Synthesis of PtRe_{2} and $\mathrm{Pt}_{\mathbf{2}} \mathrm{Re}_{\mathbf{2}}$ Heterometallic Complexes from the Reaction of Dirhenium Carbonyl Compounds with Zerovalent Complexes of Platinum*

John Powell, John C. Brewer, Giulia Gulia and Jeffery F. Sawyer
Department of Chemistry, University of Toronto, Toronto, Ontario M5S 1A1, Canada

Abstract

The monoacetonitrile complex $\left[\mathrm{Re}_{2}(\mathrm{CO})_{9}(\mathrm{MeCN})\right.$, obtained from the reaction of $\left[\mathrm{Re}_{2}(\mathrm{CO})_{10}\right.$] with freshly prepared iodosobenzene in acetonitrile solutions, reacts with the secondary phosphines $P_{R_{2}} \mathrm{H}$ in refluxing hexane to give the complexes $\left[\mathrm{Re}_{2}(\mathrm{CO})_{9}\left(\mathrm{PR}_{2} \mathrm{H}_{2}\right)\right](5 a, R=P h ; 5 b, R=P r)$. Complexes 5, when heated to $>170^{\circ} \mathrm{C}$ in decalin, lose CO and are converted cleanly to $\left[\mathrm{Re}_{2}\left(\mu-P R_{2}\right)(\mu-H)(C O)_{8}\right](6 \mathrm{a}, \mathrm{R}=\mathrm{Ph} ; \mathbf{6 b}$, $R=P r)$ while they react with $\left[P t\left(C_{2} H_{4}\right)\left(P h_{3}\right)_{2}\right]$ to give $\left[P_{t R e}\left(\mu-\mathrm{PR}_{2}\right)(\mu-H)(C O)_{8}\left(P P h_{3}\right)\right](7 a, R=P h ;$ 7b, $R=\operatorname{Pr}$), complexes containing a triangular PtRe_{2} array with $\mathrm{Pt}\left(\mu-\mathrm{PR} \mathrm{P}_{2}\right) \mathrm{Re}, \mathrm{Pt}(\mu-\mathrm{H}) \mathrm{Re}$ and $\operatorname{Re}-\mathrm{Re}$ edges. Similarly, reaction of complexes 5 with $\left[\mathrm{Pt}^{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right.$] gives [$\mathrm{PtRe}_{2}\left(\mu-\mathrm{PR}_{2}\right)(\mu-\mathrm{H})$ $\left.(\mathrm{CO})_{9}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right] 8$ containing $\mathrm{Pt}(\mu-\mathrm{CO}) \operatorname{Re}, \mathrm{Pt}(\mu-\mathrm{H}) \operatorname{Re}$ and $\operatorname{Re}\left(\mu-\mathrm{PR}_{2}\right) \operatorname{Re}$ edges. The trimetallic The reaction of $6 \mathrm{a}\left(\mu-\mathrm{PPh}_{2}\right)$ with $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right.$] gives the complex [$\mathrm{PtRe}_{2}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{H})-$ $\left.(\mathrm{CO})_{8}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$ 7c in which the $\mu-\mathrm{PPh}_{2}$ ligand has migrated from a ReRe edge in 6a to a PtRe edge in 7. Further reaction of 7c with a second equivalent of $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$ yields the tetrametallic complex $\left[\mathrm{Pt}_{2} \mathrm{Re}_{2}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{H})(\mathrm{CO})_{8}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}_{2}\right] 10\left(\mu-\mathrm{PPh}_{2}, \mu-\mathrm{H}\right.$ and $2 \mu-\mathrm{CO}$ on $\left[\mathrm{Pt}_{2} \mathrm{Re}_{2}(\mathrm{CO})_{10}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}_{2}\right] 12(4 \mu-\mathrm{CO}$ on PtRe edges). The molecular structures of $7 \mathrm{~b}, 10$ and 12 have been determined by single-crystal X-ray diffraction studies. Crystal data as follows: 7b, orthorhombic, space group, Pbca, $a=14.951(2), b=18.330(2), c=25.715(2) \AA, Z=8, R=0.0521$ ($R^{\prime}=0.0597$) for 3700 data with $I \geqslant 3 \sigma(I)$; 10, monoclinic space group, $P 2_{1} / n, a=15.215(9), b=19.633(9), c=$ 19.446(8) $\AA, \beta=92.90(4)^{\circ}, Z=4, R=0.0950\left(R^{\prime}=0.1006\right)$ for 6068 data with $/ \geqslant{ }^{3} \sigma(/)$; and 12, triclinic (paramonoclinic) space group, $P \overline{1}, a=11.567(4), b=15.308(6), c=16.178(6) \AA, \alpha=$ 89.87(3), $\beta=108.13(3), \quad \gamma=90.28(3)^{\circ}, \quad Z=2, \quad R=0.0659 \quad\left(R^{\prime}=0.0716\right)$ for 7166 data with $I \geqslant 3 \sigma(I)$.

Interest in metal-metal bonded compounds of the transition metals has focused in recent years on the elucidation of their structure, bonding, spectroscopic and catalytic properties. ${ }^{1-7}$ Whilst the isolobal analogy ${ }^{8}$ has provided considerable structural rationalization and resulted in the development of synthetic strategies that have led to a large increase in the quantity of data appertaining to heterometallic compounds, there have been relatively small gains in the understanding of reactivity patterns associated with these compounds. As a consequence, reactions of trimetallic compounds and compounds of higher metallic nuclearity are often unpredictable and rational synthetic design is rather restricted. With respect to elucidating reaction mechanisms in cluster systems mixed-metal clusters are particularly well suited to provide information with regard to (i) the effect of one metal centre on the reactivity of adjacent metal centres; (ii) details concerning the site(s) of chemical reaction; and (iii) the mechanism(s) of the clusterassembly process. Considerable information relevant to these goals has been obtained from the utilization of phosphido bridge ligands in the development and study of new and chemically interesting heterometallic systems. ${ }^{9-31}$
A simple and effective (high yield) means of incorporating a single bridging phosphido group into a heterobimetallic dinuclear complex involves the reaction of a secondary phos-phine-substituted metal carbonyl such as [$\mathrm{M}(\mathrm{CO})_{5}\left(\mathrm{PR}_{2} \mathrm{H}\right)$] ($\mathbf{M}=\mathbf{C r}, \mathbf{M o}$ or \mathbf{W}), with a zerovalent platinum compound to

[^0]

Scheme 1 Mechanism of platinum-assisted CO loss in the formation of $\left[(\mathrm{OC})_{4} \mathrm{M}\left(\mu-\mathrm{PR}_{2}\right)(\mu-\mathrm{H}) \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right]$. Whether or not there is a direct $\mathrm{M}-\mathrm{Pt}$ bond in this compound is an open question with several studies concluding that metal-metal bonding in some doubly bridged binuclear systems is better discussed in terms of multicentred linkages between the metals and the bridging groups ${ }^{32}$

Fig. 1 The molecular structure of $\left[\mathrm{PtRe}_{2}\left(\mu-\mathrm{PPr}_{2}\right)(\mu-\mathrm{H})(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)\right]$ 7b, the major product from the reaction of $\left[\mathrm{Re}_{2}(\mathrm{CO})_{9}\left(\mathrm{PPr}_{2} \mathrm{H}\right)\right]$ with [$\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}$] [equation (5)]. The hydride ligand is presumed to bridge PtRe(2) - see text. Thermal ellipsoids are at the 25% probability level with the exception of C atom radii which are of arbitrary size
form phosphido-bridged bimetallic compounds containing a terminal platinum hydride, 1 (Scheme 1). ${ }^{24,25}$ This species however, is very reactive and proceeds to decarbonylate readily in solution yielding the phosphido-hydrido bridged dinuclear compounds 4 as the final product. The mechanism for this reaction involves loss of PPh_{3} from Pt of 1 and the formation of a bridging carbonyl intermediate 2. Rearrangement of 2 to the μ-hydrido platinum carbonyl, 3 , is followed by facile substitution of the CO on Pt by PPh_{3} to give the final μ-hydrido- μ phosphido product 4. The net effect is transfer of a carbonyl from an 18 -electron metal centre (thermally substitutionally inert for monometallic systems) to a 16 -electron square-planar Pt centre, which undergoes substitution with greater ease. Detailed spectroscopic studies of systems of the type shown in Scheme $1,{ }^{24,26}$ together with studies of the reactions of cationic secondary phosphine complexes such as $\left[\mathrm{W}(\mathrm{cp})(\mathrm{CO})_{3}\left(\mathrm{PR}_{2} \mathrm{H}\right)\right]$ $\mathrm{PF}_{6}{ }^{27}$ and $\left[\operatorname{Re}(\mathrm{cp})(\mathrm{CO})(\mathrm{NO})\left(\mathrm{PR}_{2} \mathrm{H}\right)\right] \mathrm{BF}_{4}{ }^{28,29}\left(\mathrm{cp}=\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ with $\left[\operatorname{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$ have provided considerable insight into CO labilization and hydrogen-transfer reactions in phosphido-bridged heterobimetallic compounds. ${ }^{30}$ Likewise spectroscopic studies of the reaction of $\left[\mathrm{Fe}(\mathrm{CO})_{4}\left(\mathrm{PR}_{2} \mathrm{H}\right)\right]$ complexes with excess $\left[\mathrm{Pt}\left(\mathrm{C}_{2}{ }^{-}\right.\right.$ $\left.\left.\mathrm{H}_{4}\right)_{2}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$ have provided useful information with regard to the reaction sequences and structural requirements for incorporation of $\operatorname{Pt}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}$ in the synthesis of a range of $\mathrm{FePt}, \mathrm{FePt}_{2}$ and FePt_{3} compounds. ${ }^{31}$

In view of the success of the approach to both the synthesis and detailed studies of phosphido-bridged MPt and MPt clusters we have attempted to extend the method to the synthesis of mixed-metal clusters of higher nuclearity containing $\mathrm{M}_{2} \mathrm{Pt}_{n}$ and $\mathrm{M}_{3} \mathrm{Pt}_{n}$ frameworks. ${ }^{33}$ In its simplest form the approach requires the synthesis of monosubstituted secondaryphosphine complexes of di- and poly-nuclear metal carbonyls $\left\{\right.$ e.g. $\left[\mathrm{M}_{2}(\mathrm{CO})_{9}\left(\mathrm{PR}_{2} \mathrm{H}\right)\right]\left(\mathrm{M}=\mathrm{Mn}\right.$ or Re); $\left[\mathrm{M}_{3}(\mathrm{CO})_{11}\left(\mathrm{PR}_{2} \mathrm{H}\right)\right]$ ($\mathrm{M}=\mathrm{Ru}$ or Os) etc.\}. In this paper we report some initial studies in this area involving the synthesis of $\left[\mathrm{Re}_{2}(\mathrm{CO})_{9}-\right.$ $\left.\left(\mathrm{PR}_{2} \mathrm{H}\right)\right](\mathrm{R}=\mathrm{Ph}$ or Pr$)$ and its reaction with $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$ to give PtRe_{2} and $\mathrm{Pt}_{2} \mathrm{Re}_{2}$ products. The molecular structures of two of these derivatives have been determined by X-ray diffraction methods, along with the structure of a second $\mathrm{Pt}_{2} \mathrm{Re}_{2}$ cluster obtained from the reaction of $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$ with $\left[\mathrm{Re}_{2}{ }^{-}\right.$ $(\mathrm{CO})_{10}$]. Simplified localized bonding schemes are used to describe the PtRe_{2} and $\mathrm{Pt}_{2} \mathrm{Re}_{2}$ products. Localized bonding models have proven particularly successful in rationalizing molecular geometries. ${ }^{33-35}$

Results

The acetonitrile complex eq- $\left[\mathrm{Re}_{2}(\mathrm{CO})_{9}(\mathrm{MeCN})\right]$ is readily obtained in high yield ($85-95 \%$) from the reaction of [$\mathrm{Re}_{2}(\mathrm{CO})_{10}$] with freshly prepared iodosobenzene in acetonitrile solution [equation (1)]. The method can also be used to

synthesise the disubstituted derivative $\left[\mathrm{Re}_{2}(\mathrm{CO})_{8}(\mathrm{MeCN})_{2}\right]$ in 80% yield [equation (2)]. Treatment of eq-[$\left.\mathrm{Re}_{2}(\mathrm{CO})_{9}(\mathrm{MeCN})\right]$ with one equivalent of $\mathrm{PR}_{2} \mathrm{H}(\mathrm{R}=\mathrm{Ph}$ or Pr$)$ in refluxing hexane for $2-4 \mathrm{~h}$ gave the required complexes eq- $\left[\mathrm{Re}_{2}\right.$ $\left.(\mathrm{CO})_{9}\left(\mathrm{PR}_{2} \mathrm{H}\right)\right](5 \mathrm{a}, \mathrm{R}=\mathrm{Ph} ; \mathbf{5 b}, \mathrm{R}=\mathrm{Pr})$ in $30-65 \%$ yield [equation (3)]. When $\left[\mathrm{Re}_{2}(\mathrm{CO}){ }_{9}\left(\mathrm{PR}_{2} \mathrm{H}\right)\right] 5$ is heated in decalin $\left(170^{\circ} \mathrm{C}\right)$ for 30 min there is a clean conversion to the μ -phosphido- μ-hydrido complex $\left[\mathrm{Re}_{2}\left(\mu-\mathrm{PR}_{2}\right)(\mu-\mathrm{H})(\mathrm{CO})_{8}\right]$ (6 a , $\mathbf{R}=\mathrm{Ph} ; \mathbf{6 b}, \mathrm{R}=\mathrm{Pr}$) [equation (4)]. ${ }^{36} \mathrm{This}$ reaction does not occur after 4 h of refluxing in toluene indicative of the relative inertness of $\left[\mathrm{Re}_{2}(\mathrm{CO})_{9}\left(\mathrm{PR}_{2} \mathrm{H}\right)\right] 5$ to thermal CO loss. Refluxing $\left[\operatorname{Re}_{2}(\mathrm{CO})_{8}(\mathrm{MeCN})_{2}\right]$ with a molar equivalent of $\mathrm{PPh}_{2} \mathrm{H}$ in hexane for 1 h gave 6 a as the major product together with several minor products, one of which is tentatively assigned to $\left[(\mathrm{OC})_{4} \operatorname{Re}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{H}) \operatorname{Re}\left(\mathrm{PPh}_{2} \mathrm{H}\right)(\mathrm{CO})_{3}\right]$ (see Experimental section).

Reaction of $\left[\mathrm{Re}_{2}(\mathrm{CO})_{9}\left(\mathrm{PR}_{2} \mathrm{H}\right)\right]$ with $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$.Addition of one equivalent of $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $\left[\mathrm{Re}_{2}(\mathrm{CO})_{9}\left(\mathrm{PR}_{2} \mathrm{H}\right)\right]$ gives a deep orange solution from which orange crystals of a product with the stoichiometry $\left[\mathrm{PtRe}_{2}\left(\mu-\mathrm{PR}_{2}\right)(\mu-\mathrm{H})(\mathrm{CO})_{\mathbf{8}}\left(\mathrm{PPh}_{3}\right)\right](7 \mathrm{a}, \mathrm{R}=\mathrm{Ph} ; 7 \mathrm{~b}, \mathrm{R}=\mathrm{Pr})$ may be isolated [equation (5)]. The structure of 7 is based on

$\left[\operatorname{Re}(\mathrm{CO})_{8}\left(\mathrm{PR}_{2} \mathrm{H}\right)\right]+\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$
5

+6 (minor)
$+\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{3}(\mathrm{CO})\right]$ (minor)

7a $R=P h$
7b $R=P r$

IR and ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR data (Table 1) and a singlecrystal X-ray diffraction study of $\mathbf{7 b}$ (Fig. 1) (the utilization of a localized $\mathrm{Re} \rightarrow \mathrm{Pt}$ donor bond in the structural representation of 7 in Scheme 2 is discussed later, Fig. 7). When the reaction of $\left[\mathrm{Re}_{2}(\mathrm{CO})_{9}\left(\mathrm{PR}_{2} \mathrm{H}\right)\right] 5$ with $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ is monitored by ${ }^{1} \mathrm{H}$ NMR (hydrido region) and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy it is found that the starting material is consumed in ca. 30 min $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}\right)$ and that the reaction also results in the formation of $\left[\mathrm{Re}_{2}\left(\mu-\mathrm{PR}_{2}\right)(\mu-\mathrm{H})(\mathrm{CO})_{8}\right] 6$ and possibly [Pt$\left.\left(\mathrm{PPh}_{3}\right)_{3}(\mathrm{CO})\right]\left[{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}\right.$ NMR: $\left.\delta 9, J\left({ }^{195} \mathrm{Pt}^{31} \mathrm{P}\right) 3720 \mathrm{~Hz}\right]$ as

Table 1 Proton and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR data for the complexes $\left[\mathrm{PtRe}_{2}\left(\mu-\mathrm{PR}_{2}\right)(\mu-\mathrm{H})(\mathrm{CO})_{8}\left(\mathrm{PR}_{3}\right)\right] 7,\left[\mathrm{PtRe}_{2}\left(\mu-\mathrm{PR}_{2}\right)(\mu-\mathrm{H})(\mu-\mathrm{CO})(\mathrm{CO})_{8}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$, 8 and $\left[\mathrm{Pt}_{2} \mathrm{Re}_{2}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{H})(\mu-\mathrm{CO})_{2}(\mathrm{CO})_{6}\left\{\mathrm{P}_{6}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}_{2}\right] 10$ recorded in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution, J in Hz

Complex	$\begin{aligned} & \text { 7a } \\ & \left(\mu-\mathrm{PPh}_{2}, \mathrm{PPh}_{3}\right) \end{aligned}$	$\begin{aligned} & \mathbf{7 b} \\ & \left(\mu-\mathrm{PPr}_{2}, \mathrm{PPh}_{3}\right) \end{aligned}$	$\begin{aligned} & \text { 7c } \\ & {\left[\mu-\mathrm{PPh}_{2}, \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right]} \end{aligned}$	$\begin{aligned} & \mathbf{8 a} \\ & \left(\mu-\mathbf{P P h}_{2}\right) \end{aligned}$	$\begin{aligned} & \mathbf{8 b} \\ & \left(\mu-\operatorname{PPr}_{2}\right) \end{aligned}$	10	
$\delta(\mu-\mathrm{H})$	-5.75	-5.8	-6.8	-5.5	-5.5	-11.2	
$\left.{ }^{1} J^{(195} \mathrm{Pt}^{1} \mathrm{H}\right)$	800	813	796	525	528	762	
${ }^{2} J\left({ }^{31} \mathrm{P}^{1} \mathrm{H}\right)$	57,11	63,13	76,13	12,0	12,0	60,15	
$\delta(\mu-\mathrm{P})$	235	227	223	130	103.4	248	
${ }^{1} J\left[{ }^{195} \mathrm{Pt}\left(\mu-{ }^{31} \mathrm{P}\right)\right]$	2106	2329	2437	52	60	2389	
$\delta\left(\mathbf{P R}_{3}\right)$	49.6	51.0	72	76.0	76.8	71.0	70.6
$\left.{ }^{1} J^{19}{ }^{5} \mathrm{Pt}^{31} \mathrm{P}\right)$	3810	3738	3537	3070	3045	4574	3714
${ }^{2} J\left({ }^{195} \mathrm{Pt}^{31} \mathrm{P}\right)$	-	-	-	-	-	168	342
${ }^{2} J\left[{ }^{31} \mathrm{P}\left(\mu^{-31} \mathrm{P}\right)\right]$	0	0	9	10	6	6	0
${ }^{1} J\left({ }^{31} \mathrm{P}^{31} \mathrm{P}\right)$	-	-	-	-	-	17	17

minor products. No intermediate species are observed. For $\left[\mathrm{Re}_{2}(\mathrm{CO})_{9}\left(\mathrm{PPh}_{2} \mathrm{H}\right)\right] 5 \mathrm{a}$ the reaction gives 7a and 6a in a ca.9:1 ratio whilst reaction of $\left[\operatorname{Re}_{\mathbf{2}}(\mathrm{CO})_{9}\left(\mathrm{PPr}_{2} \mathrm{H}\right)\right] \mathbf{5 b}$ gives $\mathbf{7 b}$ and $\mathbf{6 b}$ in a ca. 7:3 ratio. The compound $\left[\mathrm{Re}_{2}\left(\mu-\mathrm{PR}_{2}\right)(\mu-\mathrm{H})(\mathrm{CO})_{8}\right] 6$ can be crystallized from solution and identified by comparison of its spectroscopic properties with those of a known sample. This reaction [equation (5)] is another example of a facile platinum assisted CO labilization (loss) from an 18 -electron metal centre from which thermal loss (substitution) is usually very slow. Since the PtRe_{2} compound $\left[\operatorname{PtRe}_{2}\left(\mu-\mathrm{PR}_{2}\right)(\mu-\mathrm{H})-\right.$ $\left.(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)\right] 7$ does not decompose in solution to give $\left[\mathrm{Re}_{2}\left(\mu-\mathrm{PR}_{2}\right)(\mu-\mathrm{H})(\mathrm{CO})_{8}\right] 6$ and 6 does not react with $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ to give 7 (see below), it follows that 6 and 7 must be formed via different reaction pathways.

