A Redox-switchable Ligand for which the Binding Ability is enhanced by Oxidation of its Ferrocene Unit

Giancarlo De Santis, Luigi Fabbrizzi,* Maurizio Licchelli, Piersandro Pallavicini and Angelo Perotti

Dipartimento di Chimica Generale, Università di Pavia, 27100 Pavia, Italy

Electrochemical investigations on a ferrocene-modified tetraamine diketone ligand have demonstrated an unusual enhancement of the binding ability towards Ni²⁺ when the redox subunit is switched to the ferrocenium form.

Considerable attention has been paid in the last few years to conjugate systems containing a redox function and a fragment able to bind a metal cation; these systems can behave either as chemical sensors¹ or as redox-switchable ligands.² In particular, the redox and binding properties of quinone-modified lariat ethers and podands,3 of ferrocene-containing polythioethers (polythia ferrocenophanes)⁴ and of conjugate molecules containing one or more crown ethers or polythiapolyaza crown ethers and one or more ferrocene units⁵ have been investigated. The most interesting quantity pertinent to these systems is ΔE $(\Delta E = E_{\pm c} - E_{\pm u})$, *i.e.* the difference between the potentials due to the redox functions in the complexed $(E_{\frac{1}{2}c})$ and uncomplexed $(E_{\pm u})$ molecules. All the reported ΔE values are positive: quite reasonably, the presence of a positive charge (the complexed metal cation) close to the redox centre makes easier the attainment of a lower oxidation state ($\Delta E > 0$ in the case of reducible redox functions) and more difficult the attainment of a higher oxidation state ($\Delta E > 0$ in the case of oxidizable redox functions).

We have now synthesised the new ferrocene-modified, watersoluble, tetradentate ligands H_2L^1 and L^2 by aminolysis of diethyl (ferrocenylmethyl)malonate⁶ with ethane-1,2-diamine and through the reduction of H_2L^1 with diborane in tetrahydrofuran, respectively. The ligand H_2L^1 contains a dioxotetraamino binding framework⁷ and is able to complex Ni²⁺ in water, with the simultaneous release of the two amido protons, forming the neutral, square-planar complex [NiL¹] [equation (1)]. On the other hand, L² bears a tetraamine

$$H_2L^1 + Ni^{2+} \rightleftharpoons [NiL^1] + 2H^+$$
(1)

binding fragment ⁸ and binds Ni^{2+} in aqueous solution to give a square stereochemistry [equation (2)]. The complexation

$$L^{2} + Ni^{2+} \Longrightarrow [NiL^{2}]^{2+}$$
(2)

constants pertinent to equations (1) and (2) (*i.e.* K_{red} , see following discussion) have been determined by means of potentiometric titration experiments (Table 1).

Differential pulse voltammetry (DPV) and cyclic voltammetry (CV) of the uncomplexed systems H_2L^1 and L^2 in aqueous solution (0.1 mol dm⁻³ in NaClO₄) were carried out at pH values at which the presence of charged (protonated) species is precluded (see Table 1) and disclosed in both cases a oneelectron reversible redox process, ascribed to oxidation of the ferrocene moiety to ferrocenium, E_4 402 and 351 mV vs. normal

Table 1 Electrochemical and complexation equilibria data for H_2L^1 and L^2 and their nickel(11) complexes

	H_2L^1	L ²
log K _{red}	-9.73(5)	15.10(5)
$\log K_{ox}^{a}$	-9.0(1)	14.7(1)
E_{\star}/mv (uncomplexed) ^b	402 ^c (10.5)	351° (11.0)
$E_{\frac{1}{2}}^{1}$ (nickel complex) ^b	360° (10.5)	376° (7.0)
		1067 ^d (7.0)

