An X-Ray, Spectroscopic and Semiempirical Quantummechanical Study on Complexes of Thiones and Selones with Molecular Diiodine \dagger

Franco Cristiani, ${ }^{a}$ Francesco Demartin, ${ }^{\boldsymbol{b}}$ Francesco A. Devillanova, ${ }^{*, a}$ Franceso Isaia, ${ }^{a}$ Giuseppe Saba ${ }^{c}$ and Gaetano Verani ${ }^{a}$
${ }^{a}$ Dipartimento di Chimica e Tecnologie Inorganiche e Metallorganiche, Via Ospedale 72, 09124 Cagliari, Italy
${ }^{\text {b }}$ Istituto di Chimica Strutturistica Inorganica e Centro CNR, via G. Venezian 21, 20133 Milano, Italy
${ }^{c}$ Dipartimento di Scienze Chimiche, Via Ospedale 72, 09124 Cagliari, Italy

Abstract

The crystal structures of four neutral charge-transfer molecular compounds formed between 5,5-dimethylimidazolidine-2,4-dithione 1, 5,5-dimethyl-2-thioxoimidazolidin-4-one 2 and 5,5-dimethyl-2-selenoxoimidazolin-4-one 3 and molecular diiodine have been determined. While all donors form 1:1 complexes, 1 also gives a 1:2 adduct when crystallized from a solution containing an excess of molecular diiodine. The compound $1 \cdot I_{2}$ is monoclinic $[a=6.681(1), b=22.212(4), c=7.854(1) ~ \AA, \beta=$ $98.89(1)^{\circ}, Z=4$, space group $\left.P 2_{1} / n ; R=0.024\right]$ and consists of discrete moieties of the molecular formula with molecular diiodine bonded to the sulfur at $C(2)$. The compound $1 \cdot 2 I_{2}$ is monoclinic [a= $14.757(2), b=6.136(1), c=16.284(3) \AA, \beta=96.33(1)^{\circ}, Z=4$, space group $P 2_{1} / c ; R=0.028$] and consists of discrete moieties of the molecular formula with the two molecules of diiodine bonded to the two sulfur atoms. An extended network of interactions between the iodine atoms determines the crystal packing. Also $2 \cdot I_{2}$ is monoclinic $[a=13.183(3), \quad b=6.106(1), c=14.550(2) ~ \AA, \beta=$ $113.29(1)^{\circ}, Z=4$, space group $\left.P 2_{1} / n ; R=0.024\right]$ and consists of discrete moieties of the molecular formula with the molecular diiodine bonded to the sulfur at $C(2)$. The compound $3 \cdot I_{2}$ is triclinic $[a=$ $8.034(3), \quad b=8.769(4), \quad c=9.805(5) \AA, \alpha=63.44(1), \quad \beta=67.56(4), \gamma=67.01(4)^{\circ}, Z=2$, space group $P \overline{1} ; R=0.038$] and contains discrete moieties of the molecular formula with the diiodine strongly bonded to the selenium atom. In all the structures the diiodine is almost coplanar with the ring plane. Quantum-mechanical calculations (PM3) have been carried out on $\mathbf{1 \cdot I _ { 2 }}$ and $\mathbf{2 \cdot 1} \boldsymbol{I}_{2}$ in order to clarify the discrepancy between the $\mathrm{S} \ldots$ I bond distances in the two structures and the corresponding interaction in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution, measured as spectrophotometric stability constants. The Fouriertransform Raman frequencies of $v(1-1)$ are correlated with the lengthening of the $1-1$ bond distances. The ${ }^{13} \mathrm{C}$ NMR chemical shifts of the $1: 1$ complexes for the two sulfur derivatives are also reported.

Diiodine (I_{2}) forms molecular charge-transfer (c.t.) complexes with a variety of molecules containing heteroatoms such as nitrogen, oxygen, sulfur or selenium. In previous papers ${ }^{1}$ we have investigated the interaction between diiodine and several series of pentaatomic rings, all containing thio- or seleno-amido groups as donors (D) by ultraviolet-visible spectroscopy. The main purpose was to measure the influence of the chemical environment on the donor properties of the chalcogen atom of the thio- or seleno-amido group by determining the formation constants (K) and the thermodynamic parameters of the $1: 1$ adduct of the reaction $D+I_{2} \rightleftharpoons D \cdot I_{2}$. This type of research was first stimulated by interest in the molecular compounds formed between antithyroid drugs and diiodine in studies on hyperthyroidism. ${ }^{2}$ More recently, the sulfur-iodine chargetransfer complexes have been shown to possess promising electrical properties. ${ }^{3-5}$ This has led us to prepare and study sulfur-and selenium-iodine complexes in the solid state.

In this paper we report the crystal structures of the adducts obtained by treating molecular diiodine with 5,5 -dimethyl-imidazolidine-2,4-dithione 1, 5,5-dimethyl-2-thioxoimidazol-idin-4-one 2 and 5,5-dimethyl-2-selenoxoimidazolidin-4-one 3. The crystal data are discussed in comparison with the results of

[^0]

a PM3 semiempirical calculation carried out on $\mathbf{1} \cdot \mathrm{I}_{2}$ and $\mathbf{2} \cdot \mathrm{I}_{2}$ and with the Fourier-transform Raman frequencies of the $v(I-I)$ vibrations; furthermore, the ${ }^{13} \mathrm{C}$ NMR chemical shifts of the $1: 1$ c.t. complexes of $\mathbf{1}$ and 2 and the method used for their calculation are reported.

Experimental

Compound Preparation.-Compounds 1-3 were prepared and purified according to the literature. ${ }^{6-8}$ The $1: 1$ molecular complexes were prepared by dissolving the appropriate donor in dichloromethane and then adding the stoichiometric amount of \mathbf{I}_{2} dissolved in dichloromethane. For the 1:2 complex of 5,5 -dimethylimidazolidine-2,4-dithione, an excess of I_{2} with respect to the stoichiometric amount was used. In all cases, very slow evaporation of the solvent yields crystalline products, suitable for X-ray analysis. All crystals were deep red (Found: C, 14.3; $\mathrm{H}, 2.1 ; \mathrm{N}, 6.9 ; \mathrm{S}, 15.3$. Calc. for $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{I}_{2} \mathrm{~N}_{2} \mathrm{~S}_{2} 1 \cdot \mathrm{I}_{2}: \mathrm{C}, 14.5$; $\mathrm{H}, 1.9 ; \mathrm{N}, 6.7 ; \mathrm{S}, 15.4$. Found: $\mathrm{C}, 8.8 ; \mathrm{H}, 1.1 ; \mathrm{N}, 3.9 ; \mathrm{S}, 9.8$. Calc. for