Reaction of $\left[\mathrm{Re}_{2}(\mathrm{CO})_{9}\left(\mathrm{PR}_{2} \mathrm{H}\right)\right]$ with $\left[\mathrm{Pt}^{\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left\{\mathrm{P}\left(\mathrm{C}_{6}-\right.\right.}\right.$ $\left.\left.\left.\mathrm{H}_{11}\right)_{3}\right\}\right]$.-In previous studies when the complexes [M(CO) $5_{5}{ }^{-}$ $\left.\left(\mathrm{PR}_{2} \mathrm{H}\right)\right](\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}$ or W$)$ were treated with $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2^{-}}\right.$ $\left.\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$ the complexes $\left[(\mathrm{OC})_{3} \mathrm{M}\left(\mu-\mathrm{PR}_{2}\right)(\mu-\mathrm{H}) \mathrm{Pt}(\mathrm{CO})-\right.$ $\left\{\mathrm{P}^{\left.\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}}\right.$] \{which are structural analogues of the proposed intermediate, 3 , in the formation of $\left[(\mathrm{OC})_{4} \mathrm{M}\left(\mu-\mathrm{PR}_{2}\right)(\mu-\mathrm{H})\right.$ $\left.\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right]$, Scheme 1$\}$ were obtained. ${ }^{24,25}$ With the hope of identifying possible intermediates in the formation of [$\mathrm{PtRe}_{2^{-}}$ $\left.\left(\mu-\mathrm{PR}_{2}\right)(\mu-\mathrm{H})(\mathrm{CO})_{8}\left(\mathrm{PR}_{3}\right)\right]\left[\right.$ equation (5)] the reaction of $\left[\mathrm{Re}_{2}-\right.$ $\left.(\mathrm{CO})_{9}\left(\mathrm{PR}_{2} \mathrm{H}\right)\right] 5$ with a molar equivalent of $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left\{\mathrm{P}\left(\mathrm{C}_{6}{ }^{-}\right.\right.\right.$ $\left.\left.\left.\mathrm{H}_{11}\right)_{3}\right\}\right]$ was investigated. When $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$ was added to a solution of $\left[\mathrm{Re}_{2}(\mathrm{CO})_{9}\left(\mathrm{PPh}_{2} \mathrm{H}\right)\right] 5 \mathrm{a}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ the solution immediately turned yellow-orange. Monitoring by ${ }^{1} \mathrm{H}$ NMR and IR spectroscopy showed that the reaction [equation (6)] was relatively slow, starting materials being fully consumed

in 2-4 h . The ${ }^{1} \mathrm{H}$ NMR spectrum, within minutes of mixing, contained two hydridic species. One at $\delta-15.0\left[J{ }^{(31} \mathrm{P}^{1} \mathrm{H}\right) 4.5$ $\mathrm{Hz}]$ is readily assignable to $\left[\mathrm{Re}_{2}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{H})(\mathrm{CO})_{8}\right] \mathbf{6 a}$. The other signal consists of a $1: 4: 1$ triplet of doublets at $\delta-5.5$ [$J\left({ }^{31} \mathrm{P}^{1} \mathrm{H}\right) 12$ and $0, J\left({ }^{195} \mathrm{Pt}^{1} \mathrm{H}\right) 525 \mathrm{~Hz}$] indicative of a Re-$(\mu-\mathrm{H}) \mathrm{Pt}$ moiety, which we assign to the trimetallic complex
$\left[\mathrm{PtRe}_{2}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{H})(\mu-\mathrm{CO})(\mathrm{CO})_{8}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$ 8a [equation (6)]. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum within minutes of mixing exhibits resonances assignable to (i) complex 5 a and $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left\{\mathrm{P}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$ (as yet unreacted starting materials), (ii) to $\left[\mathrm{Re}_{2}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{H})(\mathrm{CO})_{8}\right] \mathbf{6 a}$, (iii) a complex pattern assignable to $\left[\mathrm{Pt}_{3}(\mathrm{CO})_{3}\left\{\mathrm{P}_{\left.\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}}\right\}\right.$, and (iv) two resonances at $\delta 130.0\left[\mu-\mathrm{PPh}_{2}\right.$ ligand; $\left.J\left({ }^{31} \mathrm{P}^{31} \mathrm{P}\right) 10, J\left({ }^{195} \mathrm{Pt}^{31} \mathrm{P}\right) 52 \mathrm{~Hz}\right]$ and $\delta 76.0\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3} ; J\left({ }^{31} \mathrm{P}^{31} \mathrm{P}\right) 10, J\left({ }^{195} \mathrm{Pt}^{31} \mathrm{P}\right) 3070 \mathrm{~Hz}\right]$ which are assignable to $\left[\operatorname{PtRe}_{2}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{H})(\mu-\mathrm{CO})(\mathrm{CO})_{8}\{\mathrm{P}-\right.$ $\left.\left.\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$ 8a. The small value of $\left.J^{195} \mathrm{Pt}\left(\mu{ }^{-31} \mathrm{P}\right)\right](52 \mathrm{~Hz})$ is consistent with the phosphido group bridging the two Re atoms in the PtRe_{2} complex 8a. On standing, the signals assignable to $\left[\operatorname{Re}_{2}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{H})(\mathrm{CO})_{8}\right]$ 6a and $\left[\mathrm{Pt}_{3}(\mathrm{CO})_{3}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$ grow in intensity, whilst the signals assignable to $\left[\mathrm{PtRe}_{2}{ }^{-}\right.$ $\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{H})(\mu-\mathrm{CO})(\mathrm{CO})_{8}\left\{\mathrm{P}_{\left.\left.\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]} 8 \mathrm{a}\right.$ eventually, after ca. 10 h , disappear. At the end of the reaction $\left[\mathrm{Re}_{2}\left(\mu-\mathrm{PPh}_{2}\right)-\right.$ $\left.(\mu-\mathrm{H})(\mathrm{CO})_{8}\right] 6 \mathrm{a}$ and $\left[\mathrm{Pt}_{3}(\mathrm{CO})_{3}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$ are readily isolated from the solution. \{After 1 h of reaction several weak hydrido signals are observed which correspond to minor products from the reaction of 8a with $\left.\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)\right)_{3}\right\}\right]$
 reaction of $\left[\mathrm{Re}_{2}(\mathrm{CO})_{9}\left(\mathrm{PPr}_{2} \mathrm{H}\right)\right] \mathbf{5 b}$ with a molar equivalent of $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left\{\mathrm{P}_{\left.\left.\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right] \text { gives similar results (see Table } 1 \text { for }}\right.\right.$ spectroscopic data for 8 bb). IR monitoring of the reaction (bridging carbonyl region) exhibits absorptions at $1764 \mathrm{~cm}^{-1}$ $\left\{\left[\mathrm{Pt}_{3}(\mathrm{CO})_{3}\left\{\mathrm{P}_{(}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]\right.$ and weak bands at $1802 \mathrm{~cm}^{-1}(\mu-$ $\left.\mathrm{PPr}_{2}\right)$ and $1795 \mathrm{~cm}^{-1}\left(\mu-\mathrm{PPh}_{2}\right)$, which coincides with the lifetime of 8 in the reaction. An unusual feature of the formation of $\left[\mathrm{PtRe}_{2}\left(\mu-\mathrm{PR}_{2}\right)(\mu-\mathrm{H})(\mu-\mathrm{CO})(\mathrm{CO})_{8}\left\{\mathrm{P}_{6}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$ 8 [equation (6)] is the mechanism of insertion of $\mu-\mathrm{PR}_{2}$ across the two Re atoms. This is not observed in the reaction of $\left[\operatorname{Re}_{2}(\mathrm{CO})_{9}\left(\mathrm{PR}_{2} \mathrm{H}\right)\right]$ with $\left[\mathrm{Pt}_{\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ to give 7. However the formation of $\left[\operatorname{Re}_{2}\left(\mu-\mathrm{PR}_{2}\right)(\mu-\mathrm{H})(\mathrm{CO})_{8}\right] 6$ in the reaction of $\left[\mathrm{Re}_{2}(\mathrm{CO})_{9}\left(\mathrm{PR}_{2} \mathrm{H}\right)\right]$ with $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right.$] [see equation (5)] may involve an intermediate structurally similar to 8.
When $\left[\mathrm{Re}_{2}(\mathrm{CO})_{9}\left(\mathrm{PPr}_{2} \mathrm{H}\right)\right]$ is treated with an excess of $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$ the reaction proceeds with initial formation of $\left.\left[\mathrm{PtRe}_{2}\left(\mu-\mathrm{PPr}_{2}\right)(\mu-\mathrm{H})(\mu-\mathrm{CO})(\mathrm{CO})_{8}\left\{\mathrm{P}_{6} \mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$ 8b [equation (6)] but now, over a period of hours, a new hydridic species corresponding to a $\mathrm{Pt}_{2} \mathrm{Re}_{2}$ cluster, 9 , is also observed. The ${ }^{1} \mathrm{H}$ NMR spectrum in the hydridic region exhibits a $1: 1: 1: 1$ quartet $\left[\delta_{\mathrm{H}}-11.0, J\left({ }^{31} \mathrm{P}^{1} \mathrm{H}\right) 44\right.$ and 15 Hz$]$ with platinum satellites $\left[J\left({ }^{19}{ }^{5} \mathrm{Pt}{ }^{1} \mathrm{H}\right) 759 \mathrm{~Hz}\right.$ (similar to 7)]. The ${ }^{31} \mathrm{P}$ - $\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum contains a typical $\mathrm{R}_{3} \mathrm{PPt}-\mathrm{PtPR}_{3}$ pattern [almost equivalent $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}$ ligands] together with a $\mu-\mathrm{PR}_{2}$ signal at $\delta 92.9$ coupled to one $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}$ and one $\left.\left.{ }_{\mathrm{Pt}\{ }\left\{J{ }^{(31}{ }^{2} \mathrm{P}^{31} \mathrm{P}\right) 6, J{ }^{195} \mathrm{Pt}\left(\mu-{ }^{31} \mathrm{P}\right)\right] 52 \mathrm{~Hz}\right\}$. The chemical shift and $J\left({ }^{195} \mathrm{Pt}^{31} \mathrm{P}\right)$ values for the phosphido ligand are comparable to those of 8 and are consistent with it bridging the two Re atoms. A possible tentative structural assignment for this tetranuclear species is 9 which is almost an isomeric form of the cluster $\left[\mathrm{Pt}_{2} \mathrm{Re}_{2}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{H})(\mu-\mathrm{CO})_{2}(\mathrm{CO})_{6}\left(\left\{\mathrm{P}_{\left.\left.\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}_{2}\right] 10 \text {, iso- }}\right.\right.\right.$ lated from the reaction of $\left[\operatorname{Re}_{2}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{H})(\mathrm{CO})_{8}\right]$ 6a with

Fig. 2 The molecular structure of $\left[\mathrm{Pt}_{2} \mathrm{Re}_{2}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{H})(\mu-\mathrm{CO})_{2^{-}}\right.$$\left.(\mathrm{CO})_{6}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}_{2}\right] 10$, the major product of the reaction of $\left[\operatorname{Re}_{2}(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2}\right)(\mu-\mathrm{H})(\mathrm{CO})_{8}\right]$ with an excess of $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left\{\mathrm{P}_{\left.\left.\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]}\right.\right.$ [equations (7) and (8)]. The hydride ligand is presumed to bridge $\operatorname{Pt}(1) \operatorname{Re}(2)$ - see text
excess $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$ [equation (8)]-see below and Fig. 2.

Reaction of $\left[\mathrm{Re}_{2}\left(\mu-\mathrm{PR}_{2}\right)(\mu-\mathrm{H})(\mathrm{CO})_{8}\right]$ with $\left[\mathrm{Pt}_{\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}-}\right.$ $\left.\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$.-It seemed possible that the PtRe_{2} complex 8, containing a $\operatorname{Re}\left(\mu-\mathrm{PR}_{2}\right) \operatorname{Re}$ unit, could be the product of a
 $\mathrm{H})(\mathrm{CO})_{8}$] 6 formed in reaction [equation (6)] as this would provide a possible explanation for the location of the phosphido bridge between the two rhenium atoms of 8 . Consequently we investigated the reaction of $\left[\mathrm{Re}_{2}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{H})(\mathrm{CO})_{8}\right] 6 \mathrm{a}$ with $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $20^{\circ} \mathrm{C}$ [equation (7)]. The reaction proceeds slowly ($\mathrm{ca} .80 \%$ of starting materials consumed in 24 h$)$ to give initially the complex $\left[\mathrm{PtRe}_{2}(\mu-\right.$

(a)

(b)

Fig. 3 IR $\left[v(\mathrm{CO})\right.$ region] of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions of (a) $\left[\mathrm{Re}_{2}(\mathrm{CO})_{10}\right] ;$ (b) $\left[\operatorname{Re}_{2}(\mathrm{CO})_{10}\right]+1$ equivalent of $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$ [i.e. complex 11, equation (9)]; (c) $\left[\mathrm{Re}_{2}(\mathrm{CO})_{10}\right]+2$ equivalents of $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right.$ $\left.\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$ [i.e. complex 12, equation (10)]
$\left.\mathrm{PPh}_{2}\right)(\mu-\mathrm{H})(\mathrm{CO})_{8}\left\{\mathrm{P}_{\left.\left.\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]} \mathrm{7c}\right.$ containing a $\mathrm{Pt}\left(\mu-\mathrm{PR}_{2}\right) \mathrm{Re}$ unit. The ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR data are very similar to those of 7b (see Table 1) the structure of which has been determined by X -ray diffraction (Fig. 1). This reaction contrasts with that of $\left[\mathrm{Pt}^{\left.\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right] \text { with }\left[\mathrm{Re}_{2}(\mathrm{CO})_{9}\left(\mathrm{PR}_{2} \mathrm{H}\right)\right]}\right.$ 5 [equation (6)] in that the $\mu-\mathrm{PPh}_{2}$ group that was initially bridging two Re atoms in $\left[\mathrm{Re}_{2}\left(\mu-\mathrm{PR}_{2}\right)(\mu-\mathrm{H})(\mathrm{CO})_{8}\right]$ now bridges $\mathrm{Re}-\mathrm{Pt}$ in 7 c . When $\left[\mathrm{Re}_{2}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{H})(\mathrm{CO})_{8}\right] 6 \mathrm{a}$ and $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$ are allowed to react for 24 h , a second species assignable to the $\mathrm{Re}_{2} \mathrm{Pt}_{2}$ tetranuclear complex $\left.\left[\mathrm{Pt}_{2} \mathrm{Re}_{2}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{H})(\mu-\mathrm{CO})_{2}(\mathrm{CO})_{6}\left\{\mathrm{P}_{2} \mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}_{2}\right] \mathbf{1 0}$ [equation (8)] is evident in the spectroscopic data. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR signals corresponding to 10 contain a typical $\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}-$ $\mathrm{P}-\mathrm{Pt}-\mathrm{Pt}-\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}$ pattern, where the two phosphines are only slightly inequivalent, together with a phosphido signal at δ 248 [$\left.J\left({ }^{195} \mathrm{Pt}^{31} \mathrm{P}\right) 2389\right]$ indicative of a $\mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Re}$ unit. Proton NMR spectroscopy indicates a $\mathrm{Pt}(\mu-\mathrm{H}) \mathrm{Re}$ unit $\left[\delta_{\mathrm{H}}\right.$ $-11.2 ; J\left({ }^{195} \mathrm{Pt}^{1} \mathrm{H}\right) 762, J\left({ }^{3} \mathrm{P}^{1} \mathrm{H}\right) 60$ and 15 Hz$]$. The structural assignment of $\mathbf{1 0}$ [equation (8)] has been confirmed by a singlecrystal X-ray diffraction study (see below and Fig. 2). It seems likely that $\left[\mathrm{Pt}_{2} \mathrm{Re}_{2}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{H})(\mu-\mathrm{CO})_{2}(\mathrm{CO})_{6}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}_{2}\right]$ 10 is formed from the reaction of $\left[\mathrm{PtRe}_{2}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{H})(\mathrm{CO})_{8}-\right.$ $\left.\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$ 7c with $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$ [equation (8)].
The analogous reaction of $\left[\mathrm{Re}_{2}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{H})(\mathrm{CO})_{8}\right] 6 \mathbf{6 a}$ with $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ was investigated in order to ensure that $\mathbf{7 a}$ is not formed from 5 a and $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ via the intermediacy of 6a. After 24 h at room temperature, no significant reaction of 6 a with $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ was observed (IR, ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy).

Reaction of $\left.\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left\{\mathrm{P}_{2} \mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$ with $\left[\mathrm{Re}_{2}(\mathrm{CO})_{10}\right]$.The possibility that the formation of the two PtRe_{2} trinuclear complexes 7 [equation (5)] and 8 [equation (6)] involve two very different reaction pathways-namely initial oxidative

11

12
addition of $\mathrm{P}-\mathrm{H}$ across Pt (formation of 7) and initial addition of a $\operatorname{Pt}\left(\mathrm{PR}_{3}\right)$ fragment across an $\mathrm{Re}_{2}(\mathrm{CO})_{2}$ moiety (formation of 8)-was assessed further by an investigation of the reaction of $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$ with $\left[\mathrm{Re}_{2}(\mathrm{CO})_{10}\right]$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $20^{\circ} \mathrm{C}$. IR monitoring [$v(\mathrm{CO}$) region-Fig. 3] indicates a rapid and quantitative reaction to form $\left[\mathrm{PtRe}_{2}(\mathrm{CO})_{10}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$ 11 [equation (9)]. Addition of a further molar equivalent of $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$ to 11 results in the rapid formation of the complex $\left[\mathrm{Pt}_{2} \mathrm{Re}_{2}(\mathrm{CO})_{10}\left\{\mathrm{P}_{\left.\left.\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]} 12\right.\right.$ [equation (10)]. The presence of bridging carbonyl ligands is readily established by IR spectroscopy [Fig. 3: $v(\mu-\mathrm{CO})\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ solution) 1856 and $1804 \mathrm{~cm}^{-1}$, complex 11; 1853, 1840 and $1802 \mathrm{~cm}^{-1}$, complex 12]. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 12 contains a typical $\mathrm{R}_{3} \operatorname{PPtPtPR}{ }_{3}$ pattern [equivalent $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}$ ligands] and the molecular structure of 12 has been determined by single-crystal X-ray diffraction (see Fig. 4). The structure and formation of the triphenylphosphine analogue of 12 from the reaction of [$\left.\operatorname{Re}_{2}(\mathrm{CO})_{10}\right]$ with $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ in a stream of nitrogen has been recently reported. ${ }^{37}$

Discussion

The bimetallic carbonyl system required for this investigation was $\left[\mathrm{Re}_{2}(\mathrm{CO})_{9}\left(\mathrm{PR}_{2} \mathrm{H}\right)\right]$. To overcome the problem of multiple substitution of CO by $\mathrm{PR}_{2} \mathrm{H}$ and also avoid possible internal oxidative addition of the $\mathrm{P}-\mathrm{H}$ bond of the $\mathrm{PR}_{2} \mathrm{H}$ ligand across $\mathrm{M}-\mathrm{M}$ bonds as an undesirable side reaction, a thermally mild synthetic route is required. Koelle ${ }^{\mathbf{3 8}}$ has previously synthesised the complexes $\left[\mathrm{Re}_{2}(\mathrm{CO})_{9} \mathrm{~L}\right] \quad(\mathrm{L}=$ pyridine, acetonitrile, 2-methylpyridine or PPh_{3}) in good yield using the mild decarbonylating agent trimethylamine oxide ${ }^{39}$ [equation (1)]. We have found freshly prepared iodosobenzene ${ }^{40}$ to be particularly effective for both the mono- and di-substitution of $\left[\mathrm{Re}_{2}(\mathrm{CO})_{10}\right]$ [equations (1) and (2)] giving isolated yields of eq$\left[\operatorname{Re}_{2}(\mathrm{CO})_{9}(\mathrm{MeCN})\right]$ (MeCN trans to CO) and $\left[\operatorname{Re}_{2}(\mathrm{CO})_{8}(\mathrm{MeCN})_{2}\right]$ in the $80-90 \%$ range. The method is superior to that of Gard and Brown ${ }^{41}$ who obtained the disubstituted product in 32% yield using trimethylamine oxide.

