while the solvent was saturated with $\mathrm{C}_{2} \mathrm{H}_{4}$. The compound $\left[\mathrm{Pt}(\mathrm{cod})_{2}\right](0.050 \mathrm{~g}, 0.12 \mathrm{mmol})$ was added, and the solution was stirred for $c a .5 \mathrm{~min}$ under an atmosphere of $\mathrm{C}_{2} \mathrm{H}_{4}$ to labilise cod ligands from platinum. ${ }^{16}$ Complex 7a ($0.099 \mathrm{~g}, 0.06 \mathrm{mmol}$) was added, and the mixture was warmed slowly to room temperature with stirring. Infrared spectral measurements revealed that the reaction was complete in ca. 20 min , after which period solvent was removed in vacuo. The brown residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum ($5 \mathrm{~cm}^{3}$, 3:2) and chromatographed at $-20^{\circ} \mathrm{C}$ using the same solvent mixture. Continued elution, increasing the proportion of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to light petroleum to 7:2, afforded a brown fraction. Removal of solvent in vacuo gave a brown residue which was crystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum ($25 \mathrm{~cm}^{3}, 1: 4$) to yield microcrystals of $\left[\mathrm{W}_{2} \mathrm{Pt}_{2} \mathrm{Au}_{2}\left(\mu_{3}-\mathrm{CR}\right)_{2}\left\{\mu-\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{PPh}_{2}\right\}-\right.$ $\left.(\mathrm{CO})_{4}(\mathrm{cod})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)_{2}\right] 9 \mathrm{a}(0.046 \mathrm{~g})$, after washing with light petroleum ($2 \times 10 \mathrm{~cm}^{3}$) and drying in vacuo.
A similar procedure was used to prepare the compounds 9b $(0.084 \mathrm{~g}), 9 \mathrm{c}(0.054 \mathrm{~g}), 9 \mathrm{~d}(0.090 \mathrm{~g})$, and $9 \mathrm{e}(0.041 \mathrm{~g})$ from $\left[\mathrm{Pt}(\operatorname{cod})_{2}\right]$ (2 equivalents) and the complexes $7 \mathbf{b}, 7 \mathbf{c}, 7 \mathbf{d}$ and $7 \mathbf{e}$, respectively.

Crystal Structure Determination.-Crystals of compound 7c were grown by slow diffusion of a dichloromethane solution into layered light petroleum. The X-ray measurements were obtained from a clear red rectangular crystal ($0.164 \times 0.360 \times$ 0.443 mm). Crystal data and relevant parameters are summarized in Table 5 . The final cell parameters were determined at high angles. The 3809 collected reflections ($h 0-15, k 0-13, l$ -16 to 16) showed a slow decay of $-0.1145 \% h^{-1}$ which

Table 6 Atomic positional parameters (fractional coordinates, $\times 10^{6}$) for compound 7 c with estimated standard deviations in parentheses

Atom	x	y	z	Atom	x	y	z
Au	2341(1)	-54(1)	4149(1)	C(23)	4307(7)	1555(8)	5727(7)
W	2453(1)	1235(1)	2803(1)	C(24)	5078(6)	1434(8)	5476(7)
P	1819(1)	-1103(2)	5104(1)	C(25)	5206(7)	1183(9)	4643(8)
C(1)	1688(6)	1970(6)	1661(5)	C(26)	4584(7)	1029(9)	4076(7)
C(2)	1938(7)	1501(7)	808(6)	C(27)	5760(7)	1571(11)	6088(8)
C(3)	1077(6)	1464(6)	2325(6)	C(31)	1580(5)	-2269(6)	4710(5)
C(4)	719(7)	478(7)	2102(7)	C(32)	1144(6)	-2877(7)	5203(6)
B(1)	1219(7)	1850(8)	3328(7)	C(33)	999(7)	-3794(7)	4959(6)
B(2)	1965(7)	2750(8)	3291(6)	C(34)	1291(7)	-4099(8)	4194(7)
B(3)	2262(7)	2763(7)	2213(6)	C(35)	1728(7)	-3489(9)	3696(8)
B(4)	1459(7)	3133(7)	1579(7)	C(36)	1857(6)	-2581(7)	3949(6)
B(5)	695(7)	2317(8)	1630(8)	C(41)	2508(5)	-1251(5)	5992(5)
B(6)	397(7)	2261(9)	2701(7)	C(42)	2774(6)	-473(7)	6430(5)
B(7)	951(8)	3055(8)	3294(8)	C(43)	3321(6)	-507(6)	7072(6)
B(8)	1601(8)	3608(8)	2600(7)	C(44)	3628(6)	-1357(6)	7327(6)
$\mathrm{B}(9)$	651(9)	3333(9)	2255(8)	C(45)	3368(6)	-2159(7)	6913(7)
$\mathrm{C}(10)$	2438(9)	-67(8)	2351(7)	C(46)	2816(6)	-2113(6)	6242(7)
$\mathrm{O}(10)$	2393(8)	-826(7)	2056(6)	C(51)	904(5)	-609(6)	5544(5)
$\mathrm{C}(11)$	3500(9)	1332(9)	2212(8)	C(52)	301(5)	-382(7)	4856(5)
$\mathrm{O}(11)$	4100(6)	1385(8)	1876(6)	C(91)	4183(9)	3855(9)	4377(9)
C(20)	3177(5)	1027(6)	3704(6)	$\mathrm{Cl}(1)$	4756(7)	3963(9)	3435(7)
C(21)	3808(5)	1162(6)	4315(5)	$\mathrm{Cl}(2)$	3569(7)	4863(8)	4531(6)
C(22)	3679(6)	1431(7)	5144(5)				

