2703

Substitution Reactions of a Heterodimetallic Molybdenum– Manganese Complex*

Michael J. Doyle,^a Timothy J. Duckworth,^a Ljubica Manojlović-Muir,^b Martin J. Mays,^a Paul R. Raithby^a and Frazer J. Robertson^b

^a University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK ^b Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK

> The reactions of $[MoMn(\mu-C_5H_4PPh_2)(CO)_7]$ 1 with phosphines and with isonitriles have been studied. Less bulky phosphines give derivatives of 1 of the type $[MoMn(\mu-C_5H_4PPh_2)(CO)_6L]$, which are monosubstituted at the manganese atom $[L = PPh_2H 2a, PPh_2Me 2b, PPhMe_2 2c \text{ or } P(OMe)_3 2f]$ whereas more bulky phosphines substitute only at the molybdenum atom (L = PPh₃ 3a). Phosphines of intermediate bulk give both types of derivative depending on the reaction conditions (L = PPh₂Et 2e or **3b**, $PPh_2CH=CH_2$ **2d** or **3c**). Disubstituted derivatives, $[MoMn(\mu-C_sH_4PPh_2)(CO)_sL_2]$ $[L = PPh_2Me_2Me_2]$ 4a, PPh₂CH=CH₂ 4b or P(OMe)₃ 4c], obtained by reaction of 1 with excess of the appropriate ligand, have one substituent on the manganese and one on the molybdenum atom. Isonitriles give derivatives $[MoMn(\mu-C_5H_4PPh_2)(CO)_6L]$ (L = CNCH₂Ph **2g** or CNBu^t **2h**) which are monosubstituted at the manganese atom but in a different position to the phosphine derivatives 2a-2f. Thermolysis of the diphenylphosphine derivative 2a gives $[MoMn(\mu-C_{5}H_{4}PPh_{2})(\mu-H)(\mu-PPh_{2})(CO)_{5}]$ 5a and thermolysis of either one of the vinylphosphine derivatives 2d or 3c gives a complex $[MoMn(\mu-C_5H_4PPh_2)(\mu-C_5H_4PPh_2)]$ PPh2CH=CH2)(CO)5] 6 in which the vinylphosphine ligand is bonded through phosphorus to manganese and through the vinyl group to the molybdenum atom. Hydrogenation of 6 gives 3b in a reaction which involves a transfer of the co-ordination of the vinylphosphine phosphorus atom from manganese to molybdenum. Addition reactions of 6 with CO and $P(OMe)_3$ involve a similar transfer to give $[MoMn(\mu-C_5H_4PPh_2)(CO)_6(PPh_2CH=CH_2)]$ **3c** and $[MoMn(\mu-C_5H_4PPh_2)(CO)_6 (PPh_2CH=CH_2){P(OMe)_3}$ 7 respectively. The structures of $[MoMn(\mu-C_5H_4PPh_2)(CO)_6(PPh_2Et)]$ 3b and $[MoMn(\mu-C_5H_4PPh_2)(\mu-H)(\mu-PPh_2)(CO)_5]$ 5a have been determined by X-ray analysis.

Heterodimetallic complexes with metal-metal bonds have been studied intensively in recent years.^{1,2} A driving force for much of the work has been the hope that the presence of two different adjacent metal atoms might lead to novel and perhaps catalytic reactivity of co-ordinated substrates being observed as a result of co-operative effects between the metal centres.³

The polar nature of the bond between two different metal centres is such that inert bridging ligands are often required to prevent fragmentation in the reactions of heterodimetallic complexes, and a ligand which has been widely used for this purpose is the cyclopentadienylphosphine $C_5H_4PPh_2$.⁴ However the majority of studies with this ligand have concentrated on the synthesis of new complexes and there have been fewer reports dealing with the relative reactivities of the metal centres.^{5.6}

We have previously studied the reactivity of the heterodimetallic phosphido-bridged molybdenum-manganese complex $[MoMn(\mu-H)(\mu-PPh_2)(\eta^5-C_5H_5)(CO)_6]$ and have shown that, under photolytic conditions, it reacts preferentially at the manganese atom with two-electron-donor ligands, although the molybdenum atom can also become involved.⁷ A precursor to the above molybdenum-manganese complex is the cyclopentadienylphosphine-bridged $[MoMn(\mu-C_5H_4PPh_2)$ species $(CO)_7$] 1, first reported by Casey et al.,⁸ and we have now studied some substitution reactions of 1 with phosphines and with isonitriles in order to determine whether the change in the nature of the bridging ligands affects the site selectivity. Some of the substituting ligands are capable of further reaction with the metal centres and these reactions have also been investigated.

Results and Discussion

Monosubstitution of $[MoMn(\mu-C_5H_4PPh_2)(CO)_7]$ 1 by Phosphines at the Manganese Atom.-The thermal reaction of 1 with one equivalent of PPh₂H or PPhMe₂ in refluxing toluene at 383 K or reaction with one equivalent of PPh₂H, PPh₂Me, $PPh_2CH=CH_2$, or PPh_2Et in refluxing hexane-toluene (5:1) at 353 K gave the orange complexes [MoMn(μ -C₅H₄PPh₂)- $(CO)_6L$] $(L = PPh_2H 2a, PPh_2Me 2b, PPhMe_2 2c,$ PPh₂CH=CH₂ 2d or PPh₂Et 2e), which have been shown from spectroscopic data to be monosubstituted at the manganese atom. This conclusion is supported by an X-ray structure analysis of 2a which, although of low accuracy (R 0.09), clearly revealed the PPh₂H substituent to be on the manganese atom *trans* to the phosphorus atom of the $C_5H_4PPh_2$ ligand.⁹ In the case of PPh₂H a second orange complex is formed, which has been identified spectroscopically and crystallographically as $[MoMn(\mu-C_5H_4PPh_2)(\mu-H)(\mu-PPh_2)(CO)_5]$ 5a. This second complex is formed in higher yield than 2a when the reaction time is increased.

The ¹H NMR spectra of complexes 2a-2e all show two signals at δ 5.3-5.4 and 4.6-4.7 which are seen either as pseudoquartets with a coupling of *ca.* 2 Hz or as broad singlets, and these may be assigned to the cyclopentadienyl protons (Table 1). Analogous signals are observed for 1 and the presence of only two such signals supports the existence in all of the complexes of a plane of symmetry through the phosphoruscyclopentadienyl and metal-metal bonds. Although there are two possible isomers having such a plane of symmetry (both isomers are present for 2f) that with the substituent *trans* to the C₅H₄PPh₂ phosphorus atom seems the more likely for 2a-2e on steric grounds. The ³¹P-{¹H} NMR spectra of the complexes show two broad singlets at room temperature with the broadening presumably due to the quadrupolar effects of the

^{*} Supplementaty data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1992, Issue 1, pp. xx-xxv.

⁵⁵Mn to which the phosphorus atoms are directly bonded. This broadening precluded the observation of phosphorus-phosphorus coupling at room temperature but on cooling to 225 K the spectrum of **2b** revealed two doublets with ${}^{2}J(PP)$ 10 Hz. The ${}^{13}C$ NMR spectrum of **2a** at 234 K shows two sharp singlet peaks in the carbonyl region at δ 232.2 and 228.5 in a 2:1 ratio,

Fig. 1 Molecular structure of $[MoMn(\mu-C_5H_4PPh_2)(\mu-PPh_2)(\mu-H)-(CO)_5]$ 5a showing the atom numbering scheme

which may be assigned to the molybdenum-bound carbonyl carbon atoms, and a relatively broad singlet due to the manganese-bound carbon atoms, as expected for the proposed structure.

The reaction of 1 with one equivalent of P(OMe)₃ in refluxing hexane at 343 K gave [MoMn(µ-C₅H₄PPh₂)(CO)₆- ${P(OMe)_3}$ 2f. This complex has an infrared spectrum and NMR spectra which are quite different to those of 2a-2e revealing the presence in solution of two isomers in an approximate concentration ratio of 1:1. Recrystallisation of 2f from CH_2Cl_2 -hexane (1:1) gave a 3:1 mixture of the two isomers which are not in rapid equilibrium in solution at room temperature, and this enabled the spectra due to each isomer to be identified. The major isomer after recrystallisation (isomer A) appears to correspond more closely in its spectroscopic properties to those of 2a-2e and is assigned the same structure. The minor isomer (isomer B) shows only two multiplets due to cyclopentadienyl protons in its ¹H NMR spectrum, suggesting that it has the same plane of symmetry as the major isomer. Accordingly it is assigned a structure with the phosphite ligand trans to the metal-metal bond.

The formation of $[MoMn(\mu-C_5H_4PPh_2)(\mu-H)(\mu-PPh_2)-$ (CO)₅] 5a in addition to 2a in the reaction of 1 with PPh₂H has been referred to above. Thermolysis of 2a at 383 K gives 5a in good yield, suggesting that 2a is an intermediate in its formation. The molecular structure of 5a has been determined by X-ray analysis and is shown in Fig. 1. Table 2 lists selected bond lengths and bond angles. The Mo-Mn distance [3.004(1) Å] may be compared with those in $[MoMn(\mu-H)(\mu-PPh_2) (\eta^{5}-C_{5}H_{5})(CO)_{6}$ ⁷ [3.008(1) Å] and [MoMn(μ -C₅H₄PPh₂)- $(\dot{CO})_7$ [3.054(1) Å] and indicates the presence of a direct bond between the metal centres. The Mn-P and Mo-P distances to the bridging PPh₂ group in 5a [2.282(1) and 2.447(1) Å respectively] are similar to the corresponding distances in [MoMn(μ -H)(μ -PPh₂)(η^{5} -C₅H₅)(CO)₆] [2.294(2) and 2.435(1) Å].⁷ If the metal-metal bond in 5a is ignored then the manganese atom is co-ordinated in an approximately
 Table 1
 Infrared and ¹H NMR data for the new complexes