The reaction of $\mathrm{PR}_{2} \mathrm{H}$ with $\left[\mathrm{Re}_{2}(\mathrm{CO})_{9}(\mathrm{MeCN})\right]$ in refluxing hexane provided a mild route to the required precursor complexes eq- $\left[\mathrm{Re}_{2}(\mathrm{CO})_{9}\left(\mathrm{PR}_{2} \mathrm{H}\right)\right]$ 5. Assignments of configuration (equatorial or axial) based upon IR spectra are not particularly reliable for systems containing a large number of

Fig. 4 The molecular structure of $\left[\mathrm{Pt}_{2} \mathrm{Re}_{2}(\mu-\mathrm{CO})_{4}(\mathrm{CO})_{6}\left\{\mathrm{P}\left(\mathrm{C}_{6}-\right.\right.\right.$ $\left.\left.\left.\mathrm{H}_{11}\right)_{3}\right\}_{2}\right] 12$

Table 2 Comparison of IR data [$v(\mathrm{CO})$ region, $\left.\mathrm{cm}^{-1}\right]$ in hexane

$\left[\mathrm{Re}_{2}(\mathrm{CO})_{9}(\mathrm{MeCN})\right]$	$\left[\mathrm{Re}_{2}(\mathrm{CO})_{9}\left(\mathrm{PPh}_{2} \mathrm{H}\right)\right]$
2103 w	2103 w
2047 m	2043 m
2013 m	2016 m
1990 vs	1995 vs
1965 m	1970 m
1942 m	1937 m

carbonyl ligands. Examination of the IR data published for both isomers of $\left[\mathrm{Re}_{2}(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)\right]^{42}$ does not resolve the problem as neither spectrum correlates well with that of $\left[\mathrm{Re}_{2}(\mathrm{CO})_{9^{-}}\right.$ $\left.\left(\mathrm{PPh}_{2} \mathrm{H}\right)\right]$. However based on the similarities of the IR data for eq- $\left[\operatorname{Re}_{2}(\mathrm{CO})_{9}(\mathrm{MeCN})\right]$ and $\left[\operatorname{Re}_{2}(\mathrm{CO})_{9}\left(\mathrm{PPh}_{2} \mathrm{H}\right)\right]$ (Table 2), the observed chemical reactions (see later) and a recent X-ray structural study of $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{9}\left(\mathrm{PPh}_{2} \mathrm{H}\right)\right]{ }^{43}$ we assign 5 to be the equatorial isomer. The presence of a co-ordinated $\mathrm{PR}_{2} \mathrm{H}$ ligand is confirmed by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopies [e.g. for $5 \mathrm{a} \delta_{\mathrm{H}}(\mathrm{PH}) 6.9, J\left({ }^{31} \mathrm{P}^{1} \mathrm{H}\right.$) $362 \mathrm{~Hz} ; \delta_{\mathrm{P}}=-12.6$ (upfield from $\left.85 \% \mathrm{H}_{3} \mathrm{PO}_{4}\right)$].
The ${ }^{1} \mathrm{H}$ NMR data (Table 1) for the PtRe_{2} complexes 7 and 8 and the $\mathrm{Pt}_{2} \mathrm{Re}_{2}$ complex 10 support the location of the hydride as shown bridging Pt and Re . Whilst the ${ }^{1} J\left({ }^{195} \mathrm{Pt}^{1} \mathrm{H}\right]$ values of ca. $750-800 \mathrm{~Hz}$ observed for 7 and 10 are at the high end of the range expected for bridging hydrides, the $\operatorname{trans}^{2} J\left({ }^{31} \mathrm{P}^{1} \mathrm{H}\right)$ values of $c a .60-80 \mathrm{~Hz}$ are typical for bridging hydrides. ${ }^{29,31,44}$ The large downfield ${ }^{31} \mathrm{P}$ chemical shift of the $\mu-\mathrm{PR}_{2}$ ligand (ca. 230 ppm) and large $\left.J{ }^{195} \mathrm{Pt}\left(\mu^{-31} \mathrm{P}\right)\right]$ values (ca. 2200 Hz) imply an acute $\mathrm{Re}-\mathrm{P}-\mathrm{Pt}$ angle and a relatively short $\mathrm{Re}-\mathrm{Pt}$ separation. ${ }^{45}$ The $\mathrm{Pt}-\mu$ - P distances in 7b and 10 (2.236 and $2.211 \AA$) are slightly shorter than the $\mathbf{P t}-\mathrm{PR}_{3}$ distances (2.243 and $2.273 \AA$ respectively). However the ${ }^{1} J\left({ }^{195} \mathrm{Pt}^{31} \mathrm{P}\right.$) couplings to the bridging $\mu-\mathrm{P}$ are $35-45 \%$ smaller than those to the PR_{3} ligands. A similar situation occurs in the cationic RePt dimers $\left[(\mathrm{cp})(\mathrm{ON}) \mathrm{ReH}\left(\mu-\mathrm{PR}_{2}\right) \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{11}\right.$ or Ph$)$ and has been ascribed to decreased s -orbital overlap and bent $\mathrm{Pt}-\mu$ \mathbf{P} bonding in systems with acute $\mathrm{M}-\mu-\mathrm{P}-\mathrm{Pt}$ bond angles. ${ }^{29,30}$
The reaction of $\left[\mathrm{Re}_{2}(\mathrm{CO})_{9}\left(\mathrm{PR}_{2} \mathrm{H}\right)\right]$ with $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ to give $\left[\mathrm{PtRe}_{2}\left(\mu-\mathrm{PR}_{2}\right)(\mu-\mathrm{H})(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)\right] 7$ is an example of a platinum-assisted CO labilization process. The mild conditions of CO loss in this reaction [equation (5)] contrast markedly with the very vigorous conditions required for thermal CO substitution [e.g. see equation (4)]. In view of previous studies of the mechanism of platinum-assisted CO labilization and loss from a thermally, substitutionally inert, 18 -electron metal centre (Scheme 1) ${ }^{24,25}$ a plausible mechanism for the formation of the PtRe_{2} complex 7 from the reaction of $\left[\mathrm{Re}_{2}(\mathrm{CO})_{9}\left(\mathrm{PR}_{2} \mathrm{H}\right)\right] 5$ and [$\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}$] [equation (5)], is as shown in Scheme 2. A slow oxidative addition of the $\mathrm{P}-\mathrm{H}$ bond of 5 to

5

13

$\left[\begin{array}{ccc}(\mathrm{OC})_{4} \mathrm{Re}= & \mathrm{Re}(\mathrm{CO})_{4} \\ 0 & \mathrm{C} & \mathrm{PR} \\ 0 & & \\ \mathrm{Ph}_{3} \mathrm{P}^{2} & \mathrm{H}\end{array}\right]$

7
Scheme 2 A postulated reaction pathway for the formation of 7 and $\left[\operatorname{Re}_{2}\left(\mu-\mathrm{PR}_{2}\right)(\mu-\mathrm{H})(\mathrm{CO})_{8}\right]$ from the reaction of $\left[\mathrm{Re}_{2}(\mathrm{CO})_{9}\left(\mathrm{PR}_{2} \mathrm{H}\right)\right]$ with $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$

16
Scheme 3 A postulated intermediate species in the reaction of $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$ with $\left[\mathrm{Re}_{2}(\mathrm{CO})_{9}\left(\mathrm{PR}_{2} \mathrm{H}\right)\right] 5$, if addition of $\mathrm{Pt}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}$ to an $\mathrm{Re}_{2}(\mathrm{CO})_{2}$ unit is the initial step. Contrast this to the reaction of 5 with $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (Scheme 2) which is thought to involve an oxidative addition of the $\mathrm{P}-\mathrm{H}$ bond as the initial step
$\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ gives the terminal platinum hydride species 13 (not observed spectroscopically) which then labilizes a CO group from the $\operatorname{Re}(\mathrm{CO})_{5}$ unit of 13 to give the μ-carbonyl species 14. Interchange of the CO with the hydride ligand (as observed in the systems described in Scheme 1) converts 14 to 15 which, upon CO loss from Pt , gives the isolated PtRe_{2} trimer 7. Since 7 does not decompose to give $\left[\operatorname{Re}_{2}\left(\mu-\mathrm{PR}_{2}\right)(\mu-\mathrm{H})(\mathrm{CO})_{8}\right] 6$, the ready formation of 6 from 5 [equation (5)] must be platinum assisted and occur at a point prior to the formation of 7 or by an entirely different mechanism.
The reaction of $\left[\mathrm{Re}_{2}(\mathrm{CO})_{9}\left(\mathrm{PR}_{2} \mathrm{H}\right)\right] 5$ with $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}-\right.$ $\left.\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$ is surprising in that it does not lead to the PtRe_{2} trimer 7c. Instead the only PtRe_{2} species observed is the trimer 8 which requires the generation of a $\operatorname{Re}\left(\mu-\mathrm{PPh}_{2}\right) \operatorname{Re}$ unit under very mild conditions [equation (6)]. Given that [$\left.\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$ reacts rapidly with $\left[\mathrm{Re}_{2}(\mathrm{CO})_{10}\right]$ to give the trimer 11 and the tetramer 12 [equations (9) and (10)] it is probable that the reaction of $\left[\mathrm{Re}_{2}(\mathrm{CO})_{9}\left(\mathrm{PR}_{2} \mathrm{H}\right)\right] 5$ with $\left[\operatorname{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left\{\mathrm{P}_{\left.\left.\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right] \text { occurs via a similar pathway. Thus }}\right.\right.$ rapid addition of a $\left[\mathrm{Pt}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$ unit across an $\mathrm{Re}_{2}(\mathrm{CO})_{2}$ fragment of 5 would lead to the postulated intermediate 16 (Scheme 3) [structurally analogous to complex 11, equation (9)] which subsequently rearranges to give 8 and then 6. A similar reaction pathway may account for the formation of some 6 in equation (5).

Scheme 4 An alternative mechanism to that in Scheme 3 in which the initial reaction of $\left[\mathrm{Re}_{2}(\mathrm{CO})_{9}\left(\mathrm{PR}_{2} \mathrm{H}\right)\right]$ with $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left\{\mathrm{P}\left(\mathrm{C}_{6}-\right.\right.\right.$ $\left.\left.\mathrm{H}_{11}\right)_{3}\right\}$] is oxidative addition of $\mathrm{P}-\mathrm{H}$. The subsequent postulation of a bridge \longrightarrow terminal \longrightarrow bridge reorganization of the PR_{2} ligand is analogous to experimentally observed bridge \rightleftharpoons terminal reorganization of a hydride ligand [Fig. 5(c)] ${ }^{\mathbf{2 6 . 2 9}}$

The addition of a $\mathrm{Pt}\left\{\mathrm{P}_{\left.\left.\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right] \text { unit across } \mathrm{Re}_{2}(\mathrm{CO})_{2}, ~}^{\text {and }}\right.$ fragments of $\left[\mathrm{Re}_{2}(\mathrm{CO})_{10}\right.$] [equations (9) and (10)] provides credence to the postulated mechanism for the formation of 8 (Scheme 3). However the possibility that $\mathbf{8}$ is formed via initial oxidative addition of $\mathrm{P}-\mathrm{H}$ across Pt followed by a subsequent rearrangement involving migration of a $\mu-\mathrm{PR}_{2}$ from a PtRe to a ReRe site cannot be readily excluded. Indeed the lability of the $\mu-\mathrm{PR}_{2}$ group in these systems is demonstrated by the fact that $\left[\operatorname{Re}_{2}\left(\mu-\mathrm{PR}_{2}\right)(\mu-\mathrm{H})(\mathrm{CO})_{8}\right] 6$, which is one of the end products of the reaction of $\left[\mathrm{Re}_{2}(\mathrm{CO})_{9}\left(\mathrm{PR}_{2} \mathrm{H}\right)\right] 5$ with $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2^{-}}\right.$ $\left.\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$, does itself react with $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$ to give the PtRe_{2} product 7 c in which the $\mu-\mathrm{PR}_{2}$ ligand has migrated from an Re_{2} bridge position in 6, to an RePt bridge position in 7c. These observations point to very stereospecific, kinetically controlled reaction pathways. \{N.B. 7a and 7b do not form via initial formation of $\mathbf{6 a}$ and $\mathbf{6 b}$ on addition of [$\left.\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ to 5 [equation (5)] since no reaction of 6 with $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ is observed even after 24 h$\}$. Thus it may be that reaction of $\left[\mathrm{Re}_{2}(\mathrm{CO})_{9}\left(\mathrm{PR}_{2} \mathrm{H}\right)\right] 5$ with [Pt$\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left\{\mathrm{P}_{\left.\left.\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right] \text { follows very closely the steps shown in }}\right.$ Scheme 4 (similar to the formation of $15 a$ in Scheme 2) except that now the intermediate complex 15b undergoes rearrangement via 17 to give 8 much faster than CO loss (which would give 7c). It should be noted that the rearrangement $\mathbf{1 5 b} \longrightarrow \mathbf{1 7}$ (Scheme 4) involves a bridge-to-terminal rearrangement of the phosphido ligand which results in one of the Re atoms in 17 being in a formal valency state of in whilst the other is Re^{I} and the Pt atom exhibits a valency state of in. This postulated rearrangement of the phosphido ligand is analogous to the observed rearrangement of the hydrido ligand in the bridge-to-terminal hydride rearrangements reported for the isomeric pairs $\left[(\mathrm{OC})_{3} \mathrm{Fe}\left(\mu-\mathrm{PR}_{2}\right)(\mu-\mathrm{H}) \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ / $\left[(\mathrm{OC})_{3} \mathrm{HFe}\left(\mu-\mathrm{PR}_{2}\right) \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{26}$ and $[(\mathrm{cp})(\mathrm{ON})(\mathrm{OC}) \mathrm{Re}-$ $\left.\left\{\mu-\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2}\right\}(\mu-\mathrm{H}) \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}{ }^{+}\right] /[(\mathrm{cp})(\mathrm{ON})(\mathrm{OC})-\mathrm{H}-$
$\left.\operatorname{Re}\left\{\mu-\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2}\right\} \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+} .{ }^{28.29}$ It should also be noted that the rate of the rearrangement of $\left[\mathrm{FePt}_{2}\left(\mu-\mathrm{PR}_{2}\right)(\mu-\mathrm{H})-\right.$ $\left.\left.(\mu-\mathrm{CO})(\mathrm{CO})_{3}\left\{\mathrm{P}_{6} \mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}_{2}\right] 18\left(\mu-\mathrm{PR}_{2}\right.$ in an FePt site) to the isomeric form 19 ($\mu-\mathrm{PR}_{2}$ in a PtPt site) [equation (11)]

suggests a $\mathrm{Fe}-\mu$ - P dissociative step in the reorganization of 18 to 19^{31} involving a bridge \longrightarrow terminal \longrightarrow bridge rearrangement of the PR_{2} ligand similar to that postulated in Scheme 4.

Once CO loss has occurred, the preferred structure for a PtRe_{2} system is probably that found in 7. Consequently the reaction of $\left[\operatorname{Re}_{2}\left(\mu-\mathrm{PR}_{2}\right)(\mu-\mathrm{H})(\mathrm{CO})_{8}\right] \quad 6$ with $\left[\mathrm{Pt}_{\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2^{-}}-1}\right.$ $\left.\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$ leads to $\left[\mathrm{PtRe}_{2}\left(\mu-\mathrm{PR}_{2}\right)(\mu-\mathrm{H})(\mathrm{CO})_{8}\left\{\mathrm{P}\left(\mathrm{C}_{6}-\right.\right.\right.$ $\left.\left.\mathrm{H}_{11}\right)_{3}\right\}$] 7c. This reaction [equation (7)] involves the migration of the PR_{2} ligand from an Re_{2} bridge position to a PtRe bridge position. The lability of the Re centres to $\mu-\mathrm{PR}_{2}$ and $\mu-\mathrm{CO}$ reorganization in the PtRe_{2} systems is quite remarkable in view of the usual inertness of $\left[\operatorname{Re}_{2}(\mathrm{CO})_{10-x} \mathrm{~L}_{x}\right]$ systems to ligand substitution. Whilst the currently available data are insufficient fully to delineate the mechanism(s) of the rearrangements reported here, these results, and previous more definitive studies of the mechanism of formation and solution structures of $\left[(\mathrm{OC})_{x} \mathbf{M}\left(\mu-\mathrm{PR}_{2}\right)(\mu-\mathrm{H}) \mathrm{Pt}\left(\mathrm{PR}_{3}\right)_{2}\right](x=4, \mathrm{M}=\mathrm{Cr}, \mathrm{Mo}$ or W ; $x=3, \quad \mathrm{M}=\mathrm{Fe}$ or Ru$)^{25,26}$ and $\left[(\mathrm{cp})(\mathrm{ON}) \operatorname{Re}\left(\mu-\mathrm{PR}_{2}\right)(\mu-\right.$ $\left.\mathrm{H}) \mathrm{Pt}\left(\mathrm{PR}_{3}\right)_{2}\right]^{+29}$ point to kinetically accessible isomeric structures involving a formal two-electron change in total valency state of an \mathbf{M} or \mathbf{M}_{2} unit as the likely cause of the increased ligand lability/reactivity in $\mathbf{M}_{x} \mathbf{P t}_{y}$ clusters in comparison to monomeric ML_{z} systems. Fig. 5 presents localized bonding models of these arrangements in which the Pt centre can be regarded as an intramolecular two-electron oxidizing agent with oxidation being initiated/accompanied by loss of ligand from the Pt centre. Recent results have shown chemical or electrochemical two-electron oxidations to be a highly effective means of activating ligand substitution of carbonyl cluster anions. ${ }^{46}$ Also, in line with the above suggestion, Bradford et al. ${ }^{47}$ have recently shown the phosphido bridge in $\left[\mathrm{Co}_{2} \mathrm{Mo}(\mathrm{cp})\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}\right)\right.$ -$\left.(\mathrm{CO})_{6}\right]^{n}(n=+1,0,-1)$ to undergo a reversible two-electron oxidatively induced migration of the $\mu-\mathrm{PPh}_{2}$ ligand from a CoCo site to a CoMo site.

The Molecular Structures of $\left[\mathrm{PtRe}_{2}\left(\mu-\mathrm{PPr}_{2}\right)(\mu-\mathrm{H})(\mathrm{CO})_{8^{-}}\right.$ $\left.\left(\mathrm{PPh}_{3}\right)\right] \quad 7 \mathrm{~b}, \quad\left[\mathrm{Pt}_{2} \mathrm{Re}_{2}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{H})(\mu-\mathrm{CO})_{2}(\mathrm{CO})_{6}\left\{\mathrm{P}\left(\mathrm{C}_{6}-\right.\right.\right.$ $\left.\left.\left.\mathrm{H}_{11}\right)_{3}\right\}_{2}\right] 10$ and $\left[\mathrm{Pt}_{2} \operatorname{Re}_{2}(\mu-\mathrm{CO})_{4}(\mathrm{CO})_{6}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}_{2}\right]$ 12.Molecular structures and labelling schemes are given in Figs. 1, 2 and 4. Details of the structure determinations, bond lengths and bond angles are given in Tables 3-6. Complex 7b, a 46electron PtM_{2} cluster, consists of a PtRe_{2} triangle of metal atoms with the $\mathrm{Pt}-\mathrm{Re}$ edges bridged by $\mu-\mathrm{PPh}_{2}$ and $\mu-\mathrm{H}$ ligands. Although the position of the hydride ligand was not located, it can be inferred from the geometry of the Pt atom (see below). The structure of $\mathbf{7 b}$ is similar in many respects to that of the recently reported complex $\left[\mathrm{PtRe}_{2}(\mu-\mathrm{H})_{2}(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)_{2}\right] .{ }^{48}$ The 58 -electron clusters 10 and 12 are best described as butterfly clusters with no $\mathrm{Pt}-\mathrm{Pt}$ bond and with the four $\mathrm{Pt}-\mathrm{Re}$ edges bridged by CO ligands in the case of 12 and by two CO , one H and one PPh_{2} ligand in $\mathbf{1 0}$. Again the position of the $\mu-\mathrm{H}$ ligand was not located and its position can only be inferred from the geometry about Pt. The molecule of 12 , which has approximate mirror symmetry, is structurally analogous to the PPh_{3} derivative $\left[\mathrm{Pt}_{2} \mathrm{Re}_{2}(\mu-\mathrm{CO})_{4}(\mathrm{CO})_{6}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ recently reported by Ciani et al. ${ }^{37}$

In 7b the Pt-Re distances differ significantly with the shorter [2.774(1) \AA] involving the hydride-bridged edge. This distance is slightly longer than the $\mathrm{Pt}(\mu-\mathrm{H}) \mathrm{Re}$ edge $[2.761(2) \AA]$ in $\mathbf{1 0}$.

