Synthesis and Site-selective Protonation of MoPt and WPt Bimetallic Complexes \dagger

John Powell,* Jeffery F. Sawyer and Stuart J. Smith
Lash Miller Chemical Laboratories, University of Toronto, Toronto, Ontario M5S 1A1, Canada

Abstract

The reaction of $\left[M(c p)(C O)_{3}\left(P P h_{2} H\right)\right] P F_{6} 1\left(M=M o\right.$ or W, $\left.\mathbf{c p}=\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ with $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ proceeds rapidly with a $1: 2(\mathrm{M}: \mathrm{Pt})$ stoichiometry to give $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{M}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right] 4$ and $\left[\mathrm{PtH}\left(\mathrm{PPh}_{3}\right)_{3}\right] \mathrm{PF}_{6} 5$. However, using an initial $1: 1$ stoichiometry the final product is $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{M}(\mu-\mathrm{H})\right.$ -$\left.\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{PF}_{6} 8$. The mechanisms of these reactions are shown to involve deprotonation of 1 to give $\left[(\mathrm{OC})_{3} \mathrm{M}(\mathrm{cp})\left(\mathrm{PPh}_{2}\right)\right] 2$ followed by reaction of the latter with $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and subsequent transfer of CO from M to Pt to give 4. Protonation of 4 with HBF_{4} is metal (M) dependent and proceeds to give $\left[(O C)_{2}(c p) \mathrm{Mo}(\mu-\mathrm{H})\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right] \mathrm{BF}_{4} 12 \mathrm{a}$ with $\mathrm{M}=\mathrm{Mo}$ but for $\mathrm{M}=\mathrm{W}$ the major product is $\left[(\mathrm{OC})_{2} \mathrm{H}(\mathrm{cp}) W\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right] \mathrm{BF}_{4} 13 \mathrm{~b}$. Variable-temperature ${ }^{1} \mathrm{H} N M R$ studies show that the terminal hydride cation of $\mathbf{1 3 b}$ is rapidly equilibrating with a small amount of the hydride-bridged isomeric cation $\left[(O C)_{2}(c p) W(\mu-H)\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]^{+}$. Complex 4 reacts with $\mathrm{PPh}_{3}\left(60^{\circ} \mathrm{C}\right)$ and 1,2 -bis(diphenylphosphino) ethane (dppe) at $20^{\circ} \mathrm{C}$ to give $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \sqrt[\mathrm{M}\left(\mu-\mathrm{PPh}_{2}\right)]{ } \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right] 9$ and [(OC) (cp) -$\stackrel{M}{\left(\mu-\mathrm{PPh}_{2}\right) P} \mathrm{t}$ (dppe)] 10. On bubbling CO through a solution of $9\left(20^{\circ} \mathrm{C}\right)$ complex 4 is rapidly regenerated. Reaction of 4 with HCl gives $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{M}(\mu-\mathrm{H})\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{PtCl}\left(\mathrm{PPh}_{3}\right)\right] 15$. The molecular structure of $\left[(\mathrm{OC})_{2}(\mathrm{cp}) W\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right] \mathbf{4 b}$ has been determined by single-crystal X -ray diffraction.

Oxidative addition of the $\mathrm{P}-\mathrm{H}$ bond of a secondary phosphine complex to platinum(0) complexes provides easy access to singly bridging μ-phosphido heterobimetallic hydrides of the type $\mathrm{L}_{x} \mathrm{M}\left(\mu-\mathrm{PR}_{2}\right) \mathrm{PtHL}_{2} .{ }^{1-7}$ These complexes contain an 18 electron metal centre held by a $\mu-\mathrm{PR}_{2}$ group in close proximity to a 16-electron planar platinum(II) hydride. Because of the available stereochemical signposting (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{31} \mathrm{P},{ }^{195} \mathrm{Pt}$ NMR spectroscopy, etc.) these systems are particularly suited for the study of cluster-assembly and -rearrangement processes ${ }^{8.9}$ and for the study of ligand reactivities and 'cooperativity' effects in multimetallic systems. As an example of the latter the marked labilization (ease of displacement) of CO ligands on the 18 -electron metal centre, M , in the complexes $\left[(\mathrm{OC})_{5} \mathrm{M}\left(\mu-\mathrm{PR}_{2}\right) \mathrm{PtH}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ vis-à-vis monometallic analogues has been shown to be platinum assisted and involves a transfer of a CO ligand from M to Pt prior to displacement from the molecule. ${ }^{1}$ The situation is similar, though slightly more complex, in the cationic RePt dimer $[(\mathrm{ON})(\mathrm{OC})(\mathrm{cp}) \operatorname{Re}(\mu-$ $\left.\left.\mathrm{PR}_{2}\right) \mathrm{PtH}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{BPh}_{4}\left(\mathrm{cp}=\eta^{5}\right.$-cyclopentadienyl; $\mathbf{R}=\mathrm{Ph}$ or $\mathrm{C}_{6} \mathrm{H}_{11}$). ${ }^{2}$ Here loss of CO is base promoted and deprotonation (loss of the hydride ligand from the Pt as H^{+}) occurs prior to transfer of CO to Pt . In this paper we report an extension of these studies to the bimetallic complexes $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{M}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]$ derived from the reaction of $\left[\mathrm{M}(\mathrm{cp})(\mathrm{CO})_{3}\left(\mathrm{PPh}_{2} \mathrm{H}\right)\right] \mathrm{PF}_{6}$ with $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$. The protonation of the complexes $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{M}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}\right.$ $(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)$] is shown to exhibit an unusual M -dependent site selectivity, occurring at the metal-metal bond to give a bridged hydride cation for $\mathbf{M}=\mathbf{M o}$ whilst for $\mathbf{M}=W$ protonation occurs at tungsten to give a terminal hydrido cation. Some of this work has been the subject of a preliminary communication ${ }^{10}$ and Braunstein and co-workers ${ }^{11}$ have synthesised $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{M}\left\{\mu-\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2}\right\} \mathrm{Pt}(\mathrm{CO})\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2} \mathrm{H}\right\}\right]$ [structural analogues of 4] from the reaction of trans$\left[\mathrm{Pt}\left\{\mathrm{M}(\mathrm{cp})(\mathrm{CO})_{3}\right\}_{2}(\mathrm{PhCN})_{2}\right]$ with 2 equivalents of $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{1}\right)_{2} \mathrm{H}$.

[^0]
Results and Discussion

The cationic complexes $\left[\mathrm{M}(\mathrm{cp})(\mathrm{CO})_{3}\left(\mathrm{PPh}_{2} \mathrm{H}\right)\right] \mathrm{PF}_{6}(\mathrm{M}=\mathrm{Mo}$ 1a or W 1b) were prepared in $40-50 \%$ yields from [M(cp)$\left.(\mathrm{CO})_{3} \mathrm{Cl}\right]^{12}$ [equation (1)] following the general procedure of

$$
\begin{gather*}
{\left[\mathrm{M}(\mathrm{cp})(\mathrm{CO})_{3}\left(\mathrm{PPh}_{2} \mathrm{H}\right)\right] \mathrm{PF}_{6}} \tag{1}\\
\text { 1a } \mathrm{M}=\mathbf{M o} \\
\mathbf{1 b} \mathbf{M}=\mathrm{W}
\end{gather*}
$$

Triechel et al. ${ }^{13}$ whose previously reported preparation of $\mathbf{1 a}$ resulted in a 22% yield. Spectroscopic data for 1 (Table 1) are fully consistent with the given structure and confirm the presence of a co-ordinated secondary phosphine [e.g. for $\mathbf{1 a}$, $\delta(\mathrm{PH}) 7.46(1: 1$ doublet $\left.),{ }^{1} J\left({ }^{31} \mathrm{P}-{ }^{1} \mathrm{H}\right) 408 \mathrm{~Hz}\right]$. The $\mathrm{P}-\mathrm{H}$ bond of 1 is sufficiently acidic to undergo complete H / D exchange with $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$ over a period of $24-36 \mathrm{~h}\left\{20^{\circ} \mathrm{C},{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\right.$ monitoring; data for $\left[\mathrm{W}(\mathrm{cp})(\mathrm{CO})_{3}\left(\mathrm{PPh}_{2} \mathrm{D}\right)\right] \mathrm{PF}_{6}$ given in Table $1\}$. The complexes 1 are readily deprotonated by the addition of proton sponge [1,8-bis(dimethylamino)naphthalene] in CH_{2} Cl_{2} solution (nitrogen atmosphere) to give the diphenylphosphide complexes $\left[\mathrm{M}(\mathrm{cp})(\mathrm{CO})_{3}\left(\mathrm{PPh}_{2}\right)\right] 2$ [equation (2)].