	H ³ C - C PPh ₂					
		H ² /0=0	`н ¹			
Co	mpound	v(CO) ^{<i>a</i>} /cm ⁻¹	¹ Η NMR ^{<i>b.c</i>} (δ)			
2a	$[MoMn(\mu-C_5H_4PPh_2)(CO)_6(PPh_2H)]$	2019w, 1959s, 1942m, 1881m, 1861m	8.2–7.9 (m, 8 H, o-Ph), 7.6–7.4 (m, 12 H, m- and p-Ph), 7.14 [dd, J(PH) 360, J(PH) 3.8, 1 H, PPh ₂ H], 5.36 (pq, J 2, 2 H, C ₅ H ₄ P), 4.69 (pq, J 2, 2			
2b	$[MoMn(\mu-C_5H_4PPh_2)(CO)_6(PPh_2Me)]$	2012w, 1938s, 1880m 1852m ^d	$11, C_{5}, 1_{4}, 1_{7}$ 8.0–7.7 (m, 8 H, o-Ph), 7.7–7.3 (m, 12 H, m- and p-Ph), 5.35 (pq, J 2, 2 H, C.H.P) 4.69 (ng, J 2, 2 H, C.H.P) 2.24 [d, J(PH) 8.4, 3 H, PPh, Me]			
2 c	$[MoMn(\mu-C_{5}H_{4}PPh_{2})(CO)_{6}(PPhMe_{2})]$	2014w, 1939s, 1879m 1847m ^d	$8.1-7.3$ (m, 15 H, Ph), 5.36 (pq, J 2, 2 H, C ₃ H ₄ P), 4.64 (pq, J 2, 2 H, C ₄ H ₄ P), 4.64 (pq, J 2, 2 H, C_4), 4.64 (pq, J 2, Z H, C_4), 4.64 (pq, Z H, Z			
2d	$[MoMn(\mu-C_{5}H_{4}PPh_{2})(CO)_{6}(PPh_{2}CH=CH_{2})]$	2011w, 1949s, 1936s, 1886m, 1858m ^d	8.1–7.6 (m, 8 H, o -Ph), 7.5–7.1 (m, 12 H, m - and p -Ph), 6.76 [ddd, J (PH) 28.7, J (H ¹ H ²) 12.6, J (H ¹ H ³) 18.1, 1 H, $PPh_2CH=CH_2$, H ¹], 5.91 [dd, J(PH) 34.4, 1 H, PPh ₂ CH=CH ₂ , H ²], 5.34 [pq, J 2, 2 H, C ₅ H ₄ P], 5.06 [t, J (PH) 18 1 H, 2 1 H, PPh ₂ CH=CH, H ³] 4.69 [pq, J 2, 2 H, C H, P]			
2e	$[MoMn(\mu-C_5H_4PPh_2)(CO)_6(PPh_2Et)]^d$	2009w, 1946s, 1934s, 1880m,	(1, 3, (1, 1), (1, 1), (1, 1), (1, 1), (1, 2), (1, 2), (1, 2), (1, 3			
2f	$[MoMn(\mu-C_5H_4PPh_2)(CO)_6\{P(OMe)_3\}]$	1853m 2025m, 1999m (sh), 1961s, 1949s, 1899m	PPh ₂ CH ₂ CH ₃ , 0.94 [dt, J(PH) 15.1, 3 H, PPh ₂ , CH ₂ Me] 8.2-7.8 (m, 4 H, o-Ph), 7.6-7.3 (m, 6 H, m- and p-Ph), 5.33 (m, 2 H, C ₃ H ₄ P, isomers A and B), 4.60 (pq, J 2, 2 H, C ₅ H ₄ P, isomer A), 4.29 (pq, J 2, 2 H, C ₃ H ₄ , isomer B), 3.83 [d, J(PH) 10.9, 9 H, P(OMe) ₃ , isomer A1 3.82 [d, J(PH) 11.0, 9 H, P(OMe) ₄ , isomer B]			
2g	[MoMn(µ-C ₅ H ₄ PPh ₂)(CO) ₆ (CNCH ₂ Ph)] ^e	2022s, 1969m, 1960s, 1921w, 1904m, 1879m	8.0–7.8 (m, 4 H, $C_3H_4PPh_2$, o -Ph), 7.5–7.1 (m, 9 H, m - and p -Ph), 6.64 [d, $J(PH)$ 7.1, 2 H, PhCH ₂ NC, o -Ph], 5.30 (m, 1 H, C_3H_4P), 5.17 (m, 1 H, C_5H_4P), 4.39 [dd, $J(PH)$ 15.9, $J(HH)$ 3.5, 1 H, PhCH ₂ NC], 4.30 (m, 1 H, C ₄ H ₄ P), 4.21 (d, 1 H, PhCH ₂ NC), 3.50 (m, 1 H, C ₄ H ₄ P)			
2h	$[MoMn(\mu-C_5H_4PPh_2)(CO)_6(CNBu')]^f$	2021m, 1968m, 1960s, 1919w, 1903w, 1882m	8.1–7.9 (m, 4 H, o-Ph), 7.5–7.2 (m, 6 H, m - and p -Ph), 5.40 (m, 2 H, C ₅ H ₄ P), 4.34 (pq, J 1.5, 1 H, C ₅ H ₄ P), 4.25 (pq, J 1.4, 1 H, C ₅ H ₄ P), 0.95 (s, 9 H, Me ₃ CNC)			
3a	$[MoMn(\mu-C_5H_4PPh_2)(CO)_6(PPh_3)]$	2043m, 1980m, 1968s, 1927s, 1890w, 1846m	8.1–7.8 (m, 4 H, $C_5H_4PPh_2$, o-Ph), 7.7–7.3 (m, 21 H, $C_5H_4PPh_2$, m- and p-Ph, and PPh ₃), 4.58 (pq, J 2, 2 H, C_5H_4P), 4.25 (m, 2 H, C_5H_4P)			
3b	$[MoMn(\mu-C_5H_4PPh_2)(CO)_6(PPh_2Et)]$	2042m, 1982m, 1967s, 1926s, 1893w, 1840m	7.9–7.5 (m, 8 H, o -Ph), 7.4–7.3 (m, 12 H, m - and p -Ph), 4.50 (pq, J 2, 2 H, C ₅ H ₄ P), 4.17 (pq, J 2, 2 H, C ₅ H ₄ P), 2.74 [qnt, J (PH) = J (HH) 7.7, 2 H. PPh ₂ CH ₂ Me], 107 [dt, J (PH) 175, 3 H. PPh ₂ CH ₂ Me]			
3c	[MoMn(µ-C ₅ H ₄ PPh ₂)(CO) ₆ (PPh ₂ CH=CH ₂)]	2042m, 1978w, 1967s, 1925s, 1897m, 1847m	8.0-7.4 (m, 8 H, o-Ph), 7.4-7.3 (m, 12 H, m- and p-Ph), 6.7 (m, 1 H, PPh ₂ CH=CH ₂ , H ¹), 6.04 [dd, $J(PH)$ 40.0, $J(H^{1}H^{2})$ 11.6, 1 H, PPh ₂ CH=CH ₂ , H ²], 5.63 [t, $J(PH)$ and $J(H^{1}H^{3})$ 18.7, 1 H, PPh ₂ CH=CH ₂ , H ³], 4.51 (m, 2 H, C ₅ H ₄ P), 4.33 (m, 2 H, C ₅ H ₄ P); at 195 K, ^{<i>o</i>} 7.0-5.5 (m, 3 H, Ph ₂ CH=CH ₂ , isomers A and B), 5.01 (m, 1 H, C ₃ H ₄ P, isomer B), 4.60 (m, 1 H, C ₅ H ₄ P, isomer B), 4.54 (m, 2 H, C ₅ H ₄ P, isomer A), 3.51 (m, 1 H, C ₅ H ₄ P, isomer B)			
4 a	$[MoMn(\mu-C_5H_4PPh_2)(CO)_5(PPh_2Me)_2]$	1930s, 1920m (sh), 1906w, 1880s, 1807w	8.1–7.5 (m, 12 H, o-Ph), 7.4–7.3 (m, 18 H, m- and p-Ph), 4.67 (pq, J 2, 2 H, C ₅ H ₄ P), 4.33 (pq, J 2, 2 H, C ₅ H ₄ P), 2.10 [d, J (PH) 8.1, 3 H, PPh ₂ Me], 1.91 [d, J (PH) 8.4, 3 H, PPh ₂ Me]			
4b	$[MoMn(\mu-C_5H_4PPh_2)(CO)_5(PPh_2CH=CH_2)_2]$	1931s, 1920m (sh), 1906w, 1883w, 1817w	8.1–7.5 (m, 12 H, o-Ph), 7.5–7.2 (m, 18 H, m- and p-Ph), 6.8 (m, 1 H, PPh ₂ CH=CH ₂), 6.0 (m, 2 H, PPh ₂ CH=CH ₂), 5.4 (m, 2 H, PPh ₂ CH=CH ₂), 4.72 (d, J 2, 2 H, C ₅ H ₄ P), 4.7 (m, 1 H, PPh ₂ CH=CH ₂), 4.35 (m, 2 H, C ₅ H ₄ P)			
4 c	$[MoMn(\mu-C_5H_4PPh_2)(CO)_5{P(OMe)_3}_2]$	2006m, 1935s, 1900m, 1888m, 1846m	8.1-8.0 (m, 4 H, o-Ph), 7.4-7.1 (m, 6 H, m- and p-Ph), 5.01 (m, 2 H, C_5H_4P , isomers A and B), 4.52 (m, 2 H, C_5H_4P , isomer A), 4.26 (m, 2 H, C_5H_4P , isomer B), 3.79 [d, J(PH) 11.1, 9 H, P(OMe) ₃ , isomer B], 3.77 [d, J(PH) 10.8, 9 H, P(OMe) ₃ , isomer A], 3.67 [d, J(PH) 11.6, 9 H, P(OMe) ₂ , isomer B], 3.66 [d, J(PH) 11.6, 9 H, P(OMe) ₂ , isomer A]			
5a	$[MoMn(\mu-C_5H_4PPh_2)(\mu-H)(\mu-PPh_2)(CO)_5]$	2017m, 1958s, 1917m, 1895m	7.8–6.9 (m, 20 H, Ph), 5.90 (m, 1 H, $C_{5}H_{4}P$), 5.57 (m, 1 H, $C_{5}H_{4}P$), 5.33 (m, 1 H, $C_{5}H_{4}P$), 4.30 (m, 1 H, $C_{5}H_{4}P$), -12.14 [dd, $J(PH)$ 39.2, $J(P'H)$ 14.1, 1 H, MoHMn]			
5b	$[MoMn(\mu-C_5H_4PPh_2)(\mu-H)(\mu-PPhH)(CO)_5]$	2021m, 1961s, 1956m, 1924m, 1902m	8.0–7.0 (m, 15 H, Ph), 5.98 (m, 1 H, C_5H_4P), 5.33 (m, 2 H, C_5H_4P), 5.33 [d, J(PH) 345, 1 H, PPhH], 4.67 (m, 1 H, C_5H_4P), – 12.42 [dd, J(PH) 378 J(P(H) 12.3, 1 H, M0HMn]			
6	$[MoMn(\mu-C_5H_4PPh_2)(\mu-PPh_2CH=CH_2)(CO)_5]$	2003w, 1952s, 1924s, 1905m, 1892m	8.0–7.2 (m, 20 H, Ph), 5.46 (m, 1 H, C_5H_4P), 5.07 (m, 1 H, C_5H_4P), 5.04 (m, 1 H, C_5H_4P), 3.24 (m, 1 H, C_5H_4P), 2.98 (m, 1 H, PPh ₂ CH=CH ₂ , H ¹), 2.67 [dd, J(PH) 28.8, J(H ¹ H ²) 8.6, 1 H, PPh ₂ CH=CH ₂ , H ²], 2.35 [dd, J(PH) 19.7, J(H ¹ H ³) 10.7, 1 H. PPh ₂ CH=CH ₂ , H ³]			
7	$[MoMn(\mu-C_5H_4PPh_2)(CO)_5(PPh_2CH=CH_2)- {P(OMe)_3}]$	2003w, 1933s, 1890m, 1838m	8.1–7.5 (m, 8 H, o -Ph), 7.4–7.3 (m, 12 H, m - and p -Ph), 6.7 (m, 1 H, PPh ₂ CH=CH ₂), 6.1–5.5 (m, 2 H, PPh ₂ CH=CH ₂), 4.61 (m, 2 H, C ₅ H ₄ P, isomer A), 4.31 (m, 2 H, C ₅ H ₄ P, isomer B), 4.22 (m, 2 H, C ₅ H ₄ P, isomers A and B), 3.80 [d, J(PH) 11.1, 9 H, P(OMe) ₃ , isomer B], 3.72 [d, J(PH) 10.9, 9 H, P(OMe) ₃ , isomer A]			

^{*a*} Recorded in hexane solution unless otherwise indicated. ^{*b*} Abbreviations: s, singlet, d, doublet; t, triplet; qnt, quintet; pq, pseudo-quartet; m, multiplet. ^{*c*} Recorded in CDCl₃ solution and at 298 K unless otherwise indicated, J in Hz. ^{*d*} Recorded in CH₂Cl₂ solution. ^{*e*} v(CNR) at 2149(br) cm⁻¹. ^{*f*} v(CNR) at 2148(br) cm⁻¹. ^{*g*} Recorded in CD₂Cl₂.

Table 2 Selected bond parameters (lengths in Å, angles in °) for $[MoMn(\mu-C_5H_4PPh_2)(\mu-H)(\mu-PPh_2)(CO)_5]$ 5a

Mn(1)-Mo(1)	3.004(1)	P(1)-Mn(1)	2 353(1)
$P(2) - M_0(1)$	2447(1)	P(2) - Mn(1)	2.333(1)
C(1) - Mo(1)	1943(3)	C(3) - Mn(1)	1 793(4)
$C(2)-M_0(1)$	1.964(4)	C(4) - Mn(1)	1.004(3)
C(51) - Mo(1)	2 313(2)	C(5) - Mn(1)	1.819(4)
C(52) - Mo(1)	2.313(2)	C(21) - P(1)	1.830(3)
C(53)-Mo(1)	2.345(3)	C(31) - P(1)	1.835(3)
C(54) - Mo(1)	2.358(3)	C(51) - P(1)	1 822(3)
C(55)-Mo(1)	2.353(3)	C(11) - P(2)	1.832(3)
C(52)-C(51)	1.430(4)	C(41) - P(2)	1.835(3)
C(55)-C(51)	1.428(4)	C(53)-C(52)	1.420(5)
C(54)-C(53)	1.406(5)	C(55)-C(54)	1.419(5)
$M_0(1) - H(1)$	1.83(3)	Mn(1) - H(1)	1.76(3)
P(2)-Mo(1)-Mn(1)	48.2(1)	P(1)-Mn(1)-Mo(1)	75.6(1)
C(1)-Mo(1)-Mn(1)	97.7(1)	P(2) - Mn(1) - Mo(1)	53.0(1)
C(1) - Mo(1) - P(2)	114.0(1)	P(2) - Mn(1) - P(1)	96.0(1)
C(2)-Mo(1)-Mn(1)	121.7(1)	C(3)-Mn(1)-Mo(1)	146.9(1)
C(2) - Mo(1) - P(2)	80.1(1)	C(3)-Mn(1)-P(1)	98.6(1)
C(2)-Mo(1)-C(1)	78.3(1)	C(3)-Mn(1)-P(2)	96.3(1)
C(21)-P(1)-Mn(1)	118.1(1)	C(4)-Mn(1)-Mo(1)	97.8(1)
C(31)-P(1)-Mn(1)	125.1(1)	C(4)-Mn(1)-P(1)	169.0(1)
C(31)-P(1)-C(21)	98.7(1)	C(4)-Mn(1)-P(2)	86.7(1)
C(51)-P(1)-Mn(1)	102.9(1)	C(4)-Mn(1)-C(3)	91.7(1)
C(51)-P(1)-C(21)	104.2(1)	C(5)-Mn(1)-Mo(1)	112.2(1)
C(51)-P(1)-C(31)	105.8(1)	C(5)-Mn(1)-P(1)	87.7(1)
Mn(1)-P(2)-Mo(1)	78.8(1)	C(5)-Mn(1)-P(2)	161.6(1)
C(11) - P(2) - Mo(1)	112.1(1)	C(5)-Mn(1)-C(13)	100.1(2)
C(11)-P(2)-Mn(1)	126.4(1)	C(5)-Mn(1)-C(4)	84.6(1)
C(41)-P(2)-Mo(1)	125.4(1)	P(1)-C(51)-Mo(1)	106.3(1)
C(41)-P(2)-Mn(1)	115.4(1)	C(52)-C(51)-Mo(1)	72.0(1)
C(41) - P(2) - C(11)	100.3(1)	C(52)-C(51)-P(1)	124.3(2)
C(55)-C(51)-Mo(1)	73.7(2)	C(55)-C(51)-P(1)	125.5(2)
C(55)-C(51)-C(52)	107.8(3)	C(53)-C(52)-C(51)	107.4(3)
C(54)-C(53)-C(52)	108.6(3)	C(55)-C(54)-C(53)	108.6(3)
C(54)-C(55)-C(51)	107.5(3)	Mo(1)-H(1)-Mn(1)	114(2)

