The Stereochemistry of Alkyne Insertion into Ru–H and Ru–Cl Bonds

Jonathan D. Vessey and Roger J. Mawby*

Department of Chemistry, University of York, York YO1 5DD, UK

Proton-coupled ¹³C NMR studies of vinyl complexes obtained by insertion of MeO₂CC≡CCO₂Me into the Ru–H bond of $[Ru(CO)_2CI(H)L_2]$ (L = PMe₂Ph or AsMe₂Ph) or one Ru–H bond of $[Ru(CO)_2H_2L_2]$ have shown that the reactions involve *trans* addition of Ru–H to the alkyne. For the PMe₂Ph complexes, selective deuteriation was required to simplify the spectra. In contrast, $[Ru(CO)CI(H)(PMe_2Ph)_3]$ reacts by *cis* addition of Ru–H to the alkyne. Carbonyl substitution in $[Ru(CO)_2(C(CO_2Me)=C(CO_2Me)H_3]$ -CI(PMe₂Ph)₂] by PMe₂Ph leaves the geometry of the vinyl ligand unchanged, so that two (non-interconverting) isomers of $[Ru(CO)\{C(CO_2Me)=C(CO_2Me)H\}CI(PMe_2Ph)_3]$ can be obtained. Whereas *trans*- $[Ru(CO)_2CI_2(PMe_2Ph)_2]$ combines with MeO₂CC≡CCO₂Me by *cis* addition of Ru–CI to the alkyne, $[Ru(CO)(\eta^2-C_2H_4)CI_2(PMe_2Ph)_2]$ apparently reacts by *trans* addition, yielding $[Ru(CO)\{C(CO_2Me)=C(COOMe)CI\}CI(PMe_2Ph)_2]$. Since, however, both reactions appear to involve the same ruthenium intermediate, $[Ru(CO)CI_2(PMe_2Ph)_2]$, it is possible that the direction of addition is the same in both cases, but that the vinyl ligand can isomerize.

Recently we described reactions of hydride complexes of ruthenium(II) with alkynes, which resulted in the formation of vinyl and alkynyl complexes.¹ The reactions of $[Ru(CO)_2Cl(H)-(PMe_2Ph)_2]$ with alkynes RC=CH (R = CMe₃ or Ph) yielded the vinyl complexes $[Ru(CO)_2(CH=CHR)Cl(PMe_2Ph)_2]$ for which the value of the coupling constant $|{}^3J(H-H)|$ between the two vinyl protons clearly indicated that *cis* addition of Ru-H to the alkyne had occurred.¹ This is compatible with a conventional mechanism involving initial co-ordination of the alkyne to the metal (probably by replacement of a carbonyl ligand) followed by *cis* addition of Ru-H to the alkyne *via* a planar four-centre transition state.²

There are, however, clear-cut instances of trans addition of metal-hydrogen bonds to alkynes in cases where the alkyne contains electron-withdrawing substituents. Thus, for example, Herberich et al.³ have shown that the product of the reaction of $[Mo(\eta^5-C_5H_5)_2H_2]$ with MeO₂CC=CCO₂Me, $[Mo(\eta^5 C_5H_5)_2$ {C(CO₂Me)=C(CO₂Me)H}H], has the ester groups trans, not (as originally reported 4) cis. Similarly, Clark et al.⁵ have reported that, under appropriate conditions, the reaction between [PtCl(H)(PEt₃)₂] and MeO₂CC=CCO₂Me involves trans rather than cis addition of Pt-H to the alkyne, and Jones et al.⁶ obtained a mixture of cis- and trans-addition products on treating $[Rh(\eta^5-C_5Me_5)Me(H)(PMe_3)]$ with the same alkyne. Herberich and Barlage⁷ showed that a *trans*-addition product was formed in the reaction between $[Re(\eta^5-C_5H_5)_2H]$ and NCC=CCN, although subsequent irradiation caused partial rearrangement to the cis product. Nakamura and Otsuka⁸ used ¹⁹F NMR spectroscopy to establish that all three complexes, [Re(η^{5} -C₅H₅)₂H], [Mo(η^{5} -C₅H₅)₂H₂] and [W(η^{5} -C₅H₅)₂-H₂], reacted with F₃CC=CCF₃ by trans addition.

We observed ¹ that the reaction of $[Ru(CO)_2Cl(H)(PMe_2-Ph)_2]$ with MeO₂CC=CCO₂Me, which yields $[Ru(CO)_2-{C(CO_2Me)=C(CO_2Me)H}Cl(PMe_2Ph)_2]$ 1, is far more rapid than those with RC=CH (R = CMe_3 or Ph). Moreover, $[Ru(CO)_2H_2(PMe_2Ph)_2]$, which reacts slowly with the latter alkynes to yield $[Ru(CO)_2(C=CR)H(PMe_2Ph)_2]$ by way of the ruthenium(0) species $[Ru(CO)_2(PMe_2Ph)_2]$, undergoes a much faster reaction with MeO₂CC=CCO₂Me to yield $[Ru(CO)_2\{C(CO_2Me)=C(CO_2Me)H\}H(PMe_2Ph)_2]$ 2, as a mixture of isomers or conformers (major component 2' and minor component 2"). These changes in reaction rate and

pathway led us to suspect that the mechanism of Ru-H addition to $MeO_2CC=CCO_2Me$ differed from that for the other alkynes, and hence that the geometry of addition might also be different.

The absence of a hydrogen atom on the α -carbon of the ligand $C(CO_2Me)=C(CO_2Me)H$ makes it impossible to determine the stereochemistry of addition by measurement of $|{}^{3}J(H-H)|$, but Herberich and Barlage⁷ have proposed a method which relies upon measurement of the coupling constant $|{}^{3}J(C-H)|$ between the hydrogen on the β -carbon atom and the carbonyl carbon atom in the α -CO₂Me substituent. They quote values of 8.5-10 Hz for cis- $|^{3}J(C-H)|$, corresponding to *trans* addition of the metal-hydrogen bond to the alkyne, and 14-16 Hz for trans- $|^{3}J(C-H)|$ (cis addition to the alkyne). The difficulty of applying this technique to complexes such as 1 and 2 lies in the complexity of the proton-coupled ¹³C NMR spectra, particularly in the case of 2, where two species, 2' and 2'', are present in solution and the α -CO₂Me resonance for each is split by the CO_2Me methyl protons, the ³¹P nuclei in the PMe_2Ph ligands and the hydride ligand. Simplification can, however, be achieved by replacing appropriate hydrogens by deuterium or phosphorus by arsenic.

This paper demonstrates that closely related hydride complexes of ruthenium react with $MeO_2CC\equiv CCO_2Me$ to give vinyl products with different stereochemistries, and that the vinyl ligand appears to retain its stereochemistry in subsequent reactions of the complexes. Reactions involving both *cis* and *trans* addition of Ru–Cl to the alkyne are also discussed.

Results and Discussion

Details of the IR and ³¹P-{¹H} NMR spectra of undeuteriated complexes are given in Table 1, and the ¹H and ¹³C-{¹H} NMR spectra are summarized in Tables 2 and 3 respectively. Key features of the spectra of the deuteriated complexes are presented in the text.

