Synthesis and Structural Characterization of Polynuclear Complexes containing the Eight-electron Donor Bis(diphenylphosphino)methanediide Ligand \dagger

Eduardo J. Fernandez, ${ }^{\text {b }}$ M. Concepción Gimeno, ${ }^{a}$ Peter G. Jones, ${ }^{\text {c }}$ Antonio Laguna, ${ }^{\text {, } a}$ Mariano Laguna ${ }^{\text {a }}$ and José M. López-de-Luzuriaga ${ }^{b}$
${ }^{a}$ Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón,
Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
${ }^{b}$ Colegio Universitario de La Rioja, Obispo Bustamante, 3, 26001 Logroño, Spain
${ }^{c}$ Institut für Anorganische und Analytische Chemie der Technischen Universität, Hagenring 30, W-3300 Braunschweig, Germany

The compound $\left[\mathrm{AuR}_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{CH}\right\}\right]$ ($\mathrm{R}=\mathrm{C}_{6} \mathrm{~F}_{5}$) reacts with various gold(1) or silver(1) compounds possessing a labile ligand such as tetrahydrothiophene or perchlorate to give $\left[\mathrm{AuR} \mathrm{R}_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{CH}\right.\right.$ $(\mathrm{ML})\}] \mathrm{ClO}_{4} \quad\left(\mathrm{ML}=\mathrm{AuPPh}_{3}, \quad \mathrm{AuCH}_{2} \mathrm{PPh}_{3}\right.$ or $\left.\mathrm{AgPPh}_{3}\right)$. Treatment of these derivatives with $\left[\mathrm{Au}(\mathrm{acac})\left(\mathrm{PPh}_{3}\right)\right]$ or $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right][\mathrm{Au}(\mathrm{acac}) \mathrm{Cl}] \quad\left(\mathrm{acac}=\right.$ acetylacetonate) leads to $\left[\mathrm{AuR} \mathrm{R}_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}\right.\right.$ $\left.\left.\left(\mathrm{AuPPh}_{3}\right)(\mathrm{ML})\right\}\right] \mathrm{ClO}_{4}$ or $\left[\mathrm{AuR}_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}\left(\mathrm{AuPPh}_{3}\right)(\mathrm{AuCl})\right\}\right]$, in which the doubly deprotonated bis(diphenylphosphino) methanediide ligand is an eight-electron donor. The compound $\left[A u R_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}\right.\right.$ $\left.\left.\left(\mathrm{AuPPh}_{3}\right)_{2}\right\}\right] \mathrm{ClO}_{4}$ can also be obtained by reaction of $\left[\mathrm{AuR}_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{CH}_{2}\right\}\right] \mathrm{ClO}_{4}$ and $\left[\mathrm{Au}(\mathrm{acac})\left(\mathrm{PPh}_{3}\right)\right.$] in 1:2 molar ratio. The reaction of $\left[\mathrm{AuR}_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{CH}(\mathrm{AuR})\right\}\right]$ with $\left[\mathrm{Au}(\mathrm{acac})\left(\mathrm{PPh}_{3}\right)\right]$ or $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right][\mathrm{Au}(\mathrm{acac}) \mathrm{Cl}]$ gives the trinuclear complexes $\left.\left[\mathrm{AuR}_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}(\mathrm{AuR})(\mathrm{AuPPh})_{3}\right)\right\}\right]$ or $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{AuR}_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}(\mathrm{AuR})(\mathrm{AuCl})\right\}\right]$, whereas it reacts with $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{Au}(\mathrm{acac})_{2}\right]$ (molar ratio 2:1) affording the pentanuclear complex $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\left\{\mathrm{AuR}_{2}\left[\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}(\mathrm{AuR})\right]\right\}_{2} \mathrm{Au}\right]$. Another pentanuclear derivative $\left[\left\{\mathrm{AuR}_{2}\left[\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}\left(\mathrm{AuPPh}_{3}\right)\right]\right\}_{2} \mathrm{Au}\right] \mathrm{ClO}_{4}$ is obtained by treatment of $\left[\left\{\mathrm{AuR}_{2}\left[\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{CH}\right]\right\}_{2} \mathrm{Au}\right] \mathrm{ClO}_{4}$ with 2 equivalents of $\left[\mathrm{Au}(\mathrm{acac})\left(\mathrm{PPh}_{3}\right)\right]$. The compounds were characterized by elemental analysis, IR and NMR spectroscopy, and some by fast atom bombardment mass spectrometry. The crystal structure of $\left[\mathrm{AuR}_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}\left(\mathrm{AuPPh}_{3}\right)_{2}\right\}\right] \mathrm{ClO}_{4} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was confirmed by X-ray diffraction analysis. The complex contains a triangular $\mathrm{Au}_{2} \mathrm{C}$ unit with a short $\mathrm{Au} \ldots \mathrm{Au}$ contact of 2.826 (2) \AA and a narrow $\mathrm{Au}(1)-\mathrm{C}(1)-\mathrm{Au}(2)$ angle of 85.4(7) ${ }^{\circ}$.

Bis(diphenylphosphino)methanide ($\mathrm{dppm}-\mathrm{H}$) has been studied as a versatile ligand in co-ordination chemistry. Usually, it acts as a bi- or tri-dentate ligand by bonding to one, two or three metal atoms through the phosphorus and the central carbon atom. ${ }^{1}$

We have reported the synthesis of a variety of methanide gold-(I) and -(III) complexes. ${ }^{2}$ Our studies have focused on obtaining methanide complexes from diphosphine derivatives using NaH as deprotonating agent; this procedure has allowed us to prepare complexes with co-ordination form \mathbf{B}^{3} (Scheme 1), while form \mathbf{A} was achieved starting from [AuX(ylide)] derivatives by reaction with dppm. ${ }^{4.5}$ Forms \mathbf{A} and \mathbf{B} possess an excess of electron density, which has been used to co-ordinate to further gold or silver fragments ${ }^{3-5}$ (forms \mathbf{C} and D). However, our efforts to obtain the ligand as eight-electron donor forms \mathbf{E} or \mathbf{F} had been unsuccessful.

Very few examples of complexes with the ligand dppm -2 H have been reported; these were the iron(III) complexes [Fe $\left.(\mathrm{CNPh})_{3} \mathrm{~L}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}\left(\mathrm{AuPPh}_{3}\right)_{2}\right\}\right]^{n+}(\mathrm{L}=\mathrm{I}$ or CNPh$){ }^{6}$ the mercury derivative $\left[\mathrm{Hg}_{2}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}\left(\mathrm{HgO}_{2} \mathrm{CMe}\right)_{2}\right]^{7}\right.$ and the mixed palladium and platinum complex $\left[\left\{\operatorname{Pd}(\mu-\mathrm{Cl})_{2^{-}}\right.\right.$

[^0]

Scheme 1
$\left.\left.\operatorname{Pt}\left[\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}\right]\right\}_{n}\right]^{8} \quad \mathrm{~A}$ possible alternative route to such complexes was suggested by the use of acetylacetonate (acac) complexes, mainly by Vicente and co-workers, as excellent precursors for abstracting one proton and leaving one or two free co-ordination sites. ${ }^{9,10}$

Here we have studied the reactivity of bis(diphenylphosphino)methane or bis(diphenylphosphino)methanide complexes of gold(iII) towards [Au(acac) $\left.\left(\mathrm{PPh}_{3}\right)\right],\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ $[\mathrm{Au}(\mathrm{acac}) \mathrm{Cl}]$ or $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{Au}(\mathrm{acac})_{2}\right]$, leading to complexes

(iv)

M
$4 \mathrm{AU} \mathrm{L}=\mathrm{L}^{\prime}=\mathrm{PPh}_{3}(m=1)$
$5 \mathrm{Au} \mathrm{L}=\mathrm{CH}_{2} \mathrm{PPh}_{3}, \mathrm{~L}^{\prime}=\mathrm{PPh}_{3}(m=1)$
$7 \mathrm{Au} \mathrm{L}=\mathrm{PPh}_{3}, \mathrm{~L}^{\prime}=\mathrm{Cl}(m=0)$

Scheme $2 \quad \mathrm{R}=\mathrm{C}_{6} \mathrm{~F}_{5}$. (i) NaH ; (ii) [AuR(tht)]; (iii) $\left[\mathrm{Au}(\mathrm{tht})_{2}\right] \mathrm{ClO}_{4}$; (iv) $[\mathrm{ML}]^{+}$; (v) $2[\mathrm{Au}(\mathrm{acac}) \mathrm{L}] ;$ (vi) [Au(acac)L$]^{n}$; (vii) $[\mathrm{Au}(\mathrm{acac}) \mathrm{L}]^{n}$; (viii) $\left[\mathrm{Au}(\mathrm{acac})_{2}\right]^{-} ;(i x) 2\left[\mathrm{Au}(\mathrm{acac})\left(\mathrm{PPh}_{3}\right)\right]$
of different structural types. We have succeeded in obtaining complexes containing the eight-electron donor ligand dppm -2 H .

