Structural Isomerism in Silver Thioether Macrocyclic Chemistry: the Synthesis, Redox Properties and Crystal Structures of $\left[\mathrm{Ag}_{n}\left([15] \text { aneS }_{5}\right)_{n}\right]\left[\mathrm{PF}_{6}\right]_{n}$, $\left[\mathrm{Ag}_{2}\left([15] \mathrm{aneS}_{5}\right)_{2}\right]\left[\mathrm{BPh}_{4}\right]_{2}$ and $\left[\mathrm{Ag}\left([15] \mathrm{aneS}_{5}\right)\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ ([15]ane $\left.S_{5}=1,4,7,10,13-p e n t a t h i a c y c l o p e n t a d e c a n e\right) ~ \dagger ~$

Alexander J. Blake, ${ }^{\boldsymbol{a}}$ David Collison, ${ }^{\text {b }}$ Robert O. Gould, ${ }^{\boldsymbol{a}}$ Gillian Reid ${ }^{\boldsymbol{a}}$ and Martin Schröder *,a
${ }^{a}$ Department of Chemistry, The University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK
${ }^{b}$ Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, UK

Abstract

Reaction of AgNO_{3} with 1 molar equivalent of [15] aneS $_{5}$ (1,4,7,10,13-pentathiacyclopentadecane) in refluxing MeOH -water gives a colourless solution. Addition of excess of counter ion $\left[\mathrm{PF}_{6}{ }^{-}, \mathrm{BPh}_{4}{ }^{-}\right.$or $\left.\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}{ }^{-}\right]$affords the colourless complexes $\left[\mathrm{Ag}_{n}\left([15] \mathrm{aneS}_{5}\right)_{n}\right]\left[\mathrm{PF}_{6}\right]_{n},\left[\mathrm{Ag}_{2}\left([15] \mathrm{aneS}_{5}\right)_{2}\right]\left[\mathrm{BPh}_{4}\right]_{2}$ and $\left[\mathrm{Ag}\left([15]\right.\right.$ ane $\left.\left._{5}\right)\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ respectively in high yield. Single-crystal X -ray structural studies on these systems have revealed different cation stereochemistries as the counter ion is altered. Thus, $\left[\mathrm{Ag}_{n}\left([15] \mathrm{aneS}_{5}\right)_{n}\right]\left[\mathrm{PF}_{6}\right]_{n}$ crystallises in the orthorhombic space group $/ \mathrm{ba} 2$ with $a=25.713(3), b=$ $25.749(3), c=11.6989(19) \AA$ and $Z=16$. The two independent infinite chains of cations in the structure are antiparallel. The stereochemistry at Ag^{\prime} is severely distorted octahedral through an $\left[\mathrm{S}_{4}+\right.$ S_{2}] donor set, $\mathrm{Ag}(1) \cdots \mathrm{S}(1) 3.219(5), \mathrm{Ag}(1)-\mathrm{S}(4) 2.659(5), \mathrm{Ag}(1)-\mathrm{S}(7) 2.651$ (6), $\mathrm{Ag}(1) \cdots \mathrm{S}(10)$ $3.075(7), \mathrm{Ag}(1)-\mathrm{S}(13) 2.564(6) \AA$, with one thioether donor from an adjacent $\left[\mathrm{Ag}\left([15] \mathrm{aneS}_{5}\right)\right]^{+}$ fragment asymmetrically bridging two metal centres, $\mathrm{Ag}(1)-\mathrm{S}(1 \mathrm{~B}) 2.742(5) \mathrm{A}$. A similar geometry is observed at the second Ag ion, $\mathrm{Ag}(2) \cdots \mathrm{S}\left(1^{\prime}\right) 3.263(5), \mathrm{Ag}(2)-\mathrm{S}\left(4^{\prime}\right) 2.605(5), \mathrm{Ag}(2) \cdots \mathrm{S}\left(7^{\prime}\right)$ 2.964(8), $\mathrm{Ag}(2)-\mathrm{S}\left(10^{\prime}\right) 2.713(7), \mathrm{Ag}(2)-\mathrm{S}\left(13^{\prime}\right) 2.637(6), \mathrm{Ag}(2)-\mathrm{S}(1 \mathrm{D}) 2.714(5) \AA$. The complex $\left[\mathrm{Ag}_{2}\left([15] \mathrm{aneS}_{5}\right)_{2}\right]\left[\mathrm{BPh}_{4}\right]_{2}$ crystallises in the triclinic space group P_{1}^{1} with $a=11.462(3), b=$ 11.895(3), $c=27.019$ (10) $\AA, \alpha=78.503(18), \beta=84.729(13), \gamma=67.118(18)^{\circ}$, and $Z=2$. The structure of the $\left[\mathrm{Ag}_{2}\left([15] \text { aneS }_{5}\right)_{2}\right]^{2+}$ cation shows an unusual binuclear stereochemistry with [4+1] thioether donation to one silver(1) centre, $\mathrm{Ag}(2)-\mathrm{S}\left(\mathbf{7}^{\prime}\right)$ 2.558(4), $\mathrm{Ag}(2)-\mathrm{S}\left(10^{\prime}\right) \quad 2.623(5)$, $\mathrm{Ag}(2)-\mathrm{S}\left(13^{\prime}\right) \mathbf{2 . 7 1 6 (5)}, \mathrm{Ag}(2)-\mathrm{S}(1) 2.486(3), \mathrm{Ag}(2) \ldots \mathrm{S}\left(1^{\prime}\right) 3.131(3) \AA$, and [3+1] thioether donation to the other, $\mathrm{Ag}(1)-\mathrm{S}(7) 2.529(3), \mathrm{Ag}(1)-\mathrm{S}(10) \mathbf{2 . 6 0 8 (4) , \quad \mathrm { Ag } (1) - \mathrm { S } (1 ^ { \prime })} 2.537(3)$, $\mathrm{Ag}(1) \cdots \mathrm{S}(1) 2.907(3) \AA$. Thus, one S -donor $\left[\mathrm{S}(1)\right.$ and $\mathrm{S}\left(1^{\prime}\right)$] of each macrocycle bridges asymmetrically between the two metal centres. The complex $\left[\mathrm{Ag}\left([15]\right.\right.$ ane $\left.\left._{5}\right)\right]\left[B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ crystallises in the triclinic space group $P \overline{1}$ with $a=12.476(5), b=13.658(7), c=15.608(6) ~ \AA, \alpha=108.300$ (22), $\beta=108.467(17), \gamma=100.518(21)^{\circ}$ and $Z=2$. The structure contains discrete mononuclear $\left[\mathrm{Ag}\left([15] \mathrm{aneS}_{5}\right)\right]^{+}$cations and $\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]^{-}$anions. The geometry at Ag^{\prime} is asymmetric with all five thioether donors of the macrocycle interacting with the metal centre: $\mathrm{Ag}-\mathrm{S}(1)$ 2.4712(19), $\mathrm{Ag} \cdots \mathrm{S}(4) 2.7262(20), \mathrm{Ag}-\mathrm{S}(7) 2.6847(21), \mathrm{Ag}-\mathrm{S}(10) 2.5621(19), \mathrm{Ag} \cdots \mathrm{S}(13) 2.8813$ (19) \AA. In MeCN solution $\left[\mathrm{Ag}\left([15] \text { aneS }_{5}\right)\right]^{+}$shows a chemically reversible $\mathrm{Ag}^{\prime}-\mathrm{Ag}^{\prime \prime}$ redox couple at $E_{\frac{1}{2}}=0.76 \mathrm{~V}$ and a quasi-reversible $\mathrm{Ag}^{\prime}-\mathrm{Ag}^{\circ}$ couple at -0.37 V vs. ferrocene-ferrocenium. The intensely coloured d^{9} silver(II) oxidation product has been observed by X - and Q -band ESR spectroscopy and the oxidation of Ag^{\prime} to $\mathrm{Ag}{ }^{\prime \prime}$ monitored spectroelectrochemically.