Treatment of $[Ru(CO)_2Cl(H)(PMe_2Ph)_2]$ with $CD_3O_2CC \equiv CCO_2CD_3$ in C_6D_6 solution led to the rapid formation of $[Ru(CO)_2\{C(CO_2CD_3)=C(CO_2CD_3)H\}Cl(PMe_2Ph)_2]$

 $[{}^{2}H_{6}]1$. The ${}^{31}P$ - $\{{}^{1}H\}$ and ${}^{1}H$ NMR spectra of $[{}^{2}H_{6}]1$ were identical with those of complex 1 apart from the absence of the CO₂Me proton resonances. The ${}^{13}C$ - $\{{}^{1}H\}$ NMR spectrum was also unchanged except for the splitting of the CO₂CD₃

 Table 1
 Infrared^a and ³¹P-{¹H} NMR^b spectra of complexes

Complex	$\nu(C-O)/cm^{-1}$	δ
$1 [Ru(CO)_2 \{C(CO_2Me)=C(CO_2Me)H\}Cl(PMe_2Ph)_2]$	2056	-0.5 (s)
$2 [Ru(CO)_2 \{C(CO_2Me)=C(CO_2Me)H\}H(PMe_2Ph)_2]^{c}$	2035	4.7 (s) (2 ')
$3 [Bu(CO) (C(CO_Me)=C(CO_Me)H) C(PMe_Ph)_]$	1975 1940	6.0(s)(2'') -61(t) ^d
	1000	$-9.3 (d)^{d}$
$4 [Ru(CO){C(CO_2Me)=C(CO_2Me)H}Cl(PMe_2Ph)_3]$	1939	$-1.4 (d)^{e}$ -11.2 (t) ^e
$5 [Ru(CO){C(CO_2Me)=C(COOMe)H}Cl(PMe_2Ph)_2]$	1952	4.6 (s)
$6 \left[Ru(CO)_2 \{ C(CO_2Me) = C(COO)H \} (PMe_2Ph)_2 \right]$	2055 1985	2.4 (s)
8 $[\overline{Ru(CO)}{C(CO_2Me)=C(COOMe)Cl}Cl(PMe_2Ph)_2]$	1960	16.9 (d) ^f 2.3 (d) ^f
$9 [\overline{Ru(CO)} \{ C(CO_2Me) = C(COOMe)Cl \} Cl (PMe_2Ph)_2]^{g}$	1956	5.3 (s)

^{*a*} In CHCl₃ solution unless stated otherwise. Only bands for the carbonyl ligands are listed. ^{*b*} In C₆D₆ solution unless stated otherwise. ^{*c*} Infrared spectrum in heptane solution. ^{*d*} $|^{2}J(P-P)| = 25.0$ Hz. ^{*e*} $|^{2}J(P-P)| = 25.2$ Hz. ^{*f*} $|^{2}J(P-P)| = 23.0$ Hz. ^{*g*} ${}^{31}P-{}^{1}H$ NMR spectrum in CDCl₃ solution.

resonances by the deuterium nuclei. In the proton-coupled ¹³C NMR spectrum the resonances for the CO_2CD_3 carbon atoms were doublets of triplets at δ 169.7 and 178.5 (the triplet splittings being due to the ³¹P nuclei). For the former resonance the doublet splitting was 2.1 Hz: the small value indicates ⁷ that this is a geminal coupling $|^2J(C-H)|$ and that the resonance is due to β -CO₂CD₃. For the latter resonance, due to α -CO₂CD₃, $|^3J(C-H)|$ was 9.5 Hz, showing that the α -carboxylate group and the β -hydrogen are mutually *cis* and that complex 1 is formed by *trans* addition of Ru–H to the alkyne. Other resonances showing splittings by the β -hydrogen were those for the α - and β -vinyl carbon atoms and, more surprisingly, that at δ 194.7 [$|^4J(C-H)| = 3.7$ Hz] assigned to the carbonyl ligand *trans* to the vinyl ligand. The structure of 1 is shown below, where L = PMe_2Ph.

The reaction between $[Ru(CO)_2Cl(H)(AsMe_2Ph)_2]$ and MeO₂CC=CCO₂Me was also investigated by NMR spectroscopy, using C₆D₆ as solvent. A single product, **1a**, was formed and, apart from the absence of splittings by ³¹P nuclei, the ¹H and ¹³C-{¹H} NMR spectra were very similar to those for **1**. Thus **1a** was assumed to be $[Ru(CO)_2\{C(CO_2Me)=$ $C(CO_2Me)H\}Cl(AsMe_2Ph)_2]$. Due to the absence of ³¹P splittings, the proton-coupled ¹³C NMR spectrum of **1a** could be interpreted without recourse to deuteriation. The resonances for α - and β -CO₂Me were doublets of quartets at δ 179.0 and 169.5, respectively. The latter showed a small doublet splitting $[|^2J(C-H)| = 2.8$ Hz] characteristic of a geminal coupling, while for the former $|^3J(C-H)|$ was 9.4 Hz, again showing that the Ru-H bond had added *trans* to the alkyne. As in **1**, one of the carbonyl ligand resonances (δ 194.9) was split by the β -hydrogen in the vinyl ligand $[|^4J(C-H)| = 3.6$ Hz].

Complex 2, $[Ru(CO)_2\{C(CO_2Me)=C(CO_2Me)H\}H(PMe_2-Ph)_2]$, may be prepared either from $[Ru(CO)_2H_2(PMe_2Ph)_2]$ and $MeO_2CC\equiv CCO_2Me$ or by the reaction of complex 1 with NaBH₄: both routes yield 2' and 2" in the same proportions. In order to achieve maximum simplification of the proton-coupled ¹³C NMR spectrum, we treated $[^2H_6]1$ with NaBD₄ in EtOD, obtaining the two forms of $[Ru(CO)_2\{C(CO_2CD_3)=$ $C(CO_2CD_3)H\}D(PMe_2Ph)_2], [^2H_7]2$. The chemical shifts for the ³¹P nuclei (δ 4.7 [²H₇]2' and 6.1 [²H₇]2") were virtually identical with those for 2' and 2", but the resonances showed triplet splittings $[|^2J(P-D)| = 3.1 \text{ and } 2.7 \text{ Hz}$, respectively] due to the deuteride ligand. Given that $\gamma_D/\gamma_H = 0.153$, these values agree with those of 22.3 and 20.1 Hz for $|^2J(P-H)|$ obtained from the ¹H NMR spectrum of 2' and 2". All the expected resonances were observed in the ¹H NMR spectrum of $[^2H_7]2$.