The complexes 2 have been previously prepared from the reaction of $\mathrm{PPh}_{2} \mathrm{Cl}$ with the anionic complexes $\mathrm{Na}[\mathrm{M}-$ $\left.(\mathrm{cp})(\mathrm{CO})_{3}\right] .{ }^{14}$ Solutions of $\left[\mathrm{M}(\mathrm{cp})(\mathrm{CO})_{3}\left(\mathrm{PPh}_{2}\right)\right]$ exhibit $v(\mathrm{CO})$ values (Table 1) that are shifted to lower wavenumber by $c a .50$ cm^{-1} relative to $\left[\mathrm{M}(\mathrm{cp})(\mathrm{CO})_{3}\left(\mathrm{PPh}_{2} \mathrm{H}\right)\right] \mathrm{PF}_{6}$ consistent with removal of the positive charge. Addition of $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ to solutions of the diphenylphosphides 2 regenerates the $v(\mathrm{CO})$ of 1. Solutions of 2 are very sensitive to oxidation reactions at the phosphorus atoms. ${ }^{14}$ When exposed to oxygen the $v(\mathrm{CO})$ IR bands of 2 disappear within minutes and are replaced by new bands assignable to the species $\left[\mathrm{M}(\mathrm{cp})(\mathrm{CO})_{3}\left\{\mathrm{P}(\mathrm{O}) \mathrm{Ph}_{2}\right\}\right] 3$ (Table 1). Although these species were not isolated, the

Table 1 Infrared and ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR data for complexes $1-3$

Complex	$v(\mathrm{CO})^{a} / \mathrm{cm}^{-1}$	$\delta(\mathrm{cp})^{\text {b }}$	$\delta(\mathrm{P}-\mathrm{H})$	$\begin{aligned} & J\left({ }^{31} \mathrm{P}-{ }^{1} \mathrm{H}\right) / \\ & \mathrm{Hz} \end{aligned}$	$\delta(\mathrm{P})$	$\begin{aligned} & J\left({ }^{183} \mathrm{~W}-{ }^{31} \mathrm{P}\right) \\ & \mathrm{Hz} \end{aligned}$
1a $\left[\mathrm{Mo}(\mathrm{cp})(\mathrm{CO})_{3}\left(\mathrm{PPh}_{2} \mathrm{H}\right)\right] \mathrm{PF}_{6}$	2063, 2003, 1975	5.72	7.46	408	10.3	
1b $\left[\mathrm{W}(\mathrm{cp})(\mathrm{CO})_{3}\left(\mathrm{PPh}_{2} \mathrm{H}\right)\right] \mathrm{PF}_{6}$	2057, 1989, 1962	5.81	7.63	417	-22.4	183
$\left[\mathrm{W}(\mathrm{cp})(\mathrm{CO})_{3}\left(\mathrm{PPh}_{2} \mathrm{D}\right)\right] \mathrm{PF}_{6}$		[$\left.{ }^{1} J\left({ }^{31} \mathrm{P}-{ }^{2} \mathrm{D}\right) 64\right]$			-24.8	181
2a $\left[\mathrm{Mo}(\mathrm{cp})(\mathrm{CO})_{3}\left(\mathrm{PPh}_{2}\right)\right]$	2009, 1926 (br)					
2b $\left[\mathrm{W}(\mathrm{cp})(\mathrm{CO})_{3}\left(\mathrm{PPh}_{2}\right)\right]$	2006, 1917 (br)					
3a $\left[\mathrm{Mo}(\mathrm{cp})(\mathrm{CO})_{3}\left\{\mathrm{P}(\mathrm{O}) \mathrm{Ph}_{2}\right\}\right]$	2033, 1963, 1942					
3b $\left[\mathrm{W}(\mathrm{cp})(\mathrm{CO})_{3}\left\{\mathrm{P}(\mathrm{O}) \mathrm{Ph}_{2}\right\}\right]$	2029, 1952, 1932					

${ }^{a}$ In $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. ${ }^{b}$ In $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution.

Fig. 1 The structure and labelling scheme for the two independent molecules of $\left[(\mathrm{OC})_{2}(\mathrm{cp}) W\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right] \mathbf{4 b}$
oxidation of $\mathbf{2}$ to $\mathbf{3}$ is comparable to the reaction of $\mathbf{2}$ with \mathbf{S}_{8} to give $\left[\mathrm{M}(\mathrm{cp})(\mathrm{CO})_{3}\left\{\mathrm{P}(\mathrm{S}) \mathrm{Ph}_{2}\right\}\right]^{14}$ and the O_{2} oxidation of $\left[\operatorname{Re}(\mathrm{cp})(\mathrm{CO})(\mathrm{NO})\left(\mathrm{PPh}_{2}\right)\right]$ to give $[\operatorname{Re}(\mathrm{cp})(\mathrm{CO})(\mathrm{NO})$ $\left.\left\{\mathrm{P}(\mathrm{O}) \mathrm{Ph}_{2}\right\}\right] .^{15}$

Reaction of $\left[\mathrm{M}(\mathrm{cp})(\mathrm{CO})_{3}\left(\mathrm{PPh}_{2} \mathrm{H}\right)\right] \mathrm{PF}_{6}$ with $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right.$ $\left(\mathrm{PPh}_{3}\right)_{2}$].-Infrared monitoring of the $v(\mathrm{CO})$ region in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution showed that the complexes $\left[\mathrm{M}(\mathrm{cp})(\mathrm{CO})_{3}\left(\mathrm{PPh}_{2} \mathrm{H}\right)\right] \mathrm{PF}_{6}$ 1 react with $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ in $1: 2$ stoichiometry via a short-lived intermediate to give the neutral bimetallic complexes $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{M}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right](\mathrm{M}=\mathrm{Mo} 4 \mathrm{a}$ or W 4b) and the known cationic platinum hydride $\left[\mathrm{PtH}\left(\mathrm{PPh}_{3}\right)_{3}\right]$ $\mathrm{PF}_{6} 5^{16,17}$ [equation (3)]. These products are readily crystallized from solution. The molecular structure of $\left[(\mathrm{OC})_{2}(\mathrm{cp})\right.$ -

$\left.\mathrm{W}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right] \mathbf{4 b}$ as determined by single-crystal X -ray diffraction is shown in Fig. 1. The solution IR spectrum of 4 b (in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, Table 2) exhibits two $v(\mathrm{CO})$ at 1904 and 1824 cm^{-1} assignable to the tungsten carbonyls and one at $2019 \mathrm{~cm}^{-1}$ assignable to the CO on Pt. The relative intensities $I(1904) /$ $I(1824)=I($ sym. $) / I($ asym. $)=1.50$ correspond to a 'predicted' (OC)W(CO) angle of $78^{\circ 18,19}$ (84° from X-ray structural data). The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR data for $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathbf{M}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{P} \mathrm{t}\right.$ $\left.(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right] 4$ (Table 3) are also consistent with the structure shown. The downfield shift of the $\mu-\mathrm{PPh}_{2}$ ligand ${ }^{1-9}\left[\delta\left(\mathrm{P}_{\mu}\right) 140\right.$ for 4 b$]$ and the coupling to ${ }^{183} \mathrm{~W}$ and ${ }^{195} \mathrm{Pt}\left[{ }^{1} J\left({ }^{183} \mathrm{~W}-{ }^{31} \mathrm{P}_{\mu}\right)=\right.$ 317; ${ }^{1} J\left({ }^{195} \mathrm{Pt}^{31} \mathrm{P}_{\mu}\right)=2528 \mathrm{~Hz}$ for 4 b$]$ are consistent with a metal-metal bonded ' $\mathrm{W}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}$ ' unit, and the small ${ }^{2} J\left({ }^{31} \mathrm{P}-\right.$ $\left.{ }^{31} \mathrm{P}_{\mu}\right) 19 \mathrm{~Hz}$ is consistent with a cis arrangement of P -donor ligands on Pt . The cationic hydride $\left[\mathrm{PtH}\left(\mathrm{PPh}_{3}\right)_{3}\right] \mathrm{PF}_{6}$ is readily identified by its characteristic ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra. ${ }^{17}$
Infrared monitoring of the reaction of $\left[\mathrm{M}(\mathrm{cp})(\mathrm{CO})_{3}-\right.$ $\left.\left(\mathrm{PPh}_{2} \mathrm{H}\right)\right] \mathrm{PF}_{6} 1$ with $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ within minutes of mixing reveals the presence of a short-lived intermediate with $v(C O)$ at 2030, 1956 and $1934 \mathrm{~cm}^{-1}(\mathrm{M}=\mathrm{W})$. The lower values $v i s-a \dot{-}$-vis cation 1 suggest removal of the positive charge from the tungsten centre. The $v(\mathrm{CO})$ of this intermediate are at higher wavenumbers than those of $\left[\mathrm{M}(\mathrm{cp})(\mathrm{CO})_{3}\left(\mathrm{PPh}_{2}\right)\right] 2$ and very similar to those observed for $\left[\mathrm{M}(\mathrm{cp})(\mathrm{CO})_{3}\left\{\mathrm{P}(\mathrm{O}) \mathrm{Ph}_{2}\right\}\right] \mathbf{3}$ (Table 1). On the basis of the IR evidence we suggest that the shortlived intermediate is either the neutral complex $\left[(\mathrm{OC})_{3}(\mathrm{cp}) \mathrm{M}(\mu\right.$ $\left.\left.\mathrm{PPh}_{2}\right) \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right] 6$ or the cationic bimetallic $\left[(\mathrm{OC})_{3}(\mathrm{cp}) \mathrm{M}-\right.$ $\left.\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{PtH}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+} 7$ (see Scheme 2).