Table 1 Crystallographic data

Compound		$1 \cdot \mathrm{I}_{2}$		1.21
Formula		$\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{I}_{2} \mathrm{~N}_{2} \mathrm{~S}_{2}$		$\mathrm{C}_{5} \mathrm{H}$
M		414.07		667.
Crystal system		Monoclinic		Mon
Space group		$P 2_{1} / \mathrm{n}$		$P 21$
a / \AA		6.681(1)		14.7
b / \AA		22.212(4)		6.13
c / \AA		7.854(1)		16.2
$\alpha{ }^{\circ}$		90		90
$\beta /^{\circ}$		98.89(1)		96.3
$\gamma{ }^{\circ}$		90		90
U / \AA^{3}		1151.5(6)		146
Z		4		4
$F(000)$		760		118
$D_{\mathrm{c}} / \mathrm{g} \mathrm{cm}^{-3}$		2.388		3.02
$\mu\left(\mathrm{Mo}-\mathrm{K} \alpha\right.$)/ cm^{-1}		57.07		86.6
Crystal dimensions (mm)		$0.12 \times 0.15 \times 0.25$		0.10
Minimum transmission factor		0.75		0.63
Scan mode		ω		ω
ω-Scan width/ ${ }^{\circ}$		$1.1 \pm 0.35 \tan \theta$		1.0
θ Range $/{ }^{\circ}$		3-27		3-25
Octants of reciprocal space explored		$+h,+k, \pm l$		+h,
Measured reflections		2725		256
Maximum	y (on F_{o} ($\%$)	9		11
Unique ob with $I>$	d reflections $I), N_{\mathrm{o}}$	2075		2125
Final R, R^{\prime} indices ${ }^{\text {a }}$		0.024, 0.035		0.02
No. of vari	, N_{v}	132		150
		1.759		1.65
Maximum electron density residual/e \AA^{-3}		0.7		0.7
${ }^{a} R=\left[\Sigma\left(F_{\mathrm{o}}-k\left\|F_{\mathrm{c}}\right\|\right) / \Sigma F_{\mathrm{o}}\right], R^{\prime}=\left[\Sigma w\left(F_{\mathrm{o}}-k\left\|F_{\mathrm{c}}\right\|\right)^{2} / \Sigma w F_{\mathrm{o}}{ }^{2}\right]^{\frac{1}{2}} .{ }^{b}$ e.s.d. $=[$				
Table 2 Fractional atomic coordinates for the compound $1 \cdot \mathrm{I}_{2}$				
Atom	x	y	z	
I(1)	$0.13112(4)$	0.154 32(1)	$-0.20067(3)$	
I(2)	-0.189 27(4)	0.237 45(1)	-0.213 83(4)	
S(6)	0.437 4(2)	0.072 12(5)	-0.206 7(1)	
S(7)	1.0900 (2)	$0.04186(6)$	0.270 4(2)	
N(1)	0.569 5(4)	0.119 0(1)	$0.1103(4)$	
N(3)	0.771 4(4)	0.0541 (1)	0.021 2(4)	
C(2)	0.5910 (5)	0.0841 (2)	-0.019 7(4)	
C(4)	0.871 3(5)	0.068 4(2)	0.178 9(5)	
C(5)	0.741 4(5)	0.113 9(2)	0.254 5(4)	
C(8)	$0.6669(6)$	$0.0912(2)$	0.415 5(5)	
C(9)	0.854 0(6)	0.173 9(2)	0.288 0(5)	
H(1)	0.479(8)	$0.145(2)$	$0.121(7)$	
H(3)	$0.813(4)$	$0.031(1)$	-0.041(4)	
H(81)	0.567(6)	0.116(2)	0.454(5)	
H(82)	0.775 (6)	0.092(2)	$0.503(6)$	
H(83)	$0.611(6)$	0.057(2)	0.383(6)	
H(91)	$0.787(6)$	0.202(2)	0.314(5)	
H(92)	0.886(7)	0.188(2)	0.190 (6)	
H(93)	0.987(8)	0.183(3)	0.384(8)	

$\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{I}_{4} \mathrm{~N}_{2} \mathrm{~S}_{2} \mathbf{1 - 2 \mathrm { I } _ { 2 } : \mathrm { C } , 8 . 9 ; \mathrm { H } , 1 . 2 ; \mathrm { N } , 4 . 1 ; \mathrm { S } , 9 . 6 \text { . Found: C, } 1 4 . 9 \text { ; }}$ $\mathrm{H}, 1.9 ; \mathrm{N}, 6.9 ; \mathrm{S}, 8.3$. Calc. for $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{I}_{2} \mathrm{~N}_{2} \mathrm{OS} 2 \cdot \mathrm{I}_{2}: \mathrm{C}, 15.1 ; \mathrm{H}, 2.0$; $\mathrm{N}, 7.0 ; \mathbf{S}, 8.1$. Found: $\mathrm{C}, 13.3 ; \mathbf{H}, 2.1$; $\mathrm{N}, 6.1$. Calc. for $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{I}_{2} \mathrm{~N}_{2} \mathrm{OSe} 3 \cdot \mathrm{I}_{2}: \mathrm{C}, 13.5 ; \mathrm{H}, 2.0 ; \mathrm{N}, 6.3 \%$).

X-Ray Data Collection and Determination of Structures.The diffraction measurements were carried out on an EnrafNonius CAD-4 diffractometer at room temperature, using graphite-monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation ($\lambda=0.71073 \AA$). Crystals of the compounds were coated with cyanoacrylate glue in order to prevent decomposition during data collection due to loss of diiodine. This expedient allowed better results than simply sealing the crystals in a capillary glass. Nevertheless, in some cases, a small decay of the crystal was observed. The

Table 3 Fractional atomic coordinates for the compound $\mathbf{1 \cdot 2 I} I_{2}$

Atom	x	y	z
I(1)	0.338 67(3)	$0.25674(8)$	0.823 25(3)
I(2)	0.462 36(3)	$0.61427(8)$	$0.84181(3)$
I(3)	0.043 37(3)	-0.803 34(8)	$0.59516(3)$
I(4)	$-0.06013(3)$	-1.115 32(9)	$0.66458(3)$
S(6)	0.215 2(1)	-0.077 1(3)	$0.8025(1)$
S(7)	0.1607 (1)	-0.521 1(3)	0.517 4(1)
N(1)	0.3060 (3)	-0.129 6(9)	0.6668 (3)
N(3)	$0.1814(4)$	$-0.3217(9)$	0.6651 (3)
C(2)	0.2378 (4)	-0.173(1)	0.710 6(4)
C(4)	$0.2105(4)$	-0.366(1)	0.591 6(4)
C(5)	0.298 2(4)	-0.244(1)	$0.5867(4)$
C(8)	0.378 3(5)	-0.403(1)	0.5831 (5)
C(9)	0.2913 (5)	-0.083(1)	0.516 5(5)
H(1)	0.358(4)	-0.02(1)	0.683(4)
H(3)	0.122(4)	-0.39(1)	0.690(4)
H(81)	$0.386(5)$	-0.48(1)	0.624(5)
H(82)	$0.387(5)$	-0.49(1)	0.529(5)
H(83)	0.431(4)	-0.34(1)	$0.595(4)$
H(91)	0.232(5)	0.02(1)	0.519(5)
H(92)	$0.335(5)$	-0.02(2)	0.518(6)
H(93)	0.285(5)	-0.16(1)	0.466(5)

diffracted intensities were corrected for Lorentz, polarization, absorption (empirical correction), ${ }^{9}$ and decay, but not for extinction. Scattering factors for all the atomic species and anomalous dispersion corrections for scattering factors of nonhydrogen atoms were taken from ref. 10. The structure, in all cases, was solved by Patterson and Fourier methods and refined by full-matrix least squares, minimizing the function $\Sigma w\left(F_{\mathrm{o}}-k\left|F_{\mathrm{c}}\right|\right)^{2}$. Weights assigned to individual observations were $1 / \sigma^{2}\left(F_{\mathrm{o}}\right)$, where $\sigma\left(F_{\mathrm{o}}\right)=\left[\sigma^{2}(I)+(k I)^{2}\right]^{\frac{1}{2}} / 2 F_{\mathrm{o}} L_{\mathrm{p}}, \sigma^{2}(I)$ is the standard deviation for each reflection as derived from counting statistics and $k(=0.04)$ is a coefficient for improving the goodness of fit.
An anisotropic thermal parameter was assigned to all the non-