Results and Discussion

The bis(diphenylphosphino)methanide complex $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2^{-}}\right.$ $\left.\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{CH}\right\}\right]$ possesses an excess of electron density on the methanide carbon, causing it to act as a C -donor nucleophile. Therefore it can displace weakly co-ordinated ligands such as tetrahydrothiophene (tht) or perchlorate from [$\mathrm{Au}(\mathrm{tht}) \mathrm{L}] \mathrm{ClO}_{4}$ or $\left[\mathrm{Ag}\left(\mathrm{OClO}_{3}\right)\left(\mathrm{PPh}_{3}\right)\right]$, forming the binuclear complexes $[\mathrm{Au}-$ $\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{CH}(\mathrm{ML})\right\}\right] \mathrm{ClO}_{4}\left(\mathrm{ML}=\mathrm{AuPPh}_{3} 1, \mathrm{AuCH}_{2}-\right.$ $\mathrm{PPh}_{3} 2$ or $\mathrm{AgPPh}_{3} 3$) (see Scheme 2).

Complexes 1-3 are air- and moisture-stable white solids. In acetone solution they behave as 1:1 electrolytes. Their IR spectra show bands at 1100 s (br) and $625 \mathrm{~m} \mathrm{~cm}^{-1}$ which arise from the $\mathrm{ClO}_{4}{ }^{-}$anion $\left(T_{d}\right)$, and also at $1507 \mathrm{~m}, 965 \mathrm{~m}, 808 \mathrm{~m}$ and $798 \mathrm{~m} \mathrm{~cm}^{-1}$ consistent with the presence of $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups linked to a gold(III) centre, the last two confirming the cis disposition. ${ }^{11}$ The band at $581 \mathrm{w} \mathrm{cm}{ }^{-1}$ for compound 2 is assigned to $v(\mathrm{Au}-\mathrm{C})$ of the ylide group. ${ }^{12,13}$ The absorption at $1125 \mathrm{~cm}^{-1}$, characteristic of the $\mathrm{Ph}_{2} \mathrm{PCH} \mathrm{PPh}_{2}$ system, is no longer observed.

The ${ }^{19} \mathrm{~F}$ NMR spectra of complexes $1-3$ show the presence of equivalent pentafluorophenyl rings. The methanide H of $\mathbf{1}$ appears in the ${ }^{1} \mathrm{H}$ NMR spectrum as a triplet of doublets at $\delta 6.54$ by coupling to the phosphorus of the diphosphine and the triphenylphosphine $\left[{ }^{2} J(\mathrm{PH})=8.06\right.$ and $\left.{ }^{3} J(\mathrm{PH})=6.85 \mathrm{~Hz}\right] ; 2$ shows a doublet at $\delta 1.74, J(\mathrm{PH})=13.2 \mathrm{~Hz}$ (ylide protons), and a triplet at $\delta 5.79, J(\mathrm{PH})=8.6 \mathrm{~Hz}$ (methine proton), while 3 shows a multiplet at $\delta 6.11$ for the CH group.

Particularly interesting are the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra, where the diphosphine phosphorus always appears as a multiplet because of the coupling to ${ }^{19} \mathrm{~F}$ nuclei of the trans$\mathrm{C}_{6} \mathrm{~F}_{5}$ group. The phosphorus of the ligand L appears as a triplet for complex $1\left[{ }^{3} J(\mathrm{PP})=13.3 \mathrm{~Hz}\right]$, a singlet for 2 and a doublet of doublets for 3 as a result of the coupling with both ${ }^{107} \mathrm{Ag}$ and ${ }^{109} \mathrm{Ag}\left[{ }^{1} J\left({ }^{107} \mathrm{AgP}\right)=507.5,{ }^{1} J\left({ }^{109} \mathrm{AgP}\right)=596.1\right.$ Hz].

The chemical shifts of the diphosphine atoms lie in the range $\delta-21.9$ to -33.2 ; these values are close to those of the free dppm ligand ($\delta-21.9, \mathrm{CDCl}_{3}$) or even more shielded. This effect is similar to that found in other transition-metal complexes such as those of plátinum, ${ }^{14}$ and has been studied by Garrou ${ }^{15}$ in compounds containing chelating phosphorus ligands in terms of a specific ring contribution, $\Delta_{\mathbf{R}}$, to the coordination shift.

The reaction of complexes $1-3$ with $\left[\mathrm{Au}(\mathrm{acac})\left(\mathrm{PPh}_{3}\right)\right]$ or $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right][\mathrm{Au}(\mathrm{acac}) \mathrm{Cl}]$ leads to proton substitution by the fragments $\mathrm{Au}\left(\mathrm{PPh}_{3}\right)^{+}$and AuCl and formation of acetylacetone. Following this procedure we have prepared the cationic complexes $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}(\mathrm{ML})\left(\mathrm{AuPPh}_{3}\right)\right\}\right]$ $\mathrm{ClO}_{4}\left(\mathrm{ML}=\mathrm{AuPPh}_{3} 4, \mathrm{AuCH}_{2} \mathrm{PPh}_{3} 5\right.$ or $\left.\mathrm{AgPPh}_{3} 6\right)$ and the neutral $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}\left(\mathrm{AuPPh}_{3}\right)(\mathrm{AuCl})\right\}\right] 7$; these are the first gold derivatives in which the dppm -2 H ligand is an eight-electron donor, linked only to gold or gold and silver atoms. Compound 4 can also be prepared by direct reaction of the diphosphine complex $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{CH}_{2}\right\}\right] \mathrm{ClO}_{4}$ with 2 equivalents of $\left[\mathrm{Au}(\mathrm{acac})\left(\mathrm{PPh}_{3}\right)\right]$.

Complexes 4-7 are air- and moisture-stable yellow solids; they behave as $1: 1$ electrolytes in acetone, except for 7 which is non-conducting. Their IR spectra show similar absorptions to those of the starting materials, but two new bands in the region $800-900 \mathrm{~cm}^{-1}$ appear for all the complexes, possibly attributable to the system CM_{2}.

The ${ }^{19} \mathrm{~F}$ NMR spectra show the presence of equivalent $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups. In the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra the diphosphine atoms appear as multiplets and other signals are assigned as follows: 4, a triplet (PPh_{3} groups) with ${ }^{3} J(\mathrm{PP})=7 \mathrm{~Hz} ; 5$, a triplet ${ }^{3} J(\mathrm{PP})=10.3 \mathrm{~Hz}\left(\mathrm{PPh}_{3}\right)$ and a singlet (ylide); 6, a triplet ${ }^{3} J(\mathrm{PP})=7 \mathrm{~Hz}\left(\mathrm{AuPPh}_{3}\right)$ and a doublet of doublets $\left(\mathrm{AgPPh}_{3}\right)$ with $J\left({ }^{107} \mathrm{AgP}\right)=522.6$ and $J\left({ }^{109} \mathrm{AgP}\right)=603.6 \mathrm{~Hz}$; and 7, a triplet ${ }^{3} J(\mathrm{PP})=10.8 \mathrm{~Hz}\left(\mathrm{PPh}_{3}\right)$.