In the proton-coupled ¹³C NMR spectrum of $[^{2}H_{7}]2$, the resonances for α -CO₂CD₃ were doublets of triplets at δ 181.0 $[^{2}H_{7}]2'$ and 181.4 $[^{2}H_{7}]2''$. For both, the doublet splitting $|{}^{3}J(C-H)|$ was 10.4 Hz. This established that in both 2' and 2' the α -carboxylate group and the β -hydrogen in the vinyl ligand are mutually cis, and hence (i) the stereochemistry of the vinyl ligand is unaltered when 1 is converted into 2 and (ii) the Ru-H bond in $[Ru(CO)_2H_2(PMe_2Ph)_2]$ adds trans to $MeO_2CC=$ CCO_2Me . Evidently 2' and 2" are conformers rather than geometrical isomers. Likely structures, consistent with the observation that each contains two equivalent PMe₂Ph ligands, are shown below, where $L = PMe_2Ph$. The decision as to which structure represents which conformer is based on the observation of long-range coupling $[|^4J(H-H)| = 1.4 \text{ Hz}]$ between the hydride ligand and the vinyl proton for 2' but not for 2''. In the conformation assigned to 2' the bonds between the two nuclei lie in the 'W' conformation which has been found to give rise to long-range coupling in organic⁹ and organometallic¹⁰ species.

As in the case of complex $[{}^{2}H_{6}]1$, the resonances for one carbonyl ligand (δ 201.4 $[{}^{2}H_{7}]2'$ and 200.7 $[{}^{2}H_{7}]2''$) showed doublet splittings $[[{}^{4}J(C-H)] = 2.5$ and 2.0 Hz, respectively] caused by the vinyl proton, and these resonances were assigned to the carbonyl *trans* to the vinyl ligand. In both the ${}^{13}C{}^{1}H$ and ${}^{13}C$ NMR spectra, the resonances for the other carbonyl were split by the deuteride ligand.

The reaction between $[Ru(CO)Cl(H)(PMe_2Ph)_3]$ and MeO₂CC=CCO₂Me was also investigated, and the product, $[Ru(CO){C(CO_2Me)=C(CO_2Me)H}Cl(PMe_2Ph)_3]$ 3, was isolated and characterized. The ³¹P-{¹H} NMR spectrum of 3 was distorted by second-order effects but was successfully simulated. The pattern of resonances in both the ³¹P-{¹H} and ¹H NMR spectra indicated that the three PMe₂Ph ligands were in the *mer* arrangement. The positions of the remaining ligands were
 Table 2
 Proton NMR spectra of complexes ^a

Complex	δ	Assignment	Coupling constants/Hz	Assignment
1	6.79 (t, 1) 3.67 (s, 3) 3.42 (s, 3)	β-H CO₂Me CO₂Me	3.0	⁴ J(P–H)
	1.82 (t, 6) 1.80 (t, 6)	PMe ₂ Ph PMe ₂ Ph	8.7 8.2	$ {}^{2}J(P-H) + {}^{4}J(P-H) $ $ {}^{2}J(P-H) + {}^{4}J(P-H) $
la	6.73 (s, 1) 3.62 (s, 1) 3.34 (s, 1) 1.75 (s, 6) 1.71 (s, 6)	β -H CO ₂ Me CO ₂ Me AsMe ₂ Ph AsMe ₂ Ph		
2	6.78 (dt, 1) 6.72 (t, 1) 3.52 (s, 3) 3.49 (s, 3) 3.47 (s, 3) 3.24 (s, 3) ca. 1.7 ^b	β -H (2') β -H (2'') CO ₂ Me (2'') CO ₂ Me (2') CO ₂ Me (2') CO ₂ Me (2') PMe ₂ Ph	1.4, 3.4 3.2	⁴ J(H−H) , ⁴ J(P−H) ⁴ J(P−H)
	-5.41 (t, 1) -6.17 (t, 1)	RuH (2') RuH (2")	22.3 20.1	$ ^{2}J(P-H) $ $ ^{2}J(P-H) $
3	7.57 (dt, 1) 3.98 (s, 3) 3.50 (s, 3)	β-H CO₂Me CO₂Me	6.1, 2.4	⁴ J(P-H) , ⁴ J(P-H)
	1.66 (t, 12) ^c 1.00 (d, 6)	PMe ₂ Ph PMe ₂ Ph	8.2 8.0	$ ^{2}J(P-H) + {}^{4}J(P-H) $ $ ^{2}J(P-H) $
4	6.72 (dt, 1) 3.67 (s, 3) 3.49 (s, 3)	β-H CO₂Me CO₂Me	8.7, 3.0	⁴ J(P–H) , ⁴ J(P–H)
	1.89 (t, 6) 1.76 (t, 6) 1.15 (d, 6)	PMe_2Ph PMe_2Ph PMe_2Ph	8.4 8.3 8.0	$ {}^{2}J(P-H) + {}^{4}J(P-H) $ $ {}^{2}J(P-H) + {}^{4}J(P-H) $ $ {}^{2}J(P-H) $
5	6.30 (t, 1) 3.49 (s, 3) 2.78 (s, 3)	β-H CO₂Me CO₂Me	1.5	⁴ <i>J</i> (P–H)
	1.72 (t, 6) 1.53 (t, 6)	PMe ₂ Ph PMe ₂ Ph	7.8 6.9	$ ^{2}J(P-H) + {}^{4}J(P-H) $ $ ^{2}J(P-H) + {}^{4}J(P-H) $
6	7.19 (t, 1) 3.45 (s, 3)	β-H CO₂Me	2.9	⁴ <i>J</i> (P–H)
	1.37 (t, 6) 1.30 (t, 6)	PMe ₂ Ph PMe ₂ Ph	7.6 8.1	$ {}^{2}J(P-H) + {}^{4}J(P-H) $ $ {}^{2}J(P-H) + {}^{4}J(P-H) $
84	3.95 (s, 3) 3.89 (s, 3) 1.72 (d, 3)	CO_2Me CO_2Me PMe ₂ Ph	9.1	² <i>J</i> (P - H)
	1.70 (d, 3) 1.45 (d, 3) 1.37 (d, 3)	PMe ₂ Ph PMe ₂ Ph PMe ₂ Ph	8.6 9.7 9.8	² J(P-H) ² J(P-H) ² J(P-H)
9ª	3.84 (s, 3) 3.10 (s, 3) 1.85 (t, 6)	CO_2Me CO_2Me PMe_2Ph	8.0	$ ^{2}J(P-H) + {}^{4}J(P-H) $
	1.79 (t, 6)	PMe ₂ Ph	8.0	$ ^{2}J(P-H) + {}^{4}J(P-H) $

^a In C₆D₆ solution unless stated otherwise. Resonances due to phenyl protons are not included. ^b Overlapping resonances. ^c Accidental coincidence of two resonances. ^d In CDCl₃ solution.

established by the ¹³C-{¹H} NMR spectrum, which contained doublet of triplets resonances for the carbonyl ligand and the α carbon in the vinyl ligand. For the former, the values of |²J(P-C)| were 13.9 and 11.8 Hz, respectively, indicating that this ligand is *cis* to all three PMe₂Ph ligands; for the latter the values were 71.0 and 13.4 Hz, confirming that the vinyl ligand is *trans* to the unique PMe₂Ph ligand. One surprising feature of the ¹H NMR spectrum of complex 3 was a doubling of the CO₂Me resonances, with strong singlets at δ 3.98 and 3.50 and weaker ones (about one-quarter intensity) at δ 4.02 and 3.52. No other resonance showed this effect, so if it indicates the presence in solution of two conformers of 3, it seems likely that they differ only as a result of restricted rotation of one or both CO₂Me groups about their bonds to the rest of the vinyl ligand.