Table 4 Fractional atomic coordinates for the compound $2 \cdot \mathrm{I}_{2}$

Atom	x	y	z
$\mathrm{I}(1)$	$0.21681(2)$	$0.13381(5)$	$0.05287(1)$
$\mathrm{I}(2)$	$0.13888(3)$	$-0.21404(5)$	$0.13248(2)$
$\mathrm{S}(6)$	$0.28862(7)$	$0.4633(2)$	$-0.03816(6)$
$\mathrm{O}(7)$	$0.5822(3)$	$1.0001(5)$	$0.1381(2)$
$\mathrm{N}(1)$	$0.4278(2)$	$0.5498(5)$	$0.1532(2)$
$\mathrm{N}(3)$	$0.4472(2)$	$0.7620(6)$	$0.0411(2)$
$\mathrm{C}(2)$	$0.3889(2)$	$0.5897(6)$	$0.0564(2)$
$\mathrm{C}(4)$	$0.5241(3)$	$0.8414(8)$	$0.1296(2)$
$\mathrm{C}(5)$	$0.5190(3)$	$0.6974(6)$	$0.2124(2)$
$\mathrm{C}(8)$	$0.6262(3)$	$0.5714(8)$	$0.2628(3)$
$\mathrm{C}(9)$	$0.4899(3)$	$0.8293(8)$	$0.2878(3)$
$\mathrm{H}(1)$	$0.392(3)$	$0.434(8)$	$0.174(3)$
$\mathrm{H}(3)$	$0.434(3)$	$0.788(7)$	$-0.017(3)$
$\mathrm{H}(81)$	$0.623(3)$	$0.481(7)$	$0.321(3)$
$\mathrm{H}(82)$	$0.653(3)$	$0.503(7)$	$0.227(3)$
$\mathrm{H}(83)$	$0.694(2)$	$0.667(6)$	$0.293(2)$
$\mathrm{H}(91)$	$0.502(4)$	$0.73(1)$	$0.352(3)$
$\mathrm{H}(92)$	$0.545(3)$	$0.950(8)$	$0.316(3)$
$\mathrm{H}(93)$	$0.413(4)$	$0.882(8)$	$0.249(3)$

Table 5 Fractional atomic coordinates for the compound 3-I I_{2}

Atom	x	y	z
$\mathrm{I}(1)$	$0.35537(4)$	$0.33383(4)$	$0.53650(3)$
$\mathrm{I}(2)$	$0.21207(5)$	$0.67566(5)$	$0.30139(4)$
$\mathrm{Se}(6)$	$0.52075(7)$	$0.03207(7)$	$0.73922(7)$
$\mathrm{O}(7)$	$0.2811(5)$	$-0.5145(4)$	$0.9801(5)$
$\mathrm{N}(1)$	$0.2077(5)$	$-0.0645(5)$	$0.7578(5)$
$\mathrm{N}(3)$	$0.4119(5)$	$-0.2825(5)$	$0.8760(5)$
$\mathrm{C}(2)$	$0.3666(6)$	$-0.1084(6)$	$0.7906(5)$
$\mathrm{C}(4)$	$0.2756(6)$	$-0.3604(6)$	$0.9055(6)$
$\mathrm{C}(5)$	$0.1240(6)$	$-0.2146(6)$	$0.8311(5)$
$\mathrm{C}(8)$	$0.0863(7)$	$-0.2519(7)$	$0.7083(6)$
$\mathrm{C}(9)$	$-0.0544(7)$	$-0.1852(6)$	$0.9607(6)$
$\mathrm{H}(1)$	$0.12(1)$	$0.05(1)$	$0.708(8)$
$\mathrm{H}(3)$	$0.490(8)$	$-0.333(7)$	$0.916(6)$
$\mathrm{H}(81)$	$0.182(8)$	$-0.248(7)$	$0.622(6)$
$\mathrm{H}(82)$	$0.078(8)$	$-0.382(8)$	$0.751(6)$
$\mathrm{H}(83)$	$0.003(8)$	$-0.163(7)$	$0.640(6)$
$\mathrm{H}(91)$	$-0.01(1)$	$-0.170(9)$	$1.034(7)$
$\mathrm{H}(92)$	$-0.142(8)$	$-0.089(8)$	$0.907(6)$
$\mathrm{H}(93)$	$-0.097(6)$	$-0.270(5)$	$1.004(5)$

hydrogen atoms. All the hydrogen atoms were located in Fourier difference maps and their positions and thermal parameters refined. The crystallographic data for the four structures are reported in Table 1 and fractional atomic coordinates for $\mathbf{1} \cdot \mathrm{I}_{2}, \mathbf{1} \cdot 2 \mathrm{I}_{2}, \mathbf{2} \cdot \mathrm{I}_{2}$ and $\mathbf{3} \cdot \mathrm{I}_{2}$ are in Tables 2-5.

All calculations were performed on a PDP 11/73 computer using the SDP-Plus Structure Determination Package. ${ }^{11}$ Bond distances and angles are reported in Table 6.
Additional material available from the Cambridge Crystallographic Data Centre comprises thermal parameters.
${ }^{13} \mathrm{C}$ NMR Chemical Shift Determination of the $1: 1$ Complexes.-The ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian FT VXR 300 spectrometer, operating at 75.4 MHz , in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution at $20{ }^{\circ} \mathrm{C}$ and referred to $\mathrm{CDCl}_{3}(\delta 77.00)$ as external standard. In order to determine the chemical shifts of the $1: 1$ complexes for the thione compounds, the spectra were recorded of several solutions of the two reagents with increasing amounts of diiodine. Since the experimental design in the NMR measurements cannot be as good as that obtained for UV/VIS data, we optimized only the chemical shifts of the $1: 1$ complexes using spectrophotometric formation constants. ${ }^{1 e}$
The attribution of the signals of carbons $\mathrm{C}(2)$ and $\mathrm{C}(4)$ in compound 1 required the preparation of the $\left[{ }^{2} \mathbf{H}_{6}\right]$ compound $\mathbf{1}^{\prime}$. By comparing the ${ }^{13} \mathrm{C} \mathbf{H}$-decoupled spectra of 1^{1} and $\mathbf{1}^{\prime}$ it was
possible to assign the peak at $\delta 179.27$ to $\mathrm{C}(2)$ and that at δ 210.31 to $\mathrm{C}(4)$. Only the latter signal shows an apparently broader peak due to ${ }^{3} J(\mathrm{C}-\mathrm{D})$ coupling between $\mathrm{C}(4)$ and the deuterium atoms of the CD_{3} groups.

Fourier-transform Raman Spectra---These spectra were recorded on an FRA 106 FT Raman accessory mounted on a Bruker IFS 66 FT-IR vacuum instrument, operating with an exciting frequency of 1064 nm (Nd YAG laser). The samples were stable to the laser beam.

Semiempirical Calculations.-The equilibrium geometries were calculated at a semiempirical quantum-mechanical level using the PM3 Hamiltonian as implemented in the MOPAC package. ${ }^{12}$ The geometries obtained in the first optimization run were subsequently refined using a much lower gradient threshold ($g<0.01 \mathrm{kcal} \AA^{-1} \mathrm{~mol}^{-1}$).