For the diphosphine phosphorus there is an upfield shift from the starting materials to these compounds where the dppm ligand is an eight-electron donor.

Compounds 4-6 were also characterized by fast atom bombardment (FAB) mass spectroscopy. The highest peaks

Table 1 Analytical data and properties of the complexes 1-11 ($\mathrm{R}=\mathrm{C}_{6} \mathrm{~F}_{5}$)

		Analysis (\%) ${ }^{\text {a }}$		$\Lambda_{M}{ }^{6} / \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$	M.p. ${ }^{1 / \mathrm{C}}$
Complex	Yield (\%)	C	H		
$1\left[\mathrm{AuR}_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{CH}\left(\mathrm{AuPPh}_{3}\right)\right\}\right] \mathrm{ClO}_{4} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$	80	$\begin{gathered} 43.15 \\ (43.15) \end{gathered}$	$\begin{gathered} 2.8 \\ (2.5) \end{gathered}$	148	122
$2\left[\mathrm{AuR}_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{CH}\left(\mathrm{AuCH}_{2} \mathrm{PPh}_{3}\right)\right\}\right] \mathrm{ClO}_{4}$	70	$\begin{gathered} 44.9 \\ (45.25) \end{gathered}$	$\begin{gathered} 2.75 \\ (2.55) \end{gathered}$	156	118 (decomp.)
$3\left[\mathrm{AuR}_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{CH}\left(\mathrm{AgPPh}_{3}\right)\right\}\right] \mathrm{ClO}_{4} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$	91	$\begin{gathered} 45.8 \\ (45.8) \end{gathered}$	$\begin{gathered} 2.6 \\ (2.6) \end{gathered}$	146	116 (decomp.)
$4\left[\mathrm{AuR}_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}\left(\mathrm{AuPPh}_{3}\right)_{2}\right\}\right] \mathrm{ClO}_{4}$	75	$\begin{gathered} 45.7 \\ (45.4) \end{gathered}$	$\begin{gathered} 2.9 \\ (2.6) \end{gathered}$	166	124
$5\left[\mathrm{AuR}_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}\left(\mathrm{AuCH}_{2} \mathrm{PPh}_{3}\right)\left(\mathrm{AuPPh}_{3}\right)\right\}\right] \mathrm{ClO}_{4}$	64	$\begin{gathered} 45.4 \\ (45.6) \end{gathered}$	$\begin{gathered} 3.3 \\ (2.7) \end{gathered}$	178	82 (decomp.)
$6\left[\mathrm{AuR}_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}\left(\mathrm{AuPPh}_{3}\right)\left(\mathrm{AgPPh}_{3}\right)\right\}\right] \mathrm{ClO}_{4}$	66	$\begin{gathered} 46.4 \\ (46.1) \end{gathered}$	$\begin{gathered} 2.7 \\ (2.7) \end{gathered}$	147	120
$7\left[\mathrm{AuR}_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}\left(\mathrm{AuPPh}_{3}\right)(\mathrm{AuCl})\right\}\right]$	30	$\begin{gathered} 40.7 \\ (41.1) \end{gathered}$	$\begin{gathered} 2.2 \\ (2.2) \end{gathered}$	30	88 (decomp.)
$8\left[\mathrm{AuR}_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}(\mathrm{AuR})\left(\mathrm{AuPPh}_{3}\right)\right\}\right]$	69	$\begin{gathered} 41.9 \\ (41.5) \end{gathered}$	$\begin{gathered} 2.3 \\ (2.05) \end{gathered}$	28	118 (decomp.)
$9\left[\mathrm{~N}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{AuR}_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}(\mathrm{AuR})(\mathrm{AuCl})\right\}\right]^{c}$	50	$\begin{array}{r} 46.85 \\ (46.5) \end{array}$	$\begin{aligned} & 2.6 \\ & (2.45) \end{aligned}$	132	64
$10\left[\mathrm{~N}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\left\{\mathrm{AuR}_{2}\left[\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}(\mathrm{AuR})\right]\right\}_{2} \mathrm{Au}\right]^{\mathrm{c}}$	94	$\begin{aligned} & 45.1 \\ & (44.70) \end{aligned}$	$\begin{aligned} & 2.2 \\ & (2.15) \end{aligned}$	146	78 (decomp.)
$\left.11\left[1 \mathrm{AuR}_{2}\left[\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}\left(\mathrm{AuPPh}_{3}\right)\right]\right\}_{2} \mathrm{Au}\right] \mathrm{ClO}_{4}$	50	$\begin{gathered} 44.35 \\ (43.95) \end{gathered}$	$\begin{gathered} 3.0 \\ (2.6) \end{gathered}$	118	157

"Calculated values in parentheses. ${ }^{b}$ In acetone. ${ }^{c} 9, \mathrm{~N} 0.55(0.70) ; \mathbf{1 0}, \mathrm{N} 0.30(0.40) \%$.

Table $2{ }^{31} \mathbf{P}-\left\{{ }^{1} \mathrm{H}\right.$; and ${ }^{19} \mathrm{~F}$ NMR data for complexes 1-11

	${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$		${ }^{19} \mathrm{~F}$		
Complex	$\delta(\mathbf{P P})$	$\delta(\mathrm{ML})(J / \mathrm{Hz})$	$\delta(o-\mathrm{F})$	$\delta(p-\mathrm{F})$	$\delta(m-\mathrm{F})$
1	-24.6 (m)	39.4 [t, J(PP) 13.3]	-120.2 (m)	-155.3 [t, J(FF) 19.6]	-159.9 (m)
2	-21.9 (m)	32.5 (s)	- 119.8 (m)	- 155.9 [t, J(FF) 20.7]	- 160.2 (m)
3	-33.2 (m)	14.7 [dd, $\left.J\left({ }^{109} \mathrm{AgP}\right) 596.1, J\left({ }^{107} \mathrm{AgP}\right) 507.5\right]$	- 120.7 (m)	- 155.7 [t, J(FF) 19.2]	- 160.3 (m)
4	-29.5 (m)	38.1 [$\mathrm{t}, J(\mathrm{PP}) 7.0]$	- 121.5 (m)	-156.3 [t, J(FF) 19.6]	-160.5 (m)
5	-32.5 (m)	31.4 (s)	- 121.0 (m)	- 156.9 [t, J(FF) 19.3]	-160.9 (m)
		34.9 [t, J (PP) 10.3]			
6	-35.3 (m)	44.6 [t, J (PP) 7.0]	-121.6(m)	- $156.6[\mathrm{t}, \mathrm{J}(\mathrm{FF}) 19.3]$	- 160.8 (m)
		12.9 [dd, J(${ }^{109} \mathrm{AgP}$) $\left.603.6, J\left({ }^{107} \mathrm{AgP}\right) 522.6\right]$			
7	-28.0 (m)	34.1 [$\mathrm{t}, J(\mathrm{PP}) 10.8]$	-120.2 (m)	-156.9 [t, J(FF) 19.5]	- 160.8 (m)
8	- 32.5 (m)	35.0 [t, J (PP) 10.2]	-116.7 (m)	- 157.4 [t, J(FF) 19.5]	-161.1 (m)
			- 120.5 (m)	-161.7 [t, J(FF) 20.6]	- 163.7 (m)
9	-26.9 (m)		- 115.2 (m)	-158.9 [t, J(FF) 19.3]	-162.0 (m)
			-115.7 (m)	-163.5 [t, J (FF) 20.6]	- 164.7 (m)
10	-34.0 (m)		-114.4 (m)	-158.9 [t, J(FF) 20.1]	- 161.9 (m)
			-115.5 (m)	-163.1 [t, J(FF) 20.1]	- 165.2 (m)
11	-31.0(m)	35.0 [$\mathrm{t}, J(\mathrm{PP}) 12.5]$	-121.5 (m)	-156.2[t, J(FF) 20.1]	- 160.5 (m)

at $m /==1831$ (4), 1845 (5) and 1743 (6), correspond to the cations $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}\left(\mathrm{AuPPh}_{3}\right)_{2}\right\}\right]^{+},\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}-\right.$ $\left.\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}\left(\mathrm{AuCH}_{2} \mathrm{PPh}_{3}\right)\left(\mathrm{AuPPh}_{3}\right)\right\}\right]^{+}$and $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}{ }^{-}\right.$ $\left.\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}\left(\mathrm{AgPPh}_{3}\right)\left(\mathrm{AuPPh}_{3}\right)\right\}\right]^{+}$, respectively. A common feature among them is the presence of high-intensity peaks at $m / z 841$ assigned to the fragment $\mathrm{Au}(\mathrm{dppm}-2 \mathrm{H})\left(\mathrm{PPh}_{3}\right)^{+}$and at 459 assigned to $\mathrm{Au}\left(\mathrm{PPh}_{3}\right)^{+}$. Complex 5 also shows a peak at $m / z=1831$ with relative intensity 95%, which corresponds to loss of methylene from the ylide group.