A sample of $[Ru(CO){C(CO_2CD_3)=C(CO_2CD_3)H}Cl-(PMe_2Ph)_3]$, $[^2H_6]3$, was prepared from [Ru(CO)Cl(H)-

 $(PMe_2Ph)_3$] and $CD_3O_2CC=CCO_2CD_3$. In the protoncoupled ¹³C NMR spectrum of [²H₆]3, the resonance at δ 164.0 for β -CO₂CD₃ showed the expected small geminal splitting [|²J(C-H)| = 2.0 Hz] by the β -hydrogen, but for the α -CO₂CD₃ resonance at δ 180.4 the value of |³J(C-H)| was 14.8 Hz, indicating that the Ru-H bond in [Ru(CO)Cl(H)-(PMe₂Ph)₃] adds *cis* to MeO₂CC=CCO₂Me, and that 3 has the structure shown below, where L = PMe₂Ph.

 Table 3
 Carbon-13 NMR spectra of complexes ^a

Complex	δ	Assignment	Coupling constants/Hz	Assignment
1	195.7 (t)	RuCO	12.4	$ ^{2}J(\mathbf{P}-\mathbf{C}) $
	194.7 (t)	RuCO	9.5	$ ^2 J(P-C) $
	182.4 (t)	Ru <i>C=</i> C	14.0	$ ^2 J(P-C) $
	178.5 (t)	α-CO₂Me	1.4	$ ^{3}J(P-C) $
	169.7 (t)	β -CO ₂ Me	1.7	J(P-C)
	127.3 (t) 50.6 (t)	KuC = C	3.9	-J(F-C)
	49.8 (c)	$CO_2 Me$		
	145(t)	PMe. Ph	33.2	$ ^{1}J(P-C) + {}^{3}J(P-C) $
	13.2 (t)	PMe ₂ Ph	32.6	$ ^{1}J(P-C) + ^{3}J(P-C) $
19	195.5 (s)	RuCO		
	194.9 (s)	RuCO		
	181.2 (s)	Ru <i>C=</i> C		
	179.0 (s)	α-CO ₂ Me		
	169.5 (s)	β-CO ₂ Me		
	129.1 (s)	RuC=C		
	50.7 (s)	$CO_2 Me$		
	50.0 (S)	$CO_2 Me$		
	10.2(s)	AsMe ₂ Ph		
2	201.4 (4)	P ₁ (2)	11.5	$\frac{1^2}{I(\mathbf{P}_{\mathbf{C}})}$
2	201.4(t)	$R_{\rm H}CO(2')$	11.5	$ ^2 J(\mathbf{P} - \mathbf{C}) $
	197.5 (t)	RuCO	11.0	$ ^2 J(P-C) $
	197.3 (t)	RuCO	11.0	$ ^2 J(P-C) $
	181.4 (t)	α -CO ₂ Me (2")	< 2.0	$ ^{3}J(P-C) $
	181.0 (t)	α -CO ₂ Me (2")	< 2.0	$ ^{3}J(P-C) $
	179.4 (t)	$\operatorname{Ru} C = C(2'')$	15.6	$ ^{2}J(P-C) $
	174.0 (t)	RuC=C(2')	15.5	J(P-C)
	170.3(t)	β -CO ₂ Me (2) β -CO Me (2")	2.0	J(P-C)
	170.1(t) 1289(t)	$R_{11}C = C(2')$	4.8	$ ^{3}J(P-C) $
	126.1 (t)	RuC=C(2'')	4.2	$ ^{3}J(P-C) $
	50.5 (s)	CO ₂ Me (2")		
	50.4 (s)	$CO_2 Me(2')$		
	50.4 (s)	$CO_2 Me(2'')$		
	50.3 (s)	$CO_2 Me(2')$	24.6	$ U(\mathbf{D} \mathbf{C}) + \frac{3}{2} U(\mathbf{D} \mathbf{C}) $
	19.9 (t)	$PMe_2Ph(\mathbf{Z}')$	34.0	$ ^{-}J(P-C) + ^{-}J(P-C) $
	19.2 (l) 18.8 (t)	$PMe_2 Ph(2'')$	31.5	$ ^{1}J(P-C) + {}^{3}J(P-C) $
	17.6 (t)	$PMe_2Ph(2')$	31.7	$ ^{1}J(P-C) + {}^{3}J(P-C) $
3	202 3 (dt)	RuCO	139 118	$ ^{2}I(P-C) ^{2}I(P-C) $
3	182.9 (dt)	RuC=C	71.0. 13.4	$ ^{2}J(P-C) , ^{2}J(P-C) $
	180.4 (s)	α-CO ₂ Me	·, ·	
	164.0 (dt)	β-CO₂Me	8.2, 1.8	$ {}^{4}J(P-C) , {}^{4}J(P-C) $
	125.2 (t)	RuC=C	3.2	³ J(P–C)
	50.3 (s)	CO_2Me		
	50.2 (s)	$CO_2 Me$	24.2	$1^{1} I(P_{C}) + 3^{3} I(P_{C})$
	16.2 (l) 16.1 (d)	PMe_2FII	25.0	$ ^{1}J(P-C) $
	14.6 (t)	PMe ₂ Ph	29.6	$ ^{1}J(P-C) + {}^{3}J(P-C) $
4	202.8 (4+)	RuCO	117 145	$ ^{2}I(P-C) $ $ ^{2}I(P-C) $
-	187.2 (dt)	RuC=C	77.0. 14.7	$ ^{2}J(P-C) , ^{2}J(P-C) $
	179.5 (d)	α-CO ₁ Me	6.2	$ {}^{3}J(P-C) $
	170.3 (d)	β-CO ₂ Me	3.4	$ ^{4}J(P-C) $
	127.4 (br)	RuC=C		
	49.4 (s)	CO_2Me		
	48.9 (s)	$CO_2 Me$	22.6	$ ^{1} I(\mathbf{P} C) + {}^{3} I(\mathbf{P} C) $
	19.8 (t) 15.2 (d)	PMe_2Pn PMe_2Ph	32.0 26.2	J(P-C) + J(P-C)
	13.2 (u) 119(t)	PMe_2Ph	28.4	$\int_{1}^{1} J(P-C) + {}^{3} J(P-C)$
	217.1(t)	Philozofia Build	0.5	$ ^2 I(\mathbf{P}_{\mathbf{C}}) $
5	217.1(t) 204.7(t)		15.0	$ ^2 J(\mathbf{P} - \mathbf{C}) $
	179.2 (s)	α-CO-Me		1 - 1 71
	174.6 (s)	β-CO ₂ Me		
	119.6 (t)	RuC=C	2.0	³ J(P–C)
	52.7 (s)	CO_2Me		
	51.0 (s)	CO_2Me	20.0	
	13.6 (t)	PMe ₂ Ph	50.8 31.6	$\int J(\mathbf{r} - \mathbf{C}) + J(\mathbf{r} - \mathbf{C}) $ $\int J^{1} J(\mathbf{P} - \mathbf{C}) + J(\mathbf{P} - \mathbf{C}) $
	13.1 (1)	rme ₂ rn	51.0	$\int J(\mathbf{r} - \mathbf{c}) + J(\mathbf{r} - \mathbf{c})$