Results

5,5-Dimethylimidazolidine-2,4-dithione-Diiodine (1/1).-The $1 \cdot I_{2}$ moieties form discrete units [Fig. 1(a)] in the crystal and the contacts among the different units are normal van der Waals interactions. The imidazolidine ring is planar, the maximum deviation from the mean plane [0.004(3) \AA] being due to $N(1)$. The atoms $S(6)$ and $S(7)$ are out of the ring plane by -0.050 (1) and 0.010 (1) \AA respectively. The linear S... I-I fragment is practically in the plane of the organic molecule. The dihedral angle between the plane defined by $\mathrm{N}(1), \mathrm{C}(2), \mathrm{S}(6)$ and $I(1)$ and the mean plane of the imidazolidine ring is 4.1°.

5,5-Dimethylimidazolidine-2,4-dithione-Diiodine (1/2).-The 1-2I ${ }_{2}$ moieties form discrete units [Fig. 1(b)] in the crystal; the crystal packing of these moieties determines a wide network of diiodine molecules (Fig. 2), in which each diiodine interacts with the others with contacts sometimes shorter than the normal van der Waals distance (4.2-4.3 \AA). ${ }^{4}$ The imidazolidine ring is essentially planar, the deviations from the mean plane for $\mathrm{C}(2)$, $\mathrm{N}(3)$ and $\mathrm{C}(4)$ being respectively $0.011(7),-0.015(6)$ and $0.012(6) \AA$; atoms $S(6)$ and $S(7)$ are out of the ring plane by $0.069(2)$ and $0.085(2) \AA$. The planes around the sp^{2} carbons, defined by $N(1), C(2), N(3)$ and $S(6)$ and by $N(3), C(4), C(5)$ and $S(7)$, are strictly planar and form a dihedral angle of 4.0°, while the corresponding dihedral angle in $1 \cdot I_{2}$ is 1.1°.

Also in this structure, the S...I-I fragment is practically linear (Table 6) for $S(6) \cdots I(1)-I(2)\left[177.94(4)^{\circ}\right]$, but forms an angle of $173.74(4)^{\circ}$ for $S(7) \cdots I(3)-I(4)$. The mean planes, defined by $N(1), C(2), S(6)$ and $I(1)$ and by $N(3), C(4), S(7)$ and $\mathrm{I}(3)$, form dihedral angles of 11.5 and 17.6° with the ring plane, indicating that the iodine atoms tend to be displaced off the imidazolidine plane.

5,5-Dimethyl-2-thioxoimidazolidin-4-one-Diiodine (1/1).The contacts between the $2 \cdot I_{2}$ units are the normal van der Waals interactions between the iodine atoms and the hydrogen bonding $\mathrm{O}(7) \cdots \mathrm{H}(3)-\mathrm{N}(3)$ (Table 6). The imidazolidine ring is roughly planar, with the thioketone sulfur in the plane, but $O(7)$ is off this plane by $-0.086(4) \AA$. Also in this adduct the planes around the sp^{2} carbons are strictly planar and form a dihedral angle of 3.1°, while the mean plane defined by $\mathrm{N}(1)$, $\mathrm{C}(2), \mathrm{S}(6)$ and $\mathrm{I}(1)$ forms a dihedral angle of 0.5° with the ring plane, indicating that the diiodine lies in the molecular plane. The S... I-I fragment is practically linear [Fig. 1(c)].

5,5-Dimethyl-2-selenoxoimidazolidin-4-one-Diiodine (1/1).The 3.I ${ }_{2}$ moieties form discrete units [Fig. 1(d)] in the crystal and the contacts between the different units are the normal van der Waals interactions between the iodine atoms. The imidazolidine ring is roughly planar, with the selenium atom $-0.093 \AA$ out of the plane. The planes around the sp^{2} carbons are strictly planar and form a dihedral angle of 2.4° with respect to each

Table 6 Interatomic distances (\AA) and angles (${ }^{\circ}$)

	$1 \cdot \mathrm{I}_{2}$	$1 \cdot 2 \mathrm{I}_{2}$	2. I_{2}	3. I_{2}
$\mathrm{I}(1)-\mathrm{I}(2)$	2.817(1)	2.849(1)	2.802(1)	2.962(1)
I(3)-I(4)		2.767(1)		
$\mathrm{N}(1)-\mathrm{C}(2)$	1.307(4)	1.323(6)	1.317(3)	1.304(4)
$\mathrm{C}(2)-\mathrm{N}(3)$	$1.372(3)$	1.392(7)	1.372(4)	1.349(4)
N(3)-C(4)	1.351(4)	1.343(7)	1.375(4)	1.384(4)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.512(4)	1.506(7)	1.514(4)	1.509(4)
$\mathrm{C}(5)-\mathrm{N}(1)$	1.487(3)	1.474(6)	1.477(4)	1.476(4)
$\mathrm{C}(5)-\mathrm{C}(8)$	$1.515(4)$	1.537(8)	1.519(5)	$1.535(5)$
$\mathrm{C}(5)-\mathrm{C}(9)$	1.534(4)	1.506(9)	1.527(4)	1.533(5)
$\mathrm{C}(2)-\mathrm{S}(6)$	1.678(3)	1.676(5)	1.673(3)	
$\mathrm{C}(2)-\mathrm{Se}(6)$				1.861(4)
$\mathrm{C}(4)-\mathrm{O}(7)$			1.211(4)	1.207(4)
$\mathrm{C}(4)-\mathrm{S}(7)$	1.636(3)	1.645(5)		
$\mathrm{I}(1) \cdots \mathrm{S}(6)$	2.748(1)	2.737(1)	2.773(1)	
I(3) \cdots S 7)		2.844(1)		
$\mathrm{I}(1) \cdots \mathrm{Se}$ (6)				2.699(1)
$\mathrm{O}(7) \cdots \mathrm{H}(3)$			2.13 (5) ${ }^{\text {' }}$	
$\mathrm{O}(7) \cdots \mathrm{N}(3)$			2.874(4) ${ }^{\text {' }}$	
S(7) $\cdot \cdots \mathrm{H}(3)$	2.58 (3) ${ }^{\text {I }}$			
S(7) . . N ${ }^{\text {(}}$)	3.361 (3) ${ }^{\text {II }}$			
$\mathrm{I}(1) \cdots \mathrm{I}(1)$				$4.070(1)^{\mathrm{xII}}$
$\mathrm{I}(1) \cdots \mathrm{I}(2)$	$4.519(1)^{\text {III }}$	$4.284(1)^{\mathrm{xV}}$	$4.307(1)^{\mathrm{Vu}}$	
$\mathrm{I}(1) \cdots \mathrm{I}(2)$	$4.917(1)^{\text {IV }}$	$4.341(1)^{\mathrm{xvi}}$	$4.381(1)^{\text {viII }}$	4.238(1) ${ }^{\text {XIV }}$
$\mathrm{I}(1) \cdots \mathrm{I}(2)$	$4.996(1)^{V}$		4.416(1) ${ }^{\text {IX }}$	$4.299(1)^{\mathrm{xIII}}$
$\mathrm{I}(1) \cdots \mathrm{I}(4)$		$4.211(1)^{\mathrm{XVII}}$		
$\mathrm{I}(2) \cdots \mathrm{I}(2)$	$4.779(1)^{\mathrm{VI}}$	$4.508(1)^{\mathrm{XVIII}}$	$4.656(1)^{\mathrm{xII}}$	4.859(1) ${ }^{\text {XIV }}$
$\mathrm{I}(2) \cdots \mathrm{I}(2)$		$5.337(1)^{\mathrm{XIX}}$	$4.893(1)^{1 \mathrm{XX}}$	
I(3) $\cdot \cdots \mathrm{I}(3)$		4.024(1) ${ }^{\mathrm{XX}}$		
$\mathrm{I}(3) \cdots \mathrm{I}(3)$		$4.922(1)^{\mathrm{XI}}$		
$\mathrm{I}(3) \cdot \cdots \mathrm{I}(4)$		4.060(1) ${ }^{\mathrm{X}}$		
$\mathrm{I}(3) \cdot \cdots \mathrm{I}(4)$		$4.293(1)^{\mathrm{xX}}$		
$\mathrm{I}(3) \cdots \mathrm{I}(4)$		$4.671(1)^{\mathrm{VIII}}$		
$\mathrm{I}(4) \cdots \mathrm{I}(4)$		$4.383(1)^{\mathrm{X}}$		
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{N}(3)$	107.7(2)	106.9(4)	108.0(3)	109.8(3)
$\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(4)$	113.0(2)	112.2(4)	111.8(3)	111.3(3)
$\mathrm{N}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	106.6(2)	107.8(4)	107.0(3)	106.3(3)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(1)$	100.0(2)	100.0(4)	99.9(2)	100.5(3)
$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(2)$	112.6(2)	113.0(4)	113.2(3)	112.0(3)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{S}(6)$	130.7(2)	130.4(4)	129.9(2)	
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{Se}(6)$				129.5(3)
$\mathrm{N}(3)-\mathrm{C}(2)-\mathrm{S}(6)$	121.6(2)	122.7(4)		
$\mathrm{N}(3)-\mathrm{C}(2)-\mathrm{Se}(6)$				120.7(3)
$\mathrm{N}(3)-\mathrm{C}(4)-\mathrm{O}(7)$			125.5(3)	124.8(3)
$\mathrm{N}(3)-\mathrm{C}(4)-\mathrm{S}(7)$	126.8(2)	127.8(4)		
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{O}(7)$			127.5(3)	128.9(3)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{S}(7)$	126.6(2)	124.4(4)		
$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(8)$	110.3(2)	110.6(5)	111.1(3)	111.7(3)
$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(9)$	111.4(2)	110.6(5)	111.3(3)	111.3(3)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(8)$	112.9(3)	110.8(5)	110.6(3)	112.8(3)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(9)$	110.6(2)	112.3(5)	111.6(3)	109.2(3)
$\mathrm{C}(8)-\mathrm{C}(5)-\mathrm{C}(9)$	111.2(3)	112.0(5)	111.8(3)	111.0(3)
$\mathrm{I}(2)-\mathrm{I}(1) \cdots \mathrm{S}(6)$	176.89(2)	177.94(4)	176.14(2)	
$\mathrm{I}(4)-\mathrm{I}(3) \cdots \mathrm{S}(7)$		173.74(4)		
$\mathrm{I}(2)-\mathrm{I}(1) \cdots \mathrm{Se}(6)$				173.84(1)
$\mathrm{O}(7) \cdots \mathrm{H}(3)-\mathrm{N}(3)$			153.6(4) ${ }^{1}$	