^{*a*} Calculated on the basis of the experimentally determined ΔE (see text) and log K_{red} values. ^{*b*} vs. NHE, in aqueous solution, 0.1 mol dm⁻³ in NaClO₄, ± 3 mV; the pH values at which the experiments were carried out are given in parentheses. Notice that the pK_a values for the first protonation are 8.85(1) for H₂L¹ and 9.95(1) for L²; no variation was observed in the voltammograms on increasing the pH to the limiting value of 12. ^{*c*} Relative to ferrocene–ferrocenium. ^{*d*} Relative to the Niⁿ–Ni^m couple.

hydrogen electrode (NHE), respectively. In spite of the similarity of the appended binding fragments, the ferrocene subunits display a strikingly different electrochemical behaviour upon co-ordination of the ligands to Ni²⁺. In particular, DPV and CV experiments on aqueous solutions of $[NiL^{1}]$ and $[NiL^{2}]^{2+}$ (0.1 mol dm⁻³ in NaClO₄; pH adjusted to values at which 100% of the metal in solution was in the desired complexed form, see Table 1) revealed an opposite trend: in the case of [NiL²]²⁺, the ferrocene-ferrocenium redox change takes place at a more positive potential than in the free ligand $(\Delta E = +25 \text{ mV})$; in the case of [NiL¹] this oxidation takes place at a more negative value ($\Delta E = -42$ mV). Thus, paradoxically, the presence of a proximate positively charged centre (Ni²⁺) makes it distinctly easier, and not more difficult, to form the positively charged ferrocenium subunit. The case of $[NiL^1]$ represents, to our knowledge, the first example of a redox-functionalized ligand that features a negative ΔE .

The apparent paradox can be explained in terms of electro-

static effects. Placing a dipositive Ni²⁺ cation in the tetramine donor set of L² makes the oxidation of the proximate ferrocene subunit more difficult. On the other hand, on complexation H_2L^1 becomes deprotonated and a double negative charge forms on the ligand system. This negative charge is not completely offset by the Ni²⁺ ion and the oxidation potential of the appended ferrocene is thereby shifted cathodically.

A thorough explanation of the above effect is given, from a different point of view, by Scheme 1,⁹ in which the complexation and redox equilibria pertinent to ligand $H_2L^1(a)$ or $L^2(b)$ with Ni²⁺ are summarized: K_{red} represents the complexation constant relative to the neutral, ferrocene-bearing ligands, while K_{ox} is relative to the oxidized, *ferrocenium*-bearing ligands. Equation (3)⁹ holds for the situation described by Scheme 1 and

$$\Delta E = (RT/nF)\ln(K_{\rm red}/K_{\rm ox}) \tag{3}$$

allows one to calculate K_{ox} from the experimentally obtained ΔE and K_{red} values. In particular (see Table 1), $K_{ox} > K_{red}$ in the case of H_2L^1 and $K_{ox} < K_{red}$ in the case L^2 . Ligand L^2 displays behaviour typical of all reported ferrocene-modified ligands,^{1,5,10} in which a decrease in the complexation constant is observed when a metal cation is co-ordinated by a ligand bearing a charged substituent (*e.g.* ferrocenium) instead of a neutral one (ferrocene).

The case of H_2L^1 can be explained by a closer examination of the complexation process [equation (1)]. This can be split into two steps, represented by equations (4) and (5), whose equilib-

$$H_2L^1 \rightleftharpoons [L^1]^{2-} + 2H^+ \qquad (4)$$

$$[L^{1}]^{2^{-}} + \operatorname{Ni}^{2^{+}} \rightleftharpoons [\operatorname{Ni}L^{1}]$$
(5)

rium constants are K_4 and K_5 (notice that individual values of K_4 and K_5 cannot be determined). Thus, $K_{red} = K_4 K_5$. Similar

equations (4*) and (5*) can be written for the oxidized,

$$[H_2L^{1*}]^+ \rightleftharpoons [L^{1*}]^- + 2H^+ \qquad (4^*)$$

$$[L^{1*}]^{-} + \operatorname{Ni}^{2+} \rightleftharpoons [\operatorname{Ni}L^{1*}]^{+}$$
(5*)

ferrocenium-bearing ligand 1 $[H_2L^{1*}]^+$. In this case, $K_{ox} = K_4*K_5*$. The electrostatic repulsive effect, exerted by the positively charged ferrocenium subunit in $[H_2L^{1*}]^+$ on the leaving amido protons, makes the value of K_4* higher than that of K_4 . On the other hand, K_5 should be higher than K_5* , following the general trend. Thus, it appears that K_4* increases with respect to K_4 more significantly than K_5* decreases with respect to K_5 , and on balance $K_{ox} > K_{red}$.