Complex	δ	Assignment	Coupling constants/Hz	Assignment
6	199.7 (t)	RuCO	11.8	² J(P - C)
	194.6 (t)	RuCO	9.5	$ ^2 J(P-C) $
	181.6 (s)	α-CO,Me		
	176.2 (t)	Ru <i>C=</i> C	14.2	$ ^{2}J(P-C) $
	174.3 (s)	RuOC		
	137.3 (t)	RuC=C	5.2	³ J(P–C)
	51.1 (s)	CO ₂ Me		
	13.0 (t)	PMe ₂ Ph	31.9	$ {}^{1}J(P-C) + {}^{3}J(P-C) $
	11.6 (t)	PMe ₂ Ph	34.3	$ ^{1}J(P-C) + {}^{3}J(P-C) $
8 ^{b,c}	204.2 (dd)	Ru <i>C=</i> C	73.1, 10.2	$ ^{2}J(P-C) , ^{2}J(P-C) $
-	203.3 (dd)	Ru <i>C</i> O	17.0, 13.1	$ ^{2}J(\mathbf{P}-\mathbf{C}) , ^{2}J(\mathbf{P}-\mathbf{C}) $
	177.1 (d)	α -CO ₂ Me	7.0	$ ^{3}J(P-C) $
	174.3 (s)	$\beta - CO_{2}Me$		
	54.9 (s)	CO, Me		
	51.7 (s)	CO ₂ Me		
	16.7 (dd)	PMe, Ph	30.6, 1.4	$ ^{1}J(P-C) , ^{3}J(P-C) $
	16.2 (dd)	PMe ₂ Ph	29.8, 1.3	$ ^{1}J(P-C) , ^{3}J(P-C) $
	15.5 (d)	PMe ₂ Ph	30.9	$ ^{1}J(P-C) $
	12.6 (d)	PMe ₂ Ph	26.2	¹ J(P–C)
9*	202.9 (t)	RuCO	9.5	² J(P-C)
	202.9 (t)	RuC=C	14.7	$^{2}J(P-C)$
	173.9 (s)	CO ₂ Me		
	173.4 (s)	CO ₂ Me		
	128.6 (t)	RuĈ=C	9.3	$ ^{3}J(P-C) $
	54.2 (s)	CO_2Me		
	51.3 (s)	CO_2Me		
	13.8 (t)	PMe ₂ Ph	31.5	$ {}^{1}J(P-C) + {}^{3}J(P-C) $
	12.8 (t)	PMe ₂ Ph	32.4	$ {}^{1}J(P-C) + {}^{3}J(P-C) $

Evidently the closely related complexes $[Ru(CO)_2Cl(H)-$ (PMe₂Ph)₂] and [Ru(CO)Cl(H)(PMe₂Ph)₃] react with MeO₂- $CC=CCO_2Me$ to give products, 1 and 3, in which the vinyl ligand has different geometries. We wished to discover whether conversion of 1 into $[Ru(CO){C(CO_2Me)=C(CO_2Me)H}Cl-$ (PMe₂Ph)₃] would be accompanied by a change in the geometry of the vinyl ligand. In fact the reaction of 1 with PMe_2Ph at 40 °C in C_6D_6 yielded three products, 4, 5 and 6, which were separated by column chromatography and characterized. Complexes 5 and 6, which were also obtained when 1 was heated on its own at 40 $^{\circ}$ C in C₆D₆, will be discussed later. Complex 4 gave elemental analysis figures compatible with the desired formula, $[Ru(CO){C(CO_2Me)=C(CO_2Me)H}-$ Cl(PMe₂Ph)₃], but it was not identical with 3, although it resembled 3 in that the three PMe₂Ph ligands were in a mer arrangement, the carbonyl ligand was cis to all three and the vinyl ligand was trans to the unique PMe₂Ph ligand. A sample of $[{}^{2}H_{6}]4$ was obtained by treating $[{}^{2}H_{6}]1$ with PMe₂Ph, and the proton-coupled ${}^{13}C$ NMR spectrum revealed that $|^{3}J(C-H)|$ for the α -CO₂Me was 8.4 Hz, as opposed to 14.8 Hz in the case of $[{}^{2}H_{6}]3$. Thus the structure of 4 is as shown below, where $L = PMe_2Ph$. Evidently the geometry of the vinyl ligand does not alter during the reaction of 1 with PMe₂Ph, and the fact that 4 does not rearrange to 3 under the conditions of the reaction indicates that it cannot be an intermediate in the formation of 3 from [Ru(CO)Cl(H)(PMe₂Ph)₃] and MeO₂-CC=CCO₂Me.

Analysis figures for complex 5 suggested the formula $[Ru(CO){C(CO_2Me)=C(CO_2Me)H}Cl(PMe_2Ph)_2]$, implying that it is formed by loss of a carbonyl ligand from 1. Spectroscopic data confirmed the presence of equivalent and mutually *trans* PMe_2Ph ligands and a single carbonyl ligand. Although five-co-ordinate vinyl complexes of ruthenium(II) are known,^{11,12} it seems more likely that in the conversion of 1 to 5 the loss of a carbonyl ligand is followed by co-ordination of the conveniently placed β -CO₂Me carbonyl oxygen, giving 5 the structure shown below, where L = PMe_2Ph, or a similar

structure with the positions of the carbonyl and chloride ligands reversed. An unusual feature of the ¹³C-{¹H} NMR spectrum of 5 is the high chemical shift (δ 217.1) for the α -carbon in the vinyl ligand. Other complexes ¹³⁻¹⁵ containing five-membered ring systems M-C=C-C=O show the same effect, with chemical shifts ranging from δ 198.8 for [Ir{CH=CHC(O)Me}Cl(H){P(CHMe_2)_3}_2]^{13} to δ 263.7 for [Cr(CO)₂(η^5 -C₅Me_5){CH=CHC(O)Me}].¹⁵ Remembering that chemical shifts for carbene carbon atoms in metal complexes are very high (typically ¹⁶ δ 270–360), the values may reflect significant contributions to the bonding from the canonical structure M=C-C=C-O.