(a)

)

Fig. 5 Schematic representations (localized bonding models) of the two-electron change in total valency state of the $\mathrm{M}_{x} \mathrm{Pt}$ unit associated with CO labilization $[(a)$ and $(b)]$ and ligand-rearrangement processes [(c) and (d)]; (e) is an example of a four-electron change. Reactions (a) and (c) are well established. ${ }^{26,29}$ Similar rearrangements have been postulated to occur in the μ-hydrido- μ-hydroxy species [$\mathrm{Re}_{2} \mathrm{H}(\mathrm{OH})$ $\left.(\mathrm{CO})_{8}\right]$, an intermediate in the photochemical reaction of $\left[\operatorname{Re}_{2}(\mathrm{CO})_{10}\right]$ with $\mathrm{H}_{2} \mathrm{O}^{41}$

Likewise, the $\operatorname{Pt}(\mu-\mathrm{P}) \operatorname{Re}$ edge in 7b [2.834(1) \AA] is slightly longer than the corresponding edge in 10 [2.813(2) \AA]. All of these distances are longer than the lengths of the remaining two $\operatorname{Pt}(\mu-\mathrm{CO}) R e$ edges in 10 and all four $\operatorname{Pt}(\mu-\mathrm{CO}) \operatorname{Re}$ edges in 12 which average ca. $2.745 \AA$. Comparable $\mathrm{Pt}-\mathrm{Re}$ distances in previously reported phosphido bridged structures are 2.8675(5)
$\left\{\left[(\mathrm{cp})(\mathrm{ON}) \mathrm{HRe}\left\{\mu-\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2}\right\} \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}\right\}, 2.8815(8)\{[(\mathrm{cp})-$ $\left.\left.(\mathrm{ON}) \operatorname{Re}\left\{\mu-\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}(\mu-\mathrm{H}) \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}\right\}$and 2.8673(4) \AA $\left\{\left[(\mathrm{cp})(\mathrm{ON}) \operatorname{Re}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{H}) \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}\right\}{ }^{29}$ The $\mathrm{Pt}-\mathrm{Re}$ distance in $\left[(\mathrm{cp})(\mathrm{OC})_{2} \mathrm{HRe}-\mathrm{PtH}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ is $2.838(1) \AA^{49}$ whilst those in $\left[\mathrm{PtRe}_{2}(\mu-\mathrm{H})_{2}(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ are $2.906(1)$ (μ-H bridged) and 2.788(1) \AA (no bridging ligand) respectively. ${ }^{48}$

The Re-Re distances in 7b, 10 and 12 are 3.176(1), 3.149(2) and $3.0560(9) \AA$ respectively, slightly longer than the nominal single-bond lengths of $3.041(1) \AA$ in $\left[\operatorname{Re}_{2}(\mathrm{CO})_{10}\right]$ (in which the equatorial CO ligands are staggered) ${ }^{50}$ and distances of 2.956$3.024(7) \AA$ in $\left[\mathrm{Re}_{4}(\mathrm{CO})_{16}\right]^{2-.51}$

Typically $\mathrm{Pt}-\mathrm{Pt}$ single bonds are $2.62-2.76 \AA$ in length. ${ }^{52,53}$ Both $\mathrm{Pt}-\mathrm{Pt}$ distances in $\mathbf{1 0}$ [3.159(2) \AA] and $\mathbf{1 2}$ [3.0417(8) \AA] are therefore quite long but are similar to distances observed in the $\mathrm{Pt}_{2} \mathrm{M}_{2}$ butterfly clusters $\left[\mathrm{Pt}_{2} \mathrm{Co}_{2}(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)_{2}\right],\left[\mathrm{Pt}_{2} \mathrm{Fe}_{2}-\right.$ $\left.(\mu-\mathrm{H})_{2}(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)_{2}\right], \quad\left[\mathrm{Pt}_{2} \mathrm{Fe}_{2}(\mu-\mathrm{H})(\mu-\mathrm{CO})_{3}(\mathrm{CO})_{5}\left(\mathrm{PPh}_{3}\right)\right]^{-}$ and $\left[\mathrm{Pt}_{2} \mathrm{Os}_{2}(\mu-\mathrm{H})_{2}(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ where the $\mathrm{Pt}-\mathrm{Pt}$ distances are in the range $3.00-3.21 \AA^{.54 .55}$ In 7 and 10 and the above $\mathrm{Pt}_{2} \mathbf{M}_{2}$ butterfly clusters the $\mathrm{Pt} \ldots \mathrm{Pt}$ distances represent only weak interactions which presumably arise from geometrical constraints imposed by other metal-ligand covalent bonding and the preponderance of square-planar arrangements of ligands about Pt . In all the compounds considered the fourth Pt orbital is either involved in a direct (unbridged) $\mathrm{Pt}-\mathrm{M}$ metalmetal bond or else points towards the bond between the other heteroatoms in the cluster (e.g. Fig. 6). Whilst this interaction could be considered to be a three centre-two electron system, as has been commented upon for $\left[\mathrm{Cr}(\mathrm{CO})_{5}\left\{\mathrm{Os}(\mathrm{CO})_{3}\left(\mathrm{PMe}_{3}\right)\right\}_{2}\right]$ and other systems ${ }^{56}$ a slightly different analysis is given later in

Table 3 Crystal data, ${ }^{a}$ details of intensity measurements and structure refinements

Compound	$\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{O}_{8} \mathrm{P}_{2} \mathrm{PtRe}_{2} \mathbf{7 b}$	$\mathrm{C}_{56} \mathrm{H}_{77} \mathrm{O}_{8} \mathrm{P}_{3} \mathrm{Pt}_{2} \mathrm{Re}_{2} 10$	$\mathrm{C}_{46} \mathrm{H}_{66} \mathrm{O}_{10} \mathrm{P}_{2} \mathrm{Pt}_{2} \mathrm{Re}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \mathbf{1 2}$
M	1172.03	1733.73	1688.5
Crystal system	Orthorhombic	Monoclinic	Triclinic (paramonoclinic)
Space group	Pbca	$P 2_{1} / n$	PI
a / \AA	14.951(2)	15.215(9)	11.567(4)
b / \AA	18.330(2)	19.633(9)	15.308(6)
c / \AA	25.715(2)	19.446(8)	16.178(6)
$\alpha /{ }^{\circ}$	90	90	89.87(3)
$\beta /{ }^{\circ}$	90	92.90(4)	108.13(3)
$\gamma /{ }^{\circ}$	90	90	90.28(3)
U / \AA^{3}	7047	5801	2722
$F(000)$	4352	3312	1600
$Z\left(D_{\mathrm{c}} / \mathrm{g} \mathrm{cm}^{-3}\right)$	8 (2.209)	4 (1.984)	2 (2.060)
$\mu(\mathrm{Mo}-\mathrm{K} \bar{\alpha}) / \mathrm{cm}^{-1}$	110.9	92.1	98.7
No. reflections for cell determination	25	24	24
θ range	9.6-16.7	10.6-16.6	9.3-14.6
Scan range/ ${ }^{\circ}$	$0.65+0.35 \tan \theta$	$0.80+0.35 \tan \theta$	$0.60+0.35 \tan \theta$
Maximum scan time/s	70	60	55
No. standard reflections (interval/s)	3 (8500)	3 (7000)	2 (5500)
Decline in intensity standards (\%)	0.9 (157.2 h)	11.2 (211.5 h)	14.0 (180.3 h)
Maximum linear decay correction	-	1.44	1.21
Quadrants (maximum 20/ ${ }^{\circ}$)	$h, k, l(52)$	$h, k, \pm l(50)$	$h, k, \pm l(55), h, k, \pm l(50)$
No. data collected (including standards)	$8024{ }^{\text {b }}$	$11990{ }^{\text {c }}$	11920
No. non-zero data	$5975{ }^{\text {d }}$	9125^{e}	10180^{f}
Crystal colour and shape	Yellow fragment	Orange-red plate	Orange block
Crystal size (faces) d / cm	(010) 0.0050, (0T0) 0.0150,	(201) (20I) 0.0021, (20I)	(011) (0TI) 0.0065, (01I) (0I1)
	(012) 0.0088, (0T2) 0.0075 ,	(201) 0.0081, (22T) (221)	0.0072, (010) 0.0060, (010)
	(012) $0.00120,\{100\}$	0.0088, (22I) (221)	0.0062, (10T) (T01) 0.0100
	0.0050	0.0088	
Absorption correction grid	$6 \times 10 \times 12$	$6 \times 10 \times 10$	$12 \times 6 \times 8$
Minimum, maximum transmission	0.170, 0.357	$0.186,0.587$	0.128, 0.379
No. data $I>3 \sigma(I)$	3700	6068	7166
$R\left(R^{\prime}\right)$	0.0521 (0.0597)	0.0950 (0.1006)	0.0659 (0.0716)
Maximum Δ / σ in final cycle	0.232	0.051	
Value of p in weighting scheme ${ }^{g}$	0.00708	0.00658	0.00547
Maximum peaks ($\AA^{\AA^{-3}}$) in final Fourier	1.4 [near 0(23)],	5.9 [near Pt(1)], ${ }^{\text {n }}$	3.4-4.4
difference map	1.3 [near 0(11)]	4.7 [near $\operatorname{Re}(2)]$	(near Pt and Re)

${ }^{a}$ Enraf-Nonius CAD4 diffractometer (graphite monochromator); Mo-K $\bar{\alpha}$ radiation ($\lambda=0.71069 \AA$); $T=298 \mathrm{~K}$; $\omega-2 \theta$ data collection mode. ${ }^{b}$ Problems with the X-ray beam shutter resulted in some unsymmetrical backgrounds and incorrect scan speeds for some reflections. One particular block of data (121 reflections) was recollected at the end of the data collection and 6 reflections with bad $w \Delta F^{2}$ values were later rejected from the leastsquares refinements. ${ }^{\text {c }}$ Total includes 762 low angle data with $2 \theta \leqslant 35^{\circ}$ and negative h and k indices. ${ }^{d} 1653$ Zero $F_{\text {obs }}$ or systematically absent data rejected and 147 symmetry-equivalent data averaged (R merge $=0.042$) to give indicated total. ${ }^{e} 1509$ Zero $F_{\text {obs }}$ or systematically absent data rejected and 1011 symmetry-equivalent data averaged [R merge $=0.070(0.107)$ for the absorption corrected (uncorrected) data] to give indicated total. ${ }^{f}$ Total includes 252 standards. 966 Zero $F_{\text {obs }}$ data rejected and 522 symmetry-equivalent data averaged [R merge $=0.020$ (0.081) for the absorption corrected (uncorrected) data] to give the indicated total. ${ }^{g}$ Weights given by $w=\left[\sigma^{2}(F)+p F^{2}\right]^{-1} .{ }^{h}$ Somewhat high due to unfavourable shape of crystal and the resulting large absorption corrections.

Table 4 Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for $\left[\operatorname{PtRe}_{2}\left(\mu-\operatorname{PPr}_{2}\right)(\mu-\mathrm{H})(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)\right] 7 \mathrm{~b}$

Pt-Re(1)	2.834(1)	$\operatorname{Re}(1)-\operatorname{Re}(2)$	3.176(1)	$\mathrm{P}(1)-\mathrm{C}(111)$	1.80(2)	$\mathrm{Re}(2)-\mathrm{C}(23)$	1.91(3)
$\mathrm{Pt}-\mathrm{Re}(2)$	2.774(1)	$\mathrm{Re}(1)-\mathrm{C}(11)$	1.87(3)	$\mathrm{P}(1)-\mathrm{C}(121)$	1.84(2)	$\mathrm{Re}(2)-\mathrm{C}(24)$	1.99(3)
$\mathrm{Pt}-\mathrm{P}(1)$	2.243(4)	$\operatorname{Re}(1)-\mathrm{C}(12)$	1.90(2)	$\mathrm{P}(1)-\mathrm{C}(131)$	1.81(2)	$\mathrm{P}(2)-\mathrm{C}(211)$	1.85(2)
$\mathbf{P t}-\mathbf{P}(2)$	$2.236(5)$	$\mathrm{Re}(1)-\mathrm{C}(12)$	1.94(3)	$\mathrm{Re}(2)-\mathrm{C}(21)$	1.88(3)	$\mathbf{P}(2)-\mathrm{C}(221)$	1.84(2)
$\mathrm{Re}(1)-\mathrm{P}(2)$	2.417(5)	$\operatorname{Re}(1)-\mathrm{C}(14)$	1.97(3)	$\operatorname{Re}(2)-\mathrm{C}(22)$	1.90(2)		
$\operatorname{Re}(1)-\mathrm{Pt}-\mathrm{Re}(2)$	68.98(3)	$\mathrm{C}(111)-\mathrm{P}(1)-\mathrm{C}(131)$	102.1(7)	$\operatorname{Re}(2)-\operatorname{Re}(1)-\mathrm{C}(11)$	76.7(10)	$\operatorname{Re}(1)-\operatorname{Re}(2)-\mathrm{C}(21)$	97.4(8)
$\operatorname{Re}(1)-\mathrm{Pt}-\mathrm{P}(1)$	157.0(1)	$\mathbf{C}(121)-\mathrm{P}(1)-\mathrm{C}(131)$	102.8(7)	$\operatorname{Re}(2)-\operatorname{Re}(1)-\mathrm{C}(12)$	166.8(7)	$\operatorname{Re}(1)-\operatorname{Re}(2)-\mathrm{C}(22)$	174.9(6)
$\mathrm{Re}(1)-\mathrm{Pt}-\mathrm{P}(2)$	55.4(1)	$\mathbf{P t}-\mathrm{P}(2)-\operatorname{Re}(1)$	74.9(2)	$\operatorname{Re}(2)-\operatorname{Re}(1)-\mathrm{C}(13)$	87.6(6)	$\operatorname{Re}(1)-\operatorname{Re}(2)-\mathrm{C}(23)$	88.6(7)
$\operatorname{Re}(2)-\mathrm{Pt}-\mathrm{P}(1)$	133.8(1)	$\mathrm{Pt}-\mathrm{P}(2)-\mathrm{C}(211)$	118.3(7)	$\operatorname{Re}(2)-\operatorname{Re}(1)-\mathrm{C}(14)$	88.0(8)	$\operatorname{Re}(1)-\operatorname{Re}(2)-\mathrm{C}(24)$	89.0(7)
$\operatorname{Re}(2)-\mathrm{Pt}-\mathrm{P}(2)$	124.4(1)	$\mathrm{Pt}-\mathrm{P}(2)-\mathrm{C}(221)$	118.5(7)	$\mathrm{C}(11)-\operatorname{Re}(1)-\mathrm{C}(12)$	90.2(12)	$\mathrm{C}(21)-\operatorname{Re}(2)-\mathrm{C}(22)$	87.6(10)
$\mathrm{P}(1)-\mathrm{Pt}-\mathrm{P}(2)$	101.6(2)	$\mathrm{Re}(1)-\mathrm{P}(2)-\mathrm{C}(211)$	120.5(7)	$\mathrm{C}(11)-\operatorname{Re}(1)-\mathrm{C}(13)$	92.5(11)	$\mathrm{C}(21)-\mathrm{Re}(2)-\mathrm{C}(23)$	92.3(11)
$\mathrm{Pt}-\operatorname{Re}(1)-\operatorname{Re}(2)$	54.61(2)	$\mathrm{Re}(1)-\mathrm{P}(2)-\mathrm{C}(221)$	118.5(8)	$\mathrm{C}(11)-\operatorname{Re}(1)-\mathrm{C}(14)$	88.7(12)	$\mathrm{C}(21)-\operatorname{Re}(2)-\mathrm{C}(24)$	93.5(11)
$\mathrm{Pt}-\mathrm{Re}$ (1)-P(2)	49.6(1)	$\mathrm{C}(211)-\mathrm{P}(2)-\mathrm{C}(221)$	104.8(10)	$\mathrm{C}(12)-\operatorname{Re}(1)-\mathrm{C}(13)$	91.6(9)	$\mathrm{C}(22)-\mathrm{Re}(2)-\mathrm{C}(23)$	90.1(10)
$\mathrm{P}(2)-\operatorname{Re}(1)-\operatorname{Re}(2)$	104.2(1)	$\mathrm{Pt}-\mathrm{Re}(1)-\mathrm{C}(11)$	131.2(10)	$\mathrm{C}(12)-\operatorname{Re}(1)-\mathrm{C}(14)$	93.1(11)	$\mathrm{C}(22)-\operatorname{Re}(2)-\mathrm{C}(24)$	91.9(10)
$\mathrm{Pt}-\operatorname{Re}(2)-\operatorname{Re}(1)$	56.41(2)	$\mathrm{Pt}-\mathrm{Re}(1)-\mathrm{C}(12)$	138.6(7)	$\mathrm{C}(13)-\operatorname{Re}(1)-\mathrm{C}(14)$	175.1(10)	$\mathrm{C}(23)-\operatorname{Re}(2)-\mathrm{C}(24)$	174.0(10)
$\mathbf{P t}-\mathbf{P}(1)-\mathrm{C}(111)$	113.4(5)	$\mathrm{Pt}-\mathrm{Re}(1)-\mathrm{C}(14)$	87.7(8)	$\mathrm{Pt}-\mathrm{Re}(2)-\mathrm{C}(21)$	153.7(8)	$\mathrm{Pt}-\mathrm{Re}(1)-\mathrm{C}(13)$	87.9(6)
$\mathbf{P t}-\mathbf{P}(1)-\mathrm{C}(121)$	112.4(6)	$\mathrm{P}(2)-\operatorname{Re}(1)-\mathrm{C}(12)$	88.9(7)	$\mathrm{Pt}-\mathrm{Re}(2)-\mathrm{C}(22)$	118.6(6)	$\mathrm{P}(2)-\operatorname{Re}(1)-\mathrm{C}(11)$	178.7(9)
$\mathbf{P t}-\mathbf{P}(1)-\mathrm{C}(131)$	118.4(5)	$\mathrm{P}(2)-\operatorname{Re}(1)-\mathrm{C}(14)$	90.3(8)	$\mathrm{Pt}-\mathrm{Re}(2)-\mathrm{C}(23)$	89.5(7)	$\mathrm{P}(2)-\operatorname{Re}(1)-\mathrm{C}(13)$	88.5(6)
$\mathrm{C}(111)-\mathrm{P}(1)-\mathrm{C}(121)$	106.3(8)			$\mathrm{Pt}-\mathrm{Re}(2)-\mathrm{C}(24)$	84.5(7)		

Table 5 Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{Pt}_{2} \operatorname{Re}_{2}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{H})(\mu-\mathrm{CO})_{2}(\mathrm{CO})_{6}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}_{2}\right] 10$