The compound H_2L^1 represents the first example of a new class of redox-switchable ligands, capable of binding enhancement towards cations upon oxidation of the appended redox function. It should be noted that $[NiL^2]^{2+}$ undergoes a further one-electron reversible oxidation process, which is ascribed to the Ni^{II} to Ni^{III} change. Its E_1 value (1067 mV vs. NHE) is more positive than that observed for plain $[NiL^3]^{2+}$ (L³ = 3,7-diazanonane-1,9-diamine) (1032 mV vs. NHE), as expected,¹¹ due to the electrostatic repulsive effects exerted by the proximate ferrocenium subunit. The complex $[NiL^1]$ displays a further irreversible wave in both CV and DPV profiles.

References

- 1 P. D. Beer, Chem. Soc. Rev., 1989, 18, 409.
- 2 G. W. Gokel, Crown Ethers and Cryptands, The Royal Society of Chemistry, Cambridge, 1991, p. 151.
- 3 D. A. Gustowski, M. Delgado, V. J. Gatto, L. Echegoyen and G. W. Gokel, J. Am. Chem. Soc., 1986, 108, 7553.
- 4 M. Sato, S. Tanaka, S. Akabori and Y. Habata, Bull. Chem. Soc. Jpn., 1986, 59, 1515; M. Sato, K. Suzuki and S. Akabori, Bull. Chem. Soc. Jpn., 1986, 59, 3611.
- 5 P. D. Beer, E. L. Tite and A. Abbotson, J. Chem. Soc., Dalton Trans., 1991, 1691; P. D. Beer, A. D. Keefe, H. Sikanyika, C. Blackburn and J. F. McAleer, J. Chem. Soc., Dalton Trans., 1990, 3289; P. D. Beer, J. E. Nation, S. L. W. McWhinnie, M. E. Harman, M. B. Hursthouse, M. I. Ogden and A. H. White, J. Chem. Soc., Dalton Trans., 1991, 2485; C. D. Hall, N. W. Sharpe, I. P. Danks and Y. P. Sang, J. Chem. Soc., Chem. Commun., 1989, 419.
- 6 A. Dormond and J. Dacombe, Bull. Chem. Soc. Fr., 1968, 3673.
- 7 M. Kodama and E. Kimura, J. Chem. Soc., Dalton Trans., 1981, 694.
- 8 L. Fabbrizzi, R. Barbucci and P. Paoletti, J. Chem. Soc., Dalton Trans., 1972, 1529.
- 9 M. P. Andrews, C. Blackburn, J. F. McAleer and V. D. Patel, J. Chem. Soc., Chem. Commun., 1987, 1122.
- 10 G. W. Gokel, J. C. Medina, C. Li, T. T. Goodnow, M. T. Rojes, J. C. Hernandez-Medina, S. Munoz, A. Nakano, J. L. Atwood and A. E. Keifer, in *Supramolecular Chemistry*, eds. V. Balzani and L. De Cola, Kluwer, Dordrecht, 1992, p. 429.
- 11 A. M. De Blas, G. De Santis, L. Fabbrizzi, M. Licchelli, P. Pallavicini and A. Poggi, in *Supramolecular Chemistry*, eds. V. Balzani and L. De Cola, Kluwer, Dordrecht, 1992, p. 87.

Received 10th August 1992; Communication 2/04339D

[©] Copyright 1992 by the Royal Society of Chemistry