Crystal Structure of Compound 4.-The structure of complex 4 was confirmed by X-ray diffraction analysis (Fig. 1), although the moderate precision precludes detailed discussion of molecular dimensions. The co-ordination of the gold(iii) atom is slightly distorted from square planar, whereby the restricted 'bite' of the diphosphine ligand $\left[\mathrm{P}(3)-\mathrm{Au}(3)-\mathrm{P}(4) 70.5(3)^{\circ}\right]$ represents the major deviation from ideal geometry. The $\mathrm{Au}(3)$ atom lies $0.047 \AA$ out of the plane formed by $\mathrm{P}(3), \mathrm{P}(4) \mathrm{C}(111)$ and $\mathrm{C}(121)$. The $\mathrm{Au}(3)-\mathrm{P}[2.343(8)$ and 2.351(8) \AA] and $\mathrm{P}-\mathrm{C}$
[1.764(25) and $1.838(25) \AA$] distances in the four-membered ring, which is planar to within $\pm 0.02 \AA$, are similar to those found in the methanide complex $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2^{-}}\right.\right.$ $\left.\mathrm{CH}\left(\mathrm{AuC}_{6} \mathrm{~F}_{5}\right)\right\}$ [$\left.\mathrm{Au}(1)-\mathrm{P} 2.354(2), \mathrm{P}-\mathrm{C}(1) 1.815(6) \AA\right]^{3}$ and slightly shorter than in the precursor $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2^{-}}\right.\right.$ $\left.\left.\mathrm{CH}_{2}\right\}\right] \mathrm{ClO}_{4}[\mathrm{Au}-\mathrm{P} 2.361(3), \mathrm{P}-\mathrm{C}(1) 1.845(9) \AA] .{ }^{16}$

The $\mathrm{Au}(1) \cdots \mathrm{Au}(2)$ contact is $2.826(2) \AA[c f .2 .6-3.2 \AA$ in gold clusters but formally non-bonded contacts as short as ca. $2.8 \AA$ in some gold(I) complexes]. ${ }^{17-19}$ A three-centre twoelectron bond has previously been suggested for complexes containing the $\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{AuAu}\left(\mathrm{PPh}_{3}\right)$ moiety, ${ }^{20,21}$ as well as for Au_{2} (ylide) centres ${ }^{22,23}$ on the basis of the narrow $\mathrm{Au}-\mathrm{C}-\mathrm{Au}$ angle [$\mathrm{Au}(1)-\mathrm{C}(1)-\mathrm{Au}(2) 85.4(7)^{\circ}$ in our complex], the slightly shortened $\mathrm{P}-\mathrm{C}$ bond $\left[\mathrm{P}(3)-\mathrm{C}(1) 1.764(25) \AA\right.$, cf. $\mathrm{P}-\mathrm{CH}_{2}$ $1.845(9) \AA$ in the starting material], and the wide angle opposite to the $\left(\mathrm{CAu}_{2}\right)$ unit [however $\mathrm{P}(3)-\mathrm{C}(1)-\mathrm{P}(4) 97.6(10)^{\circ}$ is in fact narrower than ideal sp^{3} in 1 , presumably constrained by the four-membered ring]. For these reasons the geometry at $\mathrm{C}(1)$ is distorted from tetrahedral $[\mathrm{Au}(2)-\mathrm{C}(1)-\mathrm{P}(3)$ 117.9(12) and

Fig. 1 Structure of the cation of complex 4, with the atom numbering scheme. Hydrogen atoms are omitted for clarity; atomic radii are arbitrary

