Co-ordination of Alkali Metals to Sulfur-based Organometallic Ligands: ¹³³Cs and ¹⁹F Nuclear Magnetic Resonance Studies of Cs[Mo(SC₆F₅)₄(η^5 -C₅H₅)], the First Example of Caesium–Fluorine Spin–Spin Coupling

Alan S. F. Boyd, Jack L. Davidson,* Calum H. McIntosh, Pascal C. Leverd, W. Edward Lindsell* and Nigel J. Simpson

Department of Chemistry, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, UK

Reactions of the complexes $[Mol_3(CO)_2(\eta^s-C_sH_s)]$ and $[W(SC_6F_s)_3(CO)(\eta^s-C_sH_s)]$ with $M'(SC_6F_s)$ give $Cs[Mo(SC_6F_s)_4(\eta^s-C_sH_s)]$, $M'[W(SC_6F_s)_4(\eta^s-C_sH_s)]$ (M' = Cs, Rb or K) and solvated derivatives (M = Mo or W) $M'[W(SC_6F_s)_4(\eta^s-C_sH_s)] \cdot n$ th (M' = Li, n = 4; or Na, n = 1); ¹³³Cs and ¹⁹F NMR studies of $Cs[M(SC_6F_s)_4(\eta^s-C_8H_s)]$ reveal co-ordination between the Cs⁺ and the organometallic anion and Cs-F coupling involving four *o*-fluorines of the SC₆F₅ groups, $J(Cs-F) \approx 58$ Hz.

Recently we reported the syntheses and dynamic NMR studies of molybdenum¹ and tungsten² organometallic anions $[M(SC_6F_5)_2L_2(\eta^5-C_5H_5)]^- (M = Mo, L = SC_6F_5$ **1a** or CO; $M = W, L = SC_6F_5$ **1b**). X-Ray diffraction studies of A[Mo- $(SC_6F_5)_4(\eta^5-C_5H_5)]$ [A = TI **2a** or N(PPh_3)₂] revealed that the anion contains a cavity defined by the transition metal, four primary donor sites (sulfur) and four secondary sites (four ofluorines of the C₆F₅ groups) which can encapsulate a Tl⁺ ion. Variable-temperature ¹⁹F NMR spectra of Tl[M(SC₆F₅)₄($\eta^5-C_5H_5$)] (M = Mo **2a** or W **2b**) show solvent-dependent coupling between these four fluorines and ^{203/205}Tl. At higher temperatures deco-ordination of the Tl⁺ leads to loss of coupling, accompanied by the onset of fluxional motion involving the SC₆F₅ groups. We have now synthesised alkalimetal derivatives of 1 and report dynamic ¹³³Cs and ¹⁹F NMR studies which show similar features to those of **2**, in particular spin-spin coupling involving the two nuclei.

Reactions of $[MoI_3(CO)_2(\eta^5-C_5H_5)]$ and $[W(SC_6F_5)_3-(CO)(\eta^5-C_5H_5)]$ with $M'(SC_6F_5)$ (see Scheme 1) in tetrahydrofuran (thf) at room temperature afford red Cs $[Mo-(SC_6F_5)_4(\eta^5-C_5H_5)]$ and yellow $M'[W(SC_6F_5)_4(\eta^5-C_5H_5)]$ (M' = Cs, Rb or K) as microcrystalline products after recrystallisation from diethyl ether or dichloromethane-light petroleum (b.p. 60-80 °C) at -15 °C, in 10-40% isolated yields.† In contrast, derivatives $M'[W(SC_6F_5)_4(\eta^5-C_5H_5)]$.hthf[M' = Li, n = 4 (22%) or Na, n = 1 (63%)] were obtained as solvates which, in the case of M' = Na, could be converted into the thf-free species on repeated recrystallisation.†

The ¹³³Cs and ¹⁹F NMR spectra ‡ of the caesium derivatives $Cs[M(SC_6F_5)_4(\eta^5-C_5H_5)]$ 3 were recorded in three solvents, $CD_3C_6D_5$, CD_2Cl_2 and $(CD_3)_2CO$, over the temperature range *ca.* +40 to -80 °C, and these illustrate three phenomena: (*a*) reversible co-ordination of $[M(SC_6F_5)_4(\eta^5-C_5H_5)]^-$ to Cs^+ ,

‡ Chemical shifts are to high frequency of CCl_3F (¹⁹F, δ 0) and 0.1 mol dm⁻³ CsCl(aq) (¹³³Cs, δ 0).