constituted a maximum correction of 1.11918 . After the intensity data were corrected for Lorentz and polarisation effects, an empirical absorption correction (maximum, minimum transmission factors $=0.6026,0.9993$) was made. From the remaining independent data (3441), 3000 were observed $\left[F \geqslant 4.0 \sigma(F), R_{\text {int }}=0.033\right]$. Systematic absences $(h 0 l, l=2 n+$ 1 and $0 k 0, k=2 n+1$) yielded the space-group assignment.
The structure was solved by the heavy-atom Patterson (Au, W, P) and Fourier methods and refined using the SHELXTLPC ${ }^{19}$ package of programs. The structural model was refined by the blocked full-matrix least-squares method. After applying a secondary extinction correction $\left[g=1.5(2) \times 10^{-4} \mathrm{e}^{-2}\right]$ and anisotropic refinement for all non-hydrogen atoms, the R factors stabilised with an average shift/error value of 2.0×10^{-2}. Hydrogen atomic positions were calculated (C-H 0.96 and $\mathrm{B}-\mathrm{H}$ $1.10 \AA$) and not refined. The minimised quantity was $\Sigma w\left|\left|F_{0}\right|\right.$ $-\left|F_{\mathrm{c}}\right|^{2}$ and the weighting scheme was $w^{-1}=\sigma^{2}(F)+0.0018$ F^{2}. The final Fourier difference map showed the highest peak to be 0.95 e \AA^{-3} in the vicinity of the Au atom. Elsewhere only random fluctuations were observed. Atomic scattering factors were taken from ref. 20. Final atomic positional parameters for non-hydrogen atoms are given in Table 6.
Additional material available from the Cambridge Crystallographic Data Centre comprises H -atom coordinates, thermal parameters, and remaining bond lengths and angles.

Acknowledgements

We thank the Robert A. Welch Foundation for support (Grants AA-1201 and 0668), the UK SERC for a research studentship (to J. E. G.), and Drs. N. Carr and M. J. Went for helpful discussions.

References

1 Part 113, N. Carr, J. R. Fernandez and F. G. A. Stone, Organometallics, 1991, 10, 2718.
2 F. G. A. Stone, Adv. Organomet. Chem., 1990, 31, 53.
3 M. Green, J. A. K. Howard, A. P. James, C. M. Nunn and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1987, 61.

4 (a) J.-L. Cabioch, S. J. Dossett, I. J. Hart, M. U. Pilotti and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1991, 519; (b) M. C. Gimeno and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1990, 2239.

5 (a) M. Green, J. A. K. Howard, A. N. de M. Jelfs, O. Johnson and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1987, 73; (b) D. D. Devore, J. A. K. Howard, J. C. Jeffery, M. U. Pilotti and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1989, 303.
6 A. G. Orpen, L. Brammer, F. H. Allen, O. Kennard, D. G. Watson and R. Taylor, J. Chem. Soc., Dalton Trans., 1989, S1.
7 M. Green, J. A. K. Howard, A. P. James, A. N. de M. Jelfs, C. M. Nunn and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1987, 81.
8 N. Carr, M. C. Gimeno, J. E. Goldberg, M. U. Pilotti, F. G. A. Stone and I. Topaloğlu, J. Chem. Soc., Dalton Trans., 1990, 2253; S. J. Dossett, I. J. Hart, M. U. Pilotti and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1991, 511.
9 T. V. Ashworth, J. A. K. Howard and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1980, 1609.
10 D. S. Eggleston, D. F. Chodosh, G. R. Girard and D. T. Hill, Inorg. Chim. Acta, 1985, 108, 221.
11 H. Schmidbaur, A. Wohlleben, F. Wagner, O. Orama and G. Huttner, Chem. Ber., 1977, 110, 1748.
12 (a) S. J. Davies, J. A. K. Howard, R. J. Musgrove and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1989, 2269; (b) S. J. Davies, G. P. Elliott, J. A. K. Howard, C. M. Nunn and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1987, 2177.
13 F.-E. Baumann, J. A. K. Howard, O. Johnson and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1987, 2661.

14 G. A. Carriedo, J. A. K. Howard, F. G. A. Stone and M. J. Went, J. Chem. Soc., Dalton Trans., 1984, 2545.

15 M. Müller-Glieman, S. V. Hoskins, A. G. Orpen, A. L. Ratermann and F. G. A. Stone, Polyhedron, 1986, 5, 791.
16 J. L. Spencer, Inorg. Synth., 1979, 19, 213; L. Crascall and J. L. Spencer, Inorg. Synth., 1990, 28, 126.
17 R. Usón and A. Laguna, Organomet. Synth., 1986, 3, 324.
18 (a) C. A. McAuliffe, R. V. Parish and P. D. Randall, J. Chem. Soc., Dalton Trans., 1979, 1730; (b) S. J. Berners-Price, M. A. Mazid and P. J. Sadler, J. Chem. Soc., Dalton Trans., 1984, 969.

19 SHELXTL-PC, Siemens Analytical X-ray Instruments, Madison, WI, 1989.
20 International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4.

[^0]: * Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1992, Issue 1, pp. xx-xxv.