Table 3 Selected bond lengths (\AA) and angles (${ }^{\circ}$) for compound 4

$\mathrm{Au}(1)-\mathrm{Au}(2)$	$2.826(2)$	$\mathrm{Au}(1)-\mathrm{P}(1)$	$2.257(10)$
$\mathrm{Au}(1)-\mathrm{C}(1)$	$2.087(25)$	$\mathrm{Au}(2)-\mathrm{P}(2)$	$2.278(9)$
$\mathrm{Au}(2)-\mathrm{C}(1)$	$2.079(25)$	$\mathrm{Au}(3)-\mathrm{P}(3)$	$2.343(8)$
$\mathrm{Au}(3)-\mathrm{P}(4)$	$2.351(8)$	$\mathrm{Au}(3)-\mathrm{C}(111)$	$2.154(33)$
$\mathrm{Au}(3)-\mathrm{C}(121)$	$2.053(28)$	$\mathrm{P}(1)-\mathrm{C}(11)$	$1.827(25)$
$\mathrm{P}(1)-\mathrm{C}(21)$	$1.840(29)$	$\mathrm{P}(1)-\mathrm{C}(31)$	$1.844(29)$
$\mathrm{P}(2)-\mathrm{C}(41)$	$1.802(26)$	$\mathrm{P}(2)-\mathrm{C}(51)$	$1.802(26)$
$\mathrm{P}(2)-\mathrm{C}(61)$	$1.793(21)$	$\mathrm{P}(3)-\mathrm{C}(1)$	$1.764(25)$
$\mathrm{P}(3)-\mathrm{C}(71)$	$1.794(21)$	$\mathrm{P}(3)-\mathrm{C}(81)$	$1.823(27)$
$\mathrm{P}(4)-\mathrm{C}(1)$	$1.838(25)$	$\mathrm{P}(4)-\mathrm{C}(91)$	$1.766(25)$
$\mathrm{P}(4)-\mathrm{C}(101)$	$1.810(23)$		
$\mathrm{Au}(2)-\mathrm{Au}(1)-\mathrm{P}(1)$	$129.2(3)$	$\mathrm{Au}(2)-\mathrm{Au}(1)-\mathrm{C}(1)$	$47.2(7)$
$\mathrm{P}(1)-\mathrm{Au}(1)-\mathrm{C}(1)$	$173.5(7)$	$\mathrm{Au}(1)-\mathrm{Au}(2)-\mathrm{P}(2)$	$136.6(2)$
$\mathrm{Au}(1)-\mathrm{Au}(2)-\mathrm{C}(1)$	$47.4(7)$	$\mathrm{P}(2)-\mathrm{Au}(2)-\mathrm{C}(1)$	$170.9(7)$
$\mathrm{P}(3)-\mathrm{Au}(3)-\mathrm{P}(4)$	$70.5(3)$	$\mathrm{P}(3)-\mathrm{Au}(3)-\mathrm{C}(111)$	$100.5(9)$
$\mathrm{P}(4)-\mathrm{Au}(3)-\mathrm{C}(111)$	$171.0(9)$	$\mathrm{P}(3)-\mathrm{Au}(3)-\mathrm{C}(121)$	$169.8(8)$
$\mathrm{P}(4)-\mathrm{Au}(3)-\mathrm{C}(121)$	$101.0(8)$	$\mathrm{C}(111)-\mathrm{Au}(3)-\mathrm{C}(121)$	$87.9(12)$
$\mathrm{Au}(1)-\mathrm{P}(1)-\mathrm{C}(11)$	$112.8(9)$	$\mathrm{Au}(1)-\mathrm{P}(1)-\mathrm{C}(21)$	$110.3(8)$
$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(21)$	$108.3(11)$	$\mathrm{Au}(1)-\mathrm{P}(1)-\mathrm{C}(31)$	$117.1(9)$
$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(31)$	$105.7(11)$	$\mathrm{C}(21)-\mathrm{P}(1)-\mathrm{C}(31)$	$101.8(14)$
$\mathrm{Au}(2)-\mathrm{P}(2)-\mathrm{C}(41)$	$108.9(9)$	$\mathrm{Au}(2)-\mathrm{P}(2)-\mathrm{C}(51)$	$115.9(8)$
$\mathrm{C}(41)-\mathrm{P}(2)-\mathrm{C}(51)$	$109.8(13)$	$\mathrm{Au}(2)-\mathrm{P}(2)-\mathrm{C}(61)$	$107.5(9)$
$\mathrm{C}(41)-\mathrm{P}(2)-\mathrm{C}(61)$	$107.6(11)$	$\mathrm{C}(51)-\mathrm{P}(2)-\mathrm{C}(61)$	$106.7(11)$
$\mathrm{Au}(3)-\mathrm{P}(3)-\mathrm{C}(1)$	$97.1(8)$	$\mathrm{Au}(3)-\mathrm{P}(3)-\mathrm{C}(71)$	$118.2(8)$
$\mathrm{C}(1)-\mathrm{P}(3)-\mathrm{C}(71)$	$110.8(12)$	$\mathrm{Au}(3)-\mathrm{P}(3)-\mathrm{C}(81)$	$111.3(7)$
$\mathrm{C}(1)-\mathrm{P}(3)-\mathrm{C}(81)$	$113.6(12)$	$\mathrm{C}(71)-\mathrm{P}(3)-\mathrm{C}(81)$	$106.0(9)$
$\mathrm{Au}(3)-\mathrm{P}(4)-\mathrm{C}(1)$	$94.7(8)$	$\mathrm{Au}(3)-\mathrm{P}(4)-\mathrm{C}(91)$	$109.2(7)$
$\mathrm{C}(1)-\mathrm{P}(4)-\mathrm{C}(91)$	$117.0(12)$	$\mathrm{Au}(3)-\mathrm{P}(4)-\mathrm{C}(101)$	$116.4(8)$
$\mathrm{C}(1)-\mathrm{P}(4)-\mathrm{C}(101)$	$113.9(11)$	$\mathrm{C}(91)-\mathrm{P}(4)-\mathrm{C}(101)$	$105.7(10)$
$\mathrm{Au}(1)-\mathrm{C}(1)-\mathrm{Au}(2)$	$85.4(7)$	$\mathrm{Au}(1)-\mathrm{C}(1)-\mathrm{P}(3)$	$119.5(17)$
$\mathrm{Au}(2)-\mathrm{C}(1)-\mathrm{P}(3)$	$117.9(12)$	$\mathrm{Au}(1)-\mathrm{C}(1)-\mathrm{P}(4)$	$118.5(12)$
$\mathrm{Au}(2)-\mathrm{C}(1)-\mathrm{P}(4)$	$119.9(17)$	$\mathrm{P}(3)-\mathrm{C}(1)-\mathrm{P}(4)$	$97.6(10)$

$\left.\mathrm{Au}(1)-\mathrm{C}(1)-\mathrm{P}(4) 118.5(12)^{\circ}\right]$. The $\mathrm{Au} \cdots \mathrm{Au}$ contact could be responsible for the moderate deviation from linearity at the gold(I) centres $\left(9.1^{\circ}\right)$.

We have also studied the reactivity of the bis(diphenylphosphino)methanide complex $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{CH}\left(\mathrm{AuC}_{6}{ }^{-}\right.\right.\right.$ $\left.\left.\mathrm{F}_{5}\right)\right\}$] with the gold(I) acetylacetonate complexes; the reaction with $\left[\mathrm{Au}(\mathrm{acac})\left(\mathrm{PPh}_{3}\right)\right]$ or $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right][\mathrm{Au}(\mathrm{acac}) \mathrm{Cl}]$ affords neutral $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}\left(\mathrm{AuC}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{AuPPh}_{3}\right)\right\}\right] 8$ or the anionic complex $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}\left(\mathrm{AuC}_{6} \mathrm{~F}_{5}\right)\right.\right.$ -
$(\mathrm{AuCl})\}]$ 9. Compounds 8 and 9 are air- and moisture-stable yellow solids; $\mathbf{8}$ is non-conducting in acetone solution, $\mathbf{9}$ is a 1:1 electrolyte. Their IR spectra show, in addition to the absorptions of the pentafluorophenyl rings bonded to gold(iII) ($965 \mathrm{~cm}^{-1}$), the presence of a new band at $953 \mathrm{~m} \mathrm{~cm}^{-1}$, diagnostic for a $\mathrm{C}_{6} \mathrm{~F}_{5}$ group linked to a gold(I) centre; for $9 \mathrm{v}(\mathrm{Au}-\mathrm{Cl})$ appears at $326 \mathrm{~m} \mathrm{~cm}^{-1}$.
The ${ }^{19}$ F NMR spectra of compounds 8 and 9 show two different types of $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups with chemical shifts characteristic of gold-(I) or -(iII) complexes. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 8 shows a multiplet at $\delta-32.5$ for the diphosphine phosphorus and a triplet $\left(\mathrm{AuPPh}_{3}\right)$ at $\delta 35.0$ with a coupling constant ${ }^{2} J(\mathrm{PP})=10.2 \mathrm{~Hz}$; for 9 only a multiplet at $\delta-26.9$ and the $\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}$ signal at $\delta 21.7$ are observed.

A FAB mass spectrum was also recorded for compound 8, showing that the complex readily loses $\mathrm{C}_{6} \mathrm{~F}_{5}$ under these conditions. The molecular ion peak is not present but peaks at $m / z=1569\left[M-\mathrm{C}_{6} \mathrm{~F}_{5}\right]^{+}(10 \%)$ and $1402\left[M-3 \mathrm{C}_{6} \mathrm{~F}_{5}\right]^{+}$ (53%) appear. The highest-intensity peaks correspond to the fragments $\mathrm{Au}(\mathrm{dppm}-2 \mathrm{H})\left(\mathrm{PPh}_{3}\right)^{+}$and $\mathrm{Au}\left(\mathrm{PPh}_{3}\right)^{+}$.

A structurally different type of complex, $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ $\left[\left\{\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left[\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}\left(\mathrm{AuC}_{6} \mathrm{~F}_{5}\right)\right]\right\}_{2} \mathrm{Au}\right] 10$, is obtained when $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{CH}\left(\mathrm{AuC}_{6} \mathrm{~F}_{5}\right)\right\}\right]$ is treated with a halfequivalent of $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{Au}(\mathrm{acac})_{2}\right]$, which has the ability to abstract two protons and thus to afford higher-nuclearity derivatives. Compound $\mathbf{1 0}$ is an orange solid, moderately stable at room temperature and behaving in acetone solution as a 1:1 electrolyte. Its IR spectrum shows absorptions of the $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups linked to $\operatorname{gold}(\mathrm{I})\left(951 \mathrm{~cm}^{-1}\right.$) and gold(iII) (963 cm^{-1}) centres. There is also a band at $853 \mathrm{~cm}^{-1}$, possibly arising from the CM_{2} group.

The ${ }^{19} \mathrm{~F}$ NMR spectrum of compound 10 , as expected, shows two types of pentafluorophenyl groups. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum shows only two signals: a multiplet at $\delta-34.0$ for the diphosphine phosphorus and a singlet at $\delta 21.7$ for the $\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}$ cation. The FAB mass spectrum shows a peak at $m / z=2751$ corresponding to the anion $\left[\left\{\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left[\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2}-\right.\right.\right.$ $\left.\left.\left.\mathrm{C}\left(\mathrm{AuC}_{6} \mathrm{~F}_{5}\right)\right]\right\}_{2} \mathrm{Au}\right]^{-}$.