Complex 6 could not be obtained in crystalline form. Spectroscopic evidence established the presence of two mutually *trans* PMe₂Ph ligands and two mutually *cis* and inequivalent carbonyl ligands. All of the expected resonances for the vinyl ligand $C(CO_2Me)=C(CO_2Me)H$ were identified in the ¹H and ¹³C-{¹H} NMR spectra, except that there was only *one* resonance in each spectrum attributable to a CO_2Me methyl group. In view of the strong similarities between the spectra of **6** and those of $[Ru(CO)_2\{C(CO_2Me)=C(COO)-Ph\}(PMe_2Ph)_2],^{17}$ we concluded that **6** was probably $[Ru(CO)_2\{C(CO_2Me)=C(COO)H\}(PMe_2Ph)_2]$ (see structure above, where $L = PMe_2Ph$), formed by elimination of MeCl from **1**.

Just as Ru-H bonds may add either cis or trans to MeO₂CC=CCO₂Me, so the same appears to be true of Ru-Cl bonds. We have shown¹⁸ that the reaction between trans- $[Ru(CO)_2Cl_2(PMe_2Ph)_2]$ and the alkyne involves *cis* addition, yielding $[Ru(CO)_2 \{C(CO_2Me)=C(CO_2Me)Cl\}Cl(PMe_2Ph)_2]$ of structure 7 (see below, where $L = PMe_2Ph$). The results of treating $[Ru(CO)(\eta^2-C_2H_4)Cl_2(PMe_2Ph)_2]^{19}$ with MeO₂-CC=CCO₂Me were, however, quite different. Ethene was slowly liberated, and two new complexes, 8 and 9, were obtained. These were separated by column chromatography, but complete purification of 8 was hampered by its slow conversion to 9, of which it appears to be an isomer. Elemental analysis of 9 gave results which agreed with the formula $[Ru(CO){C(CO_2Me)}=$ C(CO₂Me)Cl{Cl(PMe₂Ph)₂], and spectroscopic data confirmed the presence of mutually trans PMe₂Ph ligands, a single carbonyl and the vinyl ligand. As in the case of the closely related complex 5, however, it seems likely that the vinyl ligand is bidentate, as shown below or with the positions of the carbonyl and chloride ligands reversed. In support of this formulation, the chemical shift for the α -carbon atom in the vinyl ligand is δ 202.9 as opposed to 177.7 for complex 7.

If complex 8 is indeed an isomer of 9, its structure must be as shown below (or with the positions of the carbonyl ligand and the phosphine *trans* to the CO₂Me group interchanged). The ³¹P-{¹H} NMR spectrum shows the two PMe₂Ph ligands to be inequivalent and the value for $|^2J(P-P)|$, 23.0 Hz, is typical for mutually *cis* PMe₂Ph ligands in a ruthenium(11) complex. From the ¹³C-{¹H} spectrum it is evident that the carbonyl ligand is *cis* to both PMe₂Ph ligands and that the α -carbon in the vinyl ligand is *trans* to one PMe₂Ph and *cis* to the other. Again the chemical shift for this atom is unusually high (δ 204.2), in keeping with the presence of the Ru-C=C-C=O ring system.

Evidently $[Ru(CO)(\eta^2-C_2H_4)Cl_2(PMe_2Ph)_2]$, unlike trans- $[Ru(CO)_2Cl_2(PMe_2Ph)_2]$, reacts with MeO_2CC=CCO_2Me to give a trans-addition product. The other intriguing feature of the reaction is that 8 is formed at all, given that 9 is clearly more stable than 8 and resembles $[Ru(CO)(\eta^2-C_2H_4)Cl_2(PMe_2Ph)_2]$ in containing mutually *trans* PMe_2Ph ligands. A clue to the reason for the formation of 8 is provided by the appearance and subsequent disappearance of the dimeric species [Ru₂(CO)₂- $Cl_4(PMe_2Ph)_4$ of structure 10²⁰ during the reaction. A reasonable mechanism for the formation of 8 and 9 would involve initial dissociation of C_2H_4 from $[Ru(CO)(\eta^2-C_2H_4)-$ Cl₂(PMe₂Ph)₂] and (reversible) dimerization of the fragment [Ru(CO)Cl₂(PMe₂Ph)₂] evidently competes with its reaction with the alkyne. The formation of both 8 and 10 implies that the preferred structure for [Ru(CO)Cl₂(PMe₂Ph)₂] is either a trigonal bipyramid with equatorial rather than axial PMe₂Ph ligands or a square pyramid in which these ligands are mutually cis.²⁰

Conclusion

The rapidity of the reactions between $MeO_2CC\equiv CCO_2Me$ and the ruthenium hydride complexes, particularly $[Ru(CO)_2-H_2(PMe_2Ph)_2]$, is at odds with a mechanism involving initial ligand substitution to yield an η^2 -alkyne complex. Study of the exchange of the carbonyl ligands in $[Ru(CO)_2H_2(PMe_3)_2]$ with ¹³CO has demonstrated ²¹ that any dissociation of the carbonyl ligands must be extremely slow at ambient temperature, and conversion of $[Ru(CO)_2D_2(PMe_2Ph)_2]$ into $[Ru(CO)_2H_2-(PMe_2Ph)_2]$ by treatment with H_2 is also slow.²² There is no evidence to indicate that the PMe_2Ph ligands in the dihydride complex are labile.

A more likely mechanism for these reactions is that suggested by Clark *et al.*⁵ and Jones *et al.*,⁶ which involves an initial oneelectron reduction of the alkyne by the metal complex followed by proton transfer, yielding a five-co-ordinate ruthenium(1) species and the vinyl radical $C(CO_2Me)=C(CO_2Me)H$ which combine in the final step. There appears to be some debate as to whether vinyl radicals adopt a Y shape or exist in two isomeric forms separated by a low energy barrier.^{23,24}

In either case, the possibility arises of metal attack to give complexes containing vinyl groups in which the CO₂R substituents are either cis or trans,⁶ and the surprising feature of these reactions is not that products with both stereochemistries are obtained but that each of the ruthenium complexes investigated gives a single isomer of the product rather than a mixture of isomers. Steric factors may play a role in determining stereochemistry. If $\cdot C(CO_2Me)=C(CO_2Me)H$ does exist as a rapidly equilibrating pair of isomers, the equilibrium may well favour the less crowded isomer in which the CO₂Me groups are mutually trans, but attack by the ruthenium on this isomer will be disfavoured by the fact that the CO_2Me substituent on the β carbon of the vinyl radical is on the side of the radical that the metal is attacking. The greater the crowding around the metal, the more severe this problem will become, so it is reasonable that the only complex studied which contains three bulky Group 15 ligands rather than two should also be the only one which yields a product in which the β -CO₂Me substituent is trans. not cis, to the metal. Similar considerations apply if the radical is Y-shaped: attack on one side leads to the development of an unfavourable interaction between the two CO₂Me substituents, whereas attack on the other is hindered by interaction between the β -CO₂Me substituent and the other ligands on the metal.