Symmetry codes: I $1-x, 2-y,-z$; II $2-x,-y,-z ;$ III $\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$; IV $1+x, y, z ; \operatorname{V} \frac{1}{2}+x, \frac{1}{2}-y, z-\frac{1}{2} ;$ VI $x-\frac{1}{2}, \frac{1}{2}-y, z-\frac{1}{2}$; VII $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$, VIII $x, 1+y, z ;$ IX $-x,-y,-z$; X $-x, y-\frac{1}{2}, \frac{3}{2}-z ;$ XI $-x,-1-y, 1-z ;$ XII $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$; XIII $1-x, 1-y, 1-z$; XIV $-x, 1-y, 1-z$; XV $1-x, y-\frac{1}{2}, \frac{3}{2}-z$; XVI $x, y-1, z$; XVII $-x, \frac{3}{2}+y, \frac{3}{2}-z$; XVIII $1-x, \frac{1}{2}+y, \frac{3}{2}-z ;$ XIX $1-x, 1-y, 2-z$; $\mathrm{XX}-x,-y-2,1-z$.
other, while the mean plane defined by $\mathrm{N}(1), \mathrm{C}(2), \mathrm{Se}(6)$ and $\mathrm{I}(1)$ forms a dihedral angle of 7.9° with the ring plane, in accord with the displacement of selenium out of the ring plane. As found for the other structures, the Se . . I-I fragment is once more not far from linearity [173.84(1) \AA] (see Table 6).
${ }^{13} \mathrm{C}$ Chemical Shifts.-In order to determine the ${ }^{13} \mathrm{C}$ NMR chemical shifts of the $1: 1$ complexes for the thione compounds, the spectra of several solutions of the two reagents, obtained by adding increasing amounts of diiodine to a constant concen-
tration of the organic molecule, were recorded in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. The linear correlations of the ${ }^{13} \mathrm{C}$ NMR chemical shifts (δ) of $\mathrm{C}(2), \mathrm{C}(4)$ and $\mathrm{C}(5)$ versus the concentration of the complex are collected in Fig. 3 for 1 and 2. It has been preferred to optimize only the chemical shift of the adduct, by using the formation constants ($K=175 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ for 1 and $253 \mathrm{dm}^{3}$ mol^{-1} for $2 ; 20^{\circ} \mathrm{C}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) obtained from the UV/VIS data, ${ }^{1 e}$ since in the NMR experiment, for solubility reasons, it was impossible to obtain experimental data in a very large range of the saturation fraction. The ${ }^{13} \mathrm{C}$ chemical shift of the free

Fig. 1 An ORTEP ${ }^{13}$ view of the molecular structures of $(a) 1 \cdot I_{2},(b) \mathbf{1} \cdot 2 I_{2},(c) \mathbf{2} \cdot I_{2}$ and $(d) \mathbf{3} \cdot I_{2}$. Thermal ellipsoids are drawn at the $\mathbf{3 0} \%$ probability level

Fig. 2 Crystal packing of the compound $1 \cdot 2 \mathrm{I}_{2}$, showing the network of diiodine seen normally to the (110) plane
donors, the $\Delta \delta^{\circ}$ (i.e. the variation of the chemical shift of the $1: 1$ complex with respect to the free donor) and the correlation coefficients of the straight lines $\delta /[$ complex] for Fig. 3 are

Table 7 The ${ }^{13} \mathrm{C}$ NMR chemical shifts (ppm) of the $1: 1$ c.t. complexes for the three donors

		1	2	3^{a}
$\mathrm{C}(2)$	D^{b}	179.27	180.30	179.57
	$\Delta \delta^{\circ c}$	-1.795	-2.096	-
	r^{d}	0.997	0.998	-
	D	210.31	177.23	176.96
$\mathrm{C}(5)$	$\Delta \delta^{\circ}$	-1.399	-1.634	-
	r	0.993	0.998	-
	D	74.35	63.49	64.49
	$\Delta \delta^{\circ}$	1.428	1.137	-
$\mathrm{C}(8), \mathrm{C}(9)$	D	0.992	0.999	-
	$\Delta \delta^{\circ}$	27.78	23.85	23.25
	r	-	-0.128	-
	e	0.997	-	

${ }^{a}$ The low solubility of the adduct of compound 3 prevented recording of its ${ }^{13} \mathrm{C}$ NMR spectrum. ${ }^{b} \mathrm{D}$ represents the ${ }^{13} \mathrm{C}$ chemical shift of the free donor. ${ }^{c} \Delta \delta^{\circ}$ is the variation of the chemical shift of the $1: 1$ c.t. complex from that of the free donor, as given by the slope in the linear correlation of δ versus the concentration of the complex. ${ }^{d} r$ is the correlation coefficient of the straight line $\delta v s$. [complex]. ${ }^{e}$ No detectable variations were found.
reported in Table 7. Owing to the low solubility of the adduct of 3 it was impossible to record its ${ }^{13} \mathrm{C}$ NMR spectrum.

Fig. 3 The ${ }^{13} \mathrm{C}$ NMR chemical shifts of $C(2), C(4)$ and $C(5)$ for compounds 1 (O) and 2 () respectively as a function of the c.t. complex concentration [D. I_{2}]. All points have the same concentration of the thione compound and increasing amounts of diiodine. [1] = $1.87 \times 10^{-2} ;[2]=2.33 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3} ; \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution; $20^{\circ} \mathrm{C}$. The spectrophotometric formation constants used in the calculation of [D•I ${ }_{2}$] have been taken from ref. $1 e$

Table 8 Fourier-transform Raman bands (cm^{-1}) of the four crystalline compounds in the $350-50 \mathrm{~cm}^{-1}$ range

Compound	$v(\mathrm{I}-\mathrm{I})$	Other vibrations
$1 \cdot \mathrm{I}_{2}$	152 s	$99 \mathrm{w}, 127 \mathrm{w}, 230 \mathrm{w}, 294 \mathrm{vw}, 336 \mathrm{vw}$
$\mathbf{1 \cdot 2} \mathrm{I}_{2}$	$165 \mathrm{~s}, 143 \mathrm{~ms}$	$104 \mathrm{w}, 257 \mathrm{w}, 289 \mathrm{vw}, 331 \mathrm{vw}$
$\mathbf{2 \cdot \mathrm { I } _ { 2 }}$	158 s	$93 \mathrm{vw}, 134 \mathrm{w}, 232 \mathrm{vw}, 296 \mathrm{vw}, 308 \mathrm{vw}$,
$\mathbf{3} \cdot \mathrm{I}_{2}$	144 s	343 vw

Fourier-transform Raman Spectra.-The adduct bond formation between a donor and diiodine stabilizes the lone pair of electrons of the donor by mixing the donor orbital with the σ^{*} antibonding orbital of I_{2}. One of the consequences of this is the lowering of the I-I bond order. ${ }^{14}$ The more effective the interaction with the donor, the lower is the I-I bond order. Consequently, Raman spectroscopy provides a powerful tool to elucidate the interaction by means of the shifts of the $v(I-I)$ vibration in a complex with respect to that of free diiodine. ${ }^{15-17}$ The Fourier-transform Raman spectral data for the four compounds are collected in Table 8 together with the assignments of the $v(I-I)$ vibrations. The spectra of $1 \cdot I_{2}$ and $2 \cdot I_{2}$ show strong bands at 152 and $158 \mathrm{~cm}^{-1}$ respectively, with overtones at 294 and $296 \mathrm{~cm}^{-1}$, attributable to the $v(I-I)$ vibration. Two peaks at 143 ms and $165 \mathrm{~s} \mathrm{~cm}^{-1}$, with overtones at 289 vw and $331 \mathrm{vw} \mathrm{cm}{ }^{-1}$, are present in the Raman spectrum of $1.2 I_{2}$, attributable to the two diiodine molecules bonded to $S(6)$ and $S(7)$, according to the different $\mathrm{I}-\mathrm{I}$ bond lengths of $2.849(1)$ and $2.767(1) \AA$ respectively. The Raman spectrum of compound $3 \cdot I_{2}$ shows a strong band at $144 \mathrm{~cm}^{-1}$ (with an overtone at $288 \mathrm{~cm}^{-1}$),

Table 9 Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$, enthalpies of formation $\left(\Delta H_{f}\right)$ and dipole moments (μ), obtained from PM3 calculations on $1 \cdot \mathrm{I}_{2}, \mathbf{2} \cdot \mathrm{I}_{2}$ and a double $\mathrm{NH} \cdot \mathrm{O}$. hydrogen-bonded dimer of 2-I ${ }_{2}$

	1-I ${ }_{2}$	2-I ${ }_{2}$	Dimer of 2-I ${ }_{2}$
I(1)-I(2)	2.694	2.695	2.694
$\mathrm{N}(1)-\mathrm{C}(2)$	1.372	1.382	1.382
$\mathrm{C}(2)-\mathrm{N}(3)$	1.416	1.505	1.408
$\mathrm{N}(3)-\mathrm{C}(4)$	1.418	1.446	1.441
$\mathrm{C}(4)-\mathrm{C}(5)$	1.534	1.534	1.534
$\mathrm{C}(5)-\mathrm{N}(1)$	1.509	1.508	1.509
$\mathrm{C}(2)-\mathrm{S}(6)$	1.663	1.669	1.667
$\mathrm{C}(4)-\mathrm{O}(7)$		1.206	1.209
$\mathrm{C}(4)-\mathrm{S}(7)$	1.580		
S(6) \cdots I (1)	2.661	2.653	2.657
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{N}(3)$	105.6	106.7	106.8
$\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(4)$	114.1	111.9	111.7
$\mathrm{N}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	105.2	106.8	107.1
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(1)$	102.0	100.7	100.6
$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(2)$	113.1	113.6	113.6
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{S}(6)$	131.1	128.8	128.8
$\mathrm{N}(3)-\mathrm{C}(2)-\mathrm{S}(6)$	123.3	124.5	124.4
$\mathrm{N}(3)-\mathrm{C}(4)-\mathrm{O}(7)$		121.5	121.6
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{O}(7)$		131.7	131.2
$\mathrm{N}(3)-\mathrm{C}(4)-\mathrm{S}(7)$	125.7		
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{S}(7)$	129.1		
$\Delta H_{\mathrm{f}} / \mathrm{kcal} \mathrm{mol}^{-1}$	54.9	-17.6	-36.8
μ / D^{*}	9.2	9.9	0.6
* $\mathrm{D} \approx 3.33 \times 10^{-30} \mathrm{C} \mathrm{m}$.			

tentatively attributed to the $v(\mathrm{I}-\mathrm{I})$ vibration. The medium band at $108 \mathrm{~cm}^{-1}$ could be indicative of the presence of the $I_{3}{ }^{-}$anion as a consequence of some decomposition, however no trace of $\mathrm{I}_{3}{ }^{-}$was found in the X-ray crystal structure.

Semiempirical Calculations.-The PM3 semiempirical quan-tum-mechanical calculations ${ }^{12}$ were carried out only on $5,5-$ dimethylimidazolidine-2,4-dithione-diiodine and 5,5-dimethyl-2-thioxoimidazolidin-4-one-diiodine in order to clarify the discrepancy between the $\mathrm{S} \cdots$ I bond distances in the solid state and the corresponding interactions in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution measured as spectrophotometric stability constants.
Some selected bond distances and angles of the optimized geometries together with the calculated enthalpies of formation and dipole moments are collected in Table 9. In the same Table we also show the results of the calculations carried out on a model of the dimer of $2 \cdot \mathrm{I}_{2}$ with two $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds as found in the solid state.

Discussion

The geometrical parameters for the interaction of thione and selone groups with the diiodine molecule are collected in Table 10. As regards the sulfur-diiodine interaction, the S...I-I arrangement is essentially linear and the values of $d(\mathrm{~S} \cdots \mathrm{I})$ and $d(\mathrm{I}-\mathrm{I})$ fall fairly close ${ }^{18, *}$ to the hyperbola reported in ref. 3. The values of $d(\mathrm{~S} \cdots \mathrm{I})$ for the three reported structures are larger than those found in other charge-transfer complexes of thione compounds, i.e. 1,3-dimethylimidazole-2-thionediiodine ${ }^{3}$ (2.616 and $2.607 \AA$ for the crystal modifications α and β respectively), ethylenethiourea ${ }^{4}$ (2.487, 2.580, 2.588 \AA), dithizone (phenylazothioformic acid 2-phenylhydrazide) ${ }^{4}$

[^1]Table 10 Geometrical parameters for the interaction of thione and selone groups with the diiodine molecule $\mathrm{C}=\mathrm{X} \cdots \mathrm{I}(1)-\mathrm{I}(2)(\mathrm{X}=\mathrm{S}$ or Se$)$

Compound	$d[\mathrm{X} \cdots \mathrm{I}(1)] / \AA$	$d[\mathrm{I}(1)-\mathrm{I}(2)] / \AA$	$\mathrm{X} \cdots \mathrm{I}(1)-\mathrm{I}(2) /^{\circ}$	$\mathrm{C}=\mathrm{X}-\mathrm{I}(1) /^{\circ}$	$\mathrm{N}-\mathrm{C}=\mathrm{X} \cdots \mathrm{I}^{*}$ torsion angle $/{ }^{\circ}$
$\mathbf{1 \cdot I _ { 2 }}$	$2.748(1)$	$2.817(1)$	$176.89(2)$	$103.6(1)$	6.3
$\mathbf{1 \cdot 2 I _ { 2 }}$	$2.737(1)$	$2.849(1)$	$177.94(4)$	$100.3(2)$	11.0
	$2.844(1)$	$2.767(1)$	$173.74(4)$	$105.6(2)$	22.0
$\mathbf{2 \cdot I _ { 2 }}$	$2.773(1)$	$2.802(1)$	$176.14(2)$	$104.5(1)$	0.4
$\mathbf{3} \cdot \mathrm{I}_{2}$	$2.699(1)$	$2.962(1)$	$173.84(1)$	$100.1(1)$	9.6

* The nitrogen used in the calculation of the torsion angle is that bonded to the hydrogen interacting with $\mathbf{I}(1)$ (see Fig. 1).

Fig. 4 The $\Delta \delta$ values (chemical shifts measured on solutions at different donor: diiodine ratios minus chemical shifts of the free donor) of $\mathrm{C}(2)$ as a function of the $\Delta \delta$ of $\mathrm{C}(4)$ for compounds $1(\mathrm{O})$ and $2(\Delta)$ respectively. The slopes 1.288 for 1 and 1.283 for 2 indicate that molecular diiodine affects the two donors in the same way and that $\mathrm{C}(2)$ is more affected than $\mathbf{C}(4)$. The correlation coefficients of the straight lines are 0.987 and 0.999 for 1 and 2 respectively
(2.506-2.664 \AA) and N-methyl- ε-thiocaprolactam ${ }^{19}$ (2.688 \AA); in all these cases the shorter bond distances agree well with the higher values of the formation constants ${ }^{1 a, 19-21}$ of their complexes. The $C(2)=S \cdots$ I sulfur-iodine bond lengths of the three structures are fairly close to those reported for 3 [2.719(6) $\AA],{ }^{22}\left(\mathrm{PhCH}_{2}\right)_{2} \mathrm{~S} \cdot \mathrm{I}_{2}(2.78 \AA),{ }^{23} 4[2.775(4) \AA]^{24}$ and one of the bonds reported for $5[2.789(6) \AA],{ }^{25}$ while in $1 \cdot 2 I_{2}$ that of $C(4)=S \cdots I$ is of the same order of those reported for $2 I_{2}$ c.t. complexes of compounds with thioether sulfur: 1,4-dithiane ${ }^{26}$ $[2.867(6) \AA]$, dithia[3.3.1]propellane ${ }^{27}$ [2.852(2), 2.806(2) $\left.\AA\right]$ and dithia $[3.3 .2]$ propellane ${ }^{27}$ [2.803(2), 2.902(4) $\left.\AA\right]$.

However, the sulfur-diiodine bond distances of 2.748(1) and $2.773(1) \AA$ in $1 \cdot I_{2}$ and $2 \cdot I_{2}$ respectively are not in accord with the values of the stability constants of the c.t. complexes obtained by spectrophotometric measurements in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions. ${ }^{1 e}$ The K values are 199 ± 21 and $291 \pm 22 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ at $17^{\circ} \mathrm{C}$ for $\mathbf{1} \cdot \mathrm{I}_{2}$ and $2 \cdot \mathrm{I}_{2}$ respectively. As shown in Table 9, the PM3 semiempirical calculation indicates a stronger interaction with diiodine in compound $2 \cdot \mathrm{I}_{2}$ than in $1 \cdot \mathrm{I}_{2}$, in agreement with the results obtained in solution and with the ionization energies measured by ultraviolet photoelectron spectroscopy. ${ }^{18, \dagger}$ In order to clarify the reasons for this anomaly, we have carried out a PM3 calculation on the dimer of $2 \cdot \mathrm{I}_{2}$, with the two monomers linked by two NH . . O hydrogen bonds, as realized in the solid
\dagger The stability constants, obtained in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, have been substantiated by the good correlation found between $\ln K$ and the ionization energies of the sulfur- and selenium-containing donors.

state; as one can see in Table 10, the S...I bond distance undergoes a small but significant lengthening, which indicates that the hydrogen-bonding interaction is one of the factors which contribute to produce this discrepancy, although the interaction of diiodine with several atoms of the surrounding organic framework should not be underestimated.

The sulfur-diiodide interaction does not affect the $\mathrm{C}=\mathrm{S}$ distances, which are not significantly changed with respect to the free donors $[1.648(2)$ and $1.641(2) \AA$ for $\mathrm{C}(2)-\mathrm{S}(6)$ and $\mathrm{C}(4)-\mathrm{S}(7)$ respectively in the free $1,{ }^{28} 1.648(2)$ and $1.650(4) \AA$ for $\mathrm{C}(2)-\mathrm{S}(6)$ in 2-thiohydantoin ${ }^{28}$ and in 3,5,5-trimethyl-2-thioxo-imidazolidin-4-one ${ }^{29}$ respectively]. Except for $\mathbf{1 \cdot 2 I} \mathbf{I}_{2}$ the torsion angles are close to 0° as also found for the ethylenethiourea compounds. ${ }^{3}$
The ${ }^{13} \mathrm{C}$ NMR resonances observed for the carbonyl and thiocarbonyl groups are slightly shifted upfield for the reported complexes (see Table 7), whereas the resonances of $\mathrm{C}(5)$ undergo very small downfield shifts and those of the methyl groups $C(8)$ and $C(9)$ remain practically unchanged. Similar but more consistent shifts were found in the ${ }^{13} \mathrm{C}$ NMR spectra of the complexes of imidazole-2-thione, 1 -methylimidazole-2-thione and 1,3-dimethylimidazole-2-thione ${ }^{3}$ in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ solution. However, in assigning the resonances of the complexes Freeman et al. ${ }^{3}$ did not take into account the dissociation equilibrium; the chemical shifts reported for the $2: 1$ and $1: 1$ (donor-diiodine) adducts must be interpreted only in terms of a displacement of the equilibrium towards complex formation.
The $\Delta \delta$ values (chemical shifts measured on solutions at different donor: diiodine ratios minus chemical shifts of the free donor) of $C(2)$ as a function of the $\Delta \delta$ of $C(4)$ are shown in Fig. 4 for the thione compounds. The slopes 1.288 for 1 and 1.283 for 2 indicate that I_{2} affects $\mathrm{C}(2)$ more than $\mathrm{C}(4)$, in accordance with the interaction of diiodine with the heteroatom bonded to $\mathrm{C}(2)$. These data confirm the results on the interaction between 1 and diiodine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution, obtained by UV/VIS spectroscopy. ${ }^{1 e}$ For 1 , the $1: 1$ model fitted very well the experimental absorbances and a $1: 2$ (donor-diiodine) complex was not detected in solution. ${ }^{1 e}$ On the other hand, the crystal data for $1 \cdot 2 \mathrm{I}_{2}$ clearly show that the $\mathrm{S}(6) \cdots \mathrm{I}(1)$ interaction $[2.737(1) \AA]$ is stronger than the $S(7) \cdots I(3)$ one $[2.844(1) \AA]$.