Scheme 1 (i) 3 Tl(SC₆F₅), CH₂Cl₂; (*ii*) excess of M'(SC₆F₅), thf; (*iii*) 5M'(SC₆F₅), thf

(b) fluxional motion involving the SC₆F₅ ligands, and (c) well resolved spin-spin coupling between ¹³³Cs and ¹⁹F. Thus, at -20 °C and above in CD₃C₆D₅ the ¹³³Cs NMR spectrum of Cs[Mo(SC₆F₅)₄(η⁵-C₅H₅)] **3a** consists of a nine-line multiplet, δ - 79.7, indicating that Cs⁺ is co-ordinated by **1a** and coupled to eight equivalent *o*-fluorines, J(Cs-F) = 29.7 Hz (see Fig. 1). As the temperature is reduced the multiplet broadens, ultimately to give a quintet at -60 °C due to coupling to four equivalent *o*-fluorines, J(Cs-F) = 57.8 Hz. These data indicate that the SC₆F₅ groups adopt a fixed orientation at low temperature, as found in the solid state for Tl[Mo(SC₆F₅)₄(η⁵-C₅H₅)], but that rotation/inversion of C₆F₅-S units occurs at higher temperatures, interchanging the two inequivalent

[†] Typical experimental procedures, using Schlenk-type techniques: (a) [MoI₃(CO)₂(η^5 -C₅H_s)] (0.25 g, 0.42 mmol) and Cs(SC₆F₅) (0.70 g, 2.1 mmol) in thf (40 cm³), 6 h, room temperature (r.t.), produced **3a**, isolated after evaporation of solvent, extraction with diethyl ether, and recrystallisation from diethyl ether–light petroleum as red-orange crystals (10%). (b) [W(SC₆F₅)₃(CO)(η^5 -C₅H₅)] (0.122 g, 0.14 mmol) and Cs(SC₆F₅) (0.093 g, 0.28 mmol) in thf (30 cm³), 2 h, r.t., produced M'[W(SC₆F₅)₄(η^5 -C₅H₅)] (M' = Cs), isolated as above as yellow microcrystals (13%). Similar reactions yielded derivatives with M' = Rb (39), K (29), Na-thf (63) or Li-4 thf (22%). All new compounds had satisfactory elemental analyses and ¹H and ¹⁹F NMR spectra.

Fig. 1 The NMR spectra of Cs[Mo(SC₆F₅)₄(η^{5} -C₅H₅)] **3a**: (a) ¹³³Cs (-60 °C, CD₃C₆D₅); (b) ¹³³Cs (-20 °C, CD₃C₆D₅), (c) ¹⁹F (-60 °C, CD₂Cl₂), C₆F₅ o-fluorine resonances and (c') vertical expansion of (c)

fluorines and also the *m*-fluorines on each ring, without the loss of Cs⁺. Corresponding changes in the ¹⁹F NMR spectrum are observed over the range 18 to -80 °C. At 40 °C one set of broad *o*-, *m*- and *p*-fluorine resonances is present; coupling to ¹³³Cs⁺ ($I = \frac{7}{2}$, 100% abundant) as well as to other F atoms (principally *m*-fluorines) gives a complex multiplet for the *o*-fluorine resonance, which collapses to the predicted octet when the *m*fluorines are decoupled. At lower temperatures each *ortho* and *meta* resonance broadens and splits into two multiplets consistent with the adoption of a preferred orientation of the C₆F₅ groups with all fluorines on a ring inequivalent. Only one of the *o*-fluorine resonances shows coupling to caesium, as expected, but the coupling is not well resolved. In CD₂Cl₂ this coupling is clearly resolved at low temperatures but there is also evidence for dissociation of Cs⁺ at higher temperatures.

At 30 °C in CD₂Cl₂ the ¹³³Cs NMR spectrum of complex **3a** consists of a singlet, $\delta - 15.1$, consistent with non-interacting Cs⁺ and [Mo(SC₆F₅)₄(η^5 -C₅H₅)]⁻ ions or with these ions undergoing a rapid exchange process. As the temperature is reduced the singlet broadens to give a quintet at -60 °C due to coupling to four equivalent *o*-fluorines, J(Cs-F) = 57.6 Hz, as above indicating co-ordination of the anion to Cs⁺. In the ¹⁹F NMR spectrum at room temperature no coupling to ¹³³Cs is observed and only one set of broad *o*-, *m*- and *p*-fluorine resonances is present. At lower temperatures each *ortho* and *meta* resonance broadens and splits into two multiplets consistent with the adoption of a preferred orientation of the C₆F₅ groups. Moreover, one *o*-fluorine resonance is split into eight equal-intensity multiplets with well resolved coupling to ¹³³Cs, J(Cs-F) = 58.6 Hz (see Fig. 1).