It is intriguing that the geometry of Ru-Cl addition to MeO₂CC=CCO₂Me appears to be different for trans- $[Ru(CO)_2Cl_2(PMe_2Ph)_2]$ and $[Ru(CO)(\eta^2-C_2H_4)Cl_2(PMe_2-Ph)_2]$ Ph_{2}]. The reaction with trans- $[Ru(CO)_{2}Cl_{2}(PMe_{2}Ph)_{2}]$ requires conditions similar to those used to bring about carbonyl substitution reactions of the complex²⁰ and is inhibited by CO.18 These observations, coupled with the formation of a cis-addition product, point to initial carbonyl substitution to yield $[Ru(CO)(\eta^2-MeO_2CC=CCO_2Me)Cl_2 (PMe_2Ph)_2$], four-centre rearrangement to $[Ru(CO){C(CO_2 Me = C(CO_2Me)Cl Cl(PMe_2Ph)_2$, and rapid attack by CO to give $[Ru(CO)_2 \{C(CO_2Me)=C(CO_2Me)Cl\}Cl(PMe_2Ph)_2]$. The ethene ligand in $[Ru(CO)(\eta^2-C_2H_4)Cl_2(PMe_2Ph)_2]$ is extremely labile,²⁵ and this fact, coupled with the formation of $[Ru_2(CO)_2Cl_4(PMe_2Ph)_4]$ as an intermediate in the reaction with MeO₂CC=CCO₂Me, suggests that $[Ru(CO)(\eta^2-MeO_2-Me$ $CC = CCO_2 Me)Cl_2(PMe_2Ph)_2$ is again formed and presumably rearranges by cis addition to give $[Ru(CO){C(CO_2Me)}=$ $C(CO_2Me)Cl$ $Cl(PMe_2Ph)_2$]. Unlike CO, ethene does not recombine with this species, and it seems most likely that the vinyl ligand now isomerizes. The key to the ready isomerization in this instance is probably the fact that the five-co-ordinate

[Ru(CO){C(CO₂Me)=C(CO₂Me)Cl}Cl(PMe₂Ph)₂] is a 16electron species. Huggins and Bergman²⁶ have suggested that the isomerization of vinyl complexes of nickel may occur by way of zwitterionic carbene complexes and, as shown in Scheme 1, [Ru(CO){C(CO₂Me)=C(CO₂Me)Cl}Cl(PMe₂Ph)₂] could rearrange in this manner via an 18-electron intermediate. Once rearrangement has occurred, the β -CO₂Me substituent can chelate to the metal. In the reaction between *trans*-[Ru(CO)₂Cl₂(PMe₂Ph)₂] and MeO₂CC=CCO₂Me, the recombination of the five-co-ordinate intermediate with CO is presumably too rapid to allow the rearrangement to occur.

Experimental

Complexes were prepared and purified using dry, oxygen-free solvents. Reactions were carried out under an atmosphere of dry nitrogen. Infrared spectra were recorded on a Perkin Elmer PE257 spectrometer, and NMR spectra on either a JEOL FX90Q or a Bruker MSL300 spectrometer.

The syntheses of cis,mer-[Ru(CO)Cl₂(PMe₂Ph)₃],²⁰ [Ru-(CO)₂Cl(H)L₂] (L = PMe₂Ph or AsMe₂Ph),²² [Ru(CO)₂H₂-(PMe₂Ph)₂],²² [Ru(CO)(η^2 -C₂H₄)Cl₂(PMe₂Ph)₂],²⁰ and [Ru-(CO)₂{C(CO₂Me)=C(CO₂Me)H}X(PMe₂Ph)₂] (X = Cl or H)¹ have been described in previous papers.

Preparations.—CD₃O₂CC≡CCO₂CD₃. A solution of HO₂-CC≡CCO₂H (5.00 g) and D₂SO₄ (30 mm³) in CD₃OD (10 cm³) was heated under reflux for 16 h. After addition of water (10 cm³), the product was extracted with Et₂O (5 × 10 cm³). The extracts were combined, washed with water (5 × 10 cm³) and dried over MgSO₄. Evaporation of the Et₂O under a stream of N₂ left CD₃O₂CC≡CCO₂CD₃ as a pale yellow liquid. A ¹³C NMR spectrum of the product provided no evidence of the presence of impurities and the alkyne was used without further purification.

 $[Ru(CO)_2\{C(CO_2CD_3)=C(CO_2CD_3)H\}Cl(PMe_2Ph)_2]$ $[^2H_6]1$. A solution of $[Ru(CO)_2Cl(H)(PMe_2Ph)_2]$ (0.03 g) in C_6D_6 (0.3 cm³) was treated with $CD_3O_2CC=CCO_2CD_3$ (5 mm³). The reaction was monitored by NMR spectroscopy and further small quantities of the alkyne were added at intervals until no $[Ru(CO)_2Cl(H)(PMe_2Ph)_2]$ remained. The product was isolated as pale yellow crystals on removal of the solvent and addition of pentane (2 cm³).

 $[Ru(CO)_{2}\{C(CO_{2}Me)=C(CO_{2}Me)H\}Cl(AsMe_{2}Ph)_{2}]$ 1a. This was prepared from $[Ru(CO)_{2}Cl(H)(AsMe_{2}Ph)_{2}]$ and MeO_{2}CC=CCO_{2}Me in C_{6}D_{6} solution by the same technique as that described for $[^{2}H_{6}]1$, but was not isolated from solution. $[Ru(CO)_{2}\{C(CO_{2}CD_{3})=C(CO_{2}CD_{3})H\}D(PMe_{2}Ph)_{2}]$

 $[^{2}H_{7}]^{2}$. A mixture of $[^{2}H_{6}]^{1}$ (0.02 g) and NaBD₄ (0.01 g) was stirred in EtOD (5 cm³) for 5 min. The solvent was then removed under reduced pressure and the product extracted from the residue with C₆H₆ (5 cm³). Removal of C₆H₆ under reduced pressure yielded $[^{2}H_{7}]^{2}$ as a yellow oil which could not be induced to crystallize. [Ru(CO){C(CO₂Me)=C(CO₂Me)H}Cl(PMe₂Ph)₃] **3**. The complex *cis,mer*-[Ru(CO)Cl₂(PMe₂Ph)₃] (0.32 g) was stirred with NaBH₄ (0.20 g) in ethanol (20 cm³) for 24 h. The solvent was removed under reduced pressure, and the ruthenium product extracted from the residue with C₆H₆ (5 cm³). Removal of the C₆H₆ under reduced pressure left a yellow oil. This was treated with 2 cm³ of a 1:1 mixture of ethanol and pentane and cooled to 0 °C. Slow concentration of the solution under a stream of nitrogen yielded colourless crystals of [Ru(CO)-Cl(H)(PMe₂Ph)₃].

A solution of $[Ru(CO)Cl(H)(PMe_2Ph)_3]$ (0.2 g) in C_6D_6 (0.3 cm³) was treated with MeO₂CC=CCO₂Me (63 mm³), added in small portions. The reaction was monitored by NMR spectroscopy. When no $[Ru(CO)Cl(H)(PMe_2Ph)_3]$ remained, the reaction mixture was subjected to column chromatography on neutral alumina. The column was eluted with Et₂O, CH₂Cl₂ and then CHCl₃. The CHCl₃ fraction was evaporated to dryness under reduced pressure, leaving **3**, which was solidified by treatment with a 1:1:1 mixture of EtOH, CHCl₃ and heptane and obtained as colourless crystals by recrystallization from EtOH (Found: C, 51.40; H, 5.45. Calc. for C₃₁H₄₀ClO₅P₃Ru: C, 51.65; H, 5.60%).