$\mathbf{P t}(1)-\mathbf{P t}(2)$	3.159(2)	$\mathrm{Pt}(2)-\operatorname{Re}(1)$	2.748(2)	$\operatorname{Re}(1)-\mathrm{P}(1)$	2.471(9)	$\mathrm{Re}(2)-\mathrm{C}(21)$	1.90(3)
$\mathrm{Pt}(1)-\operatorname{Re}(1)$	2.813(2)	$\mathrm{Pt}(2)-\operatorname{Re}(2)$	2.750 (2)	$\mathrm{Re}(1)-\mathrm{C}(11)$	2.13(2)	$\operatorname{Re}(2)-\mathrm{C}(22)$	1.86(3)
$\mathrm{Pt}(1)-\operatorname{Re}(2)$	2.761(2)	$\mathrm{Pt}(2)-\mathrm{P}(3)$	2.314(8)	$\operatorname{Re}(1)-\mathrm{C}(12)$	1.93(3)	$\operatorname{Re}(2)-\mathrm{C}(23)$	2.25(3)
$\mathrm{Pt}(1)-\mathrm{P}(1)$	2.211(7)	$\mathrm{Pt}(2)-\mathrm{C}(11)$	2.05(2)	$\operatorname{Re}(1)-\mathrm{C}(13)$	1.87(3)	$\mathrm{Re}(2)-\mathrm{C}(24)$	1.95(4)
$\mathrm{Pt}(1)-\mathrm{P}(2)$	2.273(8)	$\operatorname{Re}(1)-\operatorname{Re}(2)$	3.149(2)	$\operatorname{Re}(1)-\mathrm{C}(14)$	1.92(3)	Pt (2)-C(23)	1.90 (3)
$\mathrm{Pt}(2)-\mathrm{Pt}(1)-\mathrm{Re}(1)$	54.42(4)	$\mathrm{Pt}(2)-\mathrm{P}(3)-\mathrm{C}(311)$	109.8(10)	$\mathrm{Pt}(1)-\mathrm{Re}(1)-\mathrm{Pt}(2)$	69.23(4)	$\mathrm{C}(12)-\mathrm{Re}(1)-\mathrm{C}(14)$	94.1(13)
$\mathrm{Pt}(2)-\mathrm{Pt}(1)-\operatorname{Re}(2)$	54.87(4)	$\mathrm{Pt}(2)-\mathrm{P}(3)-\mathrm{C}(321)$	114.7(10)	$\mathrm{Pt}(1)-\operatorname{Re}(1)-\operatorname{Re}(2)$	54.83(4)	$\mathrm{C}(13)-\mathrm{Re}(1)-\mathrm{C}(14)$	93.9(13)
$\mathrm{Pt}(2)-\mathrm{Pt}(1)-\mathrm{P}(1)$	86.6(2)	$\mathrm{Pt}(2)-\mathrm{P}(3)-\mathrm{C}(331)$	112.6(10)	$\mathrm{Pt}(1)-\operatorname{Re}(1)-\mathrm{P}(1)$	48.9(2)	$\mathrm{Pt}(1)-\mathrm{Re}(2)-\mathrm{Pt}(2)$	69.94(4)
$\mathrm{Pt}(2)-\mathrm{Pt}(1)-\mathrm{P}(2)$	144.1(2)	$\mathrm{Pt}(1)-\mathrm{Pt}(2)-\operatorname{Re}(1)$	56.35(4)	$\mathrm{Pt}(1)-\operatorname{Re}(1)-\mathrm{C}(11)$	101.4(6)	$\mathrm{Pt}(1)-\operatorname{Re}(2)-\operatorname{Re}(1)$	$56.37(4)$
$\operatorname{Re}(1)-\mathrm{Pt}(1)-\operatorname{Re}(2)$	68.80(4)	$\mathrm{Pt}(1)-\mathrm{Pt}(2)-\mathrm{Re}(2)$	55.19(4)	$\mathrm{Pt}(1)-\operatorname{Re}(1)-\mathrm{C}(12)$	127.5(8)	$\mathrm{Pt}(1)-\operatorname{Re}(2)-\mathrm{C}(21)$	155.4(8)
$\mathrm{Re}(1)-\mathrm{Pt}(1)-\mathrm{P}(1)$	57.4(2)	$\mathrm{Pt}(1)-\mathrm{Pt}(2)-\mathrm{P}(3)$	150.8(2)	$\mathrm{Pt}(1)-\operatorname{Re}(1)-\mathrm{C}(13)$	139.4(9)	$\mathrm{Pt}(1)-\mathrm{Re}(2)-\mathrm{C}(22)$	114.8(8)
$\operatorname{Re}(1)-\mathrm{Pt}(1)-\mathrm{P}(2)$	161.2(2)	$\operatorname{Re}(1)-\mathrm{Pt}(2)-\operatorname{Re}(2)$	69.89(4)	$\mathrm{Pt}(1)-\operatorname{Re}(1)-\mathrm{C}(14)$	82.7(9)	$\mathrm{Pt}(1)-\operatorname{Re}(2)-\mathrm{C}(23)$	80.7(8)
$\mathrm{Re}(2)-\mathrm{Pt}(1)-\mathbf{P}(1)$	125.8(2)	$\operatorname{Re}(1)-\mathrm{Pt}(2)-\mathrm{P}(3)$	146.8(2)	$\mathbf{P t}(2)-\operatorname{Re}(1)-\operatorname{Re}(2)$	55.09(4)	$\mathrm{Pt}(1)-\operatorname{Re}(2)-\mathrm{C}(24)$	94.6(11)
$\mathrm{Re}(2)-\mathrm{Pt}(1)-\mathrm{P}(2)$	121.4(2)	$\operatorname{Re}(2)-\operatorname{Pt}(2)-\mathrm{P}(3)$	135.3(2)	$\mathbf{P t}(2)-\operatorname{Re}(1)-\mathbf{P}(1)$	91.6(2)	$\mathrm{Pt}(2)-\operatorname{Re}(2)-\operatorname{Re}(1)$	55.02(4)
$\mathbf{P}(1)-\mathrm{Pt}(1)-\mathrm{P}(2)$	112.1(3)	$\mathrm{Pt}(2)-\operatorname{Re}(2)-\mathrm{C}(21)$	92.1(9)	$\mathrm{Pt}(2)-\operatorname{Re}(1)-\mathrm{C}(11)$	47.6(6)	$\mathrm{Pt}(2)-\operatorname{Re}(2)-\mathrm{C}(22)$	126.5(8)
$\mathrm{Pt}(1)-\mathrm{Pt}(2)-\mathrm{C}(11)$	92.8(7)	$\operatorname{Re}(2)-\mathrm{Pt}(2)-\mathrm{C}(11)$	119.4(7)	$\mathrm{Pt}(2)-\operatorname{Re}(1)-\mathrm{C}(12)$	80.6(8)	$\mathrm{Pt}(2)-\operatorname{Re}(2)-\mathrm{C}(23)$	43.2(7)
$\mathrm{Pt}(1)-\mathrm{Pt}(2)-\mathrm{C}(23)$	75.9(9)	$\operatorname{Re}(2)-\mathrm{Pt}(2)-\mathrm{C}(23)$	54.1(9)	$\mathrm{Pt}(2)-\operatorname{Re}(1)-\mathrm{C}(13)$	127.3(9)	$\operatorname{Re}(1)-\operatorname{Re}(2)-\mathrm{C}(21)$	99.8(8)
$\operatorname{Re}(1)-\mathrm{Pt}(2)-\mathrm{C}(11)$	50.2(7)	$\mathrm{Pt}(2)-\operatorname{Re}(2)-\mathrm{C}(24)$	143.3(10)	$\mathrm{Pt}(2)-\operatorname{Re}(1)-\mathrm{C}(14)$	138.5(9)	$\operatorname{Re}(1)-\operatorname{Re}(2)-\mathrm{C}(23)$	96.3(7)
$\operatorname{Re}(1)-\mathrm{Pt}(2)-\mathrm{C}(23)$	120.9(9)	$\operatorname{Re}(1)-\operatorname{Re}(2)-\mathrm{C}(22)$	170.9(8)	$\operatorname{Re}(2)-\operatorname{Re}(1)-\mathrm{P}(1)$	103.5(2)	$\operatorname{Re}(1)-\operatorname{Re}(2)-\mathrm{C}(24)$	88.6(10)
$\mathrm{C}(11)-\mathrm{Pt}(2)-\mathrm{C}(23)$	168.7(12)	$\mathrm{Pt}(1)-\mathrm{P}(2)-\mathrm{C}(211)$	115.4(11)	$\operatorname{Re}(2)-\operatorname{Re}(1)-\mathrm{C}(11)$	102.2(6)	$\mathrm{Pt}(1)-\mathrm{P}(2)-\mathrm{C}(231)$	110.5(13)
$\mathbf{P}(3)-\mathrm{Pt}(2)-\mathrm{C}(11)$	98.8(7)	$\mathrm{Pt}(1)-\mathrm{P}(2)-\mathrm{C}(221)$	109.4(12)	$\operatorname{Re}(2)-\operatorname{Re}(1)-\mathrm{C}(12)$	72.7(8)	$\mathrm{C}(21)-\mathrm{Re}(2)-\mathrm{C}(22)$	89.2(11)
$\mathrm{P}(3)-\mathrm{Pt}(2)-\mathrm{C}(23)$	91.2(9)	$\mathbf{C}(211)-\mathrm{P}(2)-\mathrm{C}(221)$	109.8(16)	$\operatorname{Re}(2)-\operatorname{Re}(1)-\mathrm{C}(14)$	83.9(9)	$\mathrm{C}(21)-\operatorname{Re}(2)-\mathrm{C}(23)$	97.8(12)
$\operatorname{Re}(2)-\operatorname{Re}(1)-\mathrm{C}(13)$	165.3(9)	$\mathrm{C}(211)-\mathrm{P}(2)-\mathrm{C}(231)$	106.6(17)	$\mathrm{P}(1)-\operatorname{Re}(1)-\mathrm{C}(11)$	87.1(7)	$\mathrm{C}(21)-\operatorname{Re}(2)-\mathrm{C}(24)$	90.3(14)
$\mathrm{Pt}(1)-\mathrm{P}(1)-\operatorname{Re}(1)$	73.6(2)	$\mathrm{C}(221)-\mathrm{P}(2)-\mathrm{C}(231)$	104.5(17)	$\mathrm{P}(1)-\operatorname{Re}(1)-\mathrm{C}(12)$	172.2(9)	$\mathrm{C}(22)-\operatorname{Re}(2)-\mathrm{C}(23)$	83.7(11)
$\mathrm{Pt}(1)-\mathrm{P}(1)-\mathrm{C}(111)$	118.0(10)	$\mathrm{C}(311)-\mathrm{P}(3)-\mathrm{C}(321)$	103.8(13)	$\mathrm{P}(1)-\operatorname{Re}(1)-\mathrm{C}(13)$	91.0(9)	$\mathrm{C}(22)-\operatorname{Re}(2)-\mathrm{C}(24)$	90.0(13)
$\mathrm{Pt}(1)-\mathrm{P}(1)-\mathrm{C}(121)$	120.4(10)	$\mathbf{C}(311)-\mathrm{P}(3)-\mathrm{C}(331)$	104.8(14)	$\mathrm{P}(1)-\operatorname{Re}(1)-\mathrm{C}(14)$	92.2(10)	$\mathrm{C}(23)-\operatorname{Re}(2)-\mathrm{C}(24)$	169.6(13)
$\operatorname{Re}(1)-\mathrm{P}(1)-\mathrm{C}(111)$	116.0(10)	$\mathrm{C}(321)-\mathrm{P}(3)-\mathrm{C}(331)$	110.3(14)	$\mathrm{C}(11)-\operatorname{Re}(1)-\mathrm{C}(12)$	87.1(11)	$\mathrm{Pt}(2)-\mathrm{C}(11)-\mathrm{O}(11)$	137.0(20)
$\operatorname{Re}(1)-\mathrm{P}(1)-\mathrm{C}(121)$	126.5(11)	$\mathrm{Pt}(2)-\mathrm{C}(11)-\mathrm{Re}(1)$	82.1(8)	$\mathrm{C}(11)-\operatorname{Re}(1)-\mathrm{C}(14)$	173.8(10)	$\mathrm{Pt}(2)-\mathrm{C}(23)-\operatorname{Re}(2)$	82.7(11)
$\mathrm{C}(111)-\mathrm{P}(1)-\mathrm{C}(121)$	101.9(14)	$\mathrm{Re}(1)-\mathrm{C}(11)-\mathrm{O}(11)$	140.9(19)	$\mathrm{C}(12)-\operatorname{Re}(1)-\mathrm{C}(13)$	93.0(12)	$\mathrm{Re}(2)-\mathrm{C}(23)-\mathrm{O}(23)$	129.6(22)
$\mathrm{C}(11)-\operatorname{Re}(1)-\mathrm{C}(13)$	80.0(11)	$\mathrm{Pt}(2)-\mathrm{C}(23)-\mathrm{O}(23)$	147.7(25)				

Table 6 Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{Pt}_{2} \operatorname{Re}_{2}(\mu-\mathrm{CO})_{4}(\mathrm{CO})_{6}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}_{2}\right] 12$

$\operatorname{Re}(1)-\operatorname{Re}(2)$	3.0560(9)	$\mathrm{Pt}(1)-\mathrm{C}(3 \mu)$	2.031(18)	$\operatorname{Re}(1)-\mathrm{C}(2)$	1.900(17)	$\operatorname{Re}(2)-\mathrm{C}(5)$	1.885(20)
$\mathrm{Pt}(1)-\mathrm{Pt}(2)$	3.0417(8)	$\mathrm{Pt}(2)-\operatorname{Re}(1)$	2.7416(10)	$\operatorname{Re}(1)-\mathrm{C}(3)$	1.919(21)	$\operatorname{Re}(2)-\mathrm{C}(6)$	1.906(21)
$\mathrm{Pt}(1)-\mathrm{Re}(1)$	2.7473(8)	$\mathrm{Pt}(2)-\operatorname{Re}(2)$	2.756(1)	$\operatorname{Re}(1)-\mathrm{C}(1 \mu)$	2.215(20)	$\operatorname{Re}(2)-\mathrm{C}(3 \mu)$	2.213(17)
$\mathrm{Pt}(1)-\operatorname{Re}(2)$	2.7343(9)	$\mathrm{Pt}(2)-\mathrm{P}(2)$	$2.315(5)$	$\operatorname{Re}(1)-\mathrm{C}(2 \mu)$	2.199(14)	$\operatorname{Re}(2)-\mathrm{C}(4 \mu)$	2.155(25)
$\mathrm{Pt}(1)-\mathrm{P}(1)$	2.317(4)	$\mathrm{Pt}(2)-\mathrm{C}(1 \mu)$	2.063(17)	$\mathbf{R e}(2)-C(4)$	1.910(21)	$\mathrm{Pt}(2)-\mathrm{C}(4 \mu)$	1.945(22)
$\mathrm{Pt}(1)-\mathrm{C}(2 \mu)$	1.982(15)	$\operatorname{Re}(1)-\mathrm{C}(1)$	1.878(17)				
$\mathrm{Pt}(2)-\mathrm{Pt}(1)-\mathrm{Re}(1)$	56.26(2)	$\operatorname{Pt}(1)-\operatorname{Re}(1)-\operatorname{Re}(2)$	55.91(2)	$\mathrm{Pt}(1)-\mathrm{Pt}(2)-\operatorname{Re}(1)$	56.44(2)	$\mathrm{Pt}(1)-\operatorname{Re}(2)-\operatorname{Re}(1)$	56.32(2)
$\mathrm{Pt}(2)-\mathrm{Pt}(1)-\operatorname{Re}(2)$	56.70(2)	$\mathrm{Pt}(1)-\operatorname{Re}(1)-\mathrm{C}(1)$	125.3(5)	$\mathrm{Pt}(1)-\mathrm{Pt}(2)-\operatorname{Re}(2)$	56.01(2)	$\mathrm{Pt}(1)-\operatorname{Re}(2)-\mathrm{C}(4)$	91.5(5)
$\mathbf{P t}(2)-\mathrm{Pt}(1)-\mathrm{P}(1)$	130.6(1)	$\mathrm{Pt}(1)-\operatorname{Re}(1)-\mathrm{C}(2)$	146.5(5)	$\mathbf{P t}(1)-\mathbf{P t}(2)-\mathbf{P}(2)$	144.6(1)	$\mathrm{Pt}(1)-\operatorname{Re}(2)-\mathrm{C}(5)$	130.0(6)
$\mathrm{Pt}(2)-\mathrm{Pt}(1)-\mathrm{C}(2 \mu)$	95.7(4)	$\mathrm{Pt}(1)-\operatorname{Re}(1)-\mathrm{C}(3)$	91.8(5)	$\mathrm{Pt}(1)-\mathrm{Pt}(2)-\mathrm{C}(1 \mu)$	81.4(4)	$\mathrm{Pt}(1)-\operatorname{Re}(2)-\mathrm{C}(6)$	138.5(6)
$\mathrm{Pt}(2)-\mathrm{Pt}(1)-\mathrm{C}(3 \mu)$	87.7(5)	$\mathrm{Pt}(1)-\operatorname{Re}(1)-\mathrm{C}(1 \mu)$	86.2(4)	$\mathrm{Pt}(1)-\mathrm{Pt}(2)-\mathrm{C}(4 \mu)$	88.5(6)	$\operatorname{Pt}(1)-\operatorname{Re}(2)-\mathrm{C}(3 \mu)$	47.0(5)
$\operatorname{Re}(1)-\operatorname{Pt}(1)-\operatorname{Re}(2)$	67.77(2)	$\mathrm{Pt}(1)-\operatorname{Re}(1)-\mathrm{C}(2 \mu)$	45.6(4)	$\operatorname{Re}(1)-\mathrm{Pt}(2)-\operatorname{Re}(2)$	67.54(3)	$\mathrm{Pt}(1)-\operatorname{Re}(2)-\mathrm{C}(4 \mu)$	92.9(6)
$\mathrm{Re}(1)-\mathrm{Pt}(1)-\mathrm{P}(1)$	144.8(1)	$\mathrm{Pt}(2)-\operatorname{Re}(1)-\operatorname{Re}(2)$	56.46(2)	$\mathrm{Re}(1)-\mathrm{Pt}(2)-\mathrm{P}(2)$	142.2(1)	$\mathrm{Pt}(2)-\operatorname{Re}(2)-\operatorname{Re}(1)$	56.00(2)
$\operatorname{Re}(1)-\mathrm{Pt}(1)-\mathrm{C}(2 \mu)$	52.4(4)	$\mathrm{Pt}(2)-\mathrm{Re}(1)-\mathrm{C}(1)$	130.6(6)	$\operatorname{Re}(1)-\mathrm{Pt}(2)-\mathrm{C}(1 \mu)$	52.6(5)	$\mathrm{Pt}(2)-\operatorname{Re}(2)-\mathrm{C}(4)$	148.1(5)
$\operatorname{Re}(1)-\mathrm{Pt}(1)-\mathrm{C}(3 \mu)$	120.6(5)	$\mathrm{Pt}(2)-\operatorname{Re}(1)-\mathrm{C}(2)$	87.5(6)	$\operatorname{Re}(1)-\mathrm{Pt}(2)-\mathrm{C}(4 \mu)$	118.5(8)	$\mathrm{Pt}(2)-\mathrm{Re}(2)-\mathrm{C}(5)$	122.9(7)
$\mathrm{Re}(2)-\mathrm{Pt}(1)-\mathrm{P}(1)$	147.5(1)	$\mathrm{Pt}(2)-\operatorname{Re}(1)-\mathrm{C}(3)$	138.2(5)	$\mathrm{Re}(2)-\mathrm{Pt}(2)-\mathrm{P}(2)$	146.2(1)	$\mathrm{Pt}(2)-\mathrm{Re}(2)-\mathrm{C}(6)$	90.7(7)
$\operatorname{Re}(2)-\mathrm{Pt}(1)-\mathrm{C}(2 \mu)$	118.4(4)	$\mathrm{Pt}(2)-\operatorname{Re}(1)-\mathrm{C}(1 \mu)$	47.7(4)	$\operatorname{Re}(2)-\mathrm{Pt}(2)-\mathrm{C}(1 \mu)$	119.4(5)	$\mathrm{Pt}(2)-\operatorname{Re}(2)-\mathrm{C}(3 \mu)$	91.8(5)
$\operatorname{Re}(2)-\mathrm{Pt}(1)-\mathrm{C}(3 \mu)$	52.9(5)	$\mathrm{Pt}(2)-\operatorname{Re}(1)-\mathrm{C}(2 \mu)$	99.7(4)	$\operatorname{Re}(2)-\operatorname{Pt}(2)-\mathrm{C}(4 \mu)$	51.1(7)	$\mathrm{Pt}(2)-\operatorname{Re}(2)-\mathrm{C}(4 \mu)$	44.6(6)
$\mathrm{P}(1)-\mathrm{Pt}(1)-\mathrm{C}(2 \mu)$	93.5(4)	$\operatorname{Re}(2)-\operatorname{Re}(1)-\mathrm{C}(1)$	172.9(6)	$\mathrm{P}(2)-\mathrm{Pt}(2)-\mathrm{C}(1 \mu)$	93.6(5)	$\operatorname{Re}(1)-\operatorname{Re}(2)-\mathrm{C}(4)$	92.6(5)
$\mathrm{P}(1)-\mathrm{Pt}(1)-\mathrm{C}(3 \mu)$	94.6(5)	$\operatorname{Re}(2)-\operatorname{Re}(1)-\mathrm{C}(2)$	92.1(5)	$\mathrm{P}(2)-\mathrm{Pt}(2)-\mathrm{C}(4 \mu)$	96.6(7)	$\operatorname{Re}(1)-\operatorname{Re}(2)-\mathrm{C}(5)$	173.5(6)
$\mathrm{C}(2 \mu)-\mathrm{Pt}(1)-\mathrm{C}(3 \mu)$	166.0(8)	$\operatorname{Re}(2)-\operatorname{Re}(1)-\mathrm{C}(3)$	81.8(5)	$\mathrm{C}(1 \mu)-\mathrm{Pt}(2)-\mathrm{C}(4 \mu)$	169.4(8)	$\operatorname{Re}(1)-\operatorname{Re}(2)-\mathrm{C}(6)$	82.1(6)
$\mathrm{Pt}(1)-\mathrm{P}(1)-\mathrm{C}(111)$	111.8(5)	$\operatorname{Re}(2)-\operatorname{Re}(1)-\mathrm{C}(1 \mu)$	103.6(4)	$\mathrm{Pt}(2)-\mathrm{P}(2)-\mathrm{C}(211)$	112.6(6)	$\operatorname{Re}(1)-\operatorname{Re}(2)-\mathrm{C}(3 \mu)$	103.4(5)
$\mathrm{Pt}(1)-\mathrm{P}(1)-\mathrm{C}(121)$	111.7(5)	$\operatorname{Re}(2)-\operatorname{Re}(1)-\mathrm{C}(2 \mu)$	100.3(4)	$\mathrm{Pt}(2)-\mathrm{P}(2)-\mathrm{C}(221)$	108.9(7)	$\operatorname{Re}(1)-\operatorname{Re}(2)-\mathrm{C}(4 \mu)$	100.5(6)
$\mathrm{Pt}(1)-\mathrm{P}(1)-\mathrm{C}(131)$	112.5(6)	$\mathrm{C}(1)-\operatorname{Re}(1)-\mathrm{C}(2)$	87.7(7)	$\mathrm{Pt}(2)-\mathrm{P}(2)-\mathrm{C}(231)$	113.6(7)	$\mathrm{C}(4)-\operatorname{Re}(2)-\mathrm{C}(5)$	89.0(9)
$\mathrm{C}(111)-\mathrm{P}(1)-\mathrm{C}(121)$	110.8(9)	$\mathrm{C}(1)-\operatorname{Re}(1)-\mathrm{C}(3)$	91.2(8)	$\mathrm{C}(211)-\mathrm{P}(2)-\mathrm{C}(221)$	105.8(9)	$\mathrm{C}(4)-\operatorname{Re}(2)-\mathrm{C}(6)$	90.4(9)
$\mathrm{C}(111)-\mathrm{P}(1)-\mathrm{C}(131)$	105.8(8)	$\mathrm{C}(1)-\operatorname{Re}(1)-\mathrm{C}(1 \mu)$	83.5(7)	$\mathrm{C}(211)-\mathrm{P}(2)-\mathrm{C}(231)$	112.5(10)	$\mathrm{C}(4)-\operatorname{Re}(2)-\mathrm{C}(3 \mu)$	90.0 (8)
$\mathrm{C}(121)-\mathrm{P}(1)-\mathrm{C}(131)$	103.8(8)	$\mathrm{C}(1)-\operatorname{Re}(1)-\mathrm{C}(2 \mu)$	80.0(6)	$\mathrm{C}(221)-\mathrm{P}(2)-\mathrm{C}(231)$	102.6(8)	$\mathrm{C}(4)-\operatorname{Re}(2)-\mathrm{C}(4 \mu)$	166.4(8)
$\mathrm{Pt}(2)-\mathrm{C}(1 \mu)-\operatorname{Re}(1)$	79.6(6)	$\mathrm{C}(2)-\operatorname{Re}(1)-\mathrm{C}(3)$	93.2(8)	$\mathrm{Pt}(1)-\mathrm{C}(3 \mu)-\operatorname{Re}(2)$	80.1(6)	$\mathrm{C}(5)-\operatorname{Re}(2)-\mathrm{C}(6)$	91.5(9)
$\mathrm{Pt}(2)-\mathrm{C}(1 \mu)-\mathrm{O}(1 \mu)$	138.7(16)	$\mathrm{C}(2)-\operatorname{Re}(1)-\mathrm{C}(1 \mu)$	92.9(8)	$\mathrm{Pt}(1)-\mathrm{C}(3 \mu)-\mathrm{O}(3 \mu)$	140.7(15)	$\mathrm{C}(5)-\operatorname{Re}(2)-\mathrm{C}(3 \mu)$	83.0(8)
$\operatorname{Re}(1)-\mathrm{C}(1 \mu)-\mathrm{O}(1 \mu)$	141.2(14)	$\mathrm{C}(2)-\operatorname{Re}(1)-\mathrm{C}(2 \mu)$	167.6(7)	$\mathrm{Re}(1)-\mathrm{C}(3 \mu)-\mathrm{O}(3 \mu)$	138.4(16)	$\mathrm{C}(5)-\operatorname{Re}(2)-\mathrm{C}(4 \mu)$	78.3(9)
$\mathrm{Pt}(1)-\mathrm{C}(2 \mu)-\operatorname{Re}(1)$	82.0(5)	$\mathrm{C}(3)-\operatorname{Re}(1)-\mathrm{C}(1 \mu)$	171.7(6)	$\mathrm{Pt}(2)-\mathrm{C}(4 \mu)-\operatorname{Re}(2)$	84.3(8)	$\mathrm{C}(6)-\operatorname{Re}(2)-\mathrm{C}(3 \mu)$	174.5(8)
$\mathrm{Pt}(1)-\mathrm{C}(2 \mu)-\mathrm{O}(2 \mu)$	143.4(12)	$\mathrm{C}(3)-\operatorname{Re}(1)-\mathrm{C}(2 \mu)$	88.1(7)	$\mathrm{Pt}(2)-\mathrm{C}(4 \mu)-\mathrm{O}(4 \mu)$	141.0(21)	$\mathrm{C}(6)-\operatorname{Re}(2)-\mathrm{C}(4 \mu)$	94.8(9)
$\mathrm{Re}(1)-\mathrm{C}(2 \mu)-\mathrm{O}(2 \mu)$	133.5(12)	$\mathrm{C}(1 \mu)-\operatorname{Re}(1)-\mathrm{C}(2 \mu)$	84.6(6)	$\operatorname{Re}(2)-\mathrm{C}(4 \mu)-\mathrm{O}(4 \mu)$	134.6(19)	$\mathrm{C}(3 \mu)-\operatorname{Re}(2)-\mathrm{C}(4 \mu)$	83.6(8)
$\mathrm{Pt}(1)-\operatorname{Re}(1)-\mathrm{Pt}(2)$	67.30(2)	av. $\mathrm{Re}-\mathrm{C}-\mathrm{O}$	174.8(15)	$\mathrm{Pt}(1)-\operatorname{Re}(2)-\mathrm{Pt}(2)$	67.28(2)		