6

7

When $\left[\mathrm{M}(\mathrm{cp})(\mathrm{CO})_{3}\left(\mathrm{PPh}_{2} \mathrm{H}\right)\right] \mathrm{PF}_{6} 1$ is treated with a molar equivalent of $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ the reaction proceeds quickly (ca. 10 min) to give a solution containing equimolar amounts of 1, $\mathbf{4}$ and $5\left\{{ }^{1} \mathrm{H},{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}\right.$ NMR and IR monitoring). On further standing the $v(\mathrm{CO})$ absorptions of $\mathbf{1}$ and 4 (IR monitoring) decrease and two new absorptions grow in [$\mathrm{V}(\mathrm{CO}) 1964$ and $1891 \mathrm{~cm}^{-1}$ for $\left.\mathrm{M}=\mathrm{W}\right]$. This reaction is complete in $c a .16 \mathrm{~h}$ for $\mathrm{M}=\mathrm{W}$ and $c a .4 \mathrm{~h}$ for $\mathrm{M}=\mathrm{Mo}$. The new products are

Table 2 Infrared ${ }^{a}$ and ${ }^{1} \mathrm{H}$ NMR data ${ }^{b}$ of the MoPt and WPt dimeric complexes (P_{a} is trans to $\mu-\mathrm{H}$). See equations and Scheme 1 for structures

Table $3{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR data (J in Hz) for MoPt and WPt dimeric complexes $\left(\mathrm{P}_{\mathrm{a}}\right.$ trans to $\mu-\mathrm{H}$). See equations and Scheme 1 for structures

Complex	$\delta\left(\mathrm{P}_{\mu}\right)$	$\delta\left(\mathrm{P}_{\mathrm{a}}\right)$	$\delta\left(\mathrm{P}_{\mathrm{b}}\right)$	$J\left({ }^{195} \mathrm{Pt}-{ }^{31} \mathrm{P}_{\mathrm{u}}\right)$	$J\left({ }^{195} \mathrm{Pt}^{31}{ }^{31} \mathrm{P}\right)$	$J\left({ }^{195} \mathrm{Pt}^{-31} \mathrm{P}_{b}\right)$	$J\left({ }^{31} \mathrm{P}_{\mathrm{u}}{ }^{-31} \mathrm{P}_{\mathrm{a}}\right)$	$J\left({ }^{31} \mathrm{P}_{\mu}-{ }^{31} \mathrm{P}_{\mathrm{b}}\right)$	$J\left({ }^{31} \mathrm{P}_{\mathrm{a}}-{ }^{31} \mathrm{P}_{\mathrm{b}}\right)$	$J\left({ }^{183} \mathrm{~W}-{ }^{31} \mathrm{P}_{\mu}\right)$
4 a	177	30	-	2742	3332	-	11	-	-	-
4b	140	21	-	2528	3271	-	19	-	-	317
8 a	184	20	11	1889	3806	2478	8	223	23	-
8b	147	12	11	1765	3942	2481	0	218	23	217
9 a	187	28	30	2597	3374	3271	10	219	3.4	-
9 b	150	24	26	2403	3296	3266	17	221	0	337
11a	171	53	53	1909	3505	2420	2	228	6.1	-
11b	133	47	26	1803	3607	2420	0	224	7.6	190
12a	169	20	-	2202	3635	-	7	-	-	-
13b	119	26	-	2272	3500	-	12	-	-	202
14a	195	-	18	1365	-	2437	-	168	--	--
14b	158	-	18	1277	-	2437	-	164	-	247
15a	167	34	-	3048	4192	-	2	-	-	-
15b	132	31	-	2908	4338	-	0	-	-	226
16a	173	--	25	1899	-	2799	-	303	-	--
16b	136	-	27	1791	-	2714	-	294	-	226

the cationic μ-hydrido complexes $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{M}(\mu-\mathrm{H})\left(\mu-\mathrm{PPh}_{2}\right)\right.$ $\left.\operatorname{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{PF}_{6} 8$ [equation (4)]. Complexes 8 are readily isolated and structurally characterized. The relative $v(C O)$ intensities $I(1964) / I(1891)=1.60$ for $\mathbf{8 b}$ correspond to a calculated (OC)W(CO) angle of $77^{\circ} .{ }^{18,19}$ The ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{W}(\mu-\mathrm{H})\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{PF}_{6} \mathbf{8 b}$ (see Fig. 2 and Table 2) shows a multiline pattern centred at δ
-9.34 assignable to a hydride ligand coupled to ${ }^{183} \mathrm{~W},{ }^{195} \mathrm{Pt}$ and three ${ }^{31} \mathrm{P}$ nuclei with $\left.J{ }^{195} \mathrm{Pt}-{ }^{1} \mathrm{H}\right) 494 \mathrm{~Hz}$ and $J\left[{ }^{31} \mathrm{P}(\right.$ trans to H$\left.)-{ }^{1} \mathrm{H}\right] 74 \mathrm{~Hz}$ consistent with the hydride-bridged structure shown. ${ }^{1,20}$ Whilst the ${ }^{195} \mathrm{Pt}$ satellite resonance patterns are first order, second-order coupling effects are observed in the main pattern due to the similarity in the ${ }^{31} \mathrm{P}$ chemical shifts of the two PPh_{3} ligands (see Fig. 2). This kind of effect has been previously

Fig. 2 Proton NMR spectrum (a) of $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{W}(\mu-\mathrm{H})\left(\mu-\mathrm{PPh}_{2}\right)\right.$ $\left.\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{PF}_{6} 8 \mathrm{~b}$ in the hydrido region ($\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution), and the ${ }^{31} \mathbf{P}-\left\{{ }^{1} \mathbf{H}\right\}$ NMR spectrum of $\mathbf{8 b}$ in the phosphido $\left(\mathbf{P}_{\mu}\right)(b)$ and PPh_{3} regions (c). Note the partial overlap of PPh_{3} resonances and the resulting effect on the ${ }^{1} \mathrm{H}$ NMR spectrum ${ }^{12}$

Scheme 1 (i) $\left[\mathrm{PtH}\left(\mathrm{PPh}_{3}\right)_{3}\right]^{+}$; (ii) $\mathrm{PPh}_{3}, \quad\left[\mathrm{PtH}\left(\mathrm{PPh}_{3}\right)_{3}\right]^{+}$; (iii) $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H},\left[\mathrm{PtH}\left(\mathrm{PPh}_{3}\right)_{3}\right]^{+}$; (iv) dppe, $20{ }^{\circ} \mathrm{C}$; (v) HBF_{4}; (vi) PPh_{3}, reflux in $\mathrm{C}_{6} \mathrm{H}_{6}$; (vii) $\mathrm{CO}, 20^{\circ} \mathrm{C}$; (viii) $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{PPh}_{3}, 20^{\circ} \mathrm{C}$, rapid; (ix) $\mathrm{PPh}_{3}, 20 \mathrm{C}$; (.x) $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$
observed and commented on for a series of cations of the type $\left[\mathrm{PtH}\left(\mathrm{PR}_{3}\right)_{3}\right]^{+.17}$

Reaction of $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{M}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right] 4$ with P-Donor Ligands.-In order to ascertain the likely mechanism
for the formation of $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{M}(\mu-\mathrm{H})\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ $\mathrm{PF}_{6} 8$ from an equimolar mixture of compounds 1,4 and 5 [equation (4)] the reaction of 4 with a range of reagents was investigated (Scheme 1). Compounds 4 did not react with PPh_{3} at room temperature. On refluxing an equimolar mixture of 4 and PPh_{3} in benzene, CO was lost and the complex $\left[(\mathrm{OC})_{2}(\mathrm{cp})\right.$ -$\left.\stackrel{\mathrm{M}\left(\mu-\mathrm{PPh}_{2}\right)}{ } \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right] 9$ could readily be isolated and characterized (Tables 2 and 3). On bubbling CO through a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $9\left(\mathrm{ca} .20^{\circ} \mathrm{C}\right)$ the PPh_{3} ligand trans to the phosphido bridge was rapidly displaced and 4 regenerated. Addition of a molar equivalent of 1,2-bis(diphenylphosphino)ethane (dppe) to 4 gave $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{M}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}(\mathrm{dppe})\right] 10$. This reaction was relatively fast at room temperature and probably proceeds by initial displacement of PPh_{3} by dppe followed by ring closing and loss of CO . The complexes 9 and 10 are readily protonated $\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right.$ or $\left.\mathrm{HBF}_{4}\right)$ to give the μ hydrido cations $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{M}(\mu-\mathrm{H})\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$and $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{M}(\mu-\mathrm{H})\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}(\text { dppe })\right]^{+}$respectively e.g. 11, Scheme 1). Whilst 4 did not react with $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$, the addition of both $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ and $\mathrm{PPh}_{3}\left(20^{\circ} \mathrm{C}\right)$ resulted in rapid formation of the cations $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{M}(\mu-\mathrm{H})\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}-\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$8. These observations point to protonation of 4 occurring prior to the displacement of CO from Pt by the PPh_{3} ligand (N.B. PPh_{3} alone does not displace CO from 4 at room temperature). No reaction occurred when either $[\mathrm{PtH}-$ $\left.\left(\mathrm{PPh}_{3}\right)_{3}\right]^{+}, \quad\left[\mathrm{PtH}\left(\mathrm{PPh}_{3}\right)_{3}\right]^{+}-\mathrm{PPh}_{3} \quad$ or $\quad\left[\mathrm{PtH}\left(\mathrm{PPh}_{3}\right)_{3}\right]^{+}-$ $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ were added to solutions of 4 .

Reaction of Compounds 4 with $\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}{ }^{12}$ and HCl .-The molybdenum complex $4 \mathbf{4}$ is readily protonated by the addition of a molar equivalent of the strong acid $\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}$ (added as a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution). Proton and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR monitoring of the resultant solution indicated that the protonation product was $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{Mo}(\mu-\mathrm{H})\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right] \mathrm{BF}_{4} \quad$ 12a [equation (5)]. The ' $(\mu-\mathrm{H})\left(\mu-\mathrm{PPh}_{2}\right)$ ' structure is readily

confirmed by NMR spectroscopy (Tables 2 and 3) as is the cis arrangement of the two P -donor ligands on Pt [e.g. ${ }^{1} J\left({ }^{195} \mathrm{Pt}^{1}{ }^{1} \mathrm{H}_{\mu}\right)=520 \mathrm{~Hz}, \delta\left(\mathrm{P}_{\mu}\right) 169,{ }^{2} J\left({ }^{31} \mathrm{P}^{31} \mathrm{P}_{\mu}\right)=7.2 \mathrm{~Hz}$, etc.]. In marked contrast to the protonation of $4 a$, the isostructural WPt dimer $\mathbf{4 b}$ reacts with a molar equivalent of HBF_{4} to give the terminal hydrido cation $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{H}\right.$ -$W\left(\mu-\mathrm{PPh}_{2}\right) \operatorname{Pt}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right] \mathrm{BF}_{4}$ 13b. Support for this structure comes from the high-field ${ }^{1} \mathrm{H}$ NMR spectrum (Table 2 and Fig. 3). Of particular significance are the very small spin-spin couplings of the hydride with ${ }^{195} \mathrm{Pt}\left(85 \mathrm{~Hz}, 20^{\circ} \mathrm{C}\right)$ and with the ${ }^{31} \mathrm{P}$ of the PPh_{3} bonded to $\mathrm{Pt}(7.5 \mathrm{~Hz}$; confirmed by recording the proton-coupled ${ }^{31} \mathrm{P}$ NMR spectrum $){ }^{2.4}$ The small ${ }^{2} J\left({ }^{31} \mathrm{P}-\right.$ ${ }^{31} \mathrm{P}_{\mu}$) 11.6 Hz implies a cis arrangement of P -donor ligands. Other terminal hydrido 'MPt' bimetallic structural analogues of 13b that have been structurally characterized by X-ray diffraction are $\left[(\mathrm{ON}) \mathrm{H}(\mathrm{cp}) \mathrm{Re}\left\{\mu-\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2}\right\} \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{BF}_{4}{ }^{2}$ and $\left[(\mathrm{OC})_{3} \mathrm{HFe}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{4}$ On standing both 12a and

Fig. 3 Proton NMR spectrum, hydrido region ($\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution) for $\left[(\mathrm{OC})_{2} \mathrm{H}(\mathrm{cp}) \widehat{\mathrm{W}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right] \mathrm{BF}_{4} \quad$ 13b at -40 (a) and $+20 \mathrm{C}(b)$

13b undergo a slow cis-to-trans isomerization at Pt to give the hydrido-bridged cations $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{M}(\mu-\mathrm{H})\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}(\mathrm{CO})\right.$ $\left.\left(\mathrm{PPh}_{3}\right)\right] \mathrm{BF}_{4} 14\left(\mathrm{PPh}_{3}\right.$ trans to $\left.\mathrm{P}_{\mu}\right)$ [equation (5)]. The presence of a $\mu-\mathrm{H}$ and trans arrangement of P -donor ligands in $\mathbf{1 4}$ is readily confirmed by NMR spectroscopy (see Tables 2 and 3 for NMR and IR data). The cations 12a, 13b and 14 react 'instantly' with PPh_{3}, with evolution of CO , to give $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{M}(\mu-\mathrm{H})\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{BF}_{4}$ \{same cation as 8 [equation (4)]\}.

The addition of a molar equivalent of HCl (benzene solution) to $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{M}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]$ occurs according to equation (6) to give $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{M}(\mu-\mathrm{H})\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{PtCl}\left(\mathrm{PPh}_{3}\right)\right]$ $15\left(\mathrm{PPh}_{3}\right.$ cis to $\left.\mathrm{P}_{\mu}\right)$ as the kinetic product. The complexes 15 are readily characterized by IR and NMR spectroscopy (Tables 2 and 3). Upon standing in solution (room temperature), 15 slowly isomerizes to the trans isomer $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{M}(\mu-\mathrm{H})(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2}\right) \mathrm{PtCl}\left(\mathrm{PPh}_{3}\right)\right] \mathbf{1 6}\left(\mathrm{PPh}_{3}\right.$ trans to $\left.\mathrm{P}_{\mu}\right)$. For $\mathrm{M}=$ Mo the rearrangement proceeds over a period of a few days whilst for $\mathrm{M}=\mathrm{W}$ the rearrangement is only 50% complete after 3 weeks. The formation of 15 as the kinetic product suggests that reaction of 4 with HCl is similar to that with $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}-\mathrm{PPh}_{3}$ (see above) and proceeds via initial protonation of 4 to give the cations of $12 / 13 \mathrm{~b}$ followed by rapid displacement of CO by Cl^{-}. The sensitivity of the rate of the $\mathbf{1 5}$ to $\mathbf{1 6}$ rearrangement

[equation (6)] to the nature of M suggests considerable perturbation of a metal-ligand(s) bond(s) ${ }^{21}$ but the mechanism is not readily defined.

Mechanism of Formation of $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{M}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}-\right.$ $\left.(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right],\left[\mathrm{PtH}\left(\mathrm{PPh}_{3}\right)_{3}\right] \mathrm{PF}_{6}$ and $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{M}(\mu-\mathrm{H})(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2}\right) \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{PF}_{6}$ [equations (3) and (4)]..Based on the above experimental observations the reaction of $\left[\mathrm{M}(\mathrm{cp})(\mathrm{CO})_{3}-\right.$ $\left.\left(\mathrm{PPh}_{2} \mathrm{H}\right)\right] \mathrm{PF}_{6} 1$ with 2 equivalents of $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ is postulated to occur via the reaction pathways outlined in Scheme 2. Step (i) is the protonation of $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ by complex 1 resulting in formation of the metallaphosphine $\left[\mathrm{M}(\mathrm{cp})(\mathrm{CO})_{3}\left(\mathrm{PPh}_{2}\right)\right] 2$ and the cation $\left[\mathrm{PtH}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$. Complex 2 then reacts with another molecule of $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right]$, step (ii), displacing ethylene to form $\left[(\mathrm{OC})_{3}(\mathrm{cp}) \mathrm{M}(\mu\right.$ $\left.\left.\mathrm{PPh}_{2}\right) \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ 6, the possible 'short-lived intermediate'. Complex 6 then rearranges, step (iii), to form $\left[(\mathrm{OC})_{2}(\mathrm{cp})\right.$ -$\left.\mathrm{M}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right] 4$ presumably via triphenylphosphine dissociation and carbonyl ligand migration via the $\mu-\mathrm{CO}$ complex $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{M}(\mu-\mathrm{CO})\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ 17. The dissociated triphenylphosphine from step (iii) is consumed by reaction with the cation $\left[\mathrm{PtH}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$to form $\left[\mathrm{PtH}\left(\mathrm{PPh}_{3}\right)_{3}\right]^{+}$[step (iv)] or with $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ to form $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{3}\right]$. The $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{3}\right]$ can function as a base to deprotonate 1 to give 2 and 5 [steps (v) and (vi)].

As discussed above a $1: 1$ reaction mixture of $\left[\mathrm{M}(\mathrm{cp})(\mathrm{CO})_{3}\right.$ $\left.\left(\mathrm{PPh}_{2} \mathrm{H}\right)\right] \mathrm{PF}_{6} 1$ and $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$, in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$, proceeds rapidly to give an equimolar mixture of $1,\left[(\mathrm{OC})_{2}(\mathrm{cp})\right.$ -$\left.\mathrm{M}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right] 4$ and $\left[\mathrm{PtH}\left(\mathrm{PPh}_{3}\right)_{3}\right] \mathrm{PF}_{6} 5$ which then slowly converts, with loss of carbon monoxide, into $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{M}(\mu-\mathrm{H})\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{PF}_{6} 8$. It is postulated that the unreacted $\left[\mathrm{M}(\mathrm{cp})(\mathrm{CO})_{3}\left(\mathrm{PPh}_{2} \mathrm{H}\right)\right] \mathrm{PF}_{6}$ in this threecomponent reaction mixture behaves as a very weak acid, and protonates 4 to give a very low concentration of a mixture of $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{MH}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]^{+} \quad[$ cation of 12a ($\mathbf{M}=\mathbf{M o}$) or 13b $(\mathbf{M}=\mathrm{W})$] and the metallaphosphine $\left[\mathrm{M}(\mathrm{cp})(\mathrm{CO})_{3}\left(\mathrm{PPh}_{2}\right)\right] 2$ (Scheme 2). The metallaphosphine exchanges with the PPh_{3} ligand in $\left[\mathrm{PtH}\left(\mathrm{PPh}_{3}\right)_{3}\right] \mathrm{PF}_{6} 5$ producing the cation $\left[(\mathrm{OC})_{3}(\mathrm{cp}) \mathrm{M}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{PtH}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+} 7$ and free PPh_{3} [steps (vii) and (viii)]. The cation of 12a or 13b reacts very quickly, step (ix), with the liberated PPh_{3}, with loss of carbon monoxide, to produce the final product $\left[(\mathrm{OC})_{2}\right.$ (cp) $\left.\mathrm{M}(\mu-\mathrm{H})\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{PF}_{6}$ 8. It is proposed that the cation 7 rearranges with CO loss to the final product 8 via the intermediates 18 and 14 [steps (x)-(xii)]. This sequence of reactions is very similar to that observed in the conversion of $\left[(\mathrm{OC})_{5} \mathrm{M}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{PtH}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ into $\left[(\mathrm{OC})_{4} \mathrm{M}(\mu-\mathrm{H})\left(\mu-\mathrm{PPh}_{2}\right)-\right.$ $\left.\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right](\mathrm{M}=\mathrm{Cr}$, Mo or W$) .{ }^{1}$ Support for an additional route to $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{M}(\mu-\mathrm{H})\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}_{(}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{PF}_{6} 8$ not necessarily involving $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \stackrel{M}{\left.\mathrm{M}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]}\right.$ comes from ${ }^{1} \mathrm{H}$ NMR monitoring of the first 10 min of the reaction of 1 with $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (1:1 ratio). Besides the resonances associated with the approximately equimolar mixture of 1,4 and 5 , weak hydrido resonances assignable to 8

Scheme 2 Postulated pathways for the reaction of $\left[\mathrm{M}(\mathrm{cp})(\mathrm{CO})_{3}\left(\mathrm{PPh}_{2} \mathrm{H}\right)\right] \mathrm{PF}_{6}$ with $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$. Complexes 4 and 5 are kinetic products [and final products of a $1: 2(\mathrm{M}: \mathrm{Pt})$ reaction stoichiometry]; 8 is the thermodynamic product of a $1: 1$ reaction stoichiometry

Fig. 4 Variation of the platinum-195 hydride and phosphorus-31 $\left(\mathrm{PPh}_{3}\right)$-hydride coupling constants for $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{WH}(\mu-\mathrm{PPh}) \mathrm{Pt}(\mathrm{CO})(\mathrm{P}-\right.$ $\left.\left.\mathrm{Ph}_{3}\right)\right] \mathrm{BF}_{4}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ with temperature. The data points from 50 to $100{ }^{\circ} \mathrm{C}$ were recorded in $\mathrm{C}_{2} \mathrm{D}_{4} \mathrm{Cl}_{2}$

Scheme 3

Scheme 4
Table 4 Selected bond lengths (\AA) and angles ($)$ for $\left[(\mathrm{OC})_{2}(\mathrm{cp})\right.$ -$\left.\widetilde{W\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{P}}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right] 4 \mathbf{b}$

	Molecule 1	Molecule 2
Pt-W	2.810(1)	2.809(1)
$\mathrm{P}_{1}-\mathbf{P}(1)$	2.315(2)	2.312(3)
$\mathrm{P} \mathbf{1}-\mathrm{P}(2)$	2.299(3)	2.287 (3)
Pt-C(1)	1.838(14)	1.848(13)
W P(2)	2.379(3)	2.377 (3)
W-C(2)	1.909(12)	1.896(11)
W-C(3)	1.953(12)	1.906(13)
W-C. ${ }^{*}$	1.995	1.996
$\mathrm{W}-\mathrm{Pt}-\mathrm{P}(1)$	165.60(7)	159.97(7)
$\mathrm{W}-\mathrm{Pt}-\mathrm{P}(2)$	54.41 (6)	54.46(6)
$\mathrm{W}-\mathrm{Pt}-\mathrm{C}(1)$	89.0(4)	93.1(4)
$\mathrm{P}(1)-\mathrm{Pt}-\mathrm{P}(2)$	111.74(9)	105.53(9)
$\mathrm{P}(1)-\mathrm{Pt}-\mathrm{C}(1)$	104.6(4)	107.0(4)
$\mathrm{P}(2)-\mathrm{P}(-\mathrm{C}(1)$	143.3(4)	147.4(4)
$\mathrm{Pt} \cdots \mathrm{W}-\mathrm{P}(2)$	51.78 (6)	51.50(7)
$\mathrm{P}(\mathrm{W}-\mathrm{C}(2)$	81.1(4)	78.1(3)
$\mathrm{P}(1) \mathrm{W}-\mathrm{C}(3)$	122.0(3)	125.0(4)
$\mathrm{P} 1-\mathrm{W}-\mathrm{C}_{1}$	117.2	116.9
$\mathrm{P}(2)-\mathrm{W}-\mathrm{C}(2)$	106.3(4)	105.5(3)
$\mathbf{P}(2)-W-C(3)$	80.6(3)	85.1(4)
P(2)-W-C	130.2	130.2
$\mathrm{C}(2)-\mathrm{W}-\mathrm{C}(3)$	83.5(5)	84.5(5)
C(2)-W-C	120.5	119.7
C(3)-W-C,	118.8	117.2
Pt C(1)-O(1)	175(1)	173(1)
$\mathrm{Pt}-\mathrm{P}(1)-\mathrm{C}(11)$	118.1(3)	115.8(4)
Pt - P(1)-C(21)	112.4(4)	116.4(3)
$\mathrm{Pt}-\mathrm{P}(2)-\mathrm{W}$	73.81(8)	74.04(8)

${ }^{*} C_{t}$ is the centroid of the cp ligand.
are also observed (ca. 5% relative to hydrido resonances of 5. The rate of formation of $\mathbf{8}$ in the first 10 min is much faster than the subsequent $\mathbf{I}, 4,5$ to 8 reaction [equation (4)] and implies a different minor pathway for the formation 8 [i.e. steps (xiii), (x), (xi), (xii), Scheme 2]. The reaction sequences (Scheme 2) are similar to the proton and CO transfer pathways observed in the formation of $\left[(\mathrm{ON}) \mathrm{H}(\mathrm{cp}) \mathrm{Re}\left(\mu-\mathrm{PR}_{2}\right) \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{BPh}_{4}$ from the reaction of $\left[\operatorname{Re}(c p)(\mathrm{CO})(\mathrm{NO})\left(\mathrm{PR}_{2} \mathrm{H}\right)\right] \mathrm{BPh}_{4}$ with $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{4}\right]$. ${ }^{2}$ The factors that determine the preference for $\mathrm{P}-\mathrm{H}$ oxidative addition to Pt^{0} [e.g. (xiii), Scheme 2] or for $\mathrm{P}-\mathrm{H}$ deprotonation [e.g. (ii) Scheme 2] have been discussed elsewhere. ${ }^{5}$

Variahle-temperature ${ }^{1} \mathrm{H}$ NMR Studies of $\left[(\mathrm{OC})_{2} \mathrm{H}(\mathrm{cp})\right.$ -$\left.\mathrm{W}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right] \mathrm{BF}_{4}$ 13b.-The ${ }^{1} \mathrm{H}$ NMR spectrum of the hydride ligand of complex $\mathbf{1 3 b}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$ or $\left.\mathrm{C}_{2} \mathrm{D}_{4} \mathrm{Cl}_{2}\right)$ exhibited an unusual temperature dependence (Fig. 3). On lowering the temperature to $-90{ }^{\circ} \mathrm{C}{ }^{1} J\left({ }^{195} \mathrm{Pt}-{ }^{1} \mathrm{H}\right)$ and ${ }^{3} J\left({ }^{31} \mathrm{P}-{ }^{1} \mathrm{H}\right)$ decrease (see Fig. 4) whilst ${ }^{2} J\left({ }^{31} \mathrm{P}_{\mathrm{A}}-{ }^{1} \mathrm{H}\right) 46 \mathrm{~Hz}$ and ${ }^{1} J\left({ }^{183} \mathrm{~W}-{ }^{1} \mathrm{H}\right) 42 \mathrm{~Hz}$ remain constant, and $\delta(\stackrel{\mu}{\mathrm{H}})$ shifts slightly. The data suggest a rapid equilibrium exchange process
involving two or more isomers with isomer ratios changing with temperature. No single isomer was 'frozen out' even at $-90^{\circ} \mathrm{C}$. One possibility, based on isomerism in a pseudo-pentagonalpyramidal structure, is illustrated in Scheme 3. This postulated mechanism is similar to the observed rapid cis \rightleftarrows trans equilibrium process observed in $\left[\mathrm{W}(\mathrm{cp}) \mathrm{H}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\right]$ complexes. ${ }^{22}$ However the invariance of ${ }^{2} J\left({ }^{31} \mathrm{P}_{4}-{ }^{1} \mathrm{H}\right)$ to temperature is not consistent with this process $\{N . B$. for $\left[\mathrm{W}(\mathrm{cp}) \mathrm{H}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\right]^{2} J\left({ }^{31} \mathrm{P}-{ }^{1} \mathrm{H}\right)$ changes from ca. 20 (cis isomer) to ca. 65 Hz (trans isomer) $\}.{ }^{21}$ A more probable mechanism involves a rapid equilibration of the terminal hydride $\left[(\mathrm{OC})_{2} \mathrm{H}(\mathrm{cp}) \mathrm{W}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right] \mathrm{BF}_{4} \mathbf{1 3 b}$ with a small amount of the hydride-bridged structure $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{W}\right.$ -$\left.(\mu-\mathrm{H})\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right] \mathrm{BF}_{4} 12 \mathrm{~b}$ (Scheme 4), with the terminal hydride, 13b, being the preferred low-temperature structure. The invariance of ${ }^{1} J\left({ }^{183} \mathrm{~W}-{ }^{1} \mathrm{H}\right)$ observed here with respect to terminal and bridge co-ordination modes (Table 2) has been commented on for the system $\left[\{\mathrm{W}(\mathrm{cp}) \mathrm{H}(\mathrm{NO})\}_{2^{-}}\right.$ $\left.(\mu-\mathrm{H})_{2}\right]{ }^{23}$ A similar rapid terminal hydride \rightleftarrows bridge hydride equilibration has been observed in the ' FePt ' system $\left[(\mathrm{OC})_{3} \mathrm{HFe}\left(\mu-\mathrm{PR}_{2}\right) \mathrm{Pt}\left(\mathrm{PR}_{3}^{\prime}\right)_{2}\right] \rightleftarrows\left[(\mathrm{OC})_{3} \mathrm{Fe}(\mu-\mathrm{H})(\mu-\right.$ $\left.\left.\mathrm{PR}_{2}\right) \mathrm{Pt}\left(\mathrm{PR}_{3}^{\prime}\right)_{2}\right]\left(\mathrm{R}^{\prime}=\mathrm{Ph} ; \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{11}, \mathrm{Ph}\right.$ or $\left.\mathrm{Pr}^{\mathrm{n}}\right){ }^{4}$ Whilst a limiting low-temperature value of ${ }^{2} J\left({ }^{195} \mathrm{Pt}-{ }^{1} \mathrm{H}\right)$ assignable to $\left[(\mathrm{OC})_{2} \mathrm{H}(\mathrm{cp}) \mathrm{W}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right] \mathrm{BF}_{4}$ was not obtained [i.e. ${ }^{2} J\left({ }^{195} \mathrm{Pt}-{ }^{1} \mathrm{H}\right)$ was still decreasing at $-90^{\circ} \mathrm{C}$] a reasonable estimate is ca. 16 Hz [based on the observed ${ }^{2} J\left({ }^{195} \mathrm{Pt}^{1} \mathrm{H}\right)$ of 15.5-16.5 for the structural analogues $\left[(\mathrm{OC})_{3} \mathrm{HFe}\left(\mu-\mathrm{PR}_{2}\right) \mathrm{Pt}\right.$ $\left.(\mathrm{CO})\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right] \quad\left(\mathrm{R}=\mathrm{Ph}, \mathrm{Pr}^{\mathrm{n}}\right.$ or $\mathrm{C}_{6} \mathrm{H}_{11}$; cis P -donor ligands). ${ }^{24}$ A suitable estimate for ${ }^{2} J\left({ }^{195} \mathrm{Pt}^{1}{ }^{1} \mathrm{H}_{\mu}\right)$ in $\left[(\mathrm{OC})_{2}-\right.$ (cp) $\left.\mathrm{W}(\mu-\mathrm{H})\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]-\mathrm{BF}_{4} \mathbf{1 2 b}$ is $520 \mathrm{~Hz}\{\mathrm{~N} . \mathrm{B}$. ${ }^{1} J\left({ }^{195} \mathrm{Pt}^{1} \mathrm{H}_{\mu}\right)$ for the molybdenum analogue 12 a is 520 Hz and ${ }^{1} J\left({ }^{195} \mathrm{Pt}^{1}{ }^{1} \mathrm{H}_{\mu}\right)$ for trans- $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{M}(\mu-\mathrm{H})\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}-\right.$ $\left.(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right] \mathrm{BF}_{4} 14$ is essentially the same for $\mathrm{M}=\mathrm{Mo}$ or $\mathbf{W}\}$. Using these values the relative ratios of $\mathbf{1 3 b}: \mathbf{1 2 b}$ and hence K (Scheme 4) can be estimated from the observed ${ }^{1} J\left({ }^{195} \mathrm{Pt}-{ }^{1} \mathrm{H}\right)$ data $\left\{\mathrm{N} . \mathrm{B} . \quad J\left({ }^{195} \mathrm{Pt}-{ }^{1} \mathrm{H}\right)(\right.$ obs $)=16 x+(1-$ $x) 520$, where $x=$ mol fraction of $13 \mathrm{~b} ; K=[12 \mathrm{~b}] /[13 \mathrm{~b}]=$ $(1-x) / x\}$. A linear plot of $\log K$ vs. $1 / T$ gives $\Delta H=18.4 \mathrm{~kJ}$ mol^{-1} and $\Delta S=7.5 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$. The observation that the bridged hydrido form $\mathbf{1 2 b}$ is preferred at high-temperature contrasts with the system $\left[(\mathrm{OC})_{3} \mathrm{HFe}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ $\rightleftarrows\left[(\mathrm{OC})_{3} \mathrm{Fe}(\mu-\mathrm{H})\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{4}$ and with bridge \rightleftarrows terminal rearrangements of carbonyl ligands in $\left[\mathrm{Co}_{2}{ }^{-}\right.$ $\left.(\mathrm{CO})_{8}\right]^{25}$ where the terminal bonding mode is preferred at high temperature. The ${ }^{1} \mathrm{H}$ NMR spectrum (hydride region) of the hydrido-bridged molybdenum system $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{Mo}\right.$ -$\left.(\mu-\mathrm{H})\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right] \mathrm{BF}_{4} \mathbf{1 2 a}$ is invariant on lowering the temperature (i.e. no formation of a molybdenum analogue of 13 b , even at $-90^{\circ} \mathrm{C}$).

Protonation Site Preference in Compound 4.--Thermodynamic preference for protonation at W in compound $\mathbf{4 b}$ to give $\left[(\mathrm{OC})_{2} \mathrm{H}(\mathrm{cp}) W\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right] \mathrm{BF}_{4} \quad 13 \mathrm{~b}$ in contrast to protonation of the $\mathrm{Mo}-\mathrm{Pt}$ bond in 4 a to give $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{Mo}(\mu-\mathrm{H})\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right] \mathrm{BF}_{4} \quad$ 12a can probably be related to (i) the greater bond strength of third-row (W) vs. second-row (Mo) M-H bonds, ${ }^{20}$ (ii) the greater ease of oxidation at W vs. Mo, and (iii) the relative ease of reduction at Pt. This can be illustrated by a comparison of some possible bonding representations for metal-metal bond protonation [e.g. Fig. $5(a)-(c)$] with the representations (d) and (e) for protonation at the metal centre. Features (i)-(iii) would favour the terminal hydrido cation representation (e). The lower $v(\mathrm{CO})(\mathrm{Pt})$ and higher $v(\mathrm{CO})(\mathrm{W})$ observed for the terminal hydride 13b vs. corresponding data for the hydrido-bridged molybdenum complex 12a (Table 2) are consistent with this view [N.B. for $4 \mathbf{a}$ and $\mathbf{4 b}$ and 14a and $\mathbf{1 4 b} v(\mathrm{CO})(\mathrm{Pt})$ are essentially the same (Mo vs. W) whilst $\mathrm{v}(\mathrm{CO})(\mathrm{M})$ are lower for $\mathbf{M}=\mathrm{W} v \mathrm{~s}$. Mo in contrast to $\mathbf{1 3 b} / \mathbf{1 2 a}]$. Other systems observed

(a)

(b)

(c)

(d)

(e)

Fig. 5 Possible bonding representations for bridging and terminal 'MPt' hydrides
to date in which a terminal hydrido metal-metal bonded structure is thermodynamically preferred to a μ-hydrido structure are $\left[(\mathrm{ON}) \mathrm{H}(\mathrm{cp}) \underset{\left.\operatorname{Re}\left(\mu-\mathrm{PR}_{2}\right) \mathrm{Pt}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]^{+},{ }^{2}\left[(\mathrm{OC})_{3}{ }^{-} .\right.}{ }\right.$ $\mathrm{HFe}\left(\mu-\mathrm{PR}_{2}\right) \mathrm{Pt}(\mathrm{CO})\left\{{\left.\left.\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right],{ }^{24} \quad\left[(\mathrm{OC})_{3} \mathrm{HFe}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}-\right.}^{2}\right.$ $\left.\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}_{2}\right]^{4}$ (the PEt_{3} analogue has a μ-hydrido structure), $\left[(\mathrm{OC})_{3} \mathrm{HRu}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{24}$ and $\left[(\mathrm{OC})_{3} \mathrm{H}-\right.$ $\left.\mathrm{Ru}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right] .{ }^{24}$ The terminal hydrido structure is favoured by $\mathrm{W}>\mathrm{Mo}$ and $\mathrm{Ru}>\mathrm{Fe}$ [consistent with (i) above]. The presence of a CO on Pt also favours the terminal hydride structure [consistent with (iii) above] and to date the structural arrangement of the ' $\left(\mu-\mathrm{PR}_{2}\right) \mathrm{Pt}(\mathrm{CO})\left(\mathrm{PR}_{3}\right)$) unit has the PR_{3} ligand cis to the $\mu-\mathrm{PR}_{2}$ group \{even for $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}$ as observed in $\left[(\mathrm{OC})_{3} \mathrm{HFe}\left\{\mu-\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2}\right\} \mathrm{Pt}(\mathrm{CO})-\right.$ $\left.\left.\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{1} \text {) }\right)_{3}\right\}\right]\right\}^{24}$ This indicates that the observed stereochemistry at Pt is governed by platinum-ligand bonding requirements rather than steric factors. The observed stereochemistry has CO trans to $\mu-\mathrm{PR}_{2}$ (a good σ donor).

The Molecular Structure of $\left[(\mathrm { OC }) _ { 2 } (\mathrm { cp }) \longdiv { \mathrm { W } (\mu - \mathrm { PPh } _ { 2 }) \mathrm { Pt } }\right.$ $\left.(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]$ 4b.-The asymmetric unit of compound $\mathbf{4 b}$ contains two independent molecules related by a pseudo B centre. The ORTEP views of the two molecules (Fig. 1) indicate that the configurations of the two W atoms are opposite and that the molecules differ in the conformations of the phosphine ligands. Notably in molecule 2 the pairs of phenyl rings $(1,4)$ and $(3,5)$ are closer to being parallel than the corresponding pairs of rings in molecule 1 . This arrangement results in a $\mathrm{P}(1)-\mathrm{Pt}-\mathrm{P}(2)$ bond angle of $105.53(9)^{\circ}$ which is significantly smaller than the corresponding angle in molecule 1 of $111.74(9)^{\circ}$ (Table 4). Corresponding $\mathrm{W}-\mathrm{Pt}-\mathrm{Cl}$ angles are then slightly smaller by 4.1 and 2.4° for molecule 1. Additionally the $\mathrm{Pt}-\mathrm{P}(2)$ bond is marginally shorter in molecule 2 [2.287(3) vs. 2.299(3) \AA] and there is significantly more asymmetry between the $\mathrm{C}-\mathrm{P}(1)-\mathrm{C}$ bond angles for the PPh_{3} ligand in this molecule. Similar small differences are observed at the tungsten centres in the two molecules. Recently reported compounds containing structural features similar to $\mathbf{4 b}$ are $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \widehat{\mathrm{Mo}\left\{\mu-\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2}\right\}} \mathrm{Pd}-\right.$ $\left\{\mathrm{P}_{\left.\left.\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2} \mathrm{H}\right\}_{2}\right]} \quad\right.$ and $\quad\left[(\mathrm{OC})_{4} \mathrm{Mn}\left\{\mu-\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2}\right\} \mathrm{Pd}\{\mathrm{P}-\right.$ $\left.\left.\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2} \mathrm{H}\right\}_{2}\right]^{25}$.

Experimental

All manipulations were carried out under an atmosphere of dry N_{2}, using dry, degassed solvents. Infrared spectra (as $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions) were recorded on a Nicolet 10DX spectrometer, ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ on a Varian XL 200 spectrometer, referenced to SiMe_{4} and $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ respectively. Elemental analyses were performed by Canadian Microanalytical Laboratories, Vancouver, B.C.

Preparation of Complexes.-Representative examples are given for the molybdenum-platinum dimers and precursors. The tungsten platinum dimers were prepared following identical procedures.
$\left[\mathrm{Mo}(\mathrm{cp})(\mathrm{CO})_{3}\left(\mathrm{PPh}_{2} \mathrm{H}\right)\right] \mathrm{PF}_{6}$ 1a. This compound was synthesised using the procedure of Treichel et al. ${ }^{13}$ with minor modifications. In a typical reaction $\left[\mathrm{Mo}(\mathrm{cp})(\mathrm{CO})_{3} \mathrm{Cl}\right](4.03 \mathrm{~g}$, $14.4 \mathrm{mmol})$ and $\mathrm{AlCl}_{3}(2.38 \mathrm{~g}, 17.8 \mathrm{mmol})$ were stirred in dry benzene ($180 \mathrm{~cm}^{3}$) for 30 min at $25^{\circ} \mathrm{C}$. Then freshly distilled $\mathrm{PPh}_{2} \mathrm{H}\left(2.5 \mathrm{~cm}^{3}, 14.4 \mathrm{mmol}\right)$ was added and the reaction stirred overnight. The solvent was removed in vacuo and the residue extracted twice with distilled water ($50 \mathrm{~cm}^{3}$). The water extracts were filtered directly into a saturated aqueous $\mathrm{NH}_{4} \mathrm{PF}_{6}$ solution ($300 \mathrm{~cm}^{3}$). A yellow solid precipitated immediately on contact with the aqueous ammonium hexafluorophosphate solution. The extraction was repeated twice more using 25% acetonewater $\left(50 \mathrm{~cm}^{3}\right)$. The yellow solid was then collected by gravity filtration and dried (24 h in a vacuum desiccator kept in the dark). Yield of compound $1 \mathrm{aa} 3.98 \mathrm{~g}(6.9 \mathrm{mmol}, 48 \%)$.
$\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{Mo}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]$ 4a. The compound $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]^{26}(2.66 \mathrm{~g}, 3.56 \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(100 \mathrm{~cm}^{3}\right)$. Complex $1 \mathrm{a}(1.03 \mathrm{~g}, 1.78 \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~cm}^{3}\right)$ and added slowly, dropwise with stirring, to the platinum solution over a period of 30 min . The mixture was stirred for an additional 30 min at $20^{\circ} \mathrm{C}$ and the solvent removed in vacuo. The red residue was extracted with hot, dry benzene $\left(25 \mathrm{~cm}^{3}\right)$. Out of the benzene precipitated off-white crystals of $\left[\mathrm{PtH}\left(\mathrm{PPh}_{3}\right)_{3}\right] \mathrm{PF}_{6} 5(1.77 \mathrm{~g}, 1.57$ $\mathrm{mmol}, 88 \%$). The solvent was removed from the motherliquor and the red residue recrystallized from a minimum of acetone to yield $1.25 \mathrm{~g}(1.41 \mathrm{mmol}, 79 \%)$ of red crystalline $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{Mo}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right] \quad$ [Found (Calc. for $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{MoO}_{3} \mathrm{P}_{2} \mathrm{Pt} 4 \mathrm{4a}$): C, 51.3 (51.4); H, 3.50 (3.40). Found (Calc. for $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{PtW} 4$) : C, 47.0 (46.8); $\mathrm{H}, 3.05$ (3.10) $\%$].
$\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{Mo}(\mu-\mathrm{H})\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}_{\left.\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{PF}_{6}, 8 \text { 8a. Method }}\right.$ (a). The compound $\left[\mathrm{Mo}(\mathrm{cp})(\mathrm{CO})_{3}\left(\mathrm{PPh}_{2} \mathrm{H}\right)\right] \mathrm{PF}_{6}$ 1a $(0.280 \mathrm{~g}$, 0.485 mmol) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~cm}^{3}\right)$. While stirring, $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right](0.365,0.489 \mathrm{mmol})$ was added over 15 min . The bright yellow reaction mixture turned slowly to yellow-orange over 16 h . Removal of the solvent in vacuo and recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexanes gave $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{Mo}(\mu-\right.$ $\left.\mathrm{H})\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{PF}_{6}(0.50 \mathrm{~g}, 0.402 \mathrm{mmol}, 83 \%)$ as a yellow crystalline solid [Found (Calc. for $\mathrm{C}_{55} \mathrm{H}_{46} \mathrm{~F}_{6} \mathrm{MoO}_{2} \mathrm{P}_{4} \mathrm{Pt}$ 8a): C, 51.5 (52.1); H, 3.80 (3.65); P, 10.0 (9.8). Found (Calc. for $\mathrm{C}_{55} \mathrm{H}_{46} \mathrm{~F}_{6} \mathrm{O}_{2} \mathrm{P}_{4} \mathrm{PtW}$ 8b): C, 47.5 (48.7); H, 3.40 (3.40); P, 8.9 (9.1)\%].

Method (b). The compound $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{Mo}(\mu-\mathrm{H})\left(\mu-\mathrm{PPh}_{2}\right)\right.$ $\left.\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{BF}_{4}$ can be isolated in $80-90 \%$ yield by the reaction of $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \widetilde{\mathrm{Mo}\left(\mu-\mathrm{PPh}_{2}\right)} \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right] 9$ with 1 equivalent of $\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
$\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{Mo}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}(\mathrm{dppe})\right]$ 10. The compound $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{Mo}\left(\mathrm{PPh}_{2}\right) \mathrm{Pt}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right](0.133 \mathrm{~g}, 0.150 \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(25 \mathrm{~cm}^{3}\right)$ and 1,2 -bis(diphenylphosphino)ethane (dppe) $(0.062 \mathrm{~g}, 0.155 \mathrm{mmol})$ added. The reaction mixture was stirred for 30 min at $20^{\circ} \mathrm{C}$ and the solvent removed in vacuo. The residue was washed with three portions $\left(10 \mathrm{~cm}^{3}\right)$ of hexanes at $50^{\circ} \mathrm{C}$ to remove free PPh_{3}. The orangered residue was then recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexanes to yield $0.140 \mathrm{~g}(0.141 \mathrm{mmol}, 94 \%)$ of $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{Mo}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{P}-\right.$ t (dppe)] 10 as an orange-red powder (not completely PPh_{3} free).
$\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{Mo}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ 9a. In a typical reaction $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{Mo}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]$ 4a $(0.109 \mathrm{~g}, 0.123$ $\mathrm{mmol})$ and $\mathrm{PPh}_{3}(0.324 \mathrm{~g}, 0.124 \mathrm{mmol})$ were refluxed in dry benzene for 30 min . The solvent was removed in vacuo and the red-orange residue recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexanes to yield orange crystals of $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{Mo}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right] 9 \mathrm{a}(0.122$ $\mathrm{g}, 0.109 \mathrm{mmol}, 89 \%$) [Found (Calc. for $\mathrm{C}_{55} \mathrm{H}_{45} \mathrm{MoO}_{2} \mathrm{P}_{3} \mathrm{Pt} 9 \mathrm{a}$): C, 55.2 (55.7); H, 3.90 (3.90). Found (Calc. for $\mathrm{C}_{55} \mathrm{H}_{45} \mathrm{O}_{2} \mathrm{P}_{3} \mathrm{PtW}$ 9b): C, 50.7 (50.8); H, $3.40(3.60) \%$].
$\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{Mo}(\mu-\mathrm{H})\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}(\mathrm{dppe})\right] \mathrm{BF}_{4}$ 11a. A solution of $\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}\left(0.26 \mathrm{~cm}^{3}, 0.308 \mathrm{~g}, 1.90 \mathrm{mmol}\right)$ in dry $\mathrm{Et}_{2} \mathrm{O}(4.0$
cm^{3}) (i.e. $0.467 \mathrm{~mol} \mathrm{dm}^{-3}$) was prepared; $0.055 \mathrm{~cm}^{3}(0.926 \mathrm{mmol})$ of the solution was added to a solution of $\left[(\mathrm{OC})_{2}(\mathrm{cp})\right.$ -$\widehat{\left.\mathrm{Mo}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}(\text { dppe })\right]} \mathbf{1 0 (0 . 0 2 6 \mathrm { g } , 0 . 0 2 6 \mathrm { mmol }) \text { in dry } \mathrm { CH } _ { 2 } \mathrm { Cl } _ { 2 }}$ $\left(10 \mathrm{~cm}^{3}\right)$. The solution went from bright orange to bright yellow immediately upon addition of the acid. The solvent was removed in vacuo and the residue dried for 30 min under high vacuum at $25^{\circ} \mathrm{C}$. Yield of $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{Mo}(\mu-\mathrm{H})\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}-\right.$ (dppe) $] \mathrm{BF}_{4}$ was $0.027 \mathrm{~g}(0.025 \mathrm{mmol}, 97 \%)$.
$\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{Mo}(\mu-\mathrm{H})\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right] \mathrm{BF}_{4} \quad$ 12a. A solution of $\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}\left(0.130 \mathrm{~cm}^{3}, 0.952 \mathrm{mmol}\right)$ in dry $\mathrm{Et}_{2} \mathrm{O}$ $\left(4.0 \mathrm{~cm}^{3}\right)$ (i.e. $0.238 \mathrm{~mol} \mathrm{dm}^{-3}$) was prepared. The compound $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{Mo}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right] \quad 4 \mathrm{a} \quad(0.084 \mathrm{~g}, \quad 0.095$ $\mathrm{mmol})$ was dissolved in dry, degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ and 0.40 cm^{3} of the $\mathrm{HBF}_{4}-\mathrm{Et}_{2} \mathrm{O}$ solution added. The solvent was removed in vacuo and the white-yellow residue dried in vacuo for 2 h . The residue was redissolved in dry, degassed $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.75$ cm^{3}) transferred to a thick-walled 5 mm NMR tube and the NMR tube sealed in vacuo. The ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded. The compound trans- $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{Mo}(\mu-\mathrm{H})(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2}\right) \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)(\mathrm{CO})\right] \mathrm{BF}_{4}$ 14a was characterized by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathbf{H}\right\}$ NMR monitoring of the sealed NMR sample from the preparation of complex 12a which had been subsequently kept at $25^{\circ} \mathrm{C}$ for 24 h to ensure complete rearrangement of 12a to 14 a.
$\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{Mo}(\mu-\mathrm{H})\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{PtCl}\left(\mathrm{PPh}_{3}\right)\right]$ 15a. To a solution of $\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{Mo}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right] \mathbf{4 a}(0.064 \mathrm{~g}, 0.071$ mmol) in dry, degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(25 \mathrm{~cm}^{3}\right)$ was added a 0.46 mol dm^{-3} solution of $\mathrm{HCl}\left(0.175 \mathrm{~cm}^{3}, 0.080 \mathrm{mmol}\right)$ in benzene. A small sample ($0.5 \mathrm{~cm}^{3}$) was removed to record an infrared spectrum. The solvent was then removed in vacuo from the remainder and the orange residue dried at $25^{\circ} \mathrm{C}$ in vacuo for 2 h . It was redissolved in dry, degassed $\mathrm{CD}_{2} \mathrm{Cl}_{2}\left(0.75 \mathrm{~cm}^{3}\right)$, transferred to a thick-walled 5 mm NMR tube and sealed in vacuo. The ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded.
$\left[(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{Mo}(\mu-\mathrm{H})\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{PtCl}\left(\mathrm{PPh}_{3}\right)\right]$ 16a. This compound was characterized by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR monitoring of the sealed tube from the preparation of complex 15a, after the sample had been kept at $25^{\circ} \mathrm{C}$ for 7 d to allow complete rearrangement to $\mathbf{1 6 a}$.

X-Ray Crystallography.-Structural data for $\left[(\mathrm{OC})_{2}(\mathrm{cp})\right.$ -$\left.\mathrm{W}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]$ 4b are available on the Cambridge Crystallographic Data base as ref. code DAPPOZ. Requests citing ref. 10, should be directed to the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW.

Acknowledgements

We thank the Natural Sciences and Engineering Research Council of Canada for financial support.

References

1 J. Powell, M. R. Gregg and J. F. Sawyer, Inorg. Chem., 1989, 28, 4451.

2 J. Powell, J. F. Sawyer and M. V. R. Stainer, Inorg. Chem., 1989, 28, 4461.

3 J. Schwald and P. Peringer, J. Organomet. Chem., 1987, 212, C51.
4 J. Powell, M. R. Gregg and J. F. Sawyer, J. Chem. Soc., Chem. Commun., 1987, 1029.
5 J. Powell, E. Fuchs, M. R. Gregg, J. Phillips and M. V. R. Stainer, Organometallics, 1990, 9, 387.
6 J. Powell, J. C. Brewer, G. Gulia and J. F. Sawyer, Inorg. Chem., 1989, 28, 4470.
7 J. Powell, D. Fuchs and J. F. Sawyer, Organometallics, 1990, 9, 1722.

8 J. Powell, M. R. Gregg and J. F. Sawyer, Inorg. Chem., 1988, 27, 4521.

9 J. Powell and M. R. Gregg, J. Organomet. Chem., 1988, 356, C61.
10 J. Powell, J. F. Sawyer and S. J. Smith, J. Chem. Soc., Chem. Commun., 1985, 1312.
11 T. Blum, P. Braunstein, A. Tiripicchio and M. Tiripicchio, New J. Chem., 1988, 12, 539.
12 R. B. King and F. G. A. Stone, Inorg. Synth., 1963, 7, 99; N. W. Hoffman, Inorg. Chim. Acta, 1984, 88, 59.
13 P. M. Triechel, W. K. Dean and W. M. Douglas, J. Organomet. Chem., 1972, 42, 145.
14 W. Malisch, R. Maisch, I. J. Colquhoun and W. J. McFarlane, J. Organomet. Chem., 1981, 220, C1.

15 W. E. Buhro, S. Georgion, J. P. Hutchinson and J. A. Gladysz, J. Am. Chem. Soc., 1985, 107, 3346.
16 R. W. Caputo, D. K. Mak, R. D. Willet, S. G. Roundhill and D. M. Roundhill, Acta Crystallogr., Sect. B, 1977, 33, 215.
17 T. W. Dingle and K. Dixon, Inorg. Chem., 1974, 13, 847.
18 A. R. Manning, J. Chem. Soc. A, 1967, 1984.
19 F. A. Cotton and C. M. Lukehart, J. Am. Chem. Soc., 1971, 93, 2672.

20 D. S. Moore and S. D. Robinson, Chem. Soc. Rev., 1983, 12, 415.
21 D. J. Darensbourg, Adv. Organomet. Chem., 1982. 21, 112.
22 P. Kalck, R. Prince, R. Poilblanc and J. Russel, J. Organomet. Chem., 1970, 24, 445.
23 P. Legzdins, J. T. Martin, F. W. B. Einstein and A. C. Willis, J. Am. Chem. Soc., 1986, 108, 7971.
24 J. Powell and M. R. Gregg, unpublished work.
25 P. Braunstein, E. de Jesus, A. Tiripicchio and M. Tiripicchio Camellini, J. Organomet. Chem., 1989, 368, C5.
26 D. M. Blake and D. M. Roundhill, Inorg. Synth., 1978, 18, 120.
Received 7th April 1992; Paper 2/01841A

[^0]: + Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1992, Issue 1, pp. xx-xxv.