 $[Ru(CO){C(CO_2CD_3)=C(CO_2CD_3)H}Cl(PMe_2Ph)_3]$ [²H₆]3. This was prepared in the same way as 3 from [Ru(CO)Cl(H)(PMe_2Ph)_3] and CD_3O_2CC=CCO_2CD_3.

Reaction of complex 1 with PMe₂Ph. A solution of complex 1 (0.10 g) and PMe₂Ph (20 mm³) in C₆D₆ (0.3 cm³) was heated at 40 °C. After 5 h, the ¹H NMR spectrum of the solution showed that none of complex 1 remained and the reaction mixture was subjected to column chromatography on neutral alumina. After successive elution with pentane, C₆H₆ and CH₂Cl₂, none of which removed ruthenium-containing products, elution with CHCl₃ removed all three products, **4**, **5** and **6**, and achieved reasonable separation of the three. Complex **4** was isolated as colourless crystals by removing solvent from the appropriate fraction under reduced pressure and treating the residue with EtOH (Found: C, 51.30; H, 5.70. Calc. for C₃₁H₄₀ClO₅P₃Ru: C, 51.55; H, 5.60%).

Complex 5 was obtained as yellow crystals by the same technique (Found: C, 47.60; H, 4.95. Calc. for $C_{23}H_{29}ClO_5P_2Ru$: C, 47.30; H, 5.00%). The complex was also prepared by heating 1 (0.05 g) in C_6D_6 (0.3 cm³) at 50 °C for 5 h. The yellow solid remaining after removal of the C_6D_6 was recrystallized from ethanol.

Complex 6 was recovered from the appropriate $CHCl_3$ fraction, but could not be obtained in crystalline form.

 $[Ru(CO){C(CO_2CD_3)=C(CO_2CD_3)H}Cl(PMe_2Ph)_3]$ $[^2H_6]4$. This was prepared in the same way as 4 from $[^2H_6]1$ and PMe_2Ph.

[Ru(CO){C(CO₂Me)=C(COOMe)Cl}Cl(PMe₂Ph)₂], 8 and 9. The reaction of [Ru(CO)(η^2 -C₂H₄)Cl₂(PMe₂Ph)₂] (0.02 g) and MeO₂CC=CCO₂Me (20 mm³) in CDCl₃ (0.3 cm³) at room temperature was monitored by ¹H NMR spectroscopy. When conversion to 8 and 9 was complete, the mixture of products was subjected to chromatography on acid-washed alumina. Following elution with pentane, C₆H₆, CH₂Cl₂ and CHCl₃, which removed only organic materials and a little [Ru(CO)₂-Cl₂(PMe₂Ph)₂], elution with Me₂CO yielded 8. The slow conversion of 8 into 9 prevented us from isolating it in pure crystalline form.

Complex 9 was obtained by elution with EtOH. After removal of the solvent under reduced pressure, the oily residue was treated with a 1:1 mixture of methanol and heptane, yielding 9 as yellow crystals (Found: C, 44.85; H, 4.40. Calc. for $C_{23}H_{28}Cl_2O_5P_2Ru: C, 44.65; H, 4.55\%$).

Acknowledgements

We thank the SERC and BP Chemicals for financial support through a CASE award to J. D. V., and Professor W. D. Jones for helpful discussions.

- 1 J. M. Bray and R. J. Mawby, J. Chem. Soc., Dalton Trans., 1989, 589.
- 2 S. Otsuka and A. Nakamura, Adv. Organomet. Chem., 1976, 14, 245.
- 3 G. E. Herberich, B. Hessner and J. Okuda, J. Organomet. Chem., 1983, 254, 317.
- 4 A. Nakamura and S. Otsuka, J. Am. Chem. Soc., 1972, 94, 1886.
- 5 H. C. Clark, G. Ferguson, A. B. Goel, E. G. Janzen, H. Ruegger, P. W. Siew and C. S. Wong, J. Am. Chem. Soc., 1986, **108**, 6961.
- 6 W. D. Jones, V. L. Chandler and F. J. Feher, *Organometallics*, 1990, 9, 164.
- 7 G. E. Herberich and W. Barlage, Organometallics, 1987, 6, 1924.
- 8 A. Nakamura and S. Otsuka, J. Mol. Catal., 1976, 1, 285.
- 9 R. J. Abrahams and P. Loftus, Proton and Carbon-13 NMR Spectroscopy: an Integrated Approach, Heyden and Son, London, 1978.
- 10 C. F. J. Barnard, J. A. Daniels, P. R. Holland and R. J. Mawby, J. Chem. Soc., Dalton Trans., 1980, 2418.
- 11 M. R. Torres, A. Vegas, A. Santos and J. Ros, J. Organomet. Chem., 1986, 309, 169.
- 12 H. Werner, M. A. Esteruelas and H. Otto, *Organometallics*, 1986, 5, 2295.
- 13 H. Werner, T. Dirnberger and M. Schulz, Angew. Chem., Int. Ed. Engl., 1988, 27, 948.

- J. CHEM. SOC. DALTON TRANS. 1993
- 14 H. Werner, R. Weinand and H. Otto, J. Organomet. Chem., 1986, 307, 49.
- 15 H. G. Alt, H. E. Engelhardt, U. Thewalt and J. Riede, J. Organomet. Chem., 1985, 288, 165.
- 16 B. E. Mann, Adv. Organomet. Chem., 1974, 12, 135.
- 17 A. J. Blake, J. R. Crook, R. J. Mawby, A. J. Reid and C. J. Reynolds, Acta Crystallogr., Sect. C, 1992, 48, 1411.
- 18 P. R. Holland, B. Howard and R. J. Mawby, J. Chem. Soc., Dalton Trans., 1983, 231.
- 19 L. D. Brown, C. F. J. Barnard, J. A. Daniels, R. J. Mawby and J. A. Ibers, *Inorg. Chem.*, 1978, 17, 2932.
- 20 C. F. J. Barnard, J. A. Daniels, J. Jeffery and R. J. Mawby, J. Chem. Soc., Dalton Trans., 1976, 953.
- 21 M. K. Whittlesey, personal communication.
- 22 J. M. Bray and R. J. Mawby, J. Chem. Soc., Dalton Trans., 1987, 2989.
- 23 M. J. Davies, B. C. Gilbert and A. C. Whitwood, *The Chemistry of Acid Derivatives*, ed. S. Patai, Wiley, New York, 1992, vol. 2, ch. 6.
- 24 G. M. Whitesides, C. P. Casey and J. K. Krieger, J. Am. Chem. Soc., 1971, 93, 1379.
- 25 M. Stephenson and R. J. Mawby, J. Chem. Soc., Dalton Trans., 1981, 2112.
- 26 J. M. Huggins and R. G. Bergman, J. Am. Chem. Soc., 1981, 103, 3002.

Received 1st April 1992; Paper 2/01718K