That co-ordination of the caesium by anion 1a and fluxional behaviour of the SC_6F_5 groups are independent processes is

confirmed by the ¹⁹F NMR spectra obtained in $(CD_3)_2CO$. At room temperature one set of *para*, *meta* and *ortho* resonances is observed but coupling to caesium is absent. However, although each of the latter two resonances is split into two inequivalent bands at -80 °C, *i.e.* the SC₆F₅ groups adopt a preferred orientation, coupling to ¹³³Cs is not observed, indicating that rigid co-ordination to Cs⁺ has not occurred even at this temperature. We interpret this in terms of a greater solvation energy for caesium by (CD₃)₂CO relative to CD₂Cl₂, an effect also observed with thallium(1).^{1,2}

Variable-temperature ¹⁹F NMR spectra of derivatives of K⁺ and Rb⁺ show similar features to those of complexes 3, except for the absence of spin-spin coupling between ¹⁹F and the cation in any of the solvent systems; this fact is not surprising in view of the higher nuclear quadrupole moment of these metals. Moreover, coalescence temperatures for *meta* and *ortho* resonances, and corresponding free energies of activation (*e.g.* in CD₂Cl₂: M = W, M' = Cs, Rb or K, ΔG_c^{\pm} 50.9-52.3 \pm 0.6 kJ mol⁻¹) for fluxionality of C₆F₅S groups, are all closely related for these larger alkali-metal derivatives and it may be inferred that complexation of Rb⁺ and K⁺ by anions 1 takes place. On the other hand, lower ΔG_c^{\pm} values are found for the thf-solvated species (*e.g.* in CD₂Cl₂: M = W; M' = Na⁺, $\Delta G_c^{\pm} = 46.6 \pm 0.5$ kJ mol⁻¹; M' = Li⁺, $\Delta G_c^{\pm} = 41.3 \pm 0.8$ kJ mol⁻¹) suggesting that solvation prevents, or at least interferes with, co-ordination of these cations to the organometallic ligand.

Use of transition-metal complexes containing terminal thiolate ligands to co-ordinate other transition metals is well established³ but co-ordination to alkali metals is, to our knowledge, unknown. It is also unexpected in view of the preference of alkali metals to co-ordinate with hard bases such as oxygen. As described earlier the thallium in Tl[Mo- $(SC_6F_5)_4(\eta^5-C_5H_5)$] is co-ordinated primarily via the sulfurs, the interaction with four *o*-fluorines being primarily non-bonding. In contrast, the related $Ru-SC_6F_4(F-2)$ chelate ring in $[Ru{SC_6F_4(F-2)}(SC_6F_5)_2(PMe_2Ph)_2]$ contains a well defined Ru-F bond (2.489 Å).⁴ It is therefore conceivable that in the alkali-metal derivatives described herein, the alkali-metal ion may prefer co-ordination to the o-fluorine atoms as hard donors rather than the soft sulfur atoms of the C_6F_5S groups. This question is not directly resolved by the NMR data which do not distinguish between the sulfur-co-ordinated structure with secondary weak interactions to fluorine, as in 3', and the alternative, principally fluorine-co-ordinated form of 3'' (see Scheme 1). However, it is noteworthy that fluorinated aromatic macrocycles in spherand ligands with complementary cavities for respective alkali-metal ions do not bind either Cs⁺ or Li⁺, so that co-ordination by aromatic fluorine atoms is also novel. Ion pairing between alkali-metal salts of metal carbonyl anions is well known⁶ but the M-CO-cation interaction appears to be much less directional and significantly weaker than the bonding reported herein.

Acknowledgements

We thank the SERC for financial support.

References

- 1 W. A. W. A. Bakar, J. L. Davidson, W. E. Lindsell, K. J. McCullough and K. W. Muir, J. Chem. Soc., Dalton Trans., 1989, 991.
- 2 W. A. W. A. Bakar, J. L. Davidson, W. E. Lindsell and K. J. McCullough, J. Chem. Soc., Dalton Trans., 1990, 61.
- 3 T. A. Wark and D. W. Stephan, Organometallics, 1989, 8, 2836.
- 4 R. M. Catala, D. Cruz-Garritz, A. Hills, R. L. Richards, P. Sosa and H. Torrens, J. Chem. Soc., Chem. Commun., 1987, 261.
- 5 D. J. Cram, S. B. Brown, T. Taguchi, M. Freigel, E. Maverick and K. N. Trueblood, J. Am. Chem. Soc., 1984, 106, 695.
- 6 M. Y. Darensbourg, Prog. Inorg. Chem., 1985, 33, 221.

Received 24th April 1992; Communication 2/02118H

© Copyright 1992 by the Royal Society of Chemistry