Fig. 2 Molecular structure of $[MoMn(\mu-C_5H_4PPh_2)(CO)_6(PPh_2Et)]$ **3b.** In the phenyl (and cyclopentadienyl) rings the carbon atoms are numbered by progressive sequences C(n), C(n + 1), ..., C(n + 5), starting from the site of phosphorus substitution; only C(n + 1) atoms are labelled for clarity. The carbonyl oxygens are labelled by the same numbers of the carbon atoms to which they are bonded

octahedral arrangement by the three carbonyl ligands, by the phosphorus atoms of the bridging $C_5H_4PPh_2$ and PPh_2 ligands which are *cis* to each other, with a P(2)-Mn(1)-P(1) angle of 96.0(1)°, and by the hydride ligand. The Mn(1)-P(1) bond is

bent towards the molybdenum atom such that the P(1)-Mn(1)-Mo(1) and P(1)-Mn(1)-C(3) angles are respectively 75.6(1) and 98.6(1)°. The hydride ligand presumably completes the octahedron around the Mn atom. The co-ordination about the Mo atom in **5a** is similar to that in $[MoMn(\mu-H)(\mu-PPh_2)(\eta^5-C_5H_5)(CO)_6]$.⁷

In the reaction of 1 with PPhH₂ at 383 K a complex analogous to 5a, $[MoMn(\mu-C_5H_4PPh_2)(\mu-H)(\mu-PPhH)(CO)_5]$ 5b, is the only product after 6 h, although careful infrared monitoring in the initial stages of the reaction showed weak v(CO) bands attributed to a product monosubstituted at the manganese atom by PPhH₂. The conversion of this product to 5b is presumably more facile than that of 2a to 5a. The structure shown for 5b is assigned on the basis of the crystallographic evidence for 5a and the similarity of their spectroscopic properties. For example, the ¹H NMR spectra of the two complexes show peaks at $\delta - 12.42$ and - 12.14 respectively which may be assigned to the bridging hydride ligands. These each appear as doublets of doublets due to coupling to the two inequivalent phosphorus atoms. Complex 5b can, in principle, exist as either one of two isomers differing in the orientation of PPhH group relative to the other bridging ligand but it was not possible to determine from the NMR data which one was present.

Monosubstitution of $[MoMn(\mu-C_5H_4PPh_2)(CO)_7]$ 1 by Phosphines at the Molybdenum Atom.-The ligand PPh3 does not react with 1 at 353 K in refluxing hexane-toluene (5:1) to give a complex of type 2 but, on refluxing overnight in toluene at 383 K, $[MoMn(\mu-C_5H_4PPh_2)(CO)_6(PPh_3)]$ 3a was obtained. Although this complex has the same type of molecular formula as the complexes 2 it is assigned a structure with the PPh₃ substituent on the molybdenum atom, on the basis of its spectroscopic properties. These are very similar to those of $[MoMn(\mu-C_5H_4PPh_2)(CO)_6(PPh_2Et)]$ 3b, the structure of which has been determined by X-ray analysis. Complex 3b is obtained in a 1:2 ratio with 2e as an inseparable mixture when 1 and PPh₂Et are refluxed in toluene at 383 K [rather than in hexane-toluene (5:1) at 353 K which gives 2e only]. The sample of 3b used for the X-ray study was, however, obtained by a different route. Another complex monosubstituted at the molybdenum atom, $[MoMn(\mu-C_5H_4PPh_2)(CO)_6(PPh_2CH=CH_2)]$ 3c, was obtained as one of the products of the reaction of PPh₂CH=CH₂ with 1 in refluxing toluene.

The molecular structure of **3b**, shown in Fig. 2 and characterised by the bond lengths and angles listed in Table 3, is similar to that of **1**,⁸ to which it is related by replacement of the carbonyl group attached to the molybdenum atom in the position transoid to the metal-metal bond by a PPh₂Et ligand. The Mo-Mn bond [3.073(1) Å] in **3b** is slightly longer than that in **1** [3.054(1) Å]⁸ and comparable with that in [MoMn(η^5 -C₅H₅)(CO)₈] [3.08(1) Å].¹⁰ Except for the phenyl and ethyl groups of the PPh₂Et ligand, the molecular structure of **3b** shows approximate C_s symmetry, the plane of symmetry passing through the P(1)-Mo-Mn-P(2)-C(33) linkage [as well as the carbonyl groups C(3)-O(3) and C(4)-O(4)] and bisecting the C₅H₄ ring. The asymmetrical orientation of the PPh₂Et ligand with respect to this plane, characterised by the torsion angles listed in Table 3, may reflect the steric requirements of this bulky phosphine.

In the MoMn(μ -C₅H₄PPh₂) fragment the cyclopentadienyl group is planar [the atomic displacements from the plane not exceeding 0.004(4) Å] and perpendicular to the ring formed by the centroid of the C₅H₄ group, Mo, and the Mn and P(2) atoms [dihedral angle 89.8(5)°]. The C(33)–P(2) bond is bent out of the C₅H₄ plane toward the manganese atom, to afford the C(33)–P(2)–Mn angle of 103.6(2)°. The Mn–P(2) bond is bent toward the molybdenum atom, resulting in the closure of the P(2)–Mn–Mo and P(2)–Mn–C(4) angles to 77.3(1) and 165.1(2)° in the distorted octahedron around the manganese centre. The Mn–Mo–C₅H₄ (centroid) angle of 101.5(1)° is much Table 3 Sclected bond parameters (lengths in Å, angles in °) for $[MoMn(\mu-C_5H_4PPh_2)(CO)_6(PPh_2Et)]$ 3b

Mo-Mn	3.073(1)	P(1)-C(15)	1.829(4)
Mo-P(1)	2.442(1)	P(2)-C(21)	1.824(4)
Mn-P(2)	2.269(2)	P(1)-C(27)	1.816(4)
$M_0 - C(1)$	1.960(4)	P(2) - C(33)	1.797(4)
$M_0 = C(2)$	1.960(4)	C(1) = O(1)	1.146(5)
Mn = C(3)	1 790(5)	C(2) = O(2)	1.161(5)
Mn = C(4)	1 824(5)	C(3) = O(3)	1 1 50(6)
Mn = C(4) Mn = C(5)	1.824(3)	C(4) = O(4)	1 143(6)
Mn = C(5) Mn = C(6)	1.817(4)	C(4) = O(4)	1.143(0) 1.157(5)
Mn = C(0)	1.030(3)	C(5)=O(5)	1.137(3) 1.143(6)
MO=C(33)	2.373(4)	C(0) = O(0)	1.140(0)
M0-C(34)	2.344(4)	C(33) = C(34) C(24) = C(25)	1.440(3)
Mo-C(35)	2.325(4)	C(34) = C(35)	1.399(0)
Mo-C(36)	2.332(4)	C(35) - C(36)	1.421(6)
Mo-C(37)	2.353(4)	C(36) - C(37)	1.405(6)
P(1) - C(7)	1.846(4)	C(37) - C(33)	1.415(5)
P(1) - C(9)	1.842(4)	C(7)–C(8)	1.523(7)
Mn Mo D(1)	145.0(1)	M_{0} , $P(1)$, $C(15)$	1126(2)
$M_{\rm H} = M_{\rm O} - F(1)$	78.0(1)	r(1) = r(1) = C(13)	102.0(2)
Mn - Mo - C(1)	78.9(2)	C(7) = P(1) = C(9)	102.7(2)
Mn-Mo-C(2)	75.0(2)	C(7) = P(1) = C(15)	101.4(2)
P(1)-Mo-C(1)	81.3(2)	C(9) - P(1) - C(15)	100.7(2)
P(1)-Mo-C(2)	79.4(2)	Mn - P(2) - C(21)	119.7(2)
C(1)-Mo-C(2)	97.7(2)	Mn-P(2)-C(27)	119.5(2)
Mo-Mn-C(3)	175.9(2)	Mn-P(2)-C(33)	103.6(2)
Mo-Mn-P(2)	77.3(1)	C(21)-P(2)-C(27)	103.1(2)
Mo-Mn-C(4)	87.8(2)	C(21)-P(2)-C(33)	103.9(2)
Mo-Mn-C(5)	86.3(2)	C(27)-P(2)-C(33)	105.3(2)
Mo-Mn-C(6)	87.4(2)	C(37)-C(33)-C(34)	107.1(4)
P(2)-Mn-C(4)	165.1(2)	C(33)-C(34)-C(35)	107.7(4)
P(2) - Mn - C(3)	99.0(2)	C(34)-C(35)-C(36)	108.7(4)
P(2)-Mn-C(5)	87.6(2)	C(35)-C(36)-C(37)	107.7(4)
P(2)-Mn-C(6)	88.7(2)	C(36)-C(37)-C(33)	108.8(4)
C(3)-Mn-C(4)	96.0(2)	$M_0 - C(1) - O(1)$	177.1(4)
C(3) - Mn - C(5)	91.7(2)	$M_0-C(2)-O(2)$	176.1(4)
C(3) = Mn = C(6)	94 5(2)	$M_{n-C(3)-O(3)}$	177 1(4)
$C(4) - M_{B} - C(5)$	924(2)	Mn - C(4) - O(4)	1777(4)
C(4) = Mn = C(6)	89.6(2)	Mn = C(5) = O(5)	1764(4)
C(5) = Mn - C(6)	173 2(2)	Mn - C(6) - O(6)	1783(4)
$\mathbf{M}_{0} = \mathbf{D}(1) - \mathbf{C}(0)$	173.2(2) 1179(2)	$\mathbf{P} = C(7) = C(8)$	1126(2)
$M_0 = P(1) = C(7)$	117.9(2)	$\Gamma = C(7) = C(0)$	113.0(3)
MO - P(1) - C(9)	118.8(2)		
	Mn-Mo-P(1)-C(7)	-32.0(2)	
	Mn - Mo - P(1) - C(9)	93.1(2)	
	Mn - Mo - P(1) - C(15)	-149.5(2)	

smaller than the unconstrained Mo–Mo–C₅H₄ (centroid) angle of 117.6° in [{Mo(η^5 -C₅H₅)(CO)₃}₂].¹¹ The angular distortions shown here are indicative of considerable strain in the P(2)–Mn–Mo–C₅H₄ (centroid) ring and they are of equal magnitude to those observed in 1. The co-ordination sphere around the molybdenum atom is distorted further from the idealized piano stool geometry by opening of the Mn–Mo–P(1) angle to 145.0(1)°; in 1 the corresponding Mn–Mo–C(carbonyl) angle is 141.2(2)°, reflecting the smaller steric demands of the carbonyl ligand.

The Mo-P(1) bond [2.442(1) Å] is slightly shorter than the Mo-P bonds in *trans*-[Mo(η^5 -C₅H₅)(CO)₂(PPh₃)(COMe)] [2.473(3) Å]¹² and in [Mo(η^5 -C₅H₅)(CO)₂(PPh₃)I] [2.481(5) Å].¹³ The Mn-P(2) distance [2.269(2) Å] is comparable with that of 1 [2.278(1) Å]. All the carbonyl ligands in **3b** are essentially linear, the largest deviation from linearity affording the Mo-C(2)-O(2) angle of 176.1(4)°.

The ¹H NMR spectra of **3a–3c** each show two pseudoquartets or multiplets in the cyclopentadienyl region at δ 4.5-4.6 and 4.1–4.4, as expected if the plane of symmetry found in the solid-state structure of **3b** is maintained in solution for all three complexes. The ¹³C NMR spectrum of **3c** at room temperature is also in accord with this structure, showing a single doublet in the carbonyl region at δ 234.9 with ²J(PC) 23 Hz. This doublet may be assigned to the two equivalent carbonyl ligands bound to the molybdenum atom, the coupling being to the adjacent phosphine ligand. A similar signal is seen in the ¹³C NMR spectra of *trans*-[Mo(η^5 -C₅H₅)(CO)₂L(X)] (X = halide) with J(PC) 27 Hz.¹⁴ No ¹³C NMR signals were observed for the manganese-bound carbonyl ligands in **3c**, presumably because of quadrupole broadening by the ⁵⁵Mn nucleus.

A low-temperature study of the ¹H and ³¹P NMR spectra of 3c suggests that the above interpretation of the roomtemperature spectra of 3a-3c may be an oversimplification. Thus the ³¹P-{¹H} NMR spectrum of 3c, which consists of a sharp resonance at δ -73.0 due to the molybdenum-bound PPh₂CH=CH₂ ligand and a broad resonance at $ca. \delta 80.0$ due to the manganese-bound phosphorus of the C₅H₄PPh₂ ligand, is modified at lower temperatures. At 200 K the peak at $\delta - 73.0$ is replaced by two peaks of approximately equal intensity and the peak at ca. δ -80 is considerably sharpened [Fig. 3(a)]. The splitting of the δ -73.0 peak at low temperatures suggests the presence of isomers in solution which are rapidly interconverting at room temperature, and this interpretation is supported by the ¹H NMR spectrum at 195 K [Fig. 3(b)]. The two peaks due to the cyclopentadienyl protons which are seen at room temperature are replaced by two resonances at δ 4.54 and 4.28, which may be assigned to the symmetrical isomer A found in the solid state for **3b**, and by four lower intensity resonances at δ 5.01, 4.60, 4.44 and 3.51 which may be assigned to a less symmetrical isomer B in which the vinylphosphine ligand is co-ordinated at one of the outer positions on the molybdenum atom.

A room-temperature ³¹P-{¹H} NMR spectrum of **3c** in the presence of free PPh₂CH=CH₂ shows a sharp resonance due to the free ligand, implying that the co-ordinated vinylphosphine ligand is not dissociating rapidly on the NMR time-scale at room temperature. Accordingly the mechanism of isomer interconversion does not involve phosphine dissociation; a localised twisting process involving the two carbonyl ligands and the phosphine ligand on the molybdenum atom seems the most likely explanation.

Monosubstitution of $[MoMn(\mu-C_5H_4PPh_2)(CO)_7]$ 1 with Isonitriles.--The reaction of 1 with one equivalent of RNC in refluxing hexane-toluene (5:1) at 353 K or in refluxing toluene at 383 K gave orange complexes which are formulated on the basis of their spectroscopic properties as [MoMn(µ-C5H4- PPh_2 (CO)₆(CNR)] (R = CH₂Ph **2g** or Bu¹**2h**). Thus in the ¹H NMR spectrum of 2g four signals at δ 5.30, 5.17, 4.30 and 3.50 may be assigned to the cyclopentadienyl protons, showing that this complex lacks the plane of symmetry present in 2a-2f. The anomalously low chemical shift value of δ 3.50 for one of the cvclopentadienyl protons is caused possibly by its proximity to the phenyl ring of the benzyl group.¹⁵ Similar effects have been seen in related complexes.¹⁶ The ¹³C NMR spectrum of **2g** shows three peaks in the carbonyl region at δ 232.4, 228.0 and 225.4 which may be assigned to molybdenum-bound carbonyl ligands. A broad peak at δ 217, similar to that reported for 1, is assigned to the manganese-bound carbonyls.

Disubstitution of $[MoMn(\mu-C_5H_4PPh_2)(CO)_7]$ 1.—Reaction of the complex $[MoMn(\mu-H)(\mu-PPh_2)(\eta-C_5H_5)(CO)_6]$ with excess phosphine or phosphite leads to disubstitution at the manganese atom.⁷ In contrast the reaction of 1 with excess PPh₂Me or P(OMe)₃ in refluxing toluene at 383 K gives, in addition to small quantities of the monosubstituted complexes 2, the disubstituted complexes $[MoMn(\mu-C_5H_4PPh_2)(CO)_5L_2]$ $[L = PPh_2Me$ 4a or P(OMe)₃ 4c]. These are revealed by spectroscopic evidence to have one substituent on the molybdenum and one on the manganese atom. A further disubstituted complex of the same type $(L = PPh_2CH=CH_2 4b)$ is obtained as one of the low-yield products of the reaction of 1 in a 1:1 ratio with PPh_2CH=CH_2 in refluxing toluene. Alternatively complex 4a may be obtained by refluxing the monosubstituted complex 2b with excess PPh_Me.

Fig. 3 (a) Variable temperature ³¹P NMR spectrum of 3c at (i) 294, (ii) 240 and (iii) 200 K. (b) Variable temperature ¹H NMR spectrum of 3c at (i) 298, (ii) 237 and (iii) 195 K

The ¹H NMR spectra of **4a** and **4b** each show two multiplets in the cyclopentadienyl region at *ca*. δ 4.3 and 4.7 suggesting that there is a plane of symmetry as in the complexes **2a**–**2f**. In addition, the ¹H NMR spectrum of **4a** shows two signals at δ 2.10 and 1.91 which may be assigned to the methyl protons of the PPh₂Me groups. The presence of two such signals, and their integrals relative to those of the cyclopentadienyl signals, confirms that disubstitution has occurred.

The ¹³C NMR spectrum of **4a** in the carbonyl region shows a resonance at δ 238.7 which is split into a doublet by coupling to phosphorus [²J(PC) 20.2 Hz] and a broad signal at δ 223. The first signal is assigned to the molybdenum-bound carbonyl ligands, and the magnitude of the phosphorus–carbon coupling strongly suggests that one of the phosphine ligands is attached to the molybdenum atom. The other signal is assigned to the manganese-bound carbonyl ligands and hence it is broad due to quadrupole relaxation. The ³¹P NMR spectrum at 298 K shows the expected three signals.

On the basis of the above evidence and the position at which monosubstitution occurs in 2b and 2d, the most likely structure for 4a and 4b is that shown with a phosphine on manganese *trans* to the cyclopentadienyl phosphorus as in 2b and 2d and a phosphine attached to the molybdenum atom. The latter phosphine is shown as being on the central position on the molybdenum atom in accord with the plane of symmetry in the molecule implied by the ¹H NMR spectrum, and the observation of only one signal in the ¹³C NMR spectrum for the carbonyl ligands bound to molybdenum. Fluxional behaviour, as seen in **3c**, could also account for the above observations, but the low-temperature (230 K) ${}^{31}P{}^{1}H$ NMR spectrum of the bis(trimethyl phosphite) complex **4c** shows no sign of such behaviour.

The infrared spectrum of 4c in the carbonyl region is substantially different from those of 4a and 4b. In addition the phosphite region of the ¹H NMR spectrum of 4c shows four doublets, each with J(PH) of ca. 11 Hz in an intensity ratio which suggests the presence of two isomers in solution in a concentration ratio of 3:2. In the cyclopentadienyl region three multiplets are observed in an intensity ratio of 5:3:2 which can be assigned to the two isomers, with the signal of relative intensity 5 being due to two overlapping peaks of intensity 3 and 2. The ¹³C and ³¹P NMR spectra of 4c can be interpreted similarly. Six signals are seen in the ${}^{31}P-{}^{1}H$ NMR spectrum at room temperature due to the three different phosphorus atoms in each isomer. Two broad peaks at δ 59.4 and 47.0 are assigned to phosphite ligands on manganese and two sharp peaks at δ 57.0 and 56.7 to phosphite ligands on molybdenum. Upon cooling to 230 K the resonances due to the manganese-bound phosphite ligands become sharper and coupling [J(PP) 43 Hz]between these ligands and the phosphorus of the C₅H₄PPh₂ ligand is observed. The signals due to the molybdenum-bound phosphorus atoms are unchanged on cooling and show no such coupling. The lack of variation with temperature of these signals suggests that the fluxional process seen in 3c is absent in 4c.

The observation of only two cyclopentadienyl signals for each isomer in the ¹H NMR spectrum of **4c** suggests that each has the

Scheme 1 Proposed mechanism for the addition reactions of 6 with CO or $P(OMe)_3$

plane of symmetry present in **2a**-**2f** and on this basis the isomers are assigned the structures shown, with the isomerism being due to the ability of the phosphite ligand to occupy two different positions at the manganese atom.

Synthesis and Reactivity of [MoMn(µ-C₅H₄PPh₂)(µ-PPh₂-CH=CH₂)(CO)₅] 6.—The formation of complexes 3c and 4b in the reaction of 1 with PPh₂CH=CH₂ in refluxing toluene has already been described. A third product of this reaction, formed in 29% yield, is the complex $[MoMn(\mu-C_5H_4PPh_2)(\mu PPh_2CH=CH_2)(CO)_5$] 6. This complex is also obtained on thermolysis of $[MoMn(\mu-C_5H_4PPh_2)(CO)_6(PPh_2CH=CH_2)]$ (2d or 3c) at 383 K. Although crystals of 6 suitable for an X-ray study could not be obtained the complex may be assigned the structure shown on the basis of spectroscopic evidence. The ¹H NMR spectrum of 6 shows four multiplets for the cyclopentadienyl protons, each corresponding to a single proton, implying that the ring is in an asymmetrical environment. The signal at δ 3.24 is shifted upfield as in 2g, again presumably because of the proximity of an aromatic ring. The vinyl proton signals are observed at δ 2.98, 2.67 and 2.35, whereas in 2d they are in the range δ 5.06--6.8, and this indicates that in 6 the vinyl group is co-ordinated to a metal atom.¹⁷ The ³¹P-{¹H} NMR spectrum of 6 at room temperature shows two signals at δ -71.4 and -92.3 which confirms the presence in solution of a single isomer. By comparison with the ${}^{31}P{-}{{}^{1}H}$ NMR spectrum of 2d the peak at $\delta - 71.4$ is tenatively assigned to the cyclopentadienyl phosphorus and that at -92.3 to the PPh₂-CH=CH₂ phosphorus atom. A spectrum recorded at 225 K did not show phosphorus-phosphorus coupling, but the fact that both peaks appear to be broadened by the quadrupolar ⁵⁵Mn nucleus implies that the phosphorus atom of the vinylphosphine is attached to this metal atom. This conclusion is reinforced by the room-temperature ¹³C NMR spectrum of 6 in the carbonyl region, which shows two sharp singlet signals at δ 229.1 and 223.6. These may be assigned to molybdenum-bound carbonyl groups and the absence of phosphorus-carbon coupling is as expected if 6 has the structure proposed. No signals due to the manganese-bound carbonyl groups were seen in the ¹³C NMR spectrum of $\mathbf{6}$, presumably because of quadrupole broadening.

The co-ordination of the vinyl group to one of the manganese atoms in $[Mn_2(\mu-PPh_2CH=CH_2)(CO)_8]$ can be displaced by reaction of the complex with excess of CO.¹⁷ In contrast, the reaction of **6** with excess of CO or H₂ at 383 K in refluxing toluene gave $[MoMn(\mu-C_5H_4PPh_2)(CO)_6(PPh_2CH=CH_2)]$ **3c** or $[MoMn(\mu-C_5H_4PPh_2)(CO)_6(PPh_2Et)]$ **3b** respectively, with the vinylphosphine ligand co-ordinated through phosphorus to the molybdenum atom, although a straightforward displacement of the co-ordinated vinyl group would have been expected to lead to the ligand remaining co-ordinated to the manganese atom as in 2d. A similar transfer of the attachment of the vinylphosphine ligand from manganese to molybdenum takes place in the reaction of 6 with $P(OMe)_3$ under the same conditions, to give $[MoMn(\mu-C_5H_4PPh_2)(CO)_5(PPh_2CH=$ CH_2 ($P(OMe)_3$) 7. This complex is analgous to 4c, apart from their differing substituents. The NMR data for 7 reveal that, as for 4c, it exists in solution as a mixture of two isomers which differ only in the position occupied by the substituent on the manganese atom. Two broad phosphite signals are observed in the ${}^{31}P$ -{¹H} NMR spectrum of 7 which may be assigned to manganese-bound ligands. The two additional sharper signals due to phosphite groups seen in the ${}^{31}P{}^{1}H$ NMR spectrum of 4c and assigned to molybdenum-bound ligands are of course absent in the spectrum of 7. The PPh₂CH=CH₂ ligand in 7 gives rise to only one sharp ³¹P signal at δ -71.7, which must be assigned as being due to coincident peaks for the two isomers, but this is not surprising since the molybdenum-bound phosphite ligands in the two isomers of 4c also give rise to two signals which are very close together.

The above addition reactions involve in each case not only a displacement of the vinyl group from its co-ordination to the molybdenum atom but also a transfer of the attachment through phosphorus of the vinylphosphine ligand from manganese to molybdenum. Such a transfer of a vinylphosphine ligand between two metal centres has not been observed previously, although the transfer of other types of phosphines in dinuclear complexes is a known process.^{18,19} A possible mechanism for the addition reactions of 6 is shown in Scheme 1. For addition of CO or P(OMe)₃ it is proposed that cleavage of the manganese-phosphorus bond is followed by attack of the nucleophile at the manganese atom and rearrangement of the vinylphosphine on the molybdenum atom. The proposed mechanism requires the manganese-phosphorus bond to the vinylphosphine ligand in 6 to be broken relatively easily, and this is borne out by the fact that $[MoMn(\mu-C_5H_4PPh_2)(CO)_6 \{P(OMe)_3\}$] 2f is obtained when the manganese substituted complex $[MoMn(\mu-C_5H_4PPh_2)(CO)_6(PPh_2Me)]$ 2b is refluxed with P(OMe)₃ in toluene for 2 h. Complex 2f prepared by this means is formed as a 3:1 mixture of the isomer with the phosphite substituent trans to the cyclopentadienylphosphine and the isomer with the phosphite trans to the metal-metal bond, whereas a 1:1 mixture is obtained when 1 is refluxed with $P(OMe)_3$.

An alternative mechanism for addition of CO or $P(OMe)_3$ could involve as a first step the breaking of the vinyl-molybdenum bond, this being followed by transfer of the phosphorus-co-ordinated vinylphosphine ligand from manganese to molybdenum and then by nucleophilic attack of the incoming ligand at the manganese atom. This seems less likely, since the unsaturated molybdenum atom postulated in the first stage of the reaction would probably react with the incoming nucleophile, leaving the vinylphosphine ligand co-ordinated to the manganese atom.

For the reaction with hydrogen we propose that the initial manganese-phosphorus bond cleavage is followed by oxidative addition of hydrogen to the manganese atom, insertion of the vinyl group into a manganese-hydrogen bond, co-ordination of the phosphine to the now unsaturated molybdenum centre and reductive elimination at manganese to give an ethylphosphine ligand, Scheme 2. The scavenging of CO from the reaction mixture is required to give the observed product, **3b**. It is tempting to propose as an alternative that **6** reacts with CO to give **3c** and that subsequent hydrogenation of the carbon-carbon double bond gives **3b**. Careful infrared monitoring of the reaction of **3c** with hydrogen shows, however, that **3c** is converted thermally to **6** before any hydrogenation takes place.

A final point which is worthy of note is that, although the conversion of 3c to 6 may be reversed by the addition of CO, the conversion of 2d to 6 is irreversible. This implies that 3c is the

Scheme 2 Proposed mechanism for the addition reaction of 6 with hydrogen

thermodynamically preferred isomer, even though the formation of 2d rather than 3c from 1 and PPh₂CH=CH₂ is favoured kinetically.

Reactivity of $[MoMn(\mu-C_5H_4PPh_2)(\mu-H)(\mu-PPh_2)(CO)_5]$ **5a**.—The reactions of $[MoMn(\mu-H)(\mu-PPh_2)(\eta^5-C_5H_5)(CO)_6]$ with small organic molecules lead to a variety of interesting products.²⁰ For this reason the reactions of **5a** with HC=CH, MeC=CH. PhC=CH, MeO_2CC=CCO_2Me and MeCH=CH_2 were attempted under thermal and photolytic conditions. All of these reactions led merely to some decomposition and to recovery of unreacted starting material. It seems likely that the lack of reactivity of **5a** as compared to $[MoMn(\mu-H)(\mu-PPh_2)(\eta^5-C_5H_5)(CO)_6]$ with the above substrates is due to greater steric crowding round the metal–metal bond in the former complex, which presumably inhibits the approach of the organic molecules.

Conclusion

The results presented above show that, in the absence of steric constraints, the first stage in the reactions of $[MoMn(\mu-C_5H_4PPh_2)(CO)_7]$ 1 with nucleophiles is substitution of a manganese-bound carbonyl group. In the case of $P(OMe)_3$, which has the lowest cone angle,²¹ monosubstitution can take place either *trans* to the metal-metal bond or *trans* to the cyclopentadienylphosphine phosphorus atom, but the rather more bulky phosphine ligands PPh₂H, PPh₂Me and PPhMe₂ only give the latter isomer. The ligand PPh₂Et, which has a higher cone angle, can substitute either at the manganese or the molybdenum atom depending on the reaction conditions, whereas PPh₃, which has a higher cone angle still, can only substitute at the molybdenum atom. Isonitriles, which are sterically less hindered at the donor atom than either phos-

phines or phosphites, substitute at manganese *trans* to a carbonyl group, as in the substitution of $[Mn_2(CO)_{10}]$ by isonitriles.²² It is probably only the greater steric bulk of the phosphines which preclude them also from occupying this position in complexes **2a–2f**, since π -bonding considerations suggest that it is likely to be electronically more favourable than a position *trans* to another phosphorus atom.

The pattern of monosubstitution in 1 resembles that of the complex $[MoMn(\mu-H)(\mu-PPh_2)(\eta^5-C_5H_5)(CO)_6]$ in that substitution at the manganese atom is the preferred initial step, but differs in that for 1 a complex monosubstituted at the molybdenum atom can also be obtained. The fact that the manganese-substituted vinylphosphine complex 2d isomerises irreversibly via 6 to the molybdenum-substituted complex 3c suggests that, for this ligand at least, substitution in 1 at the molybdenum atom is thermodynamically preferred and that the initial substitution at the manganese atom is the result of kinetic control.

In the disubstitution of $[MoMn(\mu-H)(\mu-PPh_2)(\eta^5-C_5H_5)-(CO)_6]$ both substituents react initially at the manganese atom,⁷ whereas in 1 disubstitution results in each metal atom carrying one substituent. A similar pattern of multiple substitution taking place at more than one metal centre has been observed in other systems.^{18,19}

It may be concluded from the above data that in 1 the molybdenum atom is more easily substituted, relative to the manganese atom, than in $[MoMn(\mu-H)(\mu-PPh_2)(\eta^5-C_5H_5)(CO)_6]$. This greater relative reactivity enables both metal atoms to become involved in the reactions of 1 with ligands such as PPh₂CH=CH₂ and PPh_nH_{3-n} (n = 1 or 2) which, after initial co-ordination through phosphorus, are capable of further reaction with the metal centres. The transfer of a co-ordinated vinylphosphine ligand from manganese to molybdenum is a noteworthy feature of the further reactions involving this ligand.

Greater steric crowding in $[MoMn(\mu-C_5H_4PPh_2)(\mu-H)-(\mu-PPh_2)(CO)_5]$ **5a** as compared to $[MoMn(\mu-H)(\mu-PPh_2)-(\eta^5-C_5H_5)(CO)_6]$ inhibits the reaction of the former molecule with organic substrates.

Experimental

All reactions were carried out under a nitrogen atmosphere using standard Schlenk techniques. Solvents were distilled under nitrogen from appropriate drying agents and degassed prior to use. Preparative thin-layer chromatography (TLC) was carried out on commercial Merck plates coated with a 0.25 mm layer of silica, or on 1 mm silica plates prepared at the University Chemical Laboratory, Cambridge; products are presented in order of decreasing R_f values.

The instrumentation used to obtain spectroscopic data has been described previously. For the numbering of the carbon atoms see structure of compound 1.²³ Phosphorus-31 NMR chemical shifts are given relative to $P(OMe)_3$ with upfield shifts negative. Unless otherwise stated all reagents were obtained from commercial suppliers and used without further purification. Compound $[MoMn(\mu-C_5H_4PPh_2)(CO)_7]$ 1 was prepared by a slight modification of the literature method⁸ using $[Mo(CO)_3(MeCN)_3]^{24}$ in place of $[Mo(CO)_6]$. This modification enables the $[Li\{Mo(CO)_3(\eta^5-C_5H_4PPh_2)\}]$ intermediate to be prepared in 15 min at room temperature, rather than by overnight reflux, and gives a purer solution of the anion.

Substitution Reactions of $[MoMn(\mu-C_5H_4PPh_2)(CO)_7]$ 1. -(a) With PPh₂H. (i) A solution of $[MoMn(\mu-C_5H_4PPh_2)(CO)_7]$ 1 (0.78 g, 1.31 mmol) and PPh₂H (0.23 cm³) in toluene (60 cm³) was heated to reflux at 383 K for 2 h. After cooling the solvent was removed under vacuum and the residue adsorbed on silica. It was then purified by column chromatography. Elution with CH₂Cl₂-hexane (1:4) gave an orange band which yielded [MoMn(μ -C₅H₄PPh₂)(CO)₆(PPh₂H)] **2a** (0.420 g, 42%) as an orange powder. An impurity of [MoMn(μ -C₅H₄PPh₂)(μ -H)-(μ -PPh₂)(CO)₅] **5a** was removed by recrystallisation of **2a** from CH₂Cl₂-hexane (1:1) to give pure **2a** (0.350 g, 35%) as orange crystals. Complex **2a** (Found: C, 55.4; H, 3.4; P, 8.4. C₃₅H₂₅MnMoO₆P₂ requires C, 55.7; H, 3.3; P, 8.2%). NMR: ¹³C (CH₂Cl₂, 234 K), δ 232.2 [s, Mo(CO)₂], 228.5 [s, Mo(CO)], 217.2 [br, Mn(CO)₃], 134–127 (m, Ph), 89.1 (br s, C₅H₄P, C² or C³), 88.5 [d, *J*(PC) 10.4, C₅H₄P, C² or C³] and 56.4 [d, *J*(PC) 50.1 Hz, C₅H₄P, C¹]; ³¹P (CDCl₃, ¹H-gated decoupled), δ –72.3 (s, PPh₂C₅H₄) and –80.1 (s, PPh₂H).

(*ii*) The reaction was carried out as above using 1 (0.850 g, 1.426 mmol) and PPh₂H (0.25 cm³) in toluene (100 cm³) except that the solution was heated to reflux for 6 h. Purification by column chromatography eluting with CH₂Cl₂-hexane (1:4) gave two orange bands which were identified as unreacted 1 (0.03 g, 4%) and [MoMn(μ -C₅H₄PPh₂)(μ -H)(μ -PPh₂)(CO)₅] **5a** (0.495 g, 48%). Complex **5a** (Found: C, 55.8; H, 3.7; P, 6.4. C₃₄H₂₅MnMoO₅P₂ requires C, 56.2; H, 3.5; P, 8.5%). Mass spectrum: *m*/*z* 727 (*M*⁺) and *M*⁺ - *n*(CO) (*n* = 2-5). NMR: ¹³C (CDCl₃, 298 K), 8 240.5 [d, *J*(PC) 23.0, Mo(CO)], 239.2 [s, Mo(CO)], 224.6 [br, s, Mn(CO)], 221.7 [br, s, Mn(CO)], 141-127 (m, Ph), 98.4 (br, C₅H₄P, C² or C³), 98.3 (br, s, C₅H₄P, C² or C³), 94.9 (br, s, C₅H₄P, C² or C³), 93.6 (br, s, C₅H₄P, C² or C³) and 79.3 [d, *J*(PC), 41.5 Hz, C₅H₄P, C²]; ³¹P (CDCl₃, ¹H-gated decoupled), δ 4.2 (s, PPh₂) and -96.2 (s, PPh₂C₅H₄).

(b) With PPhH₂. The reaction was carried out as in (a) above using 1 (0.500 g, 0.839 mmol) and PPhH₂ (0.10 cm³) in toluene (100 cm³). The solution was heated to reflux for 6 h and, after cooling, the solvent was removed under vacuum. The residue was adsorbed on silica and then purified by column chromatography as in (a), eluting with CH₂Cl₂-hexane (1:2). A single orange band was obtained which yielded [MoMn(μ -C₅H₄-PPh₂)(μ -H)(μ -PPhH)(CO)₅] **5b** (0.278 g, 51%) as an orange powder. Complex **5b** (Found: C, 51.8; H, 3.2; P, 8.0. C₂₈H₂₁MnMoO₅P₂ requires C, 51.7; H, 3.2; P, 9.5%). Mass spectrum: m/z 650 (M^+) and $M^+ - n$ (CO) (n = 1-5). NMR: ¹³C (CDCl₃, 298 K), δ 237.4 [d, J(PC) 2.7, Mo(CO)], 236.5 [d, J(PC) 4.2, Mo(CO)], 217 [br, Mn(CO)₃], 136-127 (m, Ph), 92.4 [d, J(PC) 4.7, C₅H₄P, C² or C³], 92.2 [d, J(PC) 80, C₅H₄P, C² or C³], 89.4 [d, J(PC) 14.0, C₅H₄P, C² or C³], 88.8 [d, J(PC) 15.3, C₅H₄P, C² or C³] and 79.0 [d, J(PC) 45.0 Hz, C₅H₄P, C¹]; ³¹P (CDCl₃, ¹H-gated decoupled), δ -59.5 (s, PPhH) and -86.5 (s, PPh₂C₅H₄).

(c) With PPh₂Me. (i) The reaction was carried out using 1 (0.050 g, 0.084 mmol) and PPh₂Me (0.018 cm³, 0.084 mmol) in hexane-toluene (5:1) (15 cm³). The solution was heated to reflux at 353 K for 16 h and, after cooling, the solvent was removed under vacuum. The residue was then purified by TLC eluting with CH₂Cl₂-hexane (3:7). The two orange bands obtained were identified as unreacted 1 (0.005 g, 10%) and [MoMn(μ -C₅H₄PPh₂)(CO)₆(PPh₂Me)] **2b** (0.02 g, 34%) as an orange powder. Complex **2b** (Found: C, 57.3; H, 3.4. C₃₆-H₂₇MnMoO₆P₂ requires C, 56.2; H, 3.5%). NMR: ³¹P (CDCl₃, ¹H-gated decoupled, 298 K), δ -71.4 (s, PPh₂C₅H₄) and -95.4 (s, PPh₂Me); ³¹P (CD₂Cl₂, 225 K); δ -71.6 [d, *J*(PP) 10 Hz] and -95.1 (d).

(*ii*) The reaction was carried out as in (*a*) above using 1 (0.050 g, 0.084 mmol) and PPh₂Me (0.045 cm³, 0.242 mmol) in toluene (30 cm³) and refluxing at 383 K for 16 h. The residue was purified by TLC eluting with CH₂Cl₂-hexane (1:4). Two orange bands were obtained which were identified as **2b** (0.005 g, 8%) and [MoMn(μ -C₅H₄PPh₂)(CO)₅(PPh₂Me)₂] **4a** (0.031 g, 39%) (an orange powder). Complex **4a** (Found: C, 60.7; H, 4.2. C₄₈H₄₀MnMoO₅P₃ requires C, 61.3; H, 4.3%). Fast atom bombardment (FAB) mass spectrum: *m/z* 940 (*M*⁺), and *M*⁺ -*n* (CO) (*n* = 1–3). NMR: ¹³C (CDCl₃, 298 K), δ 238.7 [d, *J*(PC) 20.2, Mo(CO)₂], 223 [br, Mn(CO)₃], 139.8 [d, *J*(PC) 41.6, *ipso*-Ph], 136.5 [d, *J*(PC) 38.4, *ipso*-Ph], 132–127 (m, Ph), 91.5 [d, *J*(PC) 6.3, C₅H₄P, C² or C³], 87.5 [d, *J*(PC) 10.2,

 C_5H_4P , C^2 or C^3], 61.8 [d, J(PC) 40 Hz, C_5H_4P , C^2] and 19.4 (m, PPh₂*Me*); ³¹P (CDCl₃, ¹H-gated decoupled, 298 K), δ - 68.8 (br s, PPh₂C₅H₄), -82.6 (s, MoPPh₂Me) and -90.4 (br s, MnPPh₂Me).

(d) With PPhMe₂. The reaction was carried out as in (a) above using 1 (0.050 g, 0.084 mmol) and PPhMe₂ (0.015 cm³, 0.848 mmol) in toluene (15 cm³) and refluxing at 383 K for 16 h. The residue was purified by TLC eluting with CH₂Cl₂-hexane (3:7) to give a single orange band from which [MoMn(μ -C₅H₄PPh₂)(CO)₆(PPhMe₂)] **2c** (0.012 g, 20%) was obtained as an orange powder on evaporation of the solvent.

(e) With PPh₂CH=CH₂. (i) The reaction was carried out as in (a) above using 1 (0.200 g, 0.336 mmol) and PPh₂CH=CH₂ (0.070 cm³, 0.352 mmol) in hexane-toluene (5:1) (30 cm³), and refluxing at 353 K for 16 h. The residue was purified by TLC eluting with CH₂Cl₂-hexane (3:7) to give two orange bands from which unreacted 1 (0.032 g, 16%) and [MoMn(μ -C₅H₄PPh₂)(CO)₆(PPh₂CH=CH₂)] **2d** (0.110 g, 42%) were obtained. Complex **2d**. FAB mass spectrum: *m/z* 780 (*M*⁺). NMR: ¹³C (CDCl₃, 298 K), δ 229.1 [s, Mo(CO)₂], 227 [s, Mo(CO)], 220 [br, Mn(CO)₃], 135.4 [d, J(PC) 400, *ipso*-Ph], 135.2 [d, J(PC) 42.1, *ipso*-Ph], 134.9 [d, J(PC) 30, PCH=CH₂], 133.3 [d, J(PC) 9.7, *o*-Ph], 131.5 [d, J(PC) 10.1, *m*-Ph], 132.7 (s, *p*-Ph), 129.8 (s, *p*-Ph), 128.8 [d, J(PC) 10.1, *m*-Ph], 138.5 (s, PCH=CH₂), 128.2 [d, J(PC) 9.5, *m*-Ph], 89.3 [d, J(PC) 10.1, C₅H₄P, C² or C³], 88.8 [d, J(PC) 6.4, C₅H₄P, C² or C³] and 60.5 [d, J(PC) 46.8, C₅H₄P, C¹]; ³¹P (CDCl₃, ¹H-gated decoupled, 298 K), δ -70.6 (s, PPh₂C₅H₄) and -84.4 (s, PPh₂CH=CH₂).

(ii) The reaction was carried out as in (a) above using 1 (0.200)g, 0.335 mmol) and PPh₂CH=CH₂ (0.060 cm³, 0.302 mmol) in toluene (50 cm³) and refluxing at 383 K for 4 h. The residue was purified by TLC eluting with CH_2Cl_2 -hexane (1:2) to give three bands. The first band gave [MoMn(µ-C₅H₄PPh₂)(µ-PPh₂-CH=CH₂)(CO)₅] 6 (0.074 g, 29%) as a brown powder. The second and third bands, which were both orange, gave respectively [MoMn(µ-C₅H₄PPh₂)(CO)₆(PPh₂CH=CH₂)] 3c (0.106 g, 40%) and $[MoMn(\mu-C_5H_4PPh_2)(CO)_5(PPh_2CH=$ $(CH_2)_2$ 4b (0.015 g, 5%) both as orange powders. Complex 3c (Found: C, 55.9; H, 3.6; P, 7.6. C₃₇H₂₇MnMoO₆P₂ requires C, 56.9; H, 3.5; P, 7.9%). FAB mass spectrum: m/z 780 (M^+), and $M^+ - n$ (CO) (n = 1-4). NMR: ¹³C (CDCl₃, 298 K), δ 234.9 [d, J(PC) 23.0, Mo(CO)₂], 137.3 [d, J(PC) 45.8, PCH=CH₂], 134.8 [d, J(PC) 43.2, ipso-Ph], 134.7 [d, J(PC) 39.9, ipso-Ph], 132.8 [d, J(PC) 10.1, o-Ph], 131.6 [d, J(PC) 12.4, o-Ph], 131.0 (s, p-Ph), 130.2 (s, PCH=CH₂), 129.9 (s, p-Ph), 128.9 [d, J(PC) 10.5, m-Ph], 128.3 [d, J(PC) 9.6, m-Ph], 91.8 [d, J(PC) 6.4, C_5H_4P , C^2 or C^3], 86.3 [d, J(PC) 10.4, C_5H_4P C^2 or C^3] and 57.1 [d, J(PC) 52.4 Hz, C₅H₄P, C¹]; ³¹P (CDCl₃, ¹H-gated decoupled, 298 K), $\delta -73.0$ (s, PPh₂CH=CH₂), -79 (br, -PPh₂C₅H₄); ³¹P (CD₂Cl₂, ¹H-gated decoupled, 190 K), δ 70.5 (s, PPh₂CH=CH₂, isomer A), -72.2 (s, PPh₂CH=CH₂, isomer B) and -77.6 (br, s, PPh₂C₅H₄). Complex 4b. Mass spectrum: m/z 936 $(M^+ - CO)$, $M^+ - n$ (CO) (n = 1-5). Complex 6 (Found: C, 57.3; H, 3.7; P, 8.2. C₃₆H₂₇MnMoO₅P₂ requires C, 57.5; H, 3.6; P, 8.2%). NMR: ¹³C (CDCl₃, 298 K), δ 229.1 [s, Mo(CO)], 223.6 [s, Mo(CO)], 144.6 [d, J(PC) 19.6, ipso-Ph], 138.1 [d, J(PC) 44.6, ipso-Ph], 136.7 [d, J(PC) 30, ipso-Ph], 134.3 [d, J(PC) 37.3, ipso-Ph], 133-128 (m, Ph), 91.5 $[d, J(PC) 10.6, C_5H_4P, C^2 \text{ or } C^3], 84.8 [br, s, C_5H_4P, C^2 \text{ or } C^3],$ 81.4 [br s, C₅H₄P, C² or C³], 77.8 [d, J(PC) 8.6, C₅H₄P, C² or C³], 54.2 [d, J(PC) 47.5, C₅H₄P, C¹], 33.6 [d, J(PC) 12.9, PCH=CH₂] and 19.8 [d, J(PC), 42.2 Hz, PCH=CH₂]; ³¹P (CDCl₃, ¹H-gated decoupled, 298 K), $\delta - 71.4$ (br, s, PPh₂C₅-H₄) and -92.3 (br s, PPh₂CH=CH₂); ³¹P (CD₂Cl₂, ¹H-gated decoupled, 225 K), $\delta - 71.7$ (br, s) and -92.5 (br, s).

(f) With PPh₂Et. (i) The reaction was carried out as in (a) above using 1 (0.051 g, 0.086 mmol) and PPh₂Et (0.050 cm³, 0.25 mmol) in hexane-toluene (5:1) (30 cm³) and refluxing at 353 K for 16 h. The residue was purified by TLC eluting with CH₂Cl₂-hexane (3:7) to give two orange bands from which

unreacted 1 (0.005 g, 10%) and $[MoMn(\mu-C_5H_4PPh_2)(CO)_6-(PPhEt_2)]$ 2e (0.032 g, 48%) were obtained. Complex 2e (Found: C, 55.5; H, 3.7. $C_{37}H_{29}MnMoO_6P_2$ requires C, 56.8; H, 3.7%).

(*ii*) The reaction was carried out as in (*a*) above using 1 (0.050 g, 0.084 mmol) and PPh₂Et (0.016 cm³, 0.084 mmol) in toluene (20 cm³) and refluxing at 383 K for 22 h. The residue was purified by TLC eluting with CH₂Cl₂-hexane (1:3) to give two orange bands from which unreacted 1 (0.011 g, 22%) and a 2:1 mixture (as judged by ¹H NMR spectroscopy) of [MoMn(μ -C₅H₄PPh₂)(CO)₆(PPh₂Et)] **2e** and **3b**, substituted respectively on the manganese and molybdenum atoms (0.015 g, 23%), was obtained.

(g) With $P(OMe)_3$. (i) The reaction was carried out as in (a) using 1 (0.200 g, 0.336 mmol) and P(OMe)₃ (0.040 cm³, 0.339 mmol) in hexane (40 cm³) and refluxing at 343 K for 3 d. After cooling, the solvent was removed by bubbling nitrogen through the reaction mixture and the residue was then purified by TLC using CH₂Cl₂-hexane (1:4) as eluent. The two orange bands obtained were unreacted 1 (0.040 g, 20%) and [MoMn(µ- $C_5H_4PPh_2(CO)_6[P(OMe)_3]$ 2f (0.110 g, 34%). Complex 2f (Found: C, 44.7; H, 3.0; P, 8.7. $C_{26}H_{23}MMMOO_9P_2$ requires C, 45.1; H, 3.3; P, 9.0%). Mass spectrum: m/z 692 (M^+), and $M^+ - n$ (CO) (n = 1-3). NMR: ¹³C (CDCl₃, 298 K), isomer A, δ 233.8 [s, Mo(CO)], 227.9 [s, Mo(CO)₂], 218 [br, Mn(CO)₃], 135.2 [d, J(PC) 39.6, ipso-Ph], 131.5 [d, J(PC) 11.9, o-Ph], 128.8 [d, J(PC) 10.2, *m*-Ph], 130.9 (s, *p*-Ph), 88 (m, C₅H₄P, \vec{C}^2 and C³), 59.0 [d, J(PC) 48.1, C₅H₄P, C¹] and 53.0 [d, J(PC) 7.8 Hz, $P(OMe)_3$]; isomer B, δ 227.2 [s, $Mo(CO)_2$], 218 [br, Mn(CO)₃], 134.2 [d, J(PC) 37.8, ipso-Ph], 132.2 [d, J(PC) 12.1, o-Ph], 130.7 (s, p-Ph), 128.5 [d, J(PC) 10.0, m-Ph], 88 (m, C₅H₄P, C² and C³), 55 [d, J(PC) 40, C₅H₄P, C¹] and 52.7 [d, J(PC) 6.3 Hz, P(OMe)₃]. ¹³C (CD₂Cl₂, 218 K), isomer A, δ 233.7 [s, Mo(CO)], 227.7 [s, Mo(CO)₂], 217 [br, Mn(CO)₃]; isomer B, δ 231.7 [s, Mo(CO)], 227.2 [s, Mo(CO)₂], 217 [br, Mn(CO)₃]; ³¹P (CDCl₃, ¹H-gated decoupled, 298 K), isomer A, δ -73.5 (s, PPh₂C₅H₄) and 40.8 [br, s, P(OMe)₃]; isomer B, $\delta - 85.7$ (s, PPh₂C₅H₄) and 57.1 [br, s, P(OMe)₃].

(ii) The reaction was carried out as in (a) using 1 (0.200 g, 0.336 mmol) and P(OMe)₃ (0.100 cm³, 0.848 mmol) in toluene (70 cm³) and refluxing at 383 K for 40 h. After cooling, the solvent was removed by bubbling nitrogen through the reaction mixture and the residue was then purified by TLC using CH_2Cl_2 -hexane (3:7) as eluent. The two orange bands obtained were $[MoMn(\mu-C_5H_4PPh_2)(CO)_6{P(OMe)_3}]$ 2f (0.010 g, 6%) and $[MoMn(\mu-C_5H_4PPh_2)(CO)_5{P(OMe)_3}_2]$ 4c. Complex 4c (Found: C, 42.5; H, 4.1; P, 11.4. Calc. for C₂₈H₃₂MnMoO₁₁P₃: C, 42.6; H, 4.1, P, 11.0%). Mass spectrum: m/z 788 (M^+), and $M^+ - n$ (CO) (n = 1-5). NMR: ¹³C (CDCl₃, 298 K), isomer A, δ 234 [m, Mo(CO)₂], 222 [br, Mn(CO)₃], 136.9 [d, J(PC) 38.4, *ipso*-Ph], 131.7 [d, *J*(PC) 6.7, *o*-Ph], 130.4 (s, *p*-Ph), 128.5 (br, s, *m*-Ph), 89.1 [d, *J*(PC) 6.9, C₅H₄P, C² or C³], 86.3 [d, *J*(PC) 10.6, C₅H₄P, C² or C³], 59.4 [d, J(PC) 49.4 Hz, C₅H₄P, C¹] and 52 [m, P(OMe)₃]; isomer B, δ 234 [m, Mo(CO)₂], 222 [br, Mn(CO)₃], 135.2 [d, J(PC) 36.0, ipso-Ph], 132.9 [d, J(PC) 6.5, o-Ph], 130.4 (s, p-Ph), 128.2 (br s, m-Ph), 88.5 [d, J(PC) 6.2, $C_5H_4P, C^2 \text{ or } C^3$], 85.4 [d, J(PC) 10.0, $C_5H_4P, C^2 \text{ or } C^3$], 56.6 [d, ¹³C J(PC) 30.2 Hz, C_5H_4P , C^1] and 52 [m, P(OMe)_3]; ¹³C (CD₂Cl₂, 225 K), isomer A, δ 234.2 [d, J(PC) 26.4 Hz, Mo(CO)₂], 230 [br, Mn(CO)] and 221 [br, Mn(CO)₂]; isomer B, δ 233.7 [d, J(PC) 29.6 Hz, Mo(CO)₂], 227 [br, Mn(CO)] and 221 [br, Mn(CO)₂]; ³¹P (CDCl₃, ¹H-gated decoupled, 298 K), δ 59.4 [br s, MnP(OMe)₃, isomer B], 57.0 [s, MoP(OMe)₃, isomer A or B], 56.7 [s, MoP(OMe)₃, isomer A or B], 47.0 [br, s, MnP(OMe)₃, isomer A], -79.1 (br, s, PPh₂C₅H₄, isomer A), -82.8 (br, s, PPh₂C₅H₄, isomer B). ³¹P (CD₂Cl₂, ¹H-gated decoupled, 230 K), δ 59.4 (br, isomer B), 57.2 (s, isomer A or B), 57.1 (s, isomer A or B), 48.0 [d, J(PP) 43, isomer A], -78.1 (d, isomer A), -83.0 [d, J(PP) 43 Hz, isomer B].