In recent years several groups including our own have been engaged in studies on complexes involving thioether macrocyclic ligands. ${ }^{1,2}$ Interest in these systems stems from the observation that whereas acyclic thioether complexes tend to be susceptible to hydrolysis and demetallation, ${ }^{3}$ macrocyclic thioethers generally allow preparation of relatively stable complexes. The inherent stability of the metal-macrocyclic fragment has enabled the electrochemical properties of these systems to be probed. Thus, we have shown that discrete singleelectron redox couples can become accessible, e.g. $\mathrm{Fe}^{\mathrm{II}}-\mathrm{Fe}^{\mathrm{III}}, 4$
 $\mathrm{Pd}^{\mathrm{IV}},{ }^{6,9}$ and $\mathrm{Pt}^{\mathrm{HI}}-\mathrm{Pt}^{\mathrm{III}}-\mathrm{Pt}^{\mathrm{IV}} .{ }^{10}$ We have applied electrochemistry, ESR and in situ electronic spectroscopy to study the processes occuring and to characterise the highly reactive products

[^0]generated. In certain cases we have also demonstrated that there is a correlation between the stereochemical and electrochemical properties observed. Thus, for example in [$\mathrm{Rh}([9]-$ aneS $\left.\left._{3}\right)_{2}\right]^{3+}\left([9]\right.$ aneS $_{3}=1,4,7$-trithiacyclononane), stabilisation of $\mathrm{Rh}^{\text {III }}, \mathrm{Rh}^{\text {II }}$ and Rh^{1} is attributed to the conformational flexibility of the two facially bound [9]aneS ${ }_{3}$ ligands, enabling these units to accommodate the stereochemical preferences of the different rhodium oxidation states. ${ }^{6,7}$

More recently we have shown that [9]aneS ${ }_{3}$, [18]aneS ${ }_{6}$ [18]ane $\mathrm{N}_{2} \mathrm{~S}_{4}, \mathrm{Me}_{2}[18] \mathrm{aneN}_{2} \mathrm{~S}_{4}$ and [15]aneS $\mathrm{O}_{3} \ddagger$ can also form stable complexes with d^{10} silver(I) ${ }^{11,12}$ and gold(I) ${ }^{13}$ centres. Indeed, such co-ordination has led to the preparation and structural characterisation of a unique series of complexes,

[^1]
[15]aneS 5
$\left[\mathrm{Au}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]^{+/ 2+/ 3+} .^{13}$ The complex $\left[\mathrm{Au}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]^{2+}$ represents the first fully characterised example of mononuclear $\mathrm{Au}^{\text {II }}$. Also, we have achieved stabilisation of silver(II) radical species via macrocyclic thioether co-ordination. For example, electrochemical studies on the octahedral complexes $[\mathrm{Ag}([18]-$ aneS $\left.\left._{6}\right)\right]^{+},\left[\mathrm{Ag}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]^{+}$and $\left[\mathrm{Ag}\left([18] \mathrm{aneN}_{2} \mathrm{~S}_{4}\right)\right]^{+}$show $\mathrm{Ag}^{\mathrm{I}}-\mathrm{Ag}^{\mathrm{II}}$ couples at $E_{\frac{1}{2}}=+1.00,+0.75$ and +0.65 V vs. ferrocene-ferrocenium, respectively. ${ }^{11,12,14}$ The silver(I) precursors are structurally interesting since they each show the d^{10} ion bound to a distorted octahedral arrangement of the donor atoms. This suggests that the co-ordination geometry adopted is determined mainly by the 'donacity' and conformational requirements of the macrocyclic ligand. These observations prompted us to investigate the co-ordination of Ag^{1} with the pentathia crown [15]aneS S_{5} (1,4,7,10,13-pentathiacyclopentadecane) since this introduces a severe stereochemical mismatch between the predicted preferences of the silver($($) ion (octahedral or tetrahedral) and the macrocycle (five-co-ordinate). We were interested to determine whether such a combination would induce unusual structural and/or electrochemical features.
Chemical oxidation of $\left[\mathrm{Ag}\left([18] \mathrm{aneS}_{6}\right)\right]^{+},\left[\mathrm{Ag}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]^{+}$ and $\left[\mathrm{Ag}\left([18] \mathrm{aneN}_{2} \mathrm{~S}_{4}\right)\right]^{+}$leads to formation of intensely coloured blue or purple paramagnetic complexes; these highly reactive species have so far eluded full characterisation, but ESR spectroscopic data are consistent with their assignment as mononuclear silver(II) species. ${ }^{14,15}$ We now report the synthesis and single-crystal X-ray structures of the isomeric series $\left[\mathrm{Ag}_{n}\left([15] \mathrm{aneS}_{5}\right)_{n}\right]\left[\mathrm{PF}_{6}\right]_{n}, \quad\left[\mathrm{Ag}_{2}\left([15] \text { aneS }_{5}\right)_{2}\right]\left[\mathrm{BPh}_{4}\right]_{2}$ and $\left[\mathrm{Ag}\left([15] \mathrm{aneS}_{5}\right)\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right] \cdot 2.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$. A discussion of the redox properties of the PF_{6} salt is also presented, together with evidence from X- and Q-band ESR spectroscopy and in situ electronic spectroscopy for the formation of a paramagnetic silver(II) oxidation product. Seval other silver(I) complexes incorporating saturated ${ }^{15,16}$ and unsaturated ${ }^{17}$ thioether macrocycles have been reported. A communication on this work has appeared previously. ${ }^{18}$

Results and Discussion

Reaction of AgNO_{3} with 1 molar equivalent of [15]aneS ${ }_{5}$ in refluxing MeOH -water for 30 min affords a colourless solution. Addition of an excess of $\mathrm{NH}_{4} \mathrm{PF}_{6}, \mathrm{NaBPh}_{4}$ or $\mathrm{Li}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ (the perfluorinated derivative of LiBPh_{4}) and recrystallisation of the product from MeNO_{2}-diethyl ether gives a white, lightsensitive product. In each case FAB mass spectrometry reveals molecular ion peaks (M^{+}) at $m / z=407$ and 409 corresponding to $\left[{ }^{107} \mathrm{Ag}\left([15] \text { aneS }_{5}\right)\right]^{+}$and $\left[{ }^{109} \mathrm{Ag}\left([15] \text { aneS }_{5}\right)\right]^{+}$respectively. This, together with IR spectroscopic and microanalytical data, confirms the empirical formulation $\left[\mathrm{Ag}\left([15]\right.\right.$ aneS $\left.\left._{5}\right)\right] \mathrm{X}[\mathrm{X}=$ $\mathrm{PF}_{6}{ }^{-}, \mathrm{BPh}_{4}{ }^{-}$or $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}{ }^{-}$] for the products. In order to ascertain the stereochemistry of the cationic species and the conformation of the crown thioether in these systems, singlecrystal X-ray determinations were undertaken.
Colourless crystals were obtained by slow evaporation from a solution of $\left[\mathrm{Ag}\left([15]\right.\right.$ aneS $\left.\left._{5}\right)\right] \mathrm{BPh}_{4}$ in MeNO_{2}. The structure determination shows (Fig. 1) a very unusual and unexpected dimeric ${ }^{-}\left[\mathrm{Ag}_{2}\left([15] \text { aneS }_{5}\right)_{2}\right]^{2+}$ cation, involving $[3+1]$ Sdonor co-ordination at one silver(1) centre, via two thioether donor atoms of one [15]aneS ${ }_{5}$ macrocycle, $\mathrm{Ag}(1)-\mathrm{S}(7)$ 2.529(3), $\mathrm{Ag}(1)-\mathrm{S}(10) 2.608(4) \AA$, and one thioether donor atom from a second [15]aneS ${ }_{5}$ crown, $\operatorname{Ag}(1)-\mathrm{S}\left(1^{\prime}\right) 2.537(3) \AA$. Atom $\mathrm{S}(1)$ is involved in a further long-range, weak interaction,

Fig. 1 View of the cation in $\left[\mathrm{Ag}_{2}\left([15] \mathrm{aneS}_{5}\right)_{2}\right]\left[\mathrm{BPh}_{4}\right]_{2}$ with the numbering scheme adopted
$\mathrm{Ag}(1) \cdots \mathrm{S}(1) 2.907(3) \AA$, giving an overall distorted tetrahedral environment at Ag. A different stereochemistry is observed at $\mathrm{Ag}(2)$ where co-ordination is through a $[4+1] \mathrm{S}$ donor set involving three thioether donors of one macrocycle, $\mathrm{Ag}(2)-\mathrm{S}\left(7^{\prime}\right) \quad 2.558(4), \quad \mathrm{Ag}(2)-\mathrm{S}\left(10^{\prime}\right) \quad 2.623(5), \quad \mathrm{Ag}(2)-\mathrm{S}\left(13^{\prime}\right)$ $2.716(5) \AA$, one thioether donor of the other macrocycle, $\mathrm{Ag}(2)-\mathrm{S}(1) 2.486(3) \AA$ and a further long-range, weak interaction, $\mathrm{Ag}(2) \cdots \mathrm{S}\left(1^{\prime}\right) 3.131(3) \AA$. The remaining S-donor atoms, $S(4), S(13)$ and $S\left(4^{\prime}\right)$, are directed away from and do not interact with the metal centres, $\mathrm{Ag}(1) \cdots \mathrm{S}(4) 3.555(4)$, $\mathrm{Ag}(1) \cdots \mathrm{S}(13) 3.319(4), \mathrm{Ag}(1) \cdots \mathrm{S}\left(4^{\prime}\right) 3.994(4) \AA$. Notably therefore, $\mathrm{S}(1)$ and $\mathrm{S}\left(1^{\prime}\right)$ act as asymmetric bridges between $\mathrm{Ag}(1)$ and $\mathrm{Ag}(2)$, giving a metal-metal distance of $4.2225(15) \AA$.
We have recently reported a related silver(I) complex incorporting a mixed thia/oxo donor macrocycle, $\left[\mathrm{Ag}_{n}([15]-\right.$ aneS $\left.\left.\mathrm{S}_{2} \mathrm{O}_{3}\right)_{n}\right]^{n+}$, which shows a polymeric structure with bridging S-donors, ${ }^{19}$ while Wieghardt and co-workers ${ }^{16}$ have structurally characterised the unusual trimeric cation $\left[\mathrm{Ag}_{3}([9]-\right.$ aneS $\left.\left._{3}\right)_{3}\right]^{3+}$. DeSimone and co-workers ${ }^{20}$ have also reported the crystal structure of the dimolybdenum species $\left[\mathrm{Mo}_{2}(\mathrm{SH})_{2}{ }^{-}\right.$ $\left.\left([16] \mathrm{aneS}_{4}\right)_{2}\right]^{2+}\left\{[16] \mathrm{aneS}_{4}=1,5,9,13\right.$-tetrathiacyclohexadecane\}. To our knowledge these are the only fully characterised examples to date which incorporate bridging thioether macrocyclic ligands. The paucity of such systems is not surprising since thioethers are generally very poor ligands for metal centres. ${ }^{3}$ Thus the ability of thioether donors to function as asymmetrically bridging ligands in $\left[\mathrm{Ag}_{2}\left([15] \mathrm{aneS}_{5}\right)_{2}\right]^{2+}$ is quite remarkable, and serves to illustrate further how incorporation of the S (thioether) donors within a macrocyclic framework greatly enhances their ligating characteristics.
In view of the very unexpected stereochemical features observed for $\left[\mathrm{Ag}_{2}\left([15] \text { aneS }_{5}\right)_{2}\right]\left[\mathrm{BPh}_{4}\right]_{2}$, we were intrigued as to whether replacement of the bulky organic $\mathrm{BPh}_{4}{ }^{-}$counter ion by the much smaller $\mathrm{PF}_{6}{ }^{-}$or the perfluorinated derivative of $\mathrm{BPh}_{4}{ }^{-},\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]^{-}$, would significantly alter the structure of the resultant silver-thioether complex. Variation of counter ion has been shown previously to alter the structure of the cation in $\left[\mathrm{Pd}\left([18] \mathrm{aneS}_{6}\right)\right]^{2+} .{ }^{1,21}$ We therefore undertook single crystal X -ray structure determinations on both the $\mathrm{PF}_{6}{ }^{-}$and $\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]^{-}$salts of $\left[\mathrm{Ag}\left([15] \text { aneS }_{5}\right)\right]^{+}$.
Colourless crystals of suitable quality were obtained by vapour diffusion of diethyl ether into a solution of [Ag($[15] \mathrm{aneS}_{5}$) PF_{6} in MeNO_{2}. A single-crystal X-ray structure determination confirms the complex to have a completely different stereochemistry from that observed for $\left[\mathrm{Ag}_{2}([15]-\right.$ aneS $\left.\left.\mathrm{S}_{5}\right)_{2}\right]\left[\mathrm{BPh}_{4}\right]_{2}$. The structure of the $\mathrm{PF}_{6}{ }^{-}$salt shows (Fig. 2) two independent and antiparallel, infinite polymeric chains of $\left[\operatorname{Ag}\left([15] \text { aneS }_{5}\right)\right]^{+}$cations. Each silver((I) centre is bound via a [4 +2] S-donor set in a distorted octahedral geometry. This donor set comprises three short and two long metal-thioether bonds to one [15]aneS ${ }_{5}$ crown, $\mathrm{Ag}(1)-\mathrm{S}(4) 2.659(5), \mathrm{Ag}(1)-$ $\mathrm{S}(7) \mathbf{2 . 6 5 1}(6), \mathrm{Ag}(1)-\mathrm{S}(13) 2.564(6), \mathrm{Ag}(1) \cdots \mathrm{S}(1) 3.219(5)$,
(a)

(b)

Fig. 2 (a) Illustration of the distorted octahedral co-ordination around Ag^{1} in $\left[\mathrm{Ag}_{n}\left([15] \mathrm{aneS}_{5}\right)_{n}\right]\left[\mathrm{PF}_{6}\right]_{n}$ with the numbering scheme adopted. (b) Packing diagram showing one of the arrangements of the polymeric $\left[\mathrm{Ag}_{n}\left([15] \mathrm{aneS}_{5}\right)_{n}\right]^{n+}$ chains in the $\mathrm{PF}_{6}{ }^{-}$salt (the other chains run antiparallel)
$\mathrm{Ag}(1) \cdots \mathrm{S}(10) 3.075(7) \AA$ and one thioether donor from an adjacent macrocycle, $\mathrm{Ag}(1)-\mathrm{S}(1 \mathrm{~B}) 2.742(5) \AA$. A similar coordination sphere is observed at $\mathrm{Ag}(2), \mathrm{Ag}(2)-\mathrm{S}\left(4^{\prime}\right) 2.605(5)$, $\mathrm{Ag}(2)-\mathrm{S}\left(10^{\prime}\right) 2.713(7), \quad \mathrm{Ag}(2)-\mathrm{S}\left(13^{\prime}\right)$ 2.637(6), $\mathrm{Ag}(2) \cdots \mathrm{S}\left(1^{\prime}\right)$ $3.263(5), \quad \mathrm{Ag}(2) \cdots \mathrm{S}\left(7^{\prime}\right) \quad 2.964(8), \quad \mathrm{Ag}(2)-\mathrm{S}(1 \mathrm{D}) \quad 2.714(5) \AA$ [$\mathrm{S}(1 \mathrm{~B})$ and $\mathrm{S}(1 \mathrm{D})$ are related to $\mathrm{S}(1)$ and $\mathrm{S}\left(1^{\prime}\right)$ by the symmetry operations $\left(x,-y, \frac{1}{2}+z\right)$ and $\left(-x, y,-\frac{1}{2}+z\right)$ respectively]. The $\left[\mathrm{Ag}\left([15] \mathrm{aneS}_{5}\right)\right]^{+}$fragments are linked by $\mathrm{S}(1)$ and $\mathrm{S}\left(1^{\prime}\right)$ which act as asymmetrically bridging donor atoms. This is similar to the polymeric structure observed for $\left[\mathrm{Ag}_{n}-\right.$ ($\left.\left.[15] \mathrm{aneS}_{2} \mathrm{O}_{3}\right)_{n}\right]^{n+}$ in which the silver(I) ions are co-ordinated to a distorted octahedral $\mathrm{S}_{2} \mathrm{O}_{3} \mathrm{~S}_{\text {bridge }}$ donor set, $\mathrm{Ag}-\mathrm{S}$ 2.5404(15), 2.7996(12), Ag-O 2.492(4), 2.667(5), 2.690(4), $\mathrm{Ag}-\mathrm{S}_{\text {bridge }} 2.5951(12) \AA{ }^{19}$
(a)

(b)

Fig. 3 Two views of the cation in $\left[\operatorname{Ag}\left([15] \mathrm{aneS}_{5}\right)\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ with the numbering scheme adopted

Single crystals of $\left[\mathrm{Ag}\left([15]\right.\right.$ aneS $\left.\left._{5}\right)\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ were obtained by layering with hexane a solution of the complex in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. In contrast to the $\mathrm{PF}_{6}{ }^{-}$and $\mathrm{BPh}_{4}{ }^{-}$salts described above, this complex comprises discrete mononuclear $\left[\operatorname{Ag}\left([15] \text { aneS }_{5}\right)\right]^{+}$ cations and $\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]^{-}$anions. The structure shows (Fig. 3) Ag^{1} bound to all five S -donors of the crown in a very asymmetric $[4+1] \quad \mathrm{S}$-donor arrangement with $\mathrm{Ag}-\mathrm{S}(1)$ 2.4712(19), $\mathrm{Ag}-\mathrm{S}(4) 2.7262(20), \mathrm{Ag}-\mathrm{S}(7) 2.6847(21), \mathrm{Ag}-\mathrm{S}(10)$ $2.5621(19), \mathrm{Ag} \cdot \cdot \mathrm{S}(13) 2.8813(19) \AA$. The primary S_{4} coordination geometry is therefore distorted from a pseudotetrahedral arrangement by the long-range, secondary $\mathrm{Ag} \cdots \mathrm{S}(13)$ interaction, giving a formally five-co-ordinate silver(I) centre.

Thus, for the complexes $\left[\operatorname{Ag}\left([15]\right.\right.$ aneS $\left.\left._{s}\right)\right] X$, changing the counter anion X leads to dramatic differences in the stereochemistry of the $\left[\mathrm{Ag}\left([15] \mathrm{aneS}_{5}\right)\right]^{+}$cation, with significant changes in the number and nature of the $\mathrm{Ag}-\mathrm{S}$ (thioether) interactions. From our previous work with related thioether macrocyclic complexes, ${ }^{1}$ we believe that the restricted bite angle of the $\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{~S}$ chelates within [15]aneS ${ }_{5}$ plays an important role in determining the final structures of these silver(I) complexes. Additionally, the conformational flexibility of the crown thioether, and the absence of any crystal-field stabilisation energy for the d^{10} silver(I) ions, lead us to believe that crystal packing forces are also important in determining the overall solid-state structures. This is consistent with the observed structural trends upon altering the steric bulk of the counter anion. Carbon-13 NMR spectroscopic studies on the $\mathrm{BPh}_{4}{ }^{-}$and $\mathrm{PF}_{6}{ }^{-}$salts at 298 K in $\mathrm{CD}_{3} \mathrm{NO}_{2}$ show a single resonance for the methylene groups for each species at $\delta 31.26$ and 31.59 respectively suggesting that these complexes do not retain their solid-state structures in solution. Thus, it appears that in solution the macrocyclic C atoms all experience the same environment. This may be due to time-averaging

Fig. 4 In situ electronic spectrum for conversion of $\left[\mathrm{Ag}\left([15] \text { anes }_{5}\right)\right]^{+}$ into $\left[\mathrm{Ag}\left([15] \mathrm{aneS}_{5}\right)\right]^{2+}\left(\mathrm{OTE}, 243 \mathrm{~K},+1.5 \mathrm{~V}\right.$ vs. $\left.\mathrm{Ag}^{-} \mathrm{Ag}^{+}\right)$

Fig. 5 X-Band ESR spectrum (77 K) of the oxidation product of $\left[\mathrm{Ag}\left([15] \mathrm{aneS}_{5}\right)\right]^{+}$in $\mathrm{H}_{2} \mathrm{SO}_{4}$ glass

Fig. 6 X-Band ESR spectrum (298 K) of the oxidation product of $\left[\mathrm{Ag}\left([15] \mathrm{aneS}_{5}\right)\right]^{+}$in $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution
processes linked to the formation of solvated $\left[\mathrm{Ag}\left([15] \mathrm{aneS}_{5}\right)\right]^{+}$ monomers.
Cyclic voltammetry of $\left[\mathrm{Ag}\left([15] \mathrm{aneS}_{5}\right)\right]^{+}$as its $\mathrm{PF}_{6}{ }^{-}$salt, measured at 298 K in $\mathrm{MeCN}\left(0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NBu}^{\mathrm{n}} \mathrm{PF}_{6}\right.$ supporting electrolyte) at platinum electrodes shows a chemically reversible oxidation at $E_{\frac{1}{1}}=+0.76 \mathrm{~V} v s$. ferroceneferrocenium and a quasi-reversible reduction at $E_{\frac{1}{2}}=-0.37 \mathrm{~V}$. Controlled-potential oxidation in MeCN at $243 \mathrm{~K},+1.50 \mathrm{~V}$ vs. $\mathrm{Ag}-\mathrm{Ag}^{+}$, confirms that this is a single-electron process, generating an intense blue paramagnetic solution of the corresponding silver(II) species. The oxidation of $[\operatorname{Ag}([15]-$ aneS $\left.\left.\mathrm{S}_{5}\right)\right]^{+}$was monitored spectroelectrochemically by in situ electronic spectroscopy using an optically transparent electrode (OTE) system (Fig. 4). As expected, the original d^{10} silver(I) species shows no diagnostic electronic spectrum in the visible region. However, controlled electrochemical oxidation of the complex at 243 K in MeCN leads to growth of an intense absorption band ($\lambda_{\text {max }}=565 \mathrm{~nm}, \varepsilon_{\text {max }}=7700 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$). Electrochemical re-reduction of the oxidation product affords the starting spectrum; importantly, this demonstrates that interconversion of silver-(I) and -(II) species occurs reversibly at low temperatures. At room temperature the blue oxidation product is rapidly decolourised due to quenching of the radical species; this is consistent with the very powerful oxidising power of silver(II) species. The silver(II) species can also be

Table 1 X-Band ESR spectral data for oxidised silver thioether macrocyclic complexes $\left(98 \% \mathrm{H}_{2} \mathrm{SO}_{4}\right)$

Parent silver (I) complex	77 K	Solution (298 K)
$\left[\mathrm{Ag}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]^{+}$	$g_{1} 2.049$	$g_{\text {iso }} 2.034$
	$g_{2} 2.030$	coupling not fully resolved
	$g_{3} 2.009$	
$\left[\mathrm{Ag}\left([18] \mathrm{aneS}_{6}\right)\right]^{+}$	$g_{1} 2.054$	$g_{\text {iso }} 2.036$
	$g_{2} 2.029$	$A_{\text {iso }} 31 \mathrm{G}$
	$g_{3} 2.010$	
$\left[\mathrm{Ag}\left([15] \mathrm{aneS}_{5}\right)\right]^{+}$	$g_{1} 2.043$	$g_{\text {iso }} 2.030$
	$g_{2} 2.020$	$A_{\text {iso }} 29 \mathrm{G}$
	$g_{3} 2.009$	
$\left[\mathrm{Ag}\left([12] \mathrm{aneS}_{4}\right)\right]^{+}$	$g_{1} 2.055$	$g_{\text {iso }} 2.034$
	$g_{2} 2.036$	$A_{\text {iso }} 32 \mathrm{G}$
	$g_{3} 2.014$	
$\left[\mathrm{Ag}\left([14] \mathrm{aneS}_{4}\right)\right]^{+*}$	$g_{1} 2.044$	$g_{\text {iso }} 2.031$
	$g_{2} 2.035$	$A_{\text {iso }} 36 \mathrm{G}$
	$g_{3} 2.007$	
$\left[\mathrm{Ag}\left([16] \mathrm{aneS}_{4}\right)\right]^{+}$	$g_{1} 2.056$	$g_{\text {iso }} 2.035$
	$g_{2} 2.037$	$A_{\text {iso }} 36 \mathrm{G}$
	$g_{3} 2.010$	

Fig. 7 Q-Band ESR spectrum (77 K) of the oxidation product of $\left[\mathrm{Ag}\left([15] \mathrm{aneS}_{5}\right)\right]^{+}$in $\mathbf{H}_{2} \mathrm{SO}_{4}$ glass
generated chemically in $98 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ or $70 \% \mathrm{HClO}_{4}$, ${ }^{*}$ and exhibits identical spectral features to electrochemically generated samples, confirming that we are observing the same species in these media.

The X-band ESR spectrum of the electrochemically generated silver(II) product ($77 \mathrm{~K}, \mathrm{MeCN}$ glass) shows a strong rhombic signal. Chemical oxidation $\left(98 \% \mathrm{H}_{2} \mathrm{SO}_{4}\right.$ or $70 \% \mathrm{HClO}_{4}{ }^{*}$) generates the same species which shows a similar intense rhombic spectrum (Fig. 5). We have previously reported ${ }^{12}$ similar ESR parameters for the oxidation products from related silver(I) octahedral thioether macrocyclic complexes. The solution X-band ESR spectrum ($298 \mathrm{~K}, \mathrm{H}_{2} \mathrm{SO}_{4}$) of the oxidation product from $\left[\mathrm{Ag}\left([15] \mathrm{aneS}_{5}\right)\right]^{+}$shows (Fig. 6) a strong isotropic signal, $g_{\text {iso }}=2.030$, which is clearly split into a doublet $\left(A_{\text {iso }}=29 \mathrm{G}\right)$ by hyperfine coupling to ${ }^{107} \mathrm{Ag}\left(I=\frac{1}{2}\right)$ and ${ }^{109} \mathrm{Ag}\left(I=\frac{1}{2}\right)$, the couplings to both nuclei being very similar. Table 1 lists X-band ESR spectral data for a range of related silver-thioether macrocyclic complexes. Measurements at Q-band frequency ($77 \mathrm{~K}, \mathrm{H}_{2} \mathrm{SO}_{4}$ glass) revealed that the system has rhombic (or lower) ESR symmetry, $g_{1}=2.043$, $g_{2}=2.020, g_{3}=2.009$ and each g value has hyperfine splitting associated with it, $A_{1}=45.0, A_{2}=24.0, A_{3}=33.0 \mathrm{G}$ (Fig. 7). Thus, the lowest-field feature in the X-band spectra of the silver(II) complexes (Fig. 5) is the first silver hyperfine line for g_{1}. Both X- and Q-band spectra have been successfully simulated to give the reported g and A values (Fig. 8). The ESR spectral data suggest a high degree of covalency in the complexes with

[^2]

Fig. 8 Simulations of X- (top) and Q-band (bottom) ESR spectra $(77 \mathrm{~K})$ of oxidation products of $\left[\mathrm{Ag}\left([15] \text { aneS }_{5}\right)\right]^{+}$
significant positive charge delocalised onto the S-donor atoms. This is reflected in the high instability, particularly in the solid state, of these oxidation products. We have therefore been unable thus far to confirm the assignment of these species as genuine silver(II) complexes by single-crystal X-ray diffraction.

Experimental

Infrared spectra were measured as KBr and CsI discs using a Perkin Elmer 598 spectrometer over the range $200-4000 \mathrm{~cm}^{-1}$. Electrochemical measurements were performed on a Bruker E310 Universal Modular Polarograph. All readings were taken using a three-electrode potentiostatic system in acetonitrile containing $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NBu}^{\mathrm{n}}{ }_{4} \mathrm{PF}_{6}$ or $\mathrm{NBu}_{4}{ }_{4} \mathrm{BF}_{4}$ as supporting electrolyte. Cyclic voltammetric measurements were carried out using a double platinum electrode and a $\mathrm{Ag}-\mathrm{AgCl}$ reference electrode. All potentials are quoted versus ferrocene-ferrocenium. The UV/VIS spectra were measured in quartz cells using a Perkin Elmer Lambda 9 spectrophotometer. Spectroelectrochemical measurements were carried out in quartz cells (pathlength 0.5 mm) fitted with a fine platinum-rhodium gauze as a working electrode. The platinum auxiliary electrode and $\mathrm{Ag}-\mathrm{Ag}^{+}$reference electrode were fitted into a quartz extension attached to the cell, and were protected from the bulk solution by porous glass frits. The temperature of the cell was maintained using a thermocouple and digital thermometer. Microanalyses were performed by the Edinburgh University Chemistry Department microanalytical service. The ESR spectra were recorded as solutions or as frozen glasses down to 77 K using a Bruker ER200D X-band spectrometer and Varian E112 Q-band spectrometer. Simulations were performed on the Amdahl 5890-300E computer at Manchester Computing Centre using methods described previously. ${ }^{22}$ Mass spectra were run by electron impact on a Kratos MS902 and by fastatom bombardment (FAB) (3-nitrobenzyl alcohol matrix) on a Kratos MS 50 TC spectrometer. Proton and ${ }^{13} \mathrm{C}$ NMR spectra were obtained on Bruker WP80 and WP200 instruments.
(a) Synthesis of $\left[\mathrm{Ag}_{n}\left([15] \text { aneS }_{5}\right)_{n}\right]\left[\mathrm{PF}_{6}\right]_{r}$ - To a refluxing solution of [15]aneS ${ }_{5}(85 \mathrm{mg}, 0.283 \mathrm{mmol})$ in water- MeOH ($1: 1 \mathrm{v} / \mathrm{v}, 20 \mathrm{~cm}^{3}$) was added 1 molar equivalent of $\mathrm{AgNO}_{3}(50$ $\mathrm{mg}, 0.294 \mathrm{mmol}$). The reaction mixture was refluxed for ca. 30 \min, cooled and filtered into a solution containing an excess of $\mathrm{NH}_{4} \mathrm{PF}_{6}$ in water, to give a white precipitate. Recrystallisation from $\mathrm{MeNO}_{2}-\mathrm{Et}_{2} \mathrm{O}$ afforded a light-sensitive white solid (yield 75%) (Found: C, 20.9; H, 3.55; S, 28.9. Calc. for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{AgF}_{6}-$ $\mathrm{PS}_{\mathrm{s}}: \mathrm{C}, 21.7 ; \mathrm{H}, 3.65 ; \mathrm{S}, 29.0 \%$). FAB mass spectrum: M^{+}at $m / z=409,407$; calc. for $\left[{ }^{109} \mathrm{Ag}\left([15] \text { aneS }_{5}\right)\right]^{+} m / z 409$, $\left[{ }^{107} \mathrm{Ag}\left([15] \mathrm{aneS}_{5}\right)\right]^{+} m / z=407 . \mathrm{NMR}^{\left(\mathrm{CD}_{3} \mathrm{NO}_{2}, 298 \mathrm{~K}\right):{ }^{1} \mathrm{H}}$ (200.13 MHz), $\delta 3.07\left(\mathrm{CH}_{2}, 20 \mathrm{H}\right.$); ${ }^{13} \mathrm{C}$ DEPT (distortionless enhancement polarisation transfer) (50.32 MHz), $\delta 31.59\left(\mathrm{CH}_{2}\right)$. IR (KBr disc): $2980 \mathrm{w}, 2910 \mathrm{~m}, 2820 \mathrm{w}, 1425 \mathrm{vs}, 1415 \mathrm{vs}, 1380 \mathrm{w}$, $1295 \mathrm{~m}, 1260 \mathrm{~m}, 1250 \mathrm{~m}, 1190 \mathrm{~m}, 1170 \mathrm{w}, 1150 \mathrm{w}, 1130 \mathrm{w}, 1010 \mathrm{w}$, $995 \mathrm{w}, 935 \mathrm{~m}, 920 \mathrm{~m}, 840 \mathrm{vs}, 740 \mathrm{w}, 690 \mathrm{w}, 640 \mathrm{w}, 555 \mathrm{vs}, 470 \mathrm{w}, 445 \mathrm{w}$, $430 \mathrm{w}, 410 \mathrm{w} \mathrm{cm}^{-1}$.
(b) Structure Determination of $\left[\mathrm{Ag}_{n}\left([15] \mathrm{aneS}_{5}\right)_{n}\right]\left[\mathrm{PF}_{6}\right]_{n} \mathbf{1}$ Data collection and processing. Stoë STADI-4 four-circle diffractometer, graphite-monochromated Mo-K α X-radiation, $\omega-2 \theta$ scans using the learnt-profile method, ${ }^{23}$ semiempirical absorption correction applied (minimum 0.3549 , maximum 0.4810) by means of ψ-scans.

Structure solution and refinement. The data showed a clear tetragonal sub-cell [space group $P \overline{4}{ }_{1} m, a=18.194, c=$ $5.850 \AA, 792$ unique data, 772 reflections used with $F>6 \sigma(F)]$ and only the data fitting this cell were used initially. The Ag atom was located by a Patterson synthesis. Iterative cycles of least-squares refinement and Fourier difference syntheses located all non-H atoms. ${ }^{24}$ However, disorder was identified in all of the methylene C atoms and the F atoms. The structure was refined to $R=0.090, R^{\prime}=0.0985$. At this stage the silver position was transferred into the true orthorhombic I cell giving two independent $\left[\mathrm{Ag}\left([15] \mathrm{aneS}_{5}\right)\right]^{+} \mathrm{PF}_{6}{ }^{-}$ion pairs per unit cell [transformation: new coordinates $x=\frac{1}{2}(x-y)+0.25, y=$ $\frac{1}{2}(x+y)-0.25, \quad z=\frac{\pi}{2} ; \quad x^{\prime}=\frac{1}{2}(x+y)+0.25 ; \quad y^{\prime}=\frac{1}{2}(y-$ x) $\left.-0.25, z^{\prime}=-\frac{z}{2}\right]$. The origin was fixed by constraining the sum of the z parameters for the two silver atoms to be 2.0 . All other non- H atoms were then located by successive leastsquares refinement and Fourier difference syntheses. ${ }^{24}$ Some disorder was identified in one of the $\mathrm{PF}_{6}{ }^{-}$anions. This was modelled successfully using partial occupancies giving two orientations: 66.7% with a C_{2} axis though the P atom, with three general F atoms, and 33.3% with a C_{2} axis coincident with the F-P-F axis, with two general F atoms. All $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{S}$ bonds in the [15] aneS $_{5}$ macrocycle were constrained to be 1.50(1) and 1.83(1) \AA respectively. Anisotropic thermal parameters were refined for $\mathrm{Ag}, \mathrm{S}, \mathbf{P}$ and all F atoms with occupancies $\geqslant \frac{2}{3}$. Hydrogen atoms were included in fixed, calculated positions. ${ }^{25}$

Crystallographic data are given in Table 2, bond lengths, angles and torsion angles in Table 3 and fractional atomic coordinates in Table 4.
(c) Synthesis of $\left[\mathrm{Ag}_{2}\left([15] \mathrm{aneS}_{5}\right)_{2}\right]\left[\mathrm{BPh}_{4}\right]_{2}$.-Procedure as for (a) above, but using NaBPh_{4} in place of $\mathrm{NH}_{4} \mathrm{PF}_{6}$. Yield 72% (Found: C, 56.0; H, 5.50; S, 22.4. Calc. for $\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{AgBS}_{5}$: C, $56.1 ; \mathrm{H}, 5.55 ; \mathrm{S}, 22.0 \%$). FAB mass spectrum: M^{+}at $m / z 407$, 409; calc. for $\left[{ }^{107} \mathrm{Ag}\left([15] \mathrm{aneS}_{5}\right)\right]^{+} m / z=407,\left[{ }^{109} \mathrm{Ag}([15]]\right.$ aneS $\left.\left._{5}\right)\right]^{+} m / z=409$. NMR ($\left.\mathrm{CD}_{3} \mathrm{NO}_{2}, 298 \mathrm{~K}\right):{ }^{1} \mathrm{H}(200.13$ MHz), $7.38-6.80\left(\mathrm{~m}\right.$, phenyl $\mathrm{CH}, 20 \mathrm{H}$), $3.01\left(\mathrm{~s}, \mathrm{CH}_{2}, 20 \mathrm{H}\right.$); ${ }^{13} \mathrm{C}$ DEPT (50.32 MHz), $\delta 134.76,124.67,120.81$ (all phenyl CH), $31.26\left(\mathrm{CH}_{2}\right)$. IR (KBr disc): 3040 w , $3020 \mathrm{w}, 2980 \mathrm{w}, 2910 \mathrm{~m}$, $1580 \mathrm{~m}, 1475 \mathrm{~m}, 1420 \mathrm{~m}, 1410 \mathrm{~m}, 1260 \mathrm{~m}, 1170 \mathrm{w}, 1130 \mathrm{w}, 1060 \mathrm{w}$, $1030 \mathrm{w}, 920 \mathrm{w}, 840 \mathrm{w}, 740 \mathrm{vs}, 710 \mathrm{vs}, 610 \mathrm{~m}, 470 \mathrm{w} \mathrm{cm}^{-1}$.
(d) Structure Determination of $\left[\mathrm{Ag}_{2}\left([15] \mathrm{aneS}_{5}\right)_{2}\right]\left[\mathrm{BPh}_{4}\right]_{2}$ 2.-Data collection and processing. Details as for complex 1, except for limiting values in semiempirical absorption correction (minimum 0.2301, maximum 0.3226).

Structure solution and refinement. The Ag atoms were

Table 2 Crystal data and details of data collection and structure refinement

	1	2	3
Formula	$\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{AgF}_{6} \mathrm{PS}_{5}$	$\mathrm{C}_{68} \mathrm{H}_{80} \mathrm{Ag}_{2} \mathrm{~B}_{2} \mathrm{~S}_{10}$	$\mathrm{C}_{34} \mathrm{H}_{20} \mathrm{AgBF}_{20} \mathrm{~S}_{5} \cdot 2.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
M	553.3	1455.3	1299.6
Crystal size (mm)	$0.38 \times 0.54 \times 0.59$	$0.19 \times 0.27 \times 0.69$	$0.19 \times 0.19 \times 0.31$
Crystal system	Orthorhombic	Triclