Reactivity of Iron(II) Non-classical Hydrides with Alkynes

Gabriele Albertin,^{*} Stefano Antoniutti, Elena Del Ministro and Emilio Bordignon^{*} Dipartimento di Chimica dell'Università di Venezia, Dorsoduro 2137, 30123 Venice, Italy

The complex [FeH(η^2 -H₂){PPh(OEt)₂}₄]BPh₄ reacts with terminal alkynes HC=CR (R = *p*-tolyl, Bu^t or SiMe₃) to give the corresponding alkenes H₂C=CHR and the butenynyl derivative [Fe(η^3 -RC₃CHR)-{PPh(OEt)₂}₄]⁺. In contrast, the related complex [FeH(η^2 -H₂){P(OEt)₃}₄]BPh₄ reacts with terminal alkynes to yield alkenes and σ -acetylide [Fe(C=CR){P(OEt)₃}₄]⁺ derivatives. Activated alkynes such as HC=CCO₂Me and MeO₂CC=CCO₂Me react with both [FeH(η^2 -H₂)L₄]BPh₄ [L = P(OEt)₃ or PPh(OEt)₂] to give vinyl derivatives [Fe{CH=CH(CO₂Me)}L₄]⁺ and [Fe{C(CO₂Me)=CH(CO₂Me)}L₄]⁺, respectively. The characterization of the complexes by IR, ¹H, ¹³C and ³¹P NMR spectroscopy is discussed.

There has been considerable interest in the reactions of transition-metal hydrides with alkynes,^{1,2} not only because of the nature of the resulting products and the factors governing the reaction course, but also because these hydride compounds are potential catalysts for acetylene hydrogenation or polymerization. However, despite the large number of studies reported ² on mono- and di-hydrides of several metals, very little is known about the reactivity of iron hydrides toward alkynes.³

In a previous paper⁴ we reported the reactivity of ruthenium $[RuH(\eta^2-H_2)L_4]BF_4[L = P(OMe)_3, P(OEt)_3 \text{ or } PPh(OEt)_2]$ toward alkynes, which allowed the synthesis of new organoruthenium compounds such as butenynyl and σ -vinyl derivatives. Catalytic reduction of alkyne to alkene under mild conditions was also observed. Now we have extended our studies to include the related iron complexes in order to determine whether non-classical iron hydrides show similar properties, and also for insight on the influence of phosphite ligands on the chemistry of acetylenes. The result of our investigations, which include the synthesis and characterization of new η^3 -enynyl, σ -acetylyde and σ -vinyl iron complexes, are reported here.

Experimental

General Comments.-All operations were performed under an inert atmosphere (argon) by using standard Schlenk techniques or a Vacuum Atmosphere dry-box. All solvents used were dried over appropriate drying agents, degassed on a vacuum line, and distilled into vacuum-tight storage flasks. Diethoxyphenylphosphine was prepared by the method of Rabinowitz and Pellon;⁵ triethyl phosphite was an Ega Chemie product purified by distillation under nitrogen. Acetylenes were Aldrich products used without further purification. Other reagents were purchased from commercial sources in the highest available purity and used as received. Infrared spectra were recorded on a Perkin Elmer model 683 spectrophotometer, NMR spectra (¹H, ¹³C, ³¹P) on Varian FT-80A and Bruker AC 200 spectrometers at temperatures between -85 and +34 °C, unless otherwise noted. Proton and ^{13}C spectra are referred to internal tetramethylsilane, ³¹P-{¹H} with respect to 85% H₃PO₄, with downfield shifts considered positive. Conductivities of 10⁻³ mol dm⁻³ solutions of the complexes in MeNO₂ at 25 °C were measured on a Radiometer CDM 83 instrument. Solution susceptibilities were determined by the Evans method.6

Synthesis of Complexes.--Molecular hydrogen complexes

 $[FeH(\eta^2-H_2)L_4]BPh_4$ were prepared following the method previously reported.⁷

[Fe(η^3 -RC₃CHR){PPh(OEt)₂}₄]BPh₄ 1 (R = Bu^t a, SiMe₃ b or *p*-tolyl c). An excess of the appropriate alkyne (2.5 mmol) was added to a solution of [FeH(η^2 -H₂){PPh(OEt)₂}₄]BPh₄ (0.5 mmol, 0.59 g) in CH₂Cl₂ (15 cm³) cooled to -80 °C. The reaction mixture was brought to 0 °C (in about 15 min) and then stirred for 2 h. Removal of the solvent at reduced pressure gave a green-brown oil which was treated with ethanol (10 cm³). The resulting solution, after addition of an excess of NaBPh₄ (1 mmol, 0.34 g) in ethanol (5 cm³), was slowly cooled to -10 to -20 °C until microcrystals of the product separated. These were recrystallized by dissolving the product in cold CH₂Cl₂ (5 cm³) and, after filtration, adding ethanol (15 cm³) at 0 °C until a solid separated; yields varied from 50 (1b) to 80% (1a).

[Fe(C≡CR){P(OEt)₃}₅]BPh₄ 2 (R = Bu^t **a**, SiMe₃ **b** or *p*-tolyl **c**). An excess of the appropriate alkyne (2.5 mmol) was added to a solution of [FeH(η^2 -H₂){P(OEt)₃}₄]BPh₄ (0.5 mmol, 0.52 g) in CH₂Cl₂ (10 cm³) cooled to -80 °C and the reaction mixture, brought to room temperature, was stirred for about 2 h. The solvent was evaporated under reduced pressure, giving an oil which was treated with ethanol (10 cm³) containing an excess of NaBPh₄ (1 mmol, 0.34 g). The resulting solution was vigorously stirred at 0 °C until a yellow solid separated, which was crystallized by slow cooling to -30 °C of its saturated solution in ethanol–dichloromethane (15 cm³: 3 cm³); yield ≥ 50%.

[Fe{CH=CH(CO₂Me)}L₄]BPh₄ [L = PPh(OEt)₂ 3 or P(OEt)₃ 4]. Methyl propiolate (4 mmol, 0.35 cm³) was added to a solution of the appropriate [FeH(η^2 -H₂)L₄]BPh₄ derivative (0.8 mmol) in CH₂Cl₂ (20 cm³), and the reaction mixture was stirred for 24 h. The solvent was removed under reduced pressure, giving a brown oil which was triturated with ethanol (15 cm³) containing an excess of NaBPh₄ (1 mmol, 0.34 g). After several hours of vigorous stirring an orange solid separated, which was crystallized by slow cooling to -30 °C of its saturated solution in ethanol–dichloromethane (15 cm³: 3 cm³); yield $\ge 40\%$.

[Fe{C(CO₂Me)=CH(CO₂Me)}{P(OEt)₃}₄]BPh₄ 5. An excess of MeO₂CC=CCO₂Me (2.1 mmol, 0.26 cm³) was added to a solution of [FeH(η^2 -H₂){P(OEt)₃}₄]BPh₄ (0.7 mmol, 0.74 g) in CH₂Cl₂ (15 cm³) and the reaction mixture was stirred for 24 h. After removal of the solvent under reduced pressure, the oil obtained was triturated with ethanol (15 cm³) containing an excess of NaBPh₄ (1 mmol, 0.34 g) to give an orange solid. This was crystallized by cooling to -30 °C the solution obtained by

 Table 1
 Proton and phosphorus-31 NMR spectral data

	¹ H NMR ^{<i>b,c</i>}			³¹ Ρ-{ ¹ H} NMR, δ ^{b,d}	
Compound ^a	δ	Assignment	Spin system		
$[Fe(\eta^{3}-Bu^{t}C_{3}CHBu^{t}){PPh(OEt)_{2}_{4}]^{+}$	6.32 (m) 3.61 (m) 1.28, 1.13 (s)	C=C-C=CH POC H_2CH_3 CMe ₃		191 (m) ^e	
$[Fe{\eta^3-(Me_3Si)C_3CH(SiMe_3)}{PPh(OEt)_2}_4]^+$	1.16 (t) 3.76 (m) 1.24 (t)	$POCH_2CH_3$ $POCH_2CH_3$ $POCH_2CH_3$		191 (m)*	
$[Fe{\eta^{3}-(p-MeC_{6}H_{4})C_{3}CH(C_{6}H_{4}Me-p)}{PPh(OEt)_{2}_{4}]^{+}$	0.34, 0.13 (s) 3.63 (m) 2.40, 2.33 (s)	$POCH_2CH_3$ $CH_3C_6H_4$		190 (m) ^e	
$[Fe(C=CCMe_3){P(OEt)_3}_5]^+$	1.19 (t) $4.15 (m)^{f}$ 1.26 (t)	$POCH_2CH_3$ $POCH_2CH_3$ $POCH_2CH_3$	AB ₄ ^f	δ_{A} 154.6, δ_{B} 151.2 [$J(AB) = 105.4$]	
$[Fe(C \cong CSiMe_3) \{P(OEt)_3\}_5]^+$	1.12 (s) 4.24 (m) ^f 1.32 (t) 0.04 (c)	CMe_3 $POCH_2CH_3$ $POCH_2CH_3$	AB ₄ ^f	δ_{A} 152.7, δ_{B} 149.8 [$J(AB) = 105.5$]	
$[Fe{C=C(C_6H_4Me-p)}{P(OEt)_3}_5]^+$	0.04 (s) 4.11 (m) 2.27 (s)	SIMe ₃ POC H_2 CH ₃ C H_3 C ₆ H ₄ POCH CH	AB ₄	δ_{A} 154.1, δ_{B} 150.6 [$J(AB) = 105.9$]	
$[Fe{CH=CH(CO_2Me)}{PPh(OEt)_2}_4]^+$	1.23 (t) 10.04 (m) 6.16 (m) 3.95, 3.87 (m) 3.77 (s) 1.50 1.28 (t)	$CH=CH(CO_2Me)$ $CH=CH(CO_2Me)$ $POCH_2CH_3$ CO_2Me $POCH_CH$	ABC ₂	$\delta_{A} 106.8, \delta_{B} 91.5, \delta_{C} 85.4$ [J(AB) = 62.4, J(AC) = 113.3, J(BC) = 61.8]	
$[Fe{CH=CH(CO_2Me)}{P(OEt)_3}_4]^+$	1.30, 1.20 (t) 10.75 (m) 6.44 (m) 4.09 (m) 3.82 (s) 1.355 (1.20, 1.25 (t))	$CH=CH(CO_2Me)$ $CH=CH(CO_2Me)$ $POCH_2CH_3$ CO_2Me $POCH_4CH_4$	ABC ₂	$\begin{split} \delta_{A} & 169.4, \delta_{B} & 159.7, \delta_{C} & 148.8 \\ & [J(AB) = 79.6, J(AC) = 155.0, \\ & J(BC) = 84.0] \end{split}$	
$[Fe{C(CO_2Me)=CH(CO_2Me)}{P(OEt)_3}_4]^+$	6.22 (m) 4.14 (m) 3.83, 3.75 (s) 1.27, 1.25 (t)	$=CH(CO_2Me)$ $POCH_2CH_3$ CO_2Me $POCH_2CH_3$	ABC ₂	$\delta_{A} 166.1, \delta_{B} 157.5, \delta_{C} 146.9$ [J(AB) = 104.4, J(AC) = 148.5, J(BC) = 102.0]	

^{*a*} All compounds are BPh₄⁻ salts. ^{*b*} At room temperature in (CD₃)₂CO. ^{*c*} Phenyl-proton resonances are omitted. ^{*d*} Coupling constants in Hz; positive shift downfield from 85% H₃PO₄. ^{*e*} At -80 °C. ^{*f*} In CD₂Cl₂.

dissolving the solid in ethanol (10 cm³) and enough dichloromethane (1-2 cm³) to obtain a saturated solution at room temperature; yield $\ge 45\%$.

Results and Discussion

The reaction of molecular hydrogen complexes [FeH(η^2 - H_2L_4]BPh₄ [L = P(OEt)₃ or PPh(OEt)₂] with terminal alkynes HC=CR (R = p-tolyl, Bu^t or SiMe₃) is influenced by the nature of the phosphite ligands, as shown in Scheme 1. Under an inert atmosphere, alkenes (about 1.5 equivalents) are obtained in both cases, but while the butenynyl derivative 1 can be isolated in high yield with the PPh(OEt)₂ ligand, the acetylide compound 2 is obtained from the $[FeH(\eta^2-H_2){P(OEt)_3}_4]^$ starting complex. The formation of enynyl or acetylide iron(II) derivatives from this reaction by changing the nature of the phosphite contrasts with the results obtained in the case of ruthenium,⁴ for which enynyl [Ru(η^3 -RC₃CHR)L₄]BPh₄ complexes were always obtained with all the phosphites used. Furthermore, operating under a hydrogen atomosphere (1 atm, 101 325 Pa) at 20 °C, selective hydrogenation of alkyne to alkene (about 10 turnovers in 3 h) is also observed with both catalysts [FeH(η^2 -H₂)L₄]BPh₄ [L = P(OEt)₃ or PPh(OEt)₂]. This catalytic hydrogenation, however, needs further investigation and will not be discussed here.

The complexes $[Fe(\eta^3-RC_3CHR){PPh(OEt)_2}_4]BPh_4$ are green or orange solids, diamagnetic, stable in the solid state and in deoxygenated polar organic solutions, in which they behave as 1:1 electrolytes (Tables 1 and 2).⁸ At room temperature the ³¹P-{¹H} NMR spectra of compounds 1 show a singlet, but as the temperature is lowered a change is observed until a non-

symmetrical multiplet appears at -80 °C. However, even at this temperature the spectra are still broad enough to prevent the assignment of the parameters δ and J to an ABC₂ system. Besides the signal of the phosphite ligand and the BPh₄⁻ anion, the ¹H NMR spectra of 1 show two singlets for the methyl protons of the substituent R (*p*-tolyl, Bu' or SiMe₃) indicating the existence of non-equivalent groups. A doublet of multiplets at δ 6.32 is also present for [Fe(η^3 -Bu'C₃CHBu'){PPh-(OEt)_2}_4]⁺ 1a and may be attributed to the vinyl proton of the η^3 -RC₃CHR ligands. In the ¹³C NMR spectra of 1a (Table 3) two vinyl-carbon signals occur, one as a multiplet at δ 147.7 attributed to C_{γ}, and one as a doublet of multiplets at δ 143.6 (¹J_{CH} = 162.8 Hz) due to C_{δ}. Two signals are also observed at δ 32.7 and 30.2 for the methyl carbon of the Bu' group.

These data do not allow us to define the formulation and geometry of the complex unambiguously. However, the

Table 2 Physical, analytical and selected IR data for the complexes

				Analysis' (%)		IR ^{<i>a</i>} /cm ⁻¹
Compound ^a		M.p./°C (decomp.)	Λ _M ^o /S cm ² mol ⁻¹	С	Н	
1a	$[Fe(n^3-Bu'C_3CHBu'){PPh(OEt)_3}]^+$	116	97.8 ^e	68.35 (68.55)	7.50 (7.50)	_
1b	$[Fe{n^3-(Me_3Si)C_3CH(SiMe_3)}{PPh(OEt)_3}]^+$	108	55.7	64.95 (65.20)	7.25 (7.30)	1610m v(C=C)
1c	$[Fe{n^3-(p-MeC_eH_a)C_3CH(C_eH_aMe-p)}{PPh(OEt)_2}_{4}]^+$	50	56.9	69.95 (70.30)	7.05 (7.00)	
28	$[Fe(C=CCMe_{2}){P(OEt)_{2}}_{2}]^{+}$	130	52.8	55.75 (56.00)	8.30 (8.15)	2085w v(C≡C) ^f
						[2085w]
2 b	$[Fe(C=CSiMe_2){P(OEt)_2}_{c}]^+$	108	53.6	54.10 (54.40)	7.95 (8.05)	2010m v(C≡C)
						[2016m]
2c	$[Fe{C=C(C_{e}H_{e}Me_{p})}{P(OEt)_{2}_{2}^{+}}^{+}$	130	53.0	56.90 (57.30)	7.80 (7.80)	2095w v(C≡C) ^g
						[2095w]
3	$[Fe{CH=CH(CO_2Me)}{PPh(OEt)_2}^+$	132	54.2	70.60 (70.95)	4.55 (4.70)	1573m v(C=O)
4	$[Fe{CH=CH(CO_2Me)}{P(OEt)_2}]^+$	138	56.4	55.40 (55.55)	7.60 (7.60)	1575m v(C=O)
5	$[Fe{C(CO_2Me)=CH(CO_2Me)}{P(OEt)_2}_{\downarrow}]^+$	115	57.3	54.70 (54.85)	7.60 (7.40)	1712m v(C=O)
2				· · · ·	. ,	1591s v(C=O)

^{*a*} All compounds are BPh₄⁻ salts. ^{*b*} In nitromethane solution (10⁻³ mol dm⁻³) at 25 °C, except for 1a. ^{*c*} Calculated values in parentheses. ^{*d*} In KBr, except for values in square brackets (CH₂Cl₂). ^{*e*} In acetone solution (10⁻³ mol dm⁻³) at 25 °C. ^{*f*} At 2086 cm⁻¹ in Nujol mull. ^{*d*} At 2097 cm⁻¹ in Nujol mull.

Table 3 Carbon-13 NMR spectral data for selected iron compounds^a

Compound ^b	δ	Assignment ^c	Coupling constant/Hz
[Fe(η ³ -Bu ⁱ C ₃ CHBu ⁱ){PPh(OEt) ₂ }₄] ^{+ 4}	147.7 (m) 143.6 (dm) 121.5 (dm) 64.6 (m) 37.5 (m) 37.4 (m) 32.7 (qm) 30.2 (qm)	C_{γ} C_{δ} C_{π} or C_{β} CH_{2} of phosphite CMe_{3} CMe_{3} CMe_{3} CMe_{3} CMe_{3}	162.8 (¹ J _{CH}) 15.4 (¹ J _{CH})
$[Fe(C=CCMe_3){P(OEt)_3}_5]^{+ d}$	125.1 (m) 125.1 (m) 79.6 (m) 62.9 (m)	$C=CCMe_3$ $C=CCMe_3$	$12.0 (trans^{-2} J_{CP})$
	61.9 (m) 32.4 (qm) 30.5 (m) 16.2 (m)	CH_2 of phosphite CMe_3 CMe_3 CH_3 of phosphite	130.7 (¹ <i>J</i> _{CH})
$[Fe{CH=CH(CO_2Me)}{P(OEt)_3}_4]^{+e}$	232.6 (m) 181.5 (m) 124.1 (dm) 62.4 (m)	C_{α} C=O C _b CH ₂ of phosphite	14.3 (<i>trans</i> - ² J _{CP}) 169.0 (¹ J _{CH})
$[Fe{C(CO_2Me)=CH(CO_2Me)}{P(OEt)_3}_4]^{+e}$	53.7 (qm) 16.3 (m) 221.4 (m) 181.1 (dm)	OMe CH ₃ of phosphite C_{α} C=O	147.7 $({}^{1}J_{CH})$ 13.1 $(trans^{-2}J_{CP})$
	177.9 (m) 125.3 (dm) 62.7 (m) 53.9 (qm) 50.9 (qm)	C=O C_{β} CH ₂ of phosphite OMe OMe	168.9 (¹ J _{CH}) 148.1 (¹ J _{CH}) 145.6 (¹ J _{CH})
$[Fe(C=CCMe_3){P(OEt)_3}_5]^{+a}$ $[Fe{CH=CH(CO_2Me)}{P(OEt)_3}_4]^{+c}$ $[Fe{C(CO_2Me)=CH(CO_2Me)}{P(OEt)_3}_4]^{+c}$	32.7 (qm) 30.2 (qm) 16.3 (m) 125.1 (m) 79.6 (m) 62.9 (m) 61.9 (m) 32.4 (qm) 30.5 (m) 16.2 (m) 232.6 (m) 181.5 (m) 124.1 (dm) 62.4 (m) 16.3 (m) 221.4 (m) 181.1 (dm) 177.9 (m) 125.3 (dm) 62.7 (m) 53.9 (qm) 50.9 (qm) 16.1 (m)	CMe ₃ CMe ₃ CMe ₃ CH ₃ of phosphite C=CCMe ₃ C=CCMe ₃ CH ₂ of phosphite CMe ₃ CH ₃ of phosphite C _a C=O C _b CH ₂ of phosphite OMe CH ₃ of phosphite C _a C=O C _b CH ₂ of phosphite OMe CH ₂ of phosphite OMe CH ₂ of phosphite OMe OMe OMe CH ₃ of phosphite	12.0 ($trans^{-2}J_{CP}$) 130.7 (${}^{1}J_{CH}$) 14.3 ($trans^{-2}J_{CP}$) 169.0 (${}^{1}J_{CH}$) 147.7 (${}^{1}J_{CH}$) 13.1 ($trans^{-2}J_{CP}$) 168.9 (${}^{1}J_{CH}$) 148.1 (${}^{1}J_{CH}$) 145.6 (${}^{1}J_{CH}$)

^a All phenyl-carbon resonances are omitted. ^b All compounds are BPh₄⁻ salts. ^c For assignments see geometries I-V. ^d In CD₂Cl₂. ^e In (CD₃)₂CO.

related ruthenium derivatives⁴ [Ru(η^3 -RC₃CHR)L₄]⁺, the X-ray crystal structure of which is known, show very similar spectroscopic properties and it is therefore plausible to propose a type I butenynyl structure for the iron complex too. In order to confirm such a formulation, we attempted to liberate and identify the RC=C-CH=CHR organic compound by proton-

ation with acetylacetone (Hacac); the anion $acac^{-}$ should also allow the FeL₄ fragment to be trapped.

Monitoring the progress of the reaction between [Fe(η^3 -Bu'C₃CHBu'){PPh(OEt)₂}₄]BPh₄ and Hacac at 50 °C by ¹H NMR spectroscopy, we observed the disappearance of the multiplets at δ 6.32 (vinyl protons) and the two singlets at δ 1.28 and δ 1.13 (CH₃ of Bu'), and the parallel appearance of two doublets at δ 5.71 and 5.33 (AB quartet, $J_{AB} = 11.9$ Hz) and a singlet at δ 1.86 (CH₃ of Bu'), attributed to (Z)-Bu'C=C-CH=CHBu' formed by protonation of the η^3 -Bu'C₃-CHBu' ligand with acetylacetone. Furthermore, the corresponding spectra taken during the reaction between [Fe{ η^3 -(p-MeC₆H₄)C₃CH(C₆H₄Me-p)}{PPh(OEt)₂}⁺]⁺ and Hacac show the appearance of the same signals as those observed in

Fig. 1 Observed (bottom) and calculated (top) 32.203 MHz ³¹P-{¹H} NMR spectra of $[Fe{C \equiv C(C_6H_4Me-p)}{P(OEt)_3}_5]BPh_4$ 2c in CD_2Cl_2 at 30 °C. The simulated spectrum was obtained with the following parameters: spin system AB₄, δ_A 154.1, δ_B 150.6, $J_{AB} = 105.9$ Hz

 Table 4
 Infrared data (cm⁻¹) for iron acetylide complexes

Compound	v(C=C) ^a	Ref.
$[Fe(C \equiv CBu^{t})L_{5}]^{+}$	2085	This work
$[Fe{C=C(C_6H_4Me-p)}L_5]^+$	2097	This work
[FeCl(C=CPh)(dmpe)]	2044	11(<i>a</i>)
[Fe(C=CPh) ₂ (dmpe)]	2037	11(b)
$[Fe(C=CBu^{t})_{2}(dmpe)]$	2059	11(b)
[FeH(C=CBu ^t)(dmpe)]	2060*	12
[Fe(C=CPh) ₂ (depe)]	2035	11(<i>b</i>)
$L = P(OEt)_3$, dmpe = $Me_2PCH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2$	$H_2 PMe_2$, dep	$be = Et_2PCH_2CH_2$
^{<i>a</i>} In Nujol mull. ^{<i>b</i>} In C ₆ D ₆ .		

the reaction with Hacac of the related $[Ru{\eta^{3}-(p-MeC_{6}H_{4})-C_{3}CH(C_{6}H_{4}Me-p)]L_{4}]^{+}$ derivative,⁴ *i.e.* two doublets at δ 6.65 and 5.84 (AB quartet, $J_{AB} = 11.9$ Hz) and a singlet at δ 2.35 attributed to $(Z)-(p-MeC_{6}H_{4})C\equiv C-CH=CH(C_{6}H_{4}Me-p)$. On the basis of these data, therefore, the presence of the butenynyl ligands in compounds 1 seems to be confirmed. The NMR spectra (¹H and ³¹P) also revealed the formation of [Fe(acac)L_{4}]^{+}, which was unstable and was not isolated. Enynyl complexes have precedents for Ru,^{2b,4} Os,⁹ W,¹⁰ and also for iron ^{3b} in [Fe{ η^{3} -C(CHPh)C₂Ph}(dmpe)]⁺ (dmpe = Me_{2}PCH_{2}CH_{2}PMe_{2}) in which the phosphine ligand is bidentate.

The acetylide derivatives $[Fe(C=CR){P(OEt)_3}_5]BPh_4$ are yellow, diamagnetic compounds, air-stable both as solids and in solutions of polar organic solvents, and 1:1 electrolytes.⁸ In the IR spectra, the v(C=C) of the acetylide ligand appears at 2010–2095 cm⁻¹, and in the ¹H NMR spectra only one singlet for the

methyl protons of the substituent R (*p*-tolyl, Bu¹ or SiMe₃) is observed. Two multiplets at δ 125.1 ($J_{CP} = 12.0$ Hz) and 79.6 appear for the C_a and C_b carbon atoms of the acetylide ligand in the ¹³C NMR spectrum of [Fe(C=CBu¹){P(OEt)₃}₅]⁺ **2a**, whereas the signals for the substituent Bu¹ appear at δ 32.4 (qm, ¹ $J_{CH} = 130.7$ Hz) for the methyl carbon atom and at δ 30.5 for the quaternary carbon atom, respectively. Moreover, in the temperature range -80 to +30 °C, the ³¹P-{¹H} NMR spectrum appears as AB₄ multiplets which can be simulated with the parameters reported in Fig. 1, consistent with the proposed formulation II.

Table 4, which reports IR data for some iron(II) acetylides, shows that our $[Fe(C=CR)L_5]^+$ derivatives are the only cationic compounds and that their v(C=C) values are the highest observed. This seems to suggest a less conjugative interaction of C=C with the metal in our case, as compared with other neutral complexes.

Activated alkynes such as $HC\equiv CCO_2Me$ and $MeO_2CC\equiv CCO_2Me$ react with both molecular hydrogen complexes at room temperature under argon to give the corresponding alkene and vinyl complexes $[Fe\{CH=CH(CO_2Me)\}L_4]BPh_4$ and $[Fe\{C(CO_2Me)=CH(CO_2Me)\}L_4]BPh_4$, as shown in Scheme 2. It may be noted that the IR spectroscopy in

$$[FeH(\eta^{2}-H_{2}){PPh(OEt)_{2}}_{4}]^{+} + RC \equiv CCO_{2}Me \xrightarrow{CH_{2}Cl_{2}}_{argon}$$
(excess)
$$RCH = CH(CO_{2}Me) + [Fe{CR = CH(CO_{2}Me)}_{4}]^{+}$$

$$3-5$$

Scheme 2 R = H, $L = PPh(OEt)_2$ 3 or $P(OEt)_3$ 4; $R = CO_2Me$, $L = P(OEt)_3$ 5. For $R = CO_2Me$, the alkene is obtained as a mixture of (*E*) and (*Z*) isomers in about 1:1 ratio

the reaction between $[FeH(\eta^2-H_2){P(OEt)_3}_4]^+$ and $HC \equiv CCO_2Me$ also shows the formation of an alkynyl derivative with a v(C=C) band at 2090 cm⁻¹ and v(CO) absorption of the CO_2Me group at 1705 cm⁻¹. However, this complex, formulated as $[Fe(C=CCO_2Me)L_5]^+$ by analogy with **2**, is only present in small quantities (1-2%).

Complexes 3-5 are yellow-orange solids, stable, diamagnetic and 1:1 electrolytes.⁸ The IR spectra of the methyl propiolate derivatives $[Fe{CH=CH(CO_2Me)}L_4]^+$ show a medium-strong band at 1573–1575 cm⁻¹, attributable to the v(CO) of a coordinated carbonyl group of the chelated vinyl ligand. In the temperature range -80 to +30 °C the ³¹P-{¹H} NMR spectra consist of a multiplet which can easily be simulated using an ABC_2 model. Apart from the proton signals of the phosphites and BPh₄⁻, the ¹H NMR spectra show only one singlet at δ 3.77 (3) and 3.82 (4), attributed to the methyl protons of the CH=CHCO₂Me ligand, and two multiplets at δ 10.04–10.75 and 6.16-6.44, attributed to the vinyl protons of the same ligand. The multiplicity of these signals is due to the coupling of each proton with the others and with the phosphorus nuclei of the phosphite ligands, as revealed by computer simulation using an ABC₂XY model (X = H_a, Y = H_b) with the parameters in Fig. 2. The value of 8.50 Hz for $J(H_{\alpha}H_{\beta})$ is consistent with the mutually *cis* position of the two vinyl protons. Lastly, apart from the signals of the phosphite and phenyl carbon atoms, the ¹³C NMR spectra show two multiplets at δ 232.6 and 124.1 $({}^{1}J_{CH} = 169 \text{ Hz})$, attributed to the two C_{α} and C_{β} vinyl carbons, respectively. Furthermore, the carbonyl carbon atom is a multiplet at δ 181.5, with $J(CP_{trans})$ 14.3 Hz, whereas the methyl carbon atom of the OMe group appears at δ 53.7 (¹J_{CH} = 147.7 Hz). On this basis, it is plausible to assign type III geometry to the complex, in which the metal is co-ordinated to four phosphorus atoms and one chelated vinyl ligand.

The dimethyl ester complex $[Fe{C(CO_2Me)=CH(CO_2Me)}-L_4]^+$ was isolated as a solid **5** with the $P(OEt)_3$ ligand, while in the case of $PPh(OEt)_2$ only an oily compound was obtained, the IR and NMR data for which confirmed its formulation as a vinyl derivative. The IR spectrum of **5** shows two v(CO) bands

Fig. 2 Observed (bottom) and calculated (top) 200 MHz ¹H NMR spectra of the vinyl protons of $[Fe{CH=CH(CO_2Me)}{P(OEt)_3}]$ BPh₄ 4 in $(CD_3)_2CO$ at 25 °C. The simulated spectrum was obtained with the following parameters: spin system ABC₂XY (X = H_a, Y = H_b), δ_A 169.4, δ_B 159.7, δ_C 148.8, δ_X 10.75, δ_Y 6.43, J_{AB} = 79.6, J_{AC} = 155.0, J_{AX} = 5.59, J_{AY} = 2.92, J_{BC} = 84.0, J_{BX} = 5.58, J_{BY} = 6.37, J_{CX} = 0.1, J_{CY} = 4.68, J_{XY} = 8.50 Hz

at 1591 and 1712 cm⁻¹, attributable to one co-ordinated carbonyl group and to one free CO_2Me substituent, respectively. Between -80 and +30 °C the ³¹P-{¹H} NMR spectrum showed an ABC₂ multiplet, in agreement with two equivalent and two non-equivalent phosphorus groups. Apart from the signal of the phosphite ligands, the ${}^{1}\hat{H}$ NMR spectrum displayed a multiplet at δ 6.22, due to the vinyl proton, and two singlets at δ 3.83 and 3.75 attributed to the methyl protons of two non-equivalent CO₂Me substituents. Two signals for the non-equivalent CO_2Me groups were also observed in the 13 C NMR spectra at δ 181.1 and 177.9 (CO group) and 53.9 and 50.9 (methyl carbon). Furthermore, the multiplet at δ 221.4 was attributed to the C_{α} carbonoid carbon atom, whereas the doublet of multiplets at δ 125.3 with ${}^{1}J_{CH} = 168.9$ Hz was assigned to the \tilde{C}_{β} vinyl atom. According to these data, it is reasonable to propose a cyclic structure for our complex, in which the carbonyl oxygen atom of one of the ester groups coordinates to iron in a structure of type IV or V

Acknowledgements

The financial support of Ministero dell' Universitá e della Ricerca Scientifica e Tecnologica and Consiglio Nazionale delle Ricerche, Rome, is gratefully acknowledged. We thank Daniela Baldan for technical assistance.

References

- S. Otsuka and A. Nakamura, Adv. Organomet. Chem., 1976, 14, 245 and refs. therein; J. P. Collman, L. S. Hegedus, J. R. Norton and R. G. Finke, Principles and Applications of Organotransition Metal Chemistry, University Science Books, Mill Valley, CA, 1987.
- 2 (a) A. M. Echavarren, J. Lopez, A. Santos, A. Romero, J. A. Hermoso and A. Vegas, Organometallics, 1991, 10, 2371; (b) G. Jia and D. W. Meek, Organometallics, 1991, 10, 1444; (c) C. Bianchini, P. Innocenti, A. Meli, M. Peruzzini, F. Zanobini and P. Zanello, Organometallics, 1990, 9, 2514 and refs. therein; (d) G. P. Herberich and H. Mayer, Organometallics, 1990, 9, 2655; (e) M. I. Bruce, A. Catlow, M. P. Cifuentes, M. R. Snow and E. R. T. Tiekink, J. Organomet. Chem., 1990, 397, 187; (f) A. Andriollo, M. A. Esteruelas, U. Meyer, L. A. Oro, R. A. Sanchez-Delgado, E. Sola, C. Valero and H. Werner, J. Am. Chem. Soc., 1989, 111, 7431; (g) J. M. Bray and R. J. Mawby, J. Chem. Soc., Dalton Trans., 1989, 589; (h) C. P. Casey and E. W. Rutter, jun., J. Am. Chem. Soc., 1989, 111, 8917; (i) A. Romero, A. Santos and A. Vegas, Organometallics, 1988, 7, 1988; (j) A. Hills, D. L. Hughes, N. Kashef, R. L. Richards, M. A. N. D. A. Lemos and A. J. L. Pombeiro, J. Organomet. Chem., 1988, 350, C4; (k) P. Kundel and H. Berke, J. Organomet. Chem., 1988, 339, 297; (1) B. R. Sutherland and M. Cowie, Organometallics, 1985, 4, 1801; (m) M. Cariou, M. Etienne, J. E. Guerchais, R. Kergoat and M. M. Kubicki, J. Organomet. Chem., 1987, 327, 393; (n) D. M. Roddick, M. D. Fryzuk, P. F. Seidler, G. L. Hillhouse and J. E. Bercaw, Organometallics, 1985, 4, 97; (o) H. C. Clark, G. Ferguson, A. B. Goel, E. G. Janzen, H. Ruegger, P. Siew and C. S. Wong, J. Am. Chem. Soc., 1986, 108, 6961; (p) H. Scordia, R. Kergoat, M. M. Kubicki and J. E. Guerchais, J. Organomet. Chem., 1983, 249, 371; (q) B. Longato and S. Bresadola, Inorg. Chem., 1982, 21, 168; (r) D. Seyferth and R. S. Henderson, J. Am. Chem. Soc., 1979, 101, 508; (s) P. Critchlow and S. D. Robinson, Inorg. Chem., 1978, 17, 1902; (t) M. I. Bruce, R. C. F. Gardner, J. A. K. Howard, F. G. A. Stone, M. Welling and P. Woodward, J. Chem. Soc., Dalton Trans., 1977, 621.
- 3 (a) A. Hills, D. L. Hughes, M. Jimenez-Tenario, G. J. Leigh, C. A. McGeary, A. T. Rowley, M. Bravo, C. E. McKenna and M. C. McKenna, J. Chem. Soc., Chem. Commun., 1991, 522; (b) L. D. Field, A. V. George, T. W. Hambley, E. Y. Malouf and D. J. Young, J. Chem. Soc., Chem. Commun., 1990, 931; (c) C. Bianchini, A. Meli, M. Peruzzini, F. Vizza, F. Zanobini and P. Frediani, Organometallics, 1989, 8, 2080.
- 4 G. Albertin, P. Amendola, S. Antoniutti, S. Ianelli, G. Pelizzi and E. Bordignon, *Organometallics*, 1991, **10**, 2876.
- 5 R. Rabinowitz and J. Pellon, J. Org. Chem., 1961, 26, 4623.
- 6 D. F. Evans, J. Chem. Soc., 1959, 2003; R. A. Bailey, J. Chem. Educ., 1972, 49, 297.

- 7 G. Albertin, S. Antoniutti and E. Bordignon, J. Am. Chem. Soc., 1989, 111, 2072.
- 8 W. J. Geary, Coord. Chem. Rev., 1971, 7, 81.
- 9 J. Gotzing, H. Otto and H. Werner, J. Organomet. Chem., 1985, 287, 247.
- 10 A. K. McMullen, J. P. Selegue and J. Wang, Organometallics, 1991, 10, 3421.
- (a) L. D. Field, A. V. George and T. W. Hambley, *Inorg. Chem.*, 1990, 29, 4565; (b) L. D. Field, A. V. George, E. Y. Malouf, I. H. M. Slip and T. W. Hambley, *Organometallics*, 1991, 10, 3842.
 S. D. Ittel, C. A. Tolman, A. D. English and J. P. Jesson, *J. Am. Chem. Soc.*, 1978, 100, 7577.

Received 15th July 1992; Paper 2/03756D