We have prepared a further pentanuclear complex by a different route. The reaction of the trinuclear complex $\left[\left\{\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left[\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{CH}\right]\right\}_{2} \mathrm{Au}\right] \mathrm{ClO}_{4}$ with 2 equivalents of [$\left.\mathrm{Au}(\mathrm{acac})\left(\mathrm{PPh}_{3}\right)\right]$ leads to the substitution of the methine protons by the fragment $\mathrm{Au}\left(\mathrm{PPh}_{3}\right)^{+}$, whereupon the com-

Table 4 Atomic coordinates $\left(\times 10^{4}\right)$ for compound 4

Atom	x	y	z	Atom	x	y	z
$\mathrm{Au}(1)$	2119.2(6)	765.1(4)	503.7(5)	C(76)	4441	1336	-877
Au(2)	3006.9(6)	1424.5(5)	507.4(5)	C(81)	3274	386	-559
$\mathrm{Au}(3)$	2560.9(6)	1073.7(5)	-1426.8(4)	$\mathrm{C}(82)$	2633(9)	169(7)	-467(8)
$\mathrm{P}(1)$	1770(4)	397(3)	1226(4)	C(83)	2671	-222	-509
$\mathrm{P}(2)$	3672(4)	1760(3)	1150(4)	C(84)	3351	-396	-643
$\mathrm{P}(3)$	3201(4)	896(3)	-614(3)	C(85)	3993	-178	-736
$\mathrm{P}(4)$	1919(4)	1308(3)	-643(3)	C(86)	3954	213	--694
C(1)	2567(13)	1097(9)	-133(8)	C(91)	1893	1804	-677
C(11)	1997	603	1903	C(92)	2539(9)	2012(7)	- 558(8)
C(12)	2208(12)	384(6)	2360(10)	C(93)	2523	2403	-595
C(13)	2362	555	2872	C(94)	1862	2587	-751
C(14)	2305	944	2927	C(95)	1216	2378	-870
C(15)	2094	1163	2470	C(96)	1232	1987	--833
$\mathrm{C}(16)$	1940	992	1958	C(101)	951	1159	-561
C(21)	2233	-65	1178	C(102)	527(12)	1310(7)	-125(9)
C(22)	2935(12)	-70(8)	919(9)	C(103)	-191	1169	-14
C(23)	3312	--410	841	C(104)	-484	878	-339
C(24)	2986	-745	1023	C(105)	-60	728	-776
C(25)	2284	-740	1283	C(106)	658	869	-887
$\mathrm{C}(26)$	1907	-400	1361	C(111)	3266(17)	818(12)	-2052(13)
C(31)	769	263	1265	C(112)	3392(21)	477(14)	-2189(16)
C(32)	421(16)	154(9)	1762(9)	C(113)	3788(22)	338(14)	-2542(17)
C(33)	-353	90	1774	C(114)	4166(21)	530(14)	-2843(16)
C(34)	-779	135	1290	C(115)	4191(19)	887(14)	-2810(15)
C(35)	-432	244	793	C(116)	3694(23)	1109(15)	-2358(18)
C(36)	343	308	781	C(121)	1829(15)	1217(10)	-2055(12)
C(41)	4094	2160	809	C(122)	1363(16)	996(12)	-2333(13)
C(42)	4348(14)	2104(7)	265(11)	C(123)	871(15)	1097(11)	-2744(12)
C(43)	4544	2412	-66	C(124)	776(20)	1465(14)	-2894(15)
C(44)	4486	2776	149	C(125)	1233(20)	1690(13)	-2615(15)
$\mathrm{C}(45)$	4232	2831	693	C(126)	1718(19)	1592(13)	-2196(15)
$\mathrm{C}(46)$	4037	2523	1024	F(1)	2972(14)	262(8)	-1874(9)
C(51)	3153	1914	1755	F(2)	3919(14)	-3(11)	-2627(12)
C(52)	3507(11)	1947(9)	2272(10)	F(3)	4709(12)	483(11)	-3264(10)
C(53)	3121	2104	2722	F(4)	4552(13)	1211(11)	-3080(9)
C(54)	2381	2227	2655	F(5)	3609(12)	1499(9)	-2294(8)
C(55)	2028	2194	2138	F(6)	1440(11)	621(8)	-2210(8)
C(56)	2414	2037	1687	F(7)	444(11)	819(9)	-2979(9)
C(61)	4418	1465	1399	F(8)	300(13)	1536(9)	-3275(10)
C(62)	4248(9)	1105(7)	1592(9)	F(9)	1133(17)	2061(9)	-2754(10)
C(63)	4820	872	1790	F(10)	2161(13)	1875(7)	-1980(8)
C(64)	5562	1000	1796	$\mathrm{Cl}(1)$	2234(4)	1393(3)	4498(4)
C(65)	5732	1360	1603	$\mathrm{O}(1)$	1851(14)	1064(9)	4369(10)
C(66)	5160	1593	1404	$\mathrm{O}(2)$	2942(21)	1407(13)	4346(15)
C(71)	4135	1074	-508	$\mathrm{O}(3)$	1728(26)	1683(15)	4480(18)
C(72)	4540(11)	963(6)	-37(8)	$\mathrm{O}(4)$	2284(30)	1428(18)	5094(23)
C (73)	5251	1115	65	C(2)	2778(30)	2082(18)	5813(21)
C(74)	5557	1376	-305	$\mathrm{Cl}(2)$	2867(9)	1826(6)	6443(7)
C (75)	5152	1487	-776	$\mathrm{Cl}(3)$	3614(7)	2355(6)	5736(6)

pound $\left[\left\{\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left[\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}\left(\mathrm{AuPPh}_{3}\right)\right]\right\}_{2} \mathrm{Au}\right] \mathrm{ClO}_{4} 11$ can be isolated.

Complex 11 is an air- and moisture-stable orange solid and behaves as a $1: 1$ electrolyte in acetone solution. All the pentafluorophenyl rings are equivalent in the ${ }^{19} \mathrm{~F}$ NMR spectrum, and in the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum a multiplet at $\delta-31.0$ corresponding to the diphosphine phosphorus is observed. Coupling between them and the triphenylphosphine gives a triplet at $\delta 35.0$ with ${ }^{2} J(\mathrm{PP})=12.5 \mathrm{~Hz}$. The FAB mass spectrum shows a peak at $m / z=2942$ which is assigned to $\left[\left\{\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left[\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}\left(\mathrm{AuPPh}_{3}\right)\right]\right\}_{2} \mathrm{Au}\right]^{+}$. Apart from the peaks at $m / z=841$ and 459 observed in all these types of compounds, another peak at $m / z=1831$ (relative intensity 45%) is present, corresponding to the cation $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}-\right.$ $\left.\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}\left(\mathrm{AuPPh}_{3}\right)_{2}\right\}\right]^{+}$.

Experimental

The instrumentation and general experimental techniques were as described earlier. ${ }^{3}$ The NMR spectra were recorded
on Varian XL200 and 300 spectrometers in CDCl_{3}. Chemical shifts are cited relative to $\mathrm{SiMe}_{4}\left({ }^{1} \mathrm{H}\right.$), $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ (external, ${ }^{31} \mathrm{P}$) and CFCl_{3} (external, ${ }^{19} \mathrm{~F}$). Mass spectra were recorded on a VG Autospec. The yields, melting points, elemental analyses and conductivities for the new complexes are listed in Table 1, the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{19} \mathrm{~F}$ NMR data in Table 2. All reactions were carried out at room temperature and under a nitrogen atmosphere. Solvents were distilled prior to use.

Syntheses.- $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right][\mathrm{Au}(\mathrm{acac}) \mathrm{Cl}]$. To a solution of [$\mathrm{AuCl}($ tht $)](0.064 \mathrm{~g}, 0.2 \mathrm{mmol})$ in dichloromethane $\left(20 \mathrm{~cm}^{3}\right)$ was added [$\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}$][acac] [prepared from Tl (acac) and $\left.\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}\right](0.127 \mathrm{~g}, 0.2 \mathrm{mmol})$. After 30 min the solution was filtered over Celite and the solvent was concentrated to ca. $5 \mathrm{~cm}^{3}$. Addition of diethyl ether $\left(15 \mathrm{~cm}^{3}\right)$ gave $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]-$ [$\mathrm{Au}(\mathrm{acac}) \mathrm{Cl}]$ as a white solid. Yield 80%.
$\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{Au}(\mathrm{acac})_{2}\right]$. To a solution of $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ $[\mathrm{Au}(\mathrm{acac}) \mathrm{Cl}](0.232 \mathrm{~g}, 0.27 \mathrm{mmol})$ in dichloromethane $\left(20 \mathrm{~cm}^{3}\right)$ was added $\mathrm{Tl}(\mathrm{acac})(0.097 \mathrm{~g}, 0.32 \mathrm{mmol})$. After stirring for 4 h the precipitated TICl was filtered off. The solution was
evaporated to ca. $5 \mathrm{~cm}^{3}$ and addition of diethyl ether led to $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{Au}(\mathrm{acac})_{2}\right]$ as a white solid. Yield 88%.
$\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{CH}(\mathrm{ML})\right\}\right] \mathrm{ClO}_{4} \quad\left(\mathrm{ML}=\mathrm{AuPPh}_{3} \mathbf{1}\right.$, $\mathrm{AuCH}_{2} \mathrm{PPh}_{3} 2$ or AgPPh_{3} 3). To a dichloromethane solution $\left(20 \mathrm{~cm}^{3}\right)$ of $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{CH}\right\}\right]^{3}(0.091 \mathrm{~g}, 0.1 \mathrm{mmol})$ was added [$\mathrm{Au}($ tht $\left.)\left(\mathrm{PPh}_{3}\right)\right] \mathrm{ClO}_{4}{ }^{24}(0.064 \mathrm{~g}, 0.1 \mathrm{mmol})$, [$\mathrm{Au}(\mathrm{tht})$ $\left.\left(\mathrm{CH}_{2} \mathrm{PPh}_{3}\right)\right] \mathrm{ClO}_{4}{ }^{25}(0.066 \mathrm{~g}, 0.1 \mathrm{mmol})$ or $\left[\mathrm{Ag}\left(\mathrm{OClO}_{3}\right)\right.$ $\left.\left(\mathrm{PPh}_{3}\right)\right]^{26}(0.047 \mathrm{~g}, 0.1 \mathrm{mmol})$. After stirring the mixture for 30 min the solvent was concentrated to $c a .5 \mathrm{~cm}^{3}$. Addition of diethyl ether ($15 \mathrm{~cm}^{3}$) gave complexes 1-3 as white solids.
$\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}\left(\mathrm{AuPPh}_{3}\right)(\mathrm{ML})\right\}\right] \mathrm{ClO}_{4}(\mathrm{ML}=$
$\mathrm{AuPPh}_{3} 4, \mathrm{AuCH}_{2} \mathrm{PPh}_{3} 5$ or AgPPh_{3} 6). To a solution of complex $1(0.147 \mathrm{~g}, 0.1 \mathrm{mmol}), 2(0.148 \mathrm{~g}, 0.1 \mathrm{mmol})$ or $\mathbf{3}$ $(0.138 \mathrm{~g}, 0.1 \mathrm{mmol})$ in dichloromethane $\left(20 \mathrm{~cm}^{3}\right)$ was added $\left[\mathrm{Au}(\mathrm{acac})\left(\mathrm{PPh}_{3}\right)\right]^{27}(0.056 \mathrm{~g}, 0.1 \mathrm{mmol})$. After stirring for 1 h the solution was evaporated to $c a .5 \mathrm{~cm}^{3}$ and addition of diethyl ether ($15 \mathrm{~cm}^{3}$) gave yellow solids 4-6. Complex 4 was also prepared by treatment of a dichloromethane solution $\left(20 \mathrm{~cm}^{3}\right)$ of $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{CH}_{2}\right\}\right] \mathrm{ClO}_{4}{ }^{16}(0.101 \mathrm{~g}, 0.1 \mathrm{mmol})$ with 2 equivalents of $\left[\mathrm{Au}(\mathrm{acac})\left(\mathrm{PPh}_{3}\right)\right](0.112 \mathrm{~g}, 0.2 \mathrm{mmol})$, stirring the mixture for 30 min . The solvent was evaporated to $c a .5 \mathrm{~cm}^{3}$ and addition of diethyl ether $\left(15 \mathrm{~cm}^{3}\right)$ led to complex 4.
$\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}\left(\mathrm{AuPPh}_{3}\right)(\mathrm{AuCl})\right\}\right]$ 7. A dichloromethane solution ($20 \mathrm{~cm}^{3}$) of compound $1(0.147 \mathrm{~g}, 0.1 \mathrm{mmol})$ was treated with $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right][\mathrm{Au}(\mathrm{acac}) \mathrm{Cl}](0.087 \mathrm{~g}, 0.1 \mathrm{mmol})$. After stirring the mixture for 30 min the solvent was evaporated to dryness. The precipitated $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$ was filtered off, and the solution evaporated to $c a .5 \mathrm{~cm}^{3}$. Addition of hexane $\left(15 \mathrm{~cm}^{3}\right)$ afforded complex 7 as a yellow solid.
$\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}\left(\mathrm{AuC}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{AuPPh}_{3}\right)\right\}\right]$ 8. To a solution of $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{CH}\left(\mathrm{AuC}_{6} \mathrm{~F}_{5}\right)\right\}\right]^{3}(0.128 \mathrm{~g}, 0.1 \mathrm{mmol})$ in dichloromethane $\left(20 \mathrm{~cm}^{3}\right)$ was added $\left[\mathrm{Au}(\mathrm{acac})\left(\mathrm{PPh}_{3}\right)\right.$] ($0.056 \mathrm{~g}, 0.1 \mathrm{mmol}$). After stirring for 2 h the solvent was evaporated to $c a .5 \mathrm{~cm}^{3}$. Addition of hexane ($15 \mathrm{~cm}^{3}$) gave complex 8 as a yellow solid.
$\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}\left(\mathrm{AuC}_{6} \mathrm{~F}_{5}\right)(\mathrm{AuCl})\right\}\right]$ 9. To a solution of $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{CH}\left(\mathrm{AuC}_{6} \mathrm{~F}_{5}\right)\right\}\right]$ (0.128 g , $0.1 \mathrm{mmol})$ in dichloromethane $\left(20 \mathrm{~cm}^{3}\right)$ was added $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ [Au(acac)Cl] $(0.087 \mathrm{~g}, 0.1 \mathrm{mmol})$. After 1 h the solution was concentrated to $c a .5 \mathrm{~cm}^{3}$ and addition of hexane ($15 \mathrm{~cm}^{3}$) gave complex 9 as a yellow solid.
$\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\left\{\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left[\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}\left(\mathrm{AuC}_{6} \mathrm{~F}_{5}\right)\right]\right\}_{2} \mathrm{Au}\right]$ 10. To a solution of $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{CH}\left(\mathrm{AuC}_{6} \mathrm{~F}_{5}\right)\right\}\right](0.128 \mathrm{~g}$, $0.1 \mathrm{mmol})$ in dichloromethane $\left(20 \mathrm{~cm}^{3}\right)$ was added $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ $\left[\mathrm{Au}(\mathrm{acac})_{2}\right](0.049 \mathrm{~g}, 0.05 \mathrm{mmol})$ and the mixture stirred for 2 h . Concentration of the solvent to $c a .5 \mathrm{~cm}^{3}$ and addition of hexane ($15 \mathrm{~cm}^{3}$) led to complex 10 as an orange solid.
$\left[\left\{\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left[\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}\left(\mathrm{AuPPh}_{3}\right)\right]\right\}_{2} \mathrm{Au}\right] \mathrm{ClO}_{4} 11$. A solution of $\left[\left\{\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left[\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{CH}\right]\right\}_{2} \mathrm{Au}\right] \mathrm{ClO}_{4}{ }^{3}(0.210 \mathrm{~g}, 0.1 \mathrm{mmol})$ in dichloromethane $\left(20 \mathrm{~cm}^{3}\right)$ was treated with [$\mathrm{Au}(\mathrm{acac})\left(\mathrm{PPh}_{3}\right)$] $(0.112 \mathrm{~g}, 0.2 \mathrm{mmol})$. After stirring for 2 h the solvent was evaporated to ca. $5 \mathrm{~cm}^{3}$. Addition of diethyl ether $\left(15 \mathrm{~cm}^{3}\right)$ gave an orange solid of complex 11.
X-Ray Structure Determination of Compound 4.-Crystal data. $\mathrm{C}_{73} \mathrm{H}_{50} \mathrm{Au}_{3} \mathrm{ClF}_{10} \mathrm{O}_{4} \mathrm{P}_{4} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}, \quad M_{\mathrm{r}}=2016.3$, orthorhombic, space group Pbcn, $a=17.775(3), b=35.555(7), c=$ $23.962(3) \AA, U=15143(4) \AA^{3}, Z=8, D_{c}=1.769 \mathrm{Mg} \mathrm{m}^{-3}$, $F(000)=7728, \lambda($ Mo-K $x)=0.71069 \AA, \mu=6.06 \mathrm{~mm}^{-1}, T=$ $-95^{\circ} \mathrm{C}$.