(a)

(b)

Fig. 6 Views of (a) molecule 10 virtually down the $\mathrm{Re}-\mathrm{Re}$ axis, and (b) the core of molecule 12 with only the $\alpha-\mathrm{C}$ atoms of the $\mathrm{C}_{6} \mathrm{H}_{11}$ groups indicated for clarity, illustrating the molecular symmetry effectively imposed by the octahedral and square-planar fields at Re and Pt
this discussion. Fig. 6 is useful in that it readily indicates how the cluster $\mathbf{1 0}$ can be built-up from allowing the $\mathrm{Pt}(2)-\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}$ moiety to approach the $\mathrm{PtRe}_{2}(\mu-\mathrm{P})(\mu-\mathrm{H})(\mathrm{CO})_{8} \mathrm{P}$ fragment of 7 b across the Re-Re bond and between two of the out-of-plane carbonyls which become the bridging carbonyls $\mathrm{C}(11)-\mathrm{O}$ and $\mathrm{C}(23)-\mathrm{O}$ in the final product. Presumably the cluster 12 can be built up by a similar sequential addition of $\operatorname{PtP}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}$ moieties to $\left[\operatorname{Re}_{2}(\mathrm{CO})_{10}\right]$. Fig. 6 also shows how the coordinative requirements of octahedral fields at Re and essentially four-co-ordinate planar fields at Pt force the eclipsed configuration of carbonyl ligands and the close proximity of the two Pt atoms in 10 and 12. A similar analysis has been applied to the generation of a PtRu_{3} cluster by the addition of a $\mathrm{Ru}(\mathrm{CO})_{2}$ fragment across the $\mathrm{Ru}-\mathrm{Ru}$ edge of a $\left[\mathrm{PtRu}_{2}(\mu-\right.$ $\left.\left.\mathrm{PR}_{2}\right)(\mu-\mathrm{H})(\mathrm{CO})_{7}\right]$ intermediate. ${ }^{33}$

Although not located in the X-ray structural studies the positions of the bridging hydrogen atoms in $\mathbf{7 b}$ and $\mathbf{1 0}$ are inferred, from the geometrical parameters of the Pt and Re atoms involved, to be along the $\mathrm{Pt}-\mathrm{Re}$ (2) edge in 7 b and along the $\mathrm{Pt}-\mathrm{Re}(1)$ edge in 10 (consistent with solution ${ }^{1} \mathrm{H}$ NMR data). The Pt-Re distances are reasonably consistent with this in that the distances involved are somewhat longer than the distances for the $\operatorname{Pt}(\mu-\mathrm{CO})$ Re edges but shorter than those for the $\mathrm{Pt}(\mu-\mathrm{P}) \mathrm{Re}$ edges. It is commonly found in cluster structures that μ-CO bridged edges are usually shorter than unbridged edges and that hydride bridges generally tend to lengthen the $\mathbf{M}-\mathrm{M}$ distance spanned although both of these observations have many exceptions. ${ }^{57}$ If we assume (i) that the $\mathrm{Pt}-\mu-\mathrm{H}$ and $\mathrm{Re}-\mu-\mathrm{H}$ distances in $\mathbf{7}$ and $\mathbf{1 0}$ are close to the average value (1.75 and $1.85 \AA$) quoted by Teller and Bau ${ }^{58}$ in their review of crystallographically determined transition-metal hydride structures and (ii) that the H atoms involved are in the planes of the bonds about Pt , then the resulting geometrical situation for 7b is summarized in Fig. 7. Localized bonding models involving octahedral and square-planar fields at Re and Pt are particularly successful at rationalizing molecular geometries in the present structures. Using the $\mathrm{P}(1)-\mathrm{Pt}$ vector as an estimate of the probable location of the fourth binding site in the planar ligand field at Pt suggests that, in 7 b , the Pt atom is more strongly bonded to $\operatorname{Re}(1)$ than $\operatorname{Re}(2)$ [see point B, Fig. 7(a)]. Also

(a)

(b)

(c)

Fig. 7 (a) The geometrical situation for 7 b (bond lengths in \AA, angles in ${ }^{\circ}$) assuming $\mu-\mathrm{H}$ bridges $\operatorname{PtRe}(2)$ and is in the PtRe_{2} plane with $\mathrm{Pt}-\mathrm{H} 1.75$ and $\mathrm{Re}-\mathrm{H} 1.85 \AA$. (b) Also shown is a schematic with a $\mathrm{Re}(1) \rightarrow \mathrm{Pt}$ dative bond in the fourth Pt co-ordination site. (c) For a comparison with 7b the structural features of the cation [(cp)$\left.(\mathrm{ON})(\mathrm{OC}) \mathrm{HRe}\left\{\mu-\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2}\right\} \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right]+28.29$ [analogous to those in (b)]. It is assumed that the $\mathrm{Pt}-\mu-\mathrm{P}$ interaction involves significant bending of the $\mathrm{Pt}-\mu-\mathrm{P}$ bond ${ }^{29}$
given in Fig. 7 is a simple representation of bent $\operatorname{Re}(1) \longrightarrow \mathrm{Pt}$ donor bonding and an analogous description of the comparable features of the directly bonded PtRe bimetallic cation $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2^{-}}\right.$ $\left.\mathrm{Pt}\left\{\mu-\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2}\right\} \operatorname{ReH}(\mathrm{NO})(\mathrm{cp})\right]^{+}{ }^{29}$ The similarity of the conformation, bond angles and bond lengths of the $\left(\mathrm{C}_{3} \mathrm{P}\right) \mathrm{Pt}(\mu-$ PC_{2}) Re unit in both the bimetallic and trimetallic compounds supports the notion that in 7 the Pt is co-ordinated in the fourth site by an $\operatorname{Re} \rightarrow \mathrm{Pt}$ donor bond from the more basic $\operatorname{Re}(1)$ centre, presumably using a $\operatorname{Re}(1)$ filled $t_{2 g}$ type orbital. Similar dative metal-metal bonds have been postulated in [(OC) 5^{-} $\left.W\left(\mu-\mathrm{PPh}_{2}\right) \operatorname{Re}(\mathrm{CO})_{4}\right],{ }^{17} \quad\left[(\mathrm{OC})_{5} \mathrm{~W}\left\{\mathrm{C}(\mathrm{OMe})\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)\right\} \mathrm{Pt}-\right.$ $\left.\left(\mathrm{PMe}_{3}\right)_{2}\right],{ }^{59}$ and $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)(\mathrm{OC})_{4} \mathrm{Cr}\left(\mu-\mathrm{PBu}^{\mathrm{t}}\right) \mathrm{NiCl}\left(\mathrm{PMe}_{3}\right)\right] .{ }^{60}$

Experimental

General.-All manipulations were carried out under an atmosphere of dry N_{2} using dry degassed solvents. The ${ }^{31} \mathrm{P}$ $\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{1} \mathrm{H}$ NMR spectra were recorded as $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solutions at room temperature on a Varian XL200 Fourier-transform NMR spectrometer operating at 80.9 and 200 MHz respectively. Proton shifts were measured relative to SiMe_{4}. Phosphorus-31 shifts were measured relative to external
$\mathrm{P}(\mathrm{OMe})_{3}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ and corrected to $85 \% \quad \mathrm{H}_{3} \mathrm{PO}_{4}$, with downfield shifts reported as positive. Infrared data were obtained on a Nicolet 10DX Fourier-transform IR spectrometer. Samples were run as $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions in sodium chloride cells.

Starting Materials.-Dichlorodeuteriomethane was purchased from Aldrich and used as received. Metal carbonyl starting materials were purchased from Strem and Pressure Chemicals and used without further purification. Di- n-propylphosphine and diphenylphosphine were purchased from Strem and Pressure Chemicals, respectively. Trimethylamine oxide dihydrate and iodosobenzene diacetate were purchased from Aldrich. The platinum compounds $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]^{61}$ and $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}{ }^{62}\right.$ were prepared according to published procedures. Iodosobenzene was prepared according to the method of Saltzman and Sharefkin. ${ }^{63}$ The crude iodosobenzene was washed with acetonitrile, then diethyl ether and air dried. Yields were $>90 \%$. This material may be kept for short periods of time in a cool dark place. However, it is best prepared fresh when required.

Preparations.-(Acetonitrile)nonacarbonyldirhenium, eq$\left[\operatorname{Re}_{2}(\mathrm{CO})_{9}(\mathrm{MeCN})\right]$. In a typical preparation, $\left[\operatorname{Re}_{2}(\mathrm{CO})_{10}\right]$ $(3.16 \mathrm{~g}, 4.8 \mathrm{mmol})$ was dissolved in freshly distilled and degassed acetonitrile ($225 \mathrm{~cm}^{3}$). The flask was warmed slightly ($\approx 40^{\circ} \mathrm{C}$) until the rhenium carbonyl was completely dissolved. Iodosobenzene, which was freshly prepared prior to use, was added $(1.42 \mathrm{~g}, 6.4 \mathrm{mmol})$. The iodosobenzene was insoluble in acetonitrile. The suspension was left stirring for approximately 2 h at which point the IR spectrum of the cloudy yellow solution indicated the presence of some unreacted $\left[\operatorname{Re}_{2}(C O)_{10}\right]$. An additional $0.24 \mathrm{~g}(1.09 \mathrm{mmol})$ iodosobenzene was added and the solution was left stirring overnight. The solvent was removed under reduced pressure, with the aid of a tepid water-bath, giving a beige-yellow solid. The product was recrystallized from methanol and water to give 2.5 g of $\left[\mathrm{Re}_{2}(\mathrm{CO})_{9}(\mathrm{MeCN})\right]$. Yield 77%. IR (hexane): v(CO) 2103w, 2047m, 2013m, 1990vs and $1965 \mathrm{~m} \mathrm{~cm}^{-1}$. (Isolated yields varied from 75 to 90%.)

Bis(acetonitrile)octacarbonyldirhenium, eq,eq-[$\operatorname{Re}_{2}(\mathrm{CO})_{\mathbf{8}^{-}}$ $(\mathrm{MeCN})_{2}$]. Dirhenium decarbonyl $(0.70 \mathrm{~g}, 1.07 \mathrm{mmol})$ was dissolved in freshly distilled, degassed MeCN $\left(75 \mathrm{~cm}^{3}\right)$ and iodosobenzene [0.35 g plus, 0.39 g (after 1 h); $1.58 \mathrm{mmol}, 1.76$ mmol respectively] was added in portions. After stirring for 2 h the bright yellow solution was taken to dryness and washed with a minimum volume of hexane to yield the product as a yellow powder in 83% yield. This method is superior to that of Gard and Brown, ${ }^{41}$ who obtained the product in 32% yield using trimethylamine oxide as the decarbonylating agent. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v(\mathrm{CO}) 2071 \mathrm{w}, 2016 \mathrm{~m}, 1919 \mathrm{~s}$ and $1905 \mathrm{~m} \mathrm{~cm}^{-1}$; impurities at 2054 w and $2002 \mathrm{~m} \mathrm{~cm}{ }^{-1}$. [Lit. (in MeCN): ${ }^{41}$ $2070 \mathrm{w}, 2015 \mathrm{~m}, 1962 \mathrm{~s}$ and $1901 \mathrm{~m} \mathrm{~cm}^{-1}$ with impurities at 2075 and $2001 \mathrm{~cm}^{-1}$ that could not be removed by chromatography or recrystallization of the material.]
Nonacarbonyl(diphenylphosphine)dirhenium, $\quad\left[\mathrm{Re}_{2}(\mathrm{CO})_{9}\right.$ $\left.\left(\mathrm{PPh}_{2} \mathrm{H}\right)\right] 5$ 5. The complex $\left[\mathrm{Re}_{2}(\mathrm{CO})_{9}(\mathrm{MeCN})\right](0.65 \mathrm{~g}, 0.98$ mmol) was placed in degassed hexane (ca. $150 \mathrm{~cm}^{3}$) and diphenylphosphine $(0.19 \mathrm{~g}, 1.03 \mathrm{mmol})$ was added. The mixture was refluxed in hexane for 2 h during which time the solution turned from yellow to colourless. The solvent was removed under pressure and washed with a minimum volume of methanol to give a chalk-white solid in 65% yield. The product may be recrystallized from a minimum volume of hot hexane as white microprisms. IR (benzene): v(CO) 2103w, 2041m, 2016w, 1993vs, 1966 m and 1931m. NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right):{ }^{1} \mathrm{H}, \delta 6.9$ [$\left.J\left({ }^{31} \mathrm{P}^{1} \mathrm{H}\right) 362 \mathrm{~Hz}, \mathrm{PH}\right], 7.4$ and 7.6 (complex, phenyl H); ${ }^{31} \mathrm{P}$ $\left\{{ }^{1} \mathrm{H}\right\}, \delta-12.6$ (Found: $\mathrm{C}, 31.3 ; \mathrm{H}, 1.6 . \mathrm{C}_{21} \mathrm{H}_{11} \mathrm{O}_{9} \mathrm{PRe}_{2}$ requires C, $31.1 ; \mathrm{H}, 1.4 \%$)