The very short $\mathrm{Se} \cdots \mathrm{I}(1)$ bond distance in $3 \cdot \mathrm{I}_{2}[2.699(1) \AA]$ is consistent with the high stability constant of this complex ${ }^{1 e}$ and with the lengthening of the diiodine bond. Only a few structural data for complexes between compounds containing the selenoether group and molecular diiodine have been reported ${ }^{30-33}$ and no data are available on the selenoxo group. As expected, the $\mathrm{Se} \cdots$ I distances is shorter than those reported for selenoether compounds. In contrast with findings on thione compounds, in the selenium complex the strong $\mathrm{Se} \cdots \mathrm{I}$
interaction affects the $\mathrm{C}=\mathrm{Se}$ bond, which undergoes a lengthening from $1.805(8) \AA$ in the free donor ${ }^{28}$ to 1.861(4) \AA in its adduct with diiodine.

Acknowledgements

We thank the Regione Autonoma della Sardegna for support and Dr. R. Margarit of Bruker Spectroscopin Italiana for his kindness in recording the Raman spectra.

References

1 (a) F. A. Devillanova and G. Verani, Tetrahedron, 1979, 35, 511; (b) J. Heterocycl. Chem., 1979, 16, 945; (c) Tetrahedron, 1981, 37, 1803; (d) F. Cristiani, F. A. Devillanova, A. Diaz and G. Verani, J. Chem. Soc., Perkin Trans. 2, 1984, 1383; (e) I. Cau, F. Cristiani, F. A. Devillanova and G. Verani, J. Chem. Soc., Perkin Trans. 2, 1985, 749; (f) F. Cristiani, F. A. Devillanova, A. Diaz, F. Isaia and G. Verani, Heteroatom. Chem., 1990, 1, 363.
2 C. Raby, J. Claude, C. Moesch and J. C. R. Buxeraud, C.R. Hebd. Seances Acad. Sci., Ser. C, 1979, 288, 319; J. C. R. Buxeraud, A. B. Absil, J. Claude, C. Raby, G. Catazano, C. Beck and F. Claude, Eur. J. Med. Chem.-Chim. Ther., 1985, 20, 43.

3 F. Freeman, J. W. Ziller, H. N. Po and M. C. Keindl, J. Am. Chem. Soc., 1988, 110, 2586.
4 F. H. Herbstein and W. Schwotzer, J. Am. Chem. Soc., 1984, 106, 2367.
5 J. R. Ferraro and J. M. Williams, Introduction to Synthetic Electrical Conductors, Academic Press, New York, 1987.
6 N. A. Kammenon and A. V. Starkov, Khim. Farm. Zh., 1967, 1, 51.
7 H. C. Carrington and W. S. Waring, J. Chem. Soc., 1950, 354.
8 F. Cristiani, F. A. Devillanova, A. Diaz, F. Isaia and G. Verani, Phosphorus Sulfur, 1985, 22, 23.
9 A. C. North, D. C. Phillips and F. S. Mathews, Acta Crystallogr., Sect. A, 1968, 24, 351.
10 International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4.
11 B. A. Frenz and Associates, SDP Plus Version 1.0, Enraf-Nonius, Delft, 1980.
12 J. J. P. Stewart, J. Comput. Chem., 1989, 10, 208, 221.

13 C. K. Johnson, ORTEP, A Fortran thermal ellipsoid plot program for crystal structure illustration, Oak Ridge National Laboratory, Oak Ridge, TN, 1971.
14 K. F. Purcell and J. C. Kotz, Inorganic Chemistry, Sanders, Philadelphia, PA, 1977.
15 T. J. Marks, Ann. N.Y. Acad. Sci., 1978, 313, 594.
16 M. A. Cowie, A. Gleizes, G. W. Grynkewich, D. W. Kalina, M. S. McClure, R. P. Scaringe, R. C. Teitebaum, S. L. Ruby, J. A. Ibers, C. R. Kannewurf and T. J. Marks, J. Am. Chem. Soc., 1979, 101, 2921.

17 R. C. Teitebaum, S. L. Ruby and T. J. Marks, J. Am. Chem. Soc., 1979, 101, 7568; 1980, 102, 3322.
18 F. Cristiani, P. Deplano, F. A. Devillanova, A. Diaz, F. Isaia, E. F. Trogu and G. Verani, Sintesi e Methodologie Speciali in Chimica Inorganica, Padova, 6-8th November, 1990.
19 A. Rogstad and E. Augdahl, Acta Chem. Scand., 1971, 25, 225.
20 M. E. Peach, Int. J. Sulfur Chem., 1973, 8, 151.
21 A. Suszka, J. Chem. Soc., Perkin Trans. 2, 1985, 531.
22 F. L. Lu, K. M. Keshavarz, G. Srdanov, R. H. Jacobson and F. Wudl, J. Org. Chem., 1989, 54, 2165.

23 C. Romming, Acta Chem. Scand., 1960, 10, 2145.
24 D. Atzei, F. Bigoli, P. Deplano, P. Pellinghelli, A. Sabataini, E. F. Trogu and A. Vacca, Can. J. Chem., 1989, 67, 1416.
25 D. Atzei, F. Bigoli, P. Deplano, P. Pellinghelli, E. F. Trogu and A. Vacca, Can. J. Chem., 1988, 66, 1483.
26 G. Y. Chao and J. D. McCullough, Acta Crystallogr., 1960, 13, 727.
27 F. H. Herbstein, P. Ashkenazi, M. Kaftory, M. Kapon, G. M. Reisner and D. Ginsburg, Acta Crystallogr., Sect. B, 1986, 42, 575.
28 F. A. Devillanova, F. Isaia, G. Verani, L. P. Battaglia and A. Bonamartini Corradi, J. Chem. Res., 1987, (S) 192.
29 F. Cristiani, F. Demartin, F. A. Devillanova, A. Diaz, F. Isaia and G. Verani, Phosphorus Sulfur, 1992, 70, 121.
30 G. Y. Chao and J. D. McCullough, Acta Crystallogr., 1961, 14, 940.
31 H. Hope and J. D. McCullough, Acta Crystallogr., 1964, 17, 712.
32 H. Maddox and J. D. McCullough, Inorg. Chem., 1966, 5, 522.
33 S. Kubiniok, W. W. du Mont, S. Pohl and W. Saak, Angew Chem., Int. Ed. Engl., 1988, 27, 431.

[^0]: \dagger Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1992, Issue 1, pp. xx-xxv.
 Non-SI unit employed: cal $=4.184 \mathrm{~J}$.

[^1]: * The greater donor power of the thioketonic sulfur, the shorter is the S...I and the longer the I-I bond distance. However, this observation should not be overemphasized, since the the crystal packing can affect one or both of the distances.