Data collection and reduction. Single crystals of compound 4 in the form of colourless plates were obtained by liquid diffusion of hexane into a dichloromethane solution. Despite ready solvent loss in air, samples could be mounted in an inert oil and transferred to the cold gas stream of the diffractometer without appreciable loss of crystallinity. A tablet $0.8 \times 0.4 \times 0.05 \mathrm{~mm}$ was used to collect 14471 intensities to $2 \theta_{\text {max }} 50^{\circ}$ (Siemens R3 diffractometer, monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation). An absorption correction based on ψ scans was applied, with transmission factors $0.41-1.00$. Merging equivalents gave 13407 unique
reflections ($R_{\mathrm{int}} 0.039$), of which 5340 with $F>4 \sigma(F)$ were used for all calculations (program system Siemens SHELXTLPLUS). ${ }^{28}$ Cell constants were refined from the setting angles of 50 reflections in the range $2 \theta 20-23^{\circ}$.

Structure solution and refinement. The structure was solved by the heavy-atom method. The weak data precluded a full anisotropic refinement; only $\mathrm{Au}, \mathrm{P}, \mathrm{F}$ and Cl atoms were refined anisotropically, phenyl groups with idealized geometry and other H atoms using a riding model. The final R value was 0.083 , with $R^{\prime} 0.101$ for 373 parameters. The weighting scheme was $w^{-1}=\sigma^{2}(F)+0.0015 F^{2} ; S 1.6$; maximum $\Delta / \sigma 0.02$; maximum $\Delta \rho 3.6 \mathrm{e} \AA^{-3}$. Selected bond lengths and angles are given in Table 3, final atomic coordinates in Table 4.
Additional material available from the Cambridge Crystallographic Data Centre comprises H -atom coordinates, thermal parameters and remaining bond lengths and angles.

Acknowledgements

We thank the Dirección General de Investigación Científica y Técnica (no. PB88-0075), the Instituto de Estudios Riojanos and the Fonds der Chemischen Industrie for financial support.

References

1 B. Chaudret, B. Delavaux and R. Poilblanc, Coord. Chem. Rev., 1988, 86, 191 and refs. therein.
2 A. Laguna and M. Laguna, J. Organomet. Chem., 1990, 394, 743.
3 R. Usón, A. Laguna, M. Laguna, B. R. Manzano, P. G. Jones and G. M. Sheldrick, J. Chem. Soc., Dalton Trans., 1984, 839.

4 R. Usón, A. Laguna, M. C. Gimeno, P. G. Jones, C. Fittschen and G. M. Sheldrick, J. Chem. Soc., Chem. Commun., 1986, 509.

5 R. Usón, A. Laguna, M. Laguna and M. C. Gimeno, J. Chem. Soc., Dalton Trans., 1989, 1883.
6 V. Riera and J. Ruiz, J. Organomet. Chem., 1986, 310, C36.
7 M. Luser and P. Peringer, Organometallics, 1984, 3, 1916.
8 S. I. Al-Resayes, P. B. Hitchcock and J. F. Nixon, J. Chem. Soc., Chem. Commun., 1986, 1710.
9 J. Vicente, M. T. Chicote, I. Saura-Llamas, P. G. Jones, K. MeyerBäse and C. Freire Erdbrügger, Organometallics, 1988, 7, 997 and refs. therein.
10 H. Hashimoto, Y. Nakamura and S. Okeya, Inorg. Chim. Acta, 1986, 120, L25.
11 R. Usón, A. Laguna, J. García and M. Laguna, Inorg. Chim. Acta, 1979, 37, 201.
12 H. Schmidbaur and R. Franke, Angew. Chem., 1975, 108, 1321.
13 R. Usón, A. Laguna, M. Laguna, A. Usón and M. C. Gimeno, Inorg. Chim. Acta, 1986, 114, 91.
14 T. G. Appleton, M. A. Bennett and I. B. Tomkins, J. Chem. Soc., Dalton Trans., 1976, 439.
15 P. E. Garrou, Chem. Rev., 1981, 81, 229.
16 R. Usón, A. Laguna, M. Laguna, E. Fernández, M. D. Villacampa, P. G. Jones and G. M. Sheldrick, J. Chem. Soc., Dalton Trans., 1983, 1679.

17 P. G. Jones, Gold Bull., 1981, 14, 102, 159; 1983, 16, 114; 1986, 19, 46. 18 H. Schmidbaur, Gold Bull., 1990, 23, 11.
19 Y. Jiang, S. Alvarez and R. Hoffmann, Inorg. Chem., 1985, 24, 749.
20 P. Braunstein, J. Lehner, D. Matt, A. Tiripicchio and M. TiripicchioCamellini, Angew. Chem., Int. Ed. Engl., 1984, 23, 304.
21 B. F. G. Johnson, J. Lewis, P. R. Raithby and A. Sanders, J. Organomet. Chem., 1984, 260, C29.

22 J. Vicente, M. T. Chicote, J. A. Cayuelas, J. Fernandez-Baeza, P. G. Jones, G. M. Sheldrick and P. Espinet, J. Chem. Soc., Dalton Trans., 1985, 1163.
23 J. Vicente, M. T. Chicote, M. C. Lagunas and P. G. Jones, J. Chem. Soc., Dalton Trans., 1991, 2579.
24 R. Usón, A. Laguna, M. Laguna, J. Jiménez, M. P. Gómez, A. Sainz and P. G. Jones, J. Chem. Soc., Dalton Trans., 1990, 3457.
25 A. Laguna, M. Laguna and M. C. Gimeno, unpublished work.
26 F. A. Cotton, L. R. Falvello, R. Usón, J. Forniés, M. Tomás, J. M. Casas and I. Ara, Inorg. Chem., 1987, 26, 1366.

27 D. Gibson, B. F. G. Johnson and J. Lewis, J. Chem. Soc. A, 1970, 367.
28 G. M. Sheldrick, SHELXTL-PLUS, University of Göttingen, 1990.

Received 23rd June 1992; Paper 2/03317H

[^0]: + Supplementary data available: further details of the structure determination (complete bond lengths and angles, H -atom coordinates, structure factors, thermal parameters) have been deposited at the Fachinformationszentrum Karlsruhe, Gesellschaft für Wissenschaftlich-technische Information mbH, W-7514 EggensteinLeopoldshafen 2, Germany. Any request for this material should quote a full literature citation and the reference number CSD 56550.