Nonacarbonyl(di-n-propylphosphine)dirhenium, $\quad\left[\mathrm{Re}_{2}(\mathrm{CO})_{9}-\right.$ $\left.\left(\operatorname{PPr}_{2} \mathbf{H}\right)\right]$ 5b. The complex $\left[\operatorname{Re}_{2}(\mathrm{CO})_{9}(\mathrm{MeCN})\right](0.91 \mathrm{~g}, 1.36$ mmol) was dissolved in freshly distilled and degassed hexane
($230 \mathrm{~cm}^{3}$) and di- n-propylphosphine ($0.18 \mathrm{~cm}^{3}, 1.38 \mathrm{mmol}$) was added by syringe. $\left\{\mathrm{The}\left[\mathrm{Re}_{2}(\mathrm{CO})_{9}(\mathrm{MeCN})\right.\right.$] was only slightly soluble in hexane.\} The mixture was refluxed for 4 h after which the solvent was removed under reduced pressure to give a beige, sticky oil which recrystallized from hexane as off-white prisms (30% yield). IR (hexane): $v(C O)$ 2103w, 2039m, 1993vs, 1969m and $1938 \mathrm{~ms} \mathrm{~cm}^{-1}$. In addition there were weak unassigned bands at $v(C O) 2047,2015,1989$ and $1978 \mathrm{~cm}^{-1}$. NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right):{ }^{1} \mathrm{H}, \delta 4.9\left[J\left({ }^{31} \mathrm{P}^{1} \mathrm{H}\right) 344 \mathrm{~Hz}\right] ;{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}, \delta-46.3(\mathrm{~s})$.
Octacarbonyl(μ-diphenylphosphido)(μ-hydrido)dirhenium, $\left[\mathrm{Re}_{2}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{H})(\mathrm{CO})_{8}\right] \quad 6 \mathrm{a}$. Method A. The complex $\left[\mathrm{Re}_{2}(\mathrm{CO})_{9}\left(\mathrm{PPh}_{2} \mathrm{H}\right)\right](0.086 \mathrm{~g}, 0.11 \mathrm{mmol})$ was placed in decalin ($10 \mathrm{~cm}^{3}$) and heated to $170^{\circ} \mathrm{C}$ for 30 min , after which time the solution became a light orange colour. Solvent was removed under reduced pressure to give an off-white residue. IR (hexane): $v(C O) 2108 \mathrm{w}, 2085 \mathrm{~m}, 2014 \mathrm{vs}, 2000 \mathrm{~m}$ and $1965 \mathrm{~s} \mathrm{~cm}^{-1}$. NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right):{ }^{1} \mathrm{H}, \delta-14.9\left[\mathrm{~d}, J\left({ }^{31} \mathrm{P}^{1} \mathrm{H}\right) 4.5 \mathrm{~Hz}, \mathrm{ReH}\right] ;{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$, 45.0 (s) (Found: C, 30.8; H, 1.7. $\mathrm{C}_{20} \mathrm{H}_{11} \mathrm{O}_{8} \mathrm{PRe}_{2}$ requires C 30.7 ; $\mathrm{H}, 1.4 \%$). Starting from $\left[\operatorname{Re}_{2}(\mathrm{CO})_{10}\right]$ and carrying out the appropriate sequential reactions, but without isolation/ purification of the intermediate products gave $\left[\mathrm{Re}_{2}\left(\mu-\mathrm{PPh}_{2}\right)\right.$ $\left.(\mu-\mathrm{H})(\mathrm{CO})_{8}\right]$ in 45% overall yield.
Method B. The complex $\left[\operatorname{Re}_{2}(\mathrm{CO})_{8}(\mathrm{MeCN})_{2}\right](0.29 \mathrm{~g}, 0.43$ mmol) was suspended in degassed hexane ($75 \mathrm{~cm}^{3}$) and diphenylphosphine ($80 \mu 1,0.086 \mathrm{~g}, 0.46 \mathrm{mmol}$) was added. The mixture was refluxed for 1.25 h under nitrogen, filtered to remove insoluble material and the solvent removed under reduced pressure. An off-white material was obtained. The IR spectrum (hexanes) showed predominantly bands at 2108 w , $2085 \mathrm{~m}, 2015 \mathrm{vs}, 1999 \mathrm{~m}$ and $1965 \mathrm{~s} \mathrm{~cm}^{-1}$ corresponding to the desired product and minor bands attributed to impurities at $2099 \mathrm{vw}, 2043 \mathrm{w}, 1986 \mathrm{~m}, 1915 \mathrm{w}$ and $1900 \mathrm{w} \mathrm{cm}^{-1}$. Proton and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR data for 6 a were as above. The major impurity tentatively assigned as $\left[(\mathrm{OC})_{4} \operatorname{Re}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{H}) \operatorname{Re}\left(\mathrm{PPh}_{2} \mathrm{H}\right)\right.$ $\left.(\mathrm{CO})_{3}\right]$ showed ${ }^{1} \mathrm{H}$ NMR signals at $\delta-13.4\left[J{ }^{31} \mathrm{P}^{1} \mathrm{H}\right) 7$ and 13, ReH] and 7.7 [$J\left({ }^{31} \mathrm{P}^{1} \mathrm{H}\right) 481 \mathrm{~Hz}, \mathrm{PPh}_{2} H$]. The $\mu-\mathrm{PPr}_{2}$ analogue 6 b was prepared from 5 b via method A. NMR: ${ }^{1} \mathrm{H}$ $-15.14\left[\mathrm{~d}, J\left({ }^{31} \mathrm{P}^{1} \mathrm{H}\right) 7.0 \mathrm{~Hz}, \mathrm{ReH}\right] ;{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 14.0$.
$\left[\mathrm{PtRe}_{2}\left(\mu-\mathrm{PPr}_{2}\right)(\mu-\mathrm{H})(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)\right]$ 7b. In the preparative reaction \{from which product crystals of $\left[\mathrm{PtRe}_{2}\left(\mu-\mathrm{PPr}_{2}\right)(\mu-\mathrm{H})\right.$ $\left.(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)\right]$ were isolated $\}\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right](0.24 \mathrm{~g}, 0.32$ $\mathrm{mmol})$ was added to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $\left[\mathrm{Re}_{2}(\mathrm{CO})_{9}\left(\mathrm{PPr}_{2} \mathrm{H}\right)\right]$ ($0.23 \mathrm{~g}, 0.31 \mathrm{mmol}$). The solution immediately changed from colourless to pale orange. After stirring for 3 h at room temperature, the volume of solvent was reduced and methanol was added dropwise until the solution was just cloudy. On allowing the solution to stand undisturbed for several weeks at $-20^{\circ} \mathrm{C}$, large orange crystals had formed which were suitable for an X-ray structure determination (Fig. 2). IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $v(\mathrm{CO}) 2081 \mathrm{~m}, 2040 \mathrm{~m}, 1988 \mathrm{~s}, 1960 \mathrm{~m}$ and $1919 \mathrm{~m} \mathrm{~cm}^{-1}$. The complex 7a was similarly prepared. IR (hexane): v(CO) 2084m, $2047 \mathrm{~m}, 2015 \mathrm{w}, 1994 \mathrm{vs}, 1970 \mathrm{~m}$ and $1933 \mathrm{~m} \mathrm{~cm}^{-1}$ (Found: C, $36.70 ; \mathrm{H}, 1.85 . \mathrm{C}_{38} \mathrm{H}_{26} \mathrm{O}_{8} \mathrm{P}_{2} \mathrm{PtRe}_{2}$ requires $\mathrm{C}, 36.80 ; \mathrm{H}$ 2.10%).

Reaction of $\left[\mathrm{Re}_{2}(\mathrm{CO})_{9}\left(\mathrm{PR}_{2} \mathrm{H}\right)\right] 5$ with $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right.$ $\left.\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$. In a typical experiment $\left[\mathrm{Re}_{2}(\mathrm{CO})_{9}\left(\mathrm{PPh}_{2} \mathrm{H}\right)\right]$ ($0.077 \mathrm{~g}, 0.096 \mathrm{mmol}$) was dissolved in $\mathrm{CD}_{2} \mathrm{Cl}_{2}\left(0.5 \mathrm{~cm}^{3}\right)$ and $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right](0.050 \mathrm{~g}, 0.095 \mathrm{mmol})$ was added (with stirring) as a solid. The solution is initially a pale yelloworange colour but became deep red after $1-2 \mathrm{~h}$ with concurrent formation of crystalline $\left[\mathrm{Pt}_{3}(\mathrm{CO})_{3}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}_{3}\right.$]. The other major product, $\left[\mathrm{Re}_{2}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{H})(\mathrm{CO})_{8}\right] 6 \mathrm{a}$, could be induced to crystallize from solution by addition of hexane. NMR (${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$) spectra recorded in the first 2 h exhibited peaks attributable to the unstable trimeric species $\left[\mathrm{PtRe}_{2}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\right.$ $\left.\mathrm{H})(\mu-\mathrm{CO})(\mathrm{CO})_{\mathbf{8}}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$ 8a, which diminished after a few hours and were totally absent after 24 h . Spectral data: (i) $\left[\mathrm{Pt}_{3}(\mathrm{CO})_{3}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}_{3}\right]$, IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 1763 \mathrm{~s} \mathrm{~cm}^{-1} ;{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left.\delta 70.7\left[^{1} J^{195} \mathrm{Pt}^{31} \mathrm{P}\right) 4382,{ }^{2} J\left({ }^{195} \mathrm{Pt}^{31} \mathrm{P}\right) 411,{ }^{3} J^{31} \mathrm{P}^{31} \mathrm{P}\right)$ $56 \mathrm{~Hz}]\left[\mathrm{lit}. .{ }^{64} \mathrm{v}(\mathrm{CO}) 1770 \mathrm{~s} \mathrm{~cm}^{-1}: \delta_{\mathrm{p}} 69.8 \mathrm{~J} 4412,430\right.$ and 58 Hz]; (ii) $\left[\mathrm{PtRe}_{2}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{CO})(\mathrm{CO})_{8}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right] \mathrm{8a}, \mathrm{IR}, \mathrm{v}(\mathrm{CO})$

Table 7 Fractional atomic coordinates for complex 7b

Atom	X / a	Y / b	Z/c	Atom	X/a	$\boldsymbol{Y} / \mathrm{b}$	Z/c
Pt	0.043 03(5)	0.237 76(4)	$0.38788(2)$	C(114)	-0.222 1(14)	0.0820 (10)	$0.5095(7)$
$\mathrm{Re}(1)$	0.035 19(6)	0.20297 (4)	$0.28058(3)$	C(115)	-0.133 9(14)	0.051 4(11)	0.512 0(7)
$\mathrm{Re}(2)$	0.119 63(6)	0.347 24(4)	0.328 20(3)	C(116)	-0.059 9(12)	0.092 5(10)	0.505 5(7)
$\mathrm{O}(11)$	0.096 5(18)	0.284 2(14)	0.182 2(10)	C(121)	0.126 3(13)	0.174 3(9)	0.502 2(6)
$\mathrm{O}(12)$	-0.037 1(12)	0.076 8(10)	0.214 4(7)	C(122)	0.136 3(13)	0.164 2(10)	0.555 8(7)
$\mathrm{O}(13)$	0.225 3(14)	0.1347 (11)	0.293 2(7)	C(123)	0.205 4(15)	0.1293 (12)	0.579 7(8)
$\mathrm{O}(14)$	-0.147 7(15)	0.284 9(12)	0.2759 (8)	C(124)	0.276 3(16)	0.1077 (12)	0.543 3(9)
O(21)	0.1889 9(15)	0.413 1(12)	0.225 2(9)	C(125)	0.270 2(15)	0.116 4(11)	0.4940 (8)
$\mathrm{O}(22)$	0.189 3(12)	0.4847 (9)	0.3808 (7)	C(126)	0.197 4(13)	0.149 8(9)	0.469 7(7)
$\mathrm{O}(23)$	-0.066 2(20)	0.418 9(15)	0.322 4(10)	C(131)	0.013 6(10)	0.298 2(8)	$0.5153(6)$
$\mathrm{O}(24)$	0.302 1(14)	0.265 7(11)	0.3498 (8)	C(132)	0.043 8(14)	0.367 1(11)	0.5001 (8)
C(11)	0.070 5(20)	0.255 6(18)	0.2218 (13)	C(133)	0.042 3(14)	$0.4275(11)$	0.536 4(8)
C(12)	-0.005 6(17)	0.125 5(13)	0.237 3(9)	C(134)	-0.001 6(17)	0.417 6(12)	$0.5837(9)$
C(13)	0.152 1(15)	0.158 0(11)	0.288 0(7)	C(135)	-0.038 1(14)	$0.3497(12)$	0.598 2(8)
C(14)	-0.080 7(19)	0.254 0(15)	0.278 2(10)	C(136)	-0.027 7(14)	$0.2912(11)$	0.564 5(8)
C(21)	0.159 8(19)	0.388 3(15)	0.265 3(11)	P(2)	-0.013 7(4)	0.134 4(3)	0.355 7(2)
C(22)	0.164 6(14)	0.4313 (11)	0.362 2(8)	C(211)	-0.133 8(15)	0.115 4(13)	$0.3661(9)$
C(23)	0.0050 (19)	0.3928 8(14)	0.3221 (9)	C(212)	-0.183 2(40)	0.0883 (37)	0.329 4(20)
C(24)	0.233 2(19)	0.2929 (14)	0.340 2(9)	C(213)	-0.285 1(23)	0.801 (19)	0.344 7(12)
$\mathrm{P}(1)$	0.028 3(3)	0.219 6(2)	0.473 7(2)	C(221)	0.043 2(16)	0.047 7(12)	0.370 8(9)
C(111)	-0.066 9(11)	0.164 4(9)	$0.4905(6)$	C(222)	0.033 5(21)	$-0.0077(15)$	0.3300 (11)
C(112)	-0.1513(13)	0.196 4(11)	0.4859 (7)	C(223)	$0.0761(27)$	-0.078 1(19)	0.342 O(13)
C(113)	-0.2287(16)	0.154 3(11)	0.4957 (8)				

Table 8 Fractional atomic coordinates for complex 10

Atom	X / a	Y / b	Z/c	Atom	X/a	Y/b	Z/c
$\mathrm{Pt}(1)$	0.298 64(7)	$0.25319(6)$	0.121 47(6)	C(212)	0.027 3(23)	0.3820 (19)	0.057 2(16)
$\mathrm{Pt}(2)$	0.504 49(7)	0.231 33(6)	0.133 01(5)	C(213)	-0.013 3(31)	0.439 2(26)	$0.1013(22)$
$\mathrm{Re}(1)$	$0.39317(8)$	0.189 31(7)	$0.23155(6)$	C(214)	0.038 8(23)	0.5047 (18)	0.105 8(16)
$\mathrm{Re}(2)$	$0.38517(8)$	0.138 69(6)	0.077 66(6)	C(215)	0.122 5(22)	0.4901 (17)	0.144 8(15)
$\mathrm{P}(1)$	0.312 6(5)	0.298 6(4)	0.225 5(4)	C(216)	0.172 9(20)	0.433 7(16)	0.1047 (14)
$\mathbf{P}(2)$	0.186 4(6)	0.300 9(4)	0.056 6(4)	C(221)	0.228 4(26)	0.329 3(21)	0.029 8(18)
$\mathrm{P}(3)$	0.645 4(5)	$0.2651(4)$	0.1091 (4)	C(222)	0.1550 (26)	0.3610 (20)	0.077 6(19)
$\mathrm{O}(11)$	0.558 3(14)	0.277 0(12)	0.277 5(10)	C(223)	0.1941 (25)	0.363 5(20)	0.147 O(18)
$\mathrm{O}(12)$	0.504 4(16)	0.057 1(13)	$0.2367(11)$	C(224)	0.273 6(34)	0.4081 (28)	0.1420 (25)
O(13)	0.422 7(18)	0.206 2(14)	$0.3837(13)$	C(225)	0.347 5(29)	0.374 3(23)	0.096 2(21)
$\mathrm{O}(14)$	0.2310 (19)	0.098 2(16)	0.249 3(13)	C(226)	$0.3067(25)$	0.368 3(19)	0.023 5(18)
O(21)	0.515 3(17)	0.022 2(14)	0.082 8(12)	C(231)	0.104 1(26)	0.238 7(20)	0.034 6(18)
$\mathrm{O}(22)$	$0.3510(16)$	$0.1114(13)$	-0.074 1(12)	C(232)	0.129 5(23)	0.1811 (18)	0.014 3(17)
O(23)	$0.4863(17)$	$0.2365(13)$	-0.022 2(12)	C(233)	0.054 7(40)	0.126 9(31)	0.034 9(28)
$\mathrm{O}(24)$	0.238 8(16)	0.037 9(13)	0.109 0(11)	C(234)	0.028 4(28)	0.098 2(22)	$0.0317(20)$
C(11)	0.511 4(16)	0.247 8(12)	0.237 2(11)	C(235)	$-0.0046(36)$	0.150 8(29)	0.0855 (26)
C(12)	0.4670 (19)	0.109 3(15)	0.227 8(14)	C(236)	0.073 9(30)	0.2067 (24)	0.098 4(21)
C(13)	0.410 5(20)	0.197 4(16)	0.327 1(14)	C(311)	$0.7119(19)$	0.189 6(15)	0.087 5(14)
C(14)	$0.2861(20)$	0.137 9(16)	$0.2369(15)$	C(312)	0.681 4(23)	0.155 6(18)	0.021 6(17)
C(21)	0.468 6(19)	0.066 9(15)	0.0850 (13)	C(313)	0.753 4(27)	0.1003 (22)	0.0037 (26)
C(22)	0.365 4(18)	0.118 1(14)	-0.015 1(13)	C(314)	0.747 9(34)	0.0423 (28)	0.059 0(23)
C(23)	0.474 1(20)	0.219 3(16)	0.0378 (14)	C(315)	0.774 0(31)	0.071 4(26)	0.131 6(22)
C(24)	$0.2917(15)$	0.075 7(20)	0.100 6(17)	C(316)	$0.7084(27)$	$0.1377(21)$	0.148 3(19)
C(111)	$0.3812(20)$	0.377 4(16)	0.237 1(14)	C(321)	0.709 4(20)	$0.3050(16)$	0.182 9(14)
C(112)	$0.3981(22)$	0.399 2(18)	$0.3039(16)$	C(322)	0.8109 (24)	0.305 2(20)	0.178 5(18)
C(113)	0.460 6(36)	0.469 0(24)	$0.3108(26)$	C(323)	0.855 2(18)	0.3341 (23)	0.2500 (20)
C(114)	0.479 9(29)	0.4921 (23)	0.259 4(22)	C(324)	0.817 6(26)	0.409 1(21)	0.259 8(18)
C(115)	0.465 6(25)	0.466 4(20)	0.187 4(18)	C(325)	$0.7103(27)$	0.4090 (21)	0.263 8(20)
C(116)	0.409 9(22)	$0.4065(17)$	0.182 2(16)	C(326)	$0.6762(23)$	0.380 8(18)	0.192 3(17)
C(121)	$0.2160(21)$	0.320 4(16)	0.2727 (15)	C(331)	0.647 3(20)	0.319 O(16)	0.034 1(14)
C(122)	$0.1667(32)$	$0.2587(25)$	0.290 4(26)	C(332)	0.5860 (21)	0.379 8(17)	$0.0305(15)$
C(123)	$0.0702(35)$	0.277 2(17)	0.324 3(13)	C(333)	0.580 2(25)	0.4110 (20)	0.044 5(18)
C(124)	0.062 6(25)	$0.3387(21)$	0.343 4(18)	C(334)	0.672 9(27)	0.436 4(22)	0.059 0(19)
$\mathrm{C}(125)$	0.114 5(17)	0.398 6(22)	0.327 7(20)	C(335)	0.734 4(24)	0.372 0(19)	0.060 8(18)
C(126)	$0.1965(11)$	0.389 3(18)	0.287 3(15)	C(336)	0.7460 (24)	0.341 2(20)	$0.0097(17)$
C(211)	0.127 9(23)	0.374 9(18)	0.0987 717)				

peaks not resolvable from those of $5 \mathrm{a}, 6 \mathrm{a}$ and $\left[\mathrm{Pt}_{3}(\mathrm{CO})_{3}-\right.$ $\left.\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}_{3}\right]$. NMR data, see Table 1.
Reaction of $\left[\mathrm{Re}_{2}(\mathrm{CO})_{9}\left(\mathrm{PPr}_{2} \mathrm{H}\right)\right]$ with excess $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}-\right.$ $\left.\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (NMR monitoring) gave resonances assignable to $\mathbf{8 b}$ (Table 1) together with additional resonances which have been assigned tentatively to $\left[\mathrm{Pt}_{2} \mathrm{Re}_{2}\left(\mu-\mathrm{PPr}_{2}\right)(\mu-\right.$
$\left.\mathrm{H})(\mu-\mathrm{CO})_{3}(\mathrm{CO})_{6}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}_{2}\right]$ 9. NMR: ${ }^{1} \mathbf{H}, \delta-11.0$ [$\left.\left.{ }^{1} J\left({ }^{195} \mathrm{Pt}^{1} \mathrm{H}\right) 759,{ }^{2} J\left({ }^{195} \mathrm{Pt}^{1} \mathrm{H}\right) 44, J^{31} \mathrm{P}^{1} \mathrm{H}\right) 15 \mathrm{~Hz}, \mu-\mathrm{H}\right]$; ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 93\left[J\left({ }^{195} \mathrm{Pt}^{31} \mathrm{P}\right) 52, J\left({ }^{3} \mathrm{P}^{31} \mathrm{P}\right) 6 \mathrm{~Hz}, \mu-\mathrm{P}\right]$ and 73 $\left[{ }^{1} J\left({ }^{195} \mathrm{Pt}^{31} \mathrm{P}\right) 4370,{ }^{2} J\left({ }^{195} \mathrm{Pt}^{31} \mathrm{P}\right) 252,{ }^{2} J\left({ }^{195} \mathrm{Pt}^{31} \mathrm{P}\right) 6 \mathrm{~Hz}\right.$, $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}$].
$\left[\mathrm{Pt}_{2} \mathrm{Re}_{2}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{H})(\mu-\mathrm{CO})_{2}(\mathrm{CO})_{6}\left\{\mathrm{P}_{6}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}_{2}\right]$ 10. To

Table 9 Fractional atomic coordinates for complex 12

Atom	X/a	Y / b	Z/c	Atom	X/a	Y/b	Z/c
$\mathrm{Pt}(1)$	0.149 33(5)	0.250 21(4)	$0.11738(4)$	C(116)	-0.095 6(21)	0.1349 (14)	$0.1761(14)$
$\mathrm{Pt}(2)$	$0.29181(6)$	0.240 06(4)	0.309 96(6)	C(121)	-0.136 3(16)	$0.3419(11)$	$0.0654(11)$
$\operatorname{Re}(1)$	0.340 25(6)	0.359 22(4)	0.198 20(4)	C(122)	-0.274 0(16)	0.353 6(11)	0.017 6(11)
$\operatorname{Re}(2)$	0.363 78(6)	$0.16188(4)$	$0.10878(4)$	C(123)	-0.311 1(20)	0.443 3(13)	0.025 3(13)
C(1)	0.3341 (16)	0.4818 (11)	0.197 6(10)	C(124)	-0.280 6(21)	0.468 9(15)	$0.1178(14)$
$\mathrm{O}(1)$	0.3180 (14)	0.556 9(10)	0.1958 (9)	C(125)	-0.151 1(13)	0.459 3(15)	0.169 2(16)
C(2)	$0.5001(17)$	0.368 4(12)	0.277 7(12)	C(126)	-0.109 8(19)	0.366 2(12)	0.160 2(12)
$\mathrm{O}(2)$	$0.5979(16)$	0.384 2(10)	0.328 9(10)	C(131)	-0.095 1(11)	0.238 7(11)	0.074 2(11)
C(3)	$0.3965(16)$	0.359 4(11)	0.098 4(11)	C(132)	-0.062 7(20)	0.153 0(13)	-0.104 7(13)
$\mathrm{O}(3)$	$0.4335(14)$	0.365 7(16)	0.039 2(10)	C(133)	-0.102 7(21)	$0.1517(14)$	-0.206 6(13)
C(4)	$0.3963(17)$	0.173 3(12)	0.072 5(12)	C(134)	-0.043 9(24)	0.223 2(15)	-0.239 5(16)
$\mathrm{O}(4)$	0.410 1(16)	0.175 6(11)	0.004 8(11)	C(135)	-0.076 4(24)	0.310 4(16)	-0.208 0(15)
C(5)	0.395 9(19)	0.041 4(13)	0.179 6(13)	C(136)	-0.038 2(22)	$0.3110(15)$	-0.1079(14)
O(5)	$0.4097(17)$	0.032 3(11)	0.1761 (11)	C(211)	0.149 3(19)	0.294 6(13)	0.464 1(12)
C(6)	$0.5300(20)$	$0.1867(13)$	0.242 2(13)	C(212)	0.027 4(22)	0.2750 (16)	0.395 5(16)
O(6)	0.633 8(17)	0.1987 (11)	0.276 7(11)	C(213)	$-0.0606(30)$	0.345 3(20)	0.406 8(20)
$\mathrm{C}(1 \mu)$	0.254 3(16)	0.372 0(11)	$0.3023(10)$	C(214)	-0.069 1(27)	0.352 8(20)	0.495 0(18)
$\mathrm{O}(1 \mu)$	0.204 3(12)	0.4208 (8)	0.3309 (8)	C(215)	0.049 8(28)	0.3650 (19)	0.5613 (20)
$\mathrm{C}(2 \mu)$	0.1550 (14)	0.379 3(10)	$0.1095(10)$	C(216)	$0.1342(23)$	0.285 6(15)	0.555 3(15)
$\mathrm{O}(2 \mu)$	0.103 2(12)	0.4410 (8)	0.070 (8)	C(221)	0.415 8(17)	0.268 2(11)	0.527 3(12)
C(3μ)	0.175 5(17)	0.119 6(12)	0.1110 (11)	C(222)	0.526 4(20)	0.224 9(14)	0.520 4(14)
$\mathrm{O}(3 \mu)$	0.125 5(15)	0.057 6(10)	0.078 4(10)	C(223)	0.644 3(25)	0.261 1(17)	0.580 6(18)
$\mathrm{C}(4 \mu)$	$0.3202(21)$	0.117 0(14)	0.293 9(14)	C(224)	0.6581 (23)	0.353 4(15)	0.576 6(16)
$\mathrm{O}(4 \mu)$	0.315 8(19)	0.044 7(13)	0.327 1(13)	C(225)	$0.5515(23)$	0.401 4(16)	$0.5851(16)$
$\mathrm{P}(1)$	0.058 1(4)	0.2431 (3)	0.046 6(3)	C(226)	0.426 4(20)	0.369 9(13)	0.519 5(14)
P(2)	0.275 6(4)	0.2268 (3)	0.4485 (3)	C(231)	0.270 2(12)	0.112 5(12)	0.4838 8(12)
C(111)	-0.128 2(16)	0.142 6(11)	0.077 7(11)	C(232)	0.148 8(20)	0.067 3(14)	0.438 5(14)
C(112)	-0.261 7(14)	$0.1276(13)$	0.0318 8(13)	C(233)	0.1618 8(27)	-0.028 6(17)	0.456 1(17)
C(113)	$-0.3004(21)$	0.036 3(14)	0.0517 (14)	C(234)	0.1978 8(24)	-0.048 6(16)	0.555 5(16)
C(114)	-0.264 9(23)	$0.0213(16)$	0.152 4(15)	C(235)	0.3111 (23)	-0.000 3(15)	0.6018 (15)
C(115)	-0.139 6(21)	0.039 5(14)	0.195 4(14)	C(236)	$0.3012(20)$	0.097 2(13)	0.5823 (13)

a solution of $6 \mathrm{a}(0.14 \mathrm{~g})$ in freshly distilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ was added $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$ ($0.275 \mathrm{~g} ; 2.8$ molar equivalents). The solution was allowed to stand for 1 week. Addition of hexanes gave an orange precipitate which on recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane gave 10 as orange-red plates $(0.16 \mathrm{~g})$ suitable for X-ray crystallography. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $v(\mathrm{CO}) 2033 \mathrm{~s}$, 1992s, $1956 \mathrm{~m}, 1925 \mathrm{w}(\mathrm{br}), 1837 \mathrm{w}$ and $1785 \mathrm{w} \mathrm{cm}^{-1}$.

NMR monitoring of the reaction of 6a with 1.4 molar equivalents of $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$ indicates initial formation of $\left[\mathrm{PtRe}_{2}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{H})(\mathrm{CO})_{8}\left\{\mathrm{P}_{6}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$ 7c (not isolated); NMR data, see Table 1.
$\left[\mathrm{Pt}_{2} \mathrm{Re}_{2}(\mu-\mathrm{CO})_{4}(\mathrm{CO})_{6}\left\{\mathrm{P}^{2}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}_{2}\right]$ 12. To a solution of [$\left.\mathrm{Re}_{2}(\mathrm{CO})_{10}\right](0.22 \mathrm{~g})$ in dichloromethane $\left(15 \mathrm{~cm}^{3}\right)$ was added 2 equivalents of $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right](0.36 \mathrm{~g})$. The solution was allowed to stand for 2 h . The volume of the solution was reduced (in vacuo) to ca. $3 \mathrm{~cm}^{3}$ and hexane added. Complex 12 crystallized as orange prisms ($0.41 \mathrm{~g}, 76 \%$ yield). IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $v(\mathrm{CO}) 2056 \mathrm{~s}, 2011 \mathrm{vs}, 1979 \mathrm{~s}, 1956 \mathrm{~m}, 1853 \mathrm{~m}, 1840 \mathrm{~m}$ and 1802 m cm^{-1} (Found: C, 34.30; $\mathrm{H}, 4.35 ; \mathrm{C}_{46} \mathrm{H}_{66} \mathrm{O}_{10} \mathrm{P}_{2} \mathrm{Pt}_{2} \mathrm{Re}_{2}$ requires C, $34.45 ; \mathrm{H}, 4.15 \%$).
X-Ray Structure Determinations of 7b, 10 and 12.-Crystals of 7 b were pale yellow, those of 10 orange-red plates and those of 12 orange blocks and rhombs. All work was performed on an Enraf-Nonius CAD4 diffractometer by the use of graphitemonochromated Mo-K α radiation. The resulting crystal data and the conditions used for the intensity measurements are summarized in Table 3. Lorentz, polarization corrections for crystal decay ($\mathbf{1 0}$ and 12) and, at later stages of the refinements, absorption corrections were applied to all reflections collected. All three structures were solved using standard methods [Patterson (Pt and Re)] and refined by full-matrix ($7 \mathbf{b}$) or blocked (10) least-squares refinements (on ΔF minimizing $\Sigma w \Delta F^{2}$) to the indicated residuals, using Enraf-Nonius SDP ${ }^{65}$ and SHELX ${ }^{66}$ programs on PDP 11/23 and Gould 9705 computers respectively. For $\mathbf{1 0} \mathrm{H}$ atoms were introduced in
calculated positions. Scattering factors were taken from ref. 67. Tables 4-6 contain selected bond lengths and bond angles for all three compounds. Atomic coordinates are listed in Tables 7-9.
Additional material available from the Cambridge Crystallographic Data Centre comprises H -atom coordinates, thermal parameters and remaining bond distances and angles.

Acknowledgements

We thank the Natural Sciences and Engineering Research Council of Canada for financial support of this work.

References

1 D. A. Roberts and G. L. Geoffroy, in Comprehensive Organometallic Chemistry, eds. G. Wilkinson, F. G. A. Stone and E. W. Abel, Pergamon, Oxford, 1982, ch. 40.
2 H. J, Langenbach and H. Vahrenkamp, Chem. Ber., 1979, 112, 3773.
3 E. Sappa, A. Tiripicchio and P. Braunstein, Coord. Chem. Rev., 1985, 65, 219.
4 L. M. Venanzi, Coord. Chem. Rev., 1982, 43, 251.
5 A. P. Humphries and H. D. Kaesz, Prog. Inorg. Chem., 1979, $25,145$.
6 R. Shojaie and J. D. Atwood, Inorg. Chem., 1987, 26, 2199.
7 R. D. Adams and I. T. Horvarth, Prog. Inorg. Chem., 1985, 33, 127.
8 F. G. A. Stone, Angew. Chem., Int. Ed. Engl., 1984, 23, 89.
9 S. Rosenberg, S. P. Lockledge and G. L. Geoffroy, Organometallics, 1986, 5, 2517.
10 S. Rosenberg, W. S. Mahoney, J. M. Hayes and G. L. Geoffroy, Organometallics, 1986, 5, 1065.
11 S. J. Loeb, H. A. Taylor, L. Gelmini and W. D. Stephan, Inorg. Chem., 1986, 25, 1977.
12 L. Gelmini and W. D. Stephan, Inorg. Chem., 1986, 25, 1222.
13 T. S. Targos, B. P. Rosen, R. R. Whittle and G. L. Geoffroy, Inorg. Chem., 1985, 24, 1375.
14 R. T. Baker, T. H. Tulip and S. S. Wreford, Inorg. Chem., 1985, 24, 1379.

15 W. C. Mercer, G. L. Geoffroy and A. L. Rheingold, Organometallics, 1985, 4, 1418.

16 W. C. Mercer, R. R. Whittle, E. W. Burkhardt and G. L. Geoffroy, Organometallics, 1985, 4, 68.
17 J. Powell, C. Couture, M. R. Gregg and J. F. Sawyer, Inorg. Chem., 1989, 28, 3437.
18 S. Rosenberg, G. L. Geoffroy and A. L. Rheingold, Organometallics, 1985, 4, 1184.
19 S. Rosenberg, R. R. Whittle and G. L. Geoffroy, J. Am. Chem. Soc., 1984, 106, 5934.
20 G. L. Geoffroy, S. Rosenberg, P. M. Shulman and R. R. Whittle, J. Am. Chem. Soc., 1984, 106, 1519.

21 M. J. Breen, P. M. Shulman, G. L. Geoffroy, A. L. Reingold and W. C. Fultz, Organometallics, 1984, 3, 782.

22 E. W. Burkhardt, W. C. Mercer and G. L. Geoffroy, Inorg. Chem., 1984, 23, 1779.
23 E. D. Morrison, A. D. Harley, M. A. Morielli, G. L. Geoffroy, A. L. Rheingold and W. C. Fultz, Organometallics, 1984, 3, 1407.
24 J. Powell, M. R. Gregg and J. F. Sawyer, J. Chem. Soc., Chem. Commun., 1984, 1149.
25 J. Powell, M. R. Gregg and J. F. Sawyer, Inorg. Chem., 1989, 28, 4451.

26 J. Powell, M. R. Gregg and J. F. Sawyer, J. Chem. Soc., Chem. Commun., 1987, 1029.
27 J. Powell, J. F. Sawyer and S. J. Smith, J. Chem. Soc., Chem. Commun., 1985, 1312.
28 J. Powell, J. F. Sawyer and M. V. R. Stainer, J. Chem. Soc., Chem. Commun., 1985, 1314.
29 J. Powell, J. F. Sawyer and M. V. R. Stainer, Inorg. Chem., 1989, 28, 4461.
30 J. Powell, E. Fuchs, M. R. Gregg, J. Phillips and M. V. R. Stainer, Organometallics, 1990, 9, 387.
31 J. Powell, M. R. Gregg and J. F. Sawyer, Inorg. Chem., 1988, 27, 4526.

32 M. Bernard, A. Dedieu and S. Nakamura, Nouv. J. Chim., 1984, 8, 149; E. D. Jemmis, A. R. Pinhas and R. Hoffmann, J. Am. Chem. Soc., 1980, 102, 2576; M. Bernard, J. Am. Chem. Soc., 1978, 100, 7740; M. Bernard, Inorg. Chem., 1979, 18, 2782; R. Mason and D. M. P. Mingos, J. Organomet. Chem., 1973, 50, 53; R. H. Summerville and R. Hoffman, J. Am. Chem. Soc., 1976, 98, 7240; J. W. Lauher, M. Elain, R. H. Summerville and R. Hoffmann, J. Am. Chem. Soc., 1976, 98, 3219; M. R. Churchill, B. G. DeBoer and F. T. Rotella, Inorg. Chem., 1976, 15, 1843.

33 J. Powell, J. C. Brewer, G. Gulia and J. F. Sawyer, Inorg. Chem., 1989, 28, 4470.
34 M. C. Favas and D. L. Kepert, Prog. Inorg. Chem., 1980, 27, 325.
35 J. Powell, J. Chem. Soc., Chem. Commun., 1989, 200.
36 H. J. Haupt, P. Balsaa and U. Florke, Inorg. Chem., 1988, 27, 280.
37 G. Ciani, M. Moret, A. Sironi, T. Beringhelli, G. D'Alfonso and R. D. Pergola, J. Chem. Soc., Chem. Commun., 1990, 1668.

38 U. Koelle, J. Organomet. Chem., 1978, 155, 53.
39 B. F. G. Johnson, J. Lewis and D. A. Pippard, J. Chem. Soc., Dalton Trans., 1981, 407.
40 W. Tam, G.-Y. Lin, W.-K. Wong, W. A. Kiel, V. K. Wong and A. J. Gladysz, J. Am. Chem. Soc., 1982, 104, 141.

41 D. R. Gard and T. L. Brown, J. Am. Chem. Soc., 1982, 104, 6340.
42 D. J. Cox and R. Davis, J. Organomet. Chem., 1980, 186, 339.
43 R. Giordano, E. Sappa, A. Tiripicchio, M. Tiripicchio Camellini, M. J. Mays and M. P. Brown, Polyhedron, 1989, 8, 1855.

44 D. S. Moore and S. D. Robinson, Chem. Soc. Rev., 1983, 12, 415.

45 A. J. Carty, Adv. Chem. Ser., 1982, 196, 163.
46 S. R. Drake, B. F. Johnson and J. Lewis, J. Chem. Soc., Chem. Commun., 1988, 1033.
47 M. R. Bradford, N. G. Connelly, N. C. Harrison and J. C. Jeffery, Organometallics, 1989, 8, 1829.
48 T. Beringhelli, A. Ceriotti, G. D'Alfonso and R. D. Pergolla, Organometallics, 1990, 9, 1053.
49 C. P. Casey, E. W. Rutter, jun. and K. J. Haller, J. Am. Chem. Soc., 1987, 109, 6886.
50 M. R. Churchill, K. N. Amoh and H. J. Wasserman, Inorg. Chem., 1981, 20, 1609.
51 R. Bau, B. Fontal, H. D. Kaesz and M. R. Churchill, J. Am. Chem. Soc., 1967, 89, 6374.
52 T. Yoshida, T. Yamagata, T. H. Tulip, J. A. Ibers and S. Otsuka, J. Am. Chem. Soc., 1978, 100, 2063.
53 R. Bender, P. Braunstein, J.-M. Jud and Y. Dusausoy, Inorg. Chem., 1984, 23, 4489.
54 L. J. Farrugia, J. A. K. Howard, P. Mitrprachachon, F. G. A. Stone and P. Woodward, J. Chem. Soc., Dalton Trans., 1981, 1134.
55 L. J. Farrugia, J. A. K. Howard, P. Mitrprachachon, F. G. A. Stone and P. Woodward, J. Chem. Soc., Chem. Commun., 1978, 260.
56 H. B. Davis, F. W. B. Einstein, V. J. Johnston and R. K. Pomeroy, J. Am. Chem. Soc., 1988, 110, 4451.

57 M. R. Churchill, B. G. DeBoer and F. J. Rotella, Inorg. Chem., 1976, 15, 1843.
58 R. G. Teller and R. Bau, Struct. Bonding (Berlin), 1981, 44, 1.
59 T. V. Ashworth, J. A. K. Howard, M. Laguna and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1980, 1593.

60 R. A. Jones, J. G. Lasch, N. C. Norman, A. L. Stuart, T. C. Wright and B. R. Whittlesey, Organometallics, 1984, 3, 114.
61 J. L. Spencer, Inorg. Synth., 1979, 19, 216.
62 D. M. Blake and D. M. Roundhill, Inorg. Synth., 1978, 18, 120.
63 H. Saltzman and J. G. Sharefkin, Org. Synth., 1960, 43, 60.
64 A. Moor, P. S. Pregosin and L. M. Venanzi, Inorg. Chim. Acta, 1981, 48, 153.
65 B. A. Frenz, SDP Structure Determination Package, College Station, TX, 1982.
66 G. M. Sheldrick, SHELX 76 and 86, Programs for crystal structure determination and refinement, University of Cambridge, 1976 and 1986.

67 International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4.

Received 16th December 1991; Paper 1/06310C

[^0]: * Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1992, Issue 1, pp. xx-xxv.