(h) With PPh₃. The reaction was carried out as in (a) above using 1 (0.050 g, 0.084 mmol) and PPh₃ (0.019 g, 0.084 mmol) in

toluene (20 cm³) and refluxing at 383 K for 22 h. The residue was purified by TLC eluting with CH_2Cl_2 -hexane (1:3) to give two orange bands from which unreacted 1 (0.004 g, 8%) and [MoMn(μ -C₅H₄PPh₂)(CO)₆(PPh₃)] **3a** (0.012 g, 17%) were obtained.

(*i*) With PhCH₂NC. The reaction was carried out using 1 (0.200 g, 0.336 mmol) and PhCH₂NC (0.040 cm³, 0.328 mmol) in hexane-toluene (5:1) (40 cm³). The solution was heated to reflux at 353 K for 40 h and, after cooling, the solvent was removed under vacuum. The residue was then purified by TLC eluting with CH₂Cl₂-hexane (1:4). The two orange bands obtained with identified as unreacted 1 (0.051 g, 25%) and [MoMn(μ -C₅H₄PPh₂)(CO)₆(CNCH₂Ph)] **2g** (0.051 g, 22%) as an orange powder. Complex **2g** (Found: C, 55.0; H, 4.0; N, 2.1. C₃₁H₂₁MnNO₆P requires C, 54.3; H, 3.0; N, 2.0%). Mass spectrum: *m*/z 685 (*M*⁺), and *M*⁺ - *n* (CO) (*n* = 3–6). NMR: ¹³C (CDCl₃, 298 K), δ 232.4 [s, Mo(CO)], 228.0 [s, Mo(CO)], 225.4 [s, Mo(CO)], 217 [br, Mn(CO)₃], 167 (br, PhCH₂NC), 136–127 (m, Ph), 88.6 [d, *J*(PC) 6.2, C₃H₄P, C² or C³], 88.5 [d, *J*(PC) 6.2, C₅H₄P, C¹] and 48.3 (s, PhCH₂NC); ³¹P (CDCl₃, ¹H-gated decoupled, 298 K), δ - 77.6 (s, PPh₂C₅H₄).

(j) With Bu'NC. The reaction was carried out using 1 (0.051 g, 0.086 mmol) and Bu'NC (0.010 cm³, 0.080 mmol) in toluene (20 cm³). The solution was heated to reflux at 383 K for 16 h and, after cooling, the solvent was removed under vacuum. The residue was then purified by TLC eluting with CH₂Cl₂-hexane (1:4). The two orange bands obtained were identified as unreacted 1 (0.010 g, 20%) and [MoMn(μ -C₅H₄PPh₂)(CO)₆-(CNBu')] **2h** (0.020 g, 37%) as an orange powder. Complex **2h** (Found: C, 52.8; H, 4.4; N, 2.0. C₂₈H₂₃MnMoNO₆P requires C, 51.6; H, 3.6; N, 2.2%). Mass spectrum: *m*/*z* 651 (*M*⁺), and *M*⁺ - *n* (CO) (*n* = 3-6).

Reaction of $[MoMn(\mu-C_5H_4PPh_2)(CO)_6(PPh_2Me)]$ 2b with Excess of PPh₂Me.—The reaction was carried out using 2b (0.150 g, 0.195 mmol) and PPh₂Me (0.070 cm³, 0.377 mmol) in toluene (30 cm³) and refluxing at 383 K for 16 h. The residue was purified by TLC eluting with CH₂Cl₂-hexane (3:7). Two orange bands were obtained which were identified as $[MoMn-(\mu-C_5H_4PPh_2)(CO)_6(PPh_2Me)]$ 2b (0.013 g, 9%) and $[MoMn(\mu-C_5H_4PPh_2)(CO)_5(PPh_2Me)_2]$ 4a (0.095 g, 52%) as an orange powder.

Thermolysis of $[MoMn(\mu-C_5H_4PPh_2)(CO)_6(PPh_2H)]$ 2a.— A solution of 2a (0.200 g, 0.265 mmol) in toluene (50 cm³) was heated to reflux at 283 K for 3 h. After cooling the solvent was removed in vacuum and the residue was purified by TLC using CH₂Cl₂-hexane (1:2) as the eluent. A single orange band was obtained which yielded $[MoMn(\mu-C_5H_4PPh_2)(\mu-H)(\mu-PPh_2)-(CO)_5]$ 5a (0.090 g, 47%) as an orange powder.

Addition Reactions of $[MoMn(\mu-C_5H_4PPh_2)(\mu-PPh_2CH=CH_2)(CO)_5]$ 6.—(a) With CO. Carbon monoxide was bubbled vigorously through a solution of 6 (0.015 g, 0.020 mmol) in toluene (30 cm³) at room temperature for 5 min after which the rate of gas flow was reduced. The brown solution was then heated to reflux at 383 K for 3 h at which point the solution had changed to orange. After cooling the solvent was removed under vacuum and the residue purified by TLC using CH_2Cl_2 -hexane (1:2) as eluent. A single orange band was obtained which yielded $[MoMn(\mu-C_5H_4PPh_2)(CO)_6(PPh_2CH=CH_2)]$ 3c (0.005 g, 32%) as an orange powder.

(b) With P(OMe)₃. Complex **6** (0.040 g, 0.053 mmol) was dissolved in toluene (30 cm³) and P(OMe)₃ (0.01 cm³, 0.085 mmol) was added. The reaction mixture was then heated to reflux at 383 K for 1 h. After cooling the solvent was removed under vacuum and the residue purified by TLC using CH₂Cl₂-hexane (1:1) as eluent. Two orange bands were obtained which were identified as $[MoMn(\mu-C_5H_4PPh_2)(PPh_2CH=CH_2)]$

 $(CO)_{5}\{P(OMe)_{3}\}$ 7 (0.016 g, 34%) as an orange powder and $[MoMn(\mu-C_{5}H_{4}PPh_{2})(CO)_{5}\{P(OMe)_{3}\}_{2}]$ 4c (0.010 g, 24%). Complex 7. FAB mass spectrum: m/z 876 (M^{+}). NMR: ³¹P (CDCl₃, ¹H-gated decoupled, 298 K), isomer A, δ -71.7 (s, MoPPh₂CH=CH₂), -70.5 (br s, PPh₂C₅H₄) and 47.1 [br s, MnP(OMe)_{3}]; isomer B, δ -71.7 (s, MoPPh₂CH=CH₂), -82.3 (br s, PPh₂C₅H₄) and 59.4 [br, s, MnP(OMe)_{3}].

(c) With H₂. Hydrogen gas was bubbled vigorously through a solution of **6** (0.065 g, 0.086 mmol) in toluene (40 cm³) at room temperature for 5 min after which the rate of gas flow was reduced. The brown solution was then heated to reflux at 383 K for 2 h at which point the solution had changed to orange. After cooling the solvent was removed under vacuum and the residue purified by TLC using CH₂Cl₂-hexane (3:7) as eluent. A single orange band was obtained which yielded [MoMn(μ -C₅H₄-PPh₂)(CO)₆(PPh₂Et)] **3b** (0.049 g, 72%) as an orange powder. Complex **3b** (Found: C, 56.0; H, 3.6. C₃₇H₂₉MnMoO₆P₂ requires C, 56.8; H, 3.7%). NMR: ³¹P (CDCl₃, ¹H-gated decoupled, 298 K), δ -75.0 (s, PPh₂Et) and -70 (br s, PPh₂C₅H₄).

Reaction of $[MoMn(\mu-C_5H_4PPh_2)(CO)_6(PPh_2CH=CH_2)]$ 3c with H₂.—Hydrogen gas was bubbled vigorously through a solution of 3c (0.030 g, 0.038 mmol) in toluene (40 cm³) at room temperature for 5 min, after which the rate of gas flow was reduced. The brown solution was then heated to reflux at 383 K for 0.5 h at which point infrared monitoring showed the appearance of peaks corresponding to the formation of 6 and the disappearance of peaks corresponding to 3c. After a further 11.5 h the peaks due to 6 had disappeared and been replaced by peaks due to 3b. After cooling the solvent was removed under vacuum and the residue purified by TLC using CH_2Cl_2 —hexane (2:3) as eluent. A single orange band was obtained which yielded 3b (0.013 g, 43%) as an orange powder.

Reaction of $[MoMn(\mu-C_5H_4PPh_2)(CO)_5(PPh_2Me)]$ 2b with $P(OMe)_3$.—A solution of 2b (0.080 g, 0.039 mmol) in toluene (30 cm³) was treated with $P(OMe)_3$ (0.005 cm³, 0.042 mmol) and the reaction mixture was refluxed for 2 h at 383 K. At this point infrared monitoring showed that no further change was taking place. After cooling, the solvent was removed under vacuum and the residue purified by TLC using CH₂Cl₂-hexane (1:4) as eluent. A single orange band was obtained which yielded $[MoMn(\mu-C_5H_4PPh_2)(CO)_6{P(OMe)_3}]$ 2f (0.016 g, 59%).

Crystal-structure Determination of $[MoMn(\mu-C_sH_4PPh_2)-(\mu-H)(\mu-PPh_2)(CO)_5]$ 5a.—Suitable orange blocked-shaped crystals of 5a were grown by slow evaporation of a CH_2Cl_2 -hexane solution.

Crystal data. $C_{34}H_{25}MnMoO_5P_2$, M = 726.39, monoclinic, space group $P2_1/c$ (no. 14), a = 10.045(5), b = 17.926(9), c = 18.029(9) Å, $\beta = 103.65(2)^\circ$, U = 3155(3) Å³ (by least-squares refinement on diffractometer angles from 50 automatically centred reflections in the range $20 < \theta < 25^\circ$, $\lambda = 0.710$ 73 Å), Z = 4, $D_c = 1.529$ g cm⁻³; D_m not measured, F(000) = 1464. Orange block, crystal dimensions (distance from faces to centre): $0.105(010, 010) \times 0.228(100, 100) \times 0.228$ (001, 001) mm, μ (Mo-K α) = 9.11 cm⁻¹.

Data collection and processing. Stoe four-circle diffractometer, 30 step $\omega \cdot \theta$ scan mode, ω step width 0.03°, step time 0.5–2.0 s per step, graphite-monochromated, Mo-K α radiation; 6953 reflections measured (5.0 < 2 θ < 50.0°, + h, +k, ±l), on-line profile fitting, 5335 unique [$R_{int} = 0.018$ after numerical absorption correction (transmission factors, minimum, maximum, 0.667, 0.770)], 4851 with $F > 4\sigma(F)$. Three standard reflections showed no significant variations in intensity.

Structure analysis and refinement. Centrosymmetric direct methods (Mo, Mn and P atoms) followed by Fourier difference techniques (for remaining non-hydrogen atoms). Blocked fullmatrix least squares with anisotropic displacement parameters

Table 4 Atomic coordinates (\times 10⁴) for [MoMn(μ -C₅H₄PPh₂)(μ -H)-(μ -PPh₂)(CO)₅] 5a

Atom	x	у	Ż
Mo(1)	3 723(1)	3 320(1)	2 059(1)
Mn(1)	6 014(1)	2 906(1)	1 327(1)
H(1)	4 728(28)	3 560(15)	1 368(16)
P(1)	7 125(1)	3 289(1)	2 567(1)
P(2)	4 512(1)	2 113(1)	1 695(1)
Cíú	2 624(3)	3 881(2)	1 211(2)
O (1)	1 967(3)	4 235(2)	724(2)
C(2)	1 990(3)	2 765(2)	1 849(2)
O(2)	959(3)	2 451(2)	1 724(2)
C(3)	7 206(3)	2 204(2)	1 195(2)
O(3)	7 896(3)	1 727(2)	1 075(2)
C(4)	5 001(3)	2 782(2)	366(2)
O(4)	4 382(3)	2 744(2)	-253(1)
C(5)	6 713(3)	3 713(2)	937(2)
O(5)	7 069(3)	4 205(2)	630(1)
C(11)	4 905(3)	1 459(2)	2 499(2)
C(12)	6 236(3)	1 223(2)	2 822(2)
C(13)	6 488(5)	782(2)	3 472(2)
C(14)	5 420(5)	565(2)	3 792(2)
C(15)	4 105(5)	781(2)	3 466(2)
C(16)	3 840(4)	1 230(2)	2 821(2)
C(21)	8 245(3)	4 107(2)	2 667(2)
C(22)	9 178(3)	4 171(2)	2 208(2)
C(23)	10 069(3)	4 777(2)	2 299(2)
C(24)	10 056(4)	5 307(2)	2 841(2)
C(25)	9 154(4)	5 243(2)	3 310(2)
C(26)	8 256(3)	4 642(2)	3 232(2)
C(31)	8 206(3)	2 693(2)	3 292(2)
C(32)	9 203(3)	2 273(2)	3 066(2)
C(33)	10 096(4)	1 835(2)	3 594(3)
C(34)	9 975(5)	1 807(2)	4 342(3)
C(35)	9 019(4)	2 237(2)	4 576(2)
C(36)	8 129(3)	2 686(2)	4 054(2)
C(41)	3 545(3)	1 499(2)	945(2)
C(42)	4 054(3)	789(2)	864(2)
C(43)	3 396(4)	317(2)	285(2)
C(44)	2 188(4)	546(3)	-215(2)
C(45)	1 679(4)	1 239(3)	-147(2)
C(46)	2 355(3)	1 724(2)	427(2)
C(51)	5 711(3)	3 587(2)	2 969(1)
C(52)	4 966(3)	4 267(2)	2775(2)
C(53)	3 /28(3)	4 203(2)	3 021(2)
C(54)	3 690(3)	3 493(2) 2 100(2)	3 352(2)
C(55)	4 912(3)	3 109(2)	3 331(2)

for all non-hydrogen atoms. The hydride was directly located in the Fourier difference map and refined freely with an isotropic thermal parameter, and phenyl and cyclopentadienyl hydrogen atoms were placed in idealised positions (C-H 1.08 Å) and allowed to ride on the relevant carbon atom; the two types of hydrogen atoms were each refined with a common isotropic thermal parameter. The weighting scheme $1.765/[\sigma^2(F) + 0.005 |F^2|]$ gave satisfactory agreement analyses. The converted residuals were R = 0.034 and R' = 0.038. A final Fourier difference map showed no residual electron density peaks above $0.5 \text{ e } \text{Å}^{-3}$. Final atomic coordinates are presented in Table 4. For the solution and refinement of the structure neutral atom scattering factors were taken from ref. 25. All computations were carried out on the University of Cambridge IBM 3081 computer using SHELX 76.²⁶

Crystal-structure Determination of $[MoMn(\mu-C_5H_4PPh_2)-(CO)_6(PPh_2Et)]$ **3b**.—The X-ray diffraction measurements were made on a red prismatic crystal (0.64 × 0.52 × 0.32 mm), with graphite monochromated Mo-K α radiation and an Enraf-Nonius CAD4 diffractometer.

Crystal data. $C_{37}H_{29}MnMoO_6P_2$, M = 782.5, monoclinic, space group $P2_1/c$ (no. 14), a = 14.674(2), b = 13.545(1), c = 17.256(1) Å, $\beta = 96.468(8)^{\circ}$ (by a least-squares treatment of

Table 5 Fractional atomic coordinates for $[MoMn(\mu-C_5H_4PPh_2)-(CO)_6(PPh_2Et)]$ 3b

Atom	X	у	z
Мо	-0.24109(2)	0.056 93(2)	0.081 25(2)
Mn	-0.17107(3)	0.213 96(4)	0.202 08(3)
P (1)	-0.23785(6)	-0.11807(7)	0.047 74(5)
P(2)	0.266 85(6)	0.301 69(7)	0.115 49(5)
O(1)	-0.0308(2)	0.030 9(2)	0.082 1(2)
O(2)	-0.2666(2)	-0.0422(2)	0.2405(1)
O(3)	-0.1188(2)	0.3701(3)	0.316 8(2)
O(4)	-0.0561(2)	0.059 7(2)	0.286 9(2)
O(5)	-0.3325(2)	0.167 6(2)	0.2855(2)
O(6)	-0.0197(2)	0.2559(3)	0.105 3(2)
CÌÌ	-0.1081(3)	0.040 5(3)	0.0839(2)
C(2)	-0.2548(2)	-0.0031(3)	0.1827(2)
C(3)	-0.1379(3)	0.310 2(3)	0.270 6(3)
C(4)	-0.1016(3)	0.117 6(3)	0.2535(2)
C(5)	-0.2705(3)	0.1832(3)	0.2515(2)
CíÓ	-0.0780(3)	0.2384(3)	0.141 9(3)
C(7)	-0.1321(3)	-0.1880(3)	0.078 8(3)
C(8)	-0.109 1(1)	-0.193 8(4)	0.166 9(3)
C(9)	-0.3822(2)	-0.1996(3)	0.0774(2)
C(10)	-0.3243(3)	-0.3013(3)	0.065 6(2)
C(11)	-0.3950(3)	-0.3617(3)	0.8422(2)
C(12)	-0.4703(3)	-0.3221(3)	0.113 8(2)
C(13)	-0.4756(3)	-0.2228(3)	0.1251(2)
C(14)	-0.4046(2)	-0.1617(3)	0.1073(2)
C(15)	-0.2507(2)	-0.1392(3)	-0.0576(2)
C(16)	-0.1790(3)	-0.1136(4)	-0.0997(3)
C(17)	-0.1879(4)	-0.1233(4)	-0.1797(3)
C(18)	-0.2692(4)	-0.1584(4)	-0.2179(3)
C(19)	-0.3406(4)	-0.1843(4)	-0.1781(3)
C(20)	-0.331 7(3)	-0.174 1(3)	-0.0970(2)
C(21)	-0.220 6(2)	0.398 8(3)	0.058 0(2)
C(22)	-0.146 1(3)	0.455 0(3)	0.090 3(2)
C(23)	-0.109 0(3)	0.527 9(3)	0.047 1(3)
C(24)	-0.1460(3)	0.545 5(3)	-0.0289(3)
C(25)	-0.221 0(3)	0.492 6(3)	-0.0611(2)
C(26)	-0.258 1(3)	0.419 9(3)	-0.0184(2)
C(27)	-0.368 5(2)	0.358 4(3)	0.147 2(2)
C(28)	-0.361 4(3)	0.406 2(3)	0.218 9(2)
C(29)	-0.438 5(3)	0.452 7(3)	0.244 1(3)
C(30)	-0.520 5(3)	0.499 8(3)	0.198 7(3)
C(31)	-0.528 4(3)	0.404 2(3)	0.126 9(3)
C(32)	-0.452 8(3)	0.358 8(3)	0.101 0(2)
C(33)	-0.309 1(2)	0.211 2(3)	0.044 1(2)
C(34)	-0.380 6(2)	0.140 5(3)	0.052 2(2)
C(35)	-0.375 0(3)	0.067 1(3)	-0.004 2(2)
C(36)	-0.3006(3)	0.089 6(3)	-0.047 2(2)
C(37)	-0.260 5(3)	0.177 8(3)	-0.017 2(2)

diffractometric angles for 25 reflections with 14.0 $\leq \theta \leq 17.2^{\circ}$, $\lambda = 0.710$ 69 Å), U = 3408.0(6) Å³, Z = 4, $D_c = 1.525$ g cm⁻³, F(000) = 1584, μ (Mo-Kz) = 8.51 cm⁻¹.

Data collection and processing. Intensities of 6580 reflections with $4 < 2\theta < 50.0^{\circ}$ were measured by θ -2 θ scans of 0.70 + 0.35 tan θ)[°] in θ . The scan speeds were adjusted to give $\sigma(I)/I < 0.02$, subject to a time limit of 90 s. The intensities of two standard reflections remeasured every 2 h showed only random fluctuations not exceeding 3.3% of their mean values. Corrections for Lorentz, polarization and absorption effects²⁷ were introduced (transmission factors on F 0.78-1.44) and the structure amplitudes of 1187 symmetry related reflections were averaged to give 592 independent ones and R (internal) of 0.020. Of 5985 unique reflections measured, only 4385 $[I > 3\sigma(I)]$ were used in the structure analysis.

Structure analysis. The crystal structure was determined by the heavy-atom method. The positions of the molybdenum and manganese atoms were obtained from a Patterson function and those of the remaining non-hydrogen atoms from the subsequent difference electron density maps. The hydrogen atoms were located in a low angle difference map, but they were included in the structural model in calculated positions (C-H 1.0 Å) and allowed to ride on the carbon atoms to which they are bonded; their individual isotropic displacement parameters were refined. All non-hydrogen atoms were assigned anisotropic displacement parameters. The structure was refined by block diagonal least squares $[w = 1/\sigma^2(|F_o|)]$ to convergence at R = 0.032 and R' = 0.042, using neutral scattering factors taken from ref. 25. The highest residual electron density peak in the final Fourier difference map was $0.44 \text{ e } \text{Å}^{-3}$. The final atomic coordinates are shown in Table 5. All calculations were carried out using the GX program package.²⁸

Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom coordinates, thermal parameters and remaining bond lengths and angles.

Acknowledgements

We thank the SERC for support.

References

- 1 G. L. Geoffroy and D. A. Roberts, in *Comprehensive Organometallic Chemistry*, eds. G. Wilkinson, F. G. A. Stone and E. W. Abel, Pergamon Press, Oxford, 1982.
- 2 M. I. Bruce, J. Organomet. Chem., 1983, 242, 147; 1985, 283, 339.
- 3 E. Sappa, A. Tiripicchio and P. Braunstein, *Coord. Chem. Rev.*, 1985, 65, 219.
- 4 R. M. Bullock and C. P. Casey, Acc. Chem. Res., 1986, 20, 167.
- 5 C. P. Casey, F. Nief and R. M. Bullock, J. Am. Chem. Soc., 1983, 105, 7574; C. P. Casey and R. M. Bullock, J. Organomet. Chem., 1983, 251, 245.
- 6 G. K. Anderson and M. Lin, Organometallics, 1988, 7, 2285.
- 7 A. D. Horton, M. J. Mays and P. R. Raithby, J. Chem. Soc., Dalton
- Trans., 1987, 1557. 8 C. P. Casey, R. M. Bullock, W. C. Fultz and A. L. Rheingold, Organometallics, 1982, 1, 1591.
- 9 T. J. Duckworth, Ph.D. Thesis, University of Cambridge, 1988.
- 10 B. P. Yir'yukov, T. Yu. Struckhov, K. N. Anisimov, N. E. Kolobova and A. S. Beschastnov, *Chem. Commun.*, 1968, 667.
- F. C. Wilson and D. P. Shoemaker, J. Chem. Phys., 1957, 27, 809;
 R. D. Adams, D. M. Collins and F. A. Cotton, Inorg. Chem., 1974, 13, 1086.
- 12 M. R. Churchill and J. P. Fennessey, Inorg. Chem., 1968, 7, 954.
- 13 M. A. Busk, A. D. U. Hardy, Lj. Manojlović-Muir and G. A. Sim, J. Chem. Soc. A, 1971, 1003.
- 14 L. J. Todd, J. R. Wilkinson, J. P. Hickey, D. L. Beach and K. W. Barnett, J. Organomet. Chem., 1978, 154, 151.
- 15 H. Günther, *NMR Spectroscopy*, translated by R. W. Gleason, Wiley, Chichester, 1980, p. 77 and following.
- 16 C. P. Casey and F. Nief, Organometallics, 1985, 4, 1218.
- 17 K. Henrick, J. A. Iggo, A. C. Kemball, M. J. Mays and P. R. Raithby, J. Chem. Soc., Dalton Trans., 1987, 2669.
- 18 H.-J. Langenbach and H. Vahrenkamp, Chem. Ber., 1979, 112, 3390, 3773.
- 19 R. A. Jones, J. G. Lasch, N. C. Norman, A. L. Stuart, T. C. Wright and B. R. Whittlesey, *Organometallics*, 1984, 3, 114; D. J. Chandler, R. A. Jones, A. L. Stuart and T. C. Wright, *Organometallics*, 1984, 3, 1830.
- 20 T. Adatia, K. Henrick, A. D. Horton, M. J. Mays and M. McPartlin, J. Chem. Soc., Chem. Commun., 1986, 1206; A. D. Horton, M. J. Mays and P. R. Raithby, J. Chem. Soc., Chem. Commun., 1985, 247; A. D. Horton, A. C. Kemball and M. J. Mays, J. Chem. Soc., Dalton Trans., 1988, 2953.
- 21 C. A. Tolman, Chem. Rev., 1977, 313.
- 22 M. L. Zeigler, H. Haas and R. K. Sheline, Chem. Ber., 1965, 98, 2454.
- 23 A. J. M. Caffyn, M. J. Mays and P. R. Raithby, J. Chem. Soc., Dalton Trans., 1991, 2349.
- 24 D. P. Tate, W. R. Knipple and J. M. Augl, Inorg. Chem., 1962, 1, 433. 25 International Tables for X-Ray Crystallography, Kynoch Press,
- Birmingham, 1974, vol. 4. 26 G. M. Sheldrick, SHELX 76, Crystal Structure Solving Package,
- University of Cambridge, 1976.
- 27 N. Walker and D. Stuart, Acta Crystallogr., Sect. A, 1983, 39, 158.
- 28 P. R. Mallinson and K. W. Muir, J. Appl. Crystallogr., 1985, 18, 51.

Received 3rd April 1992; Paper 2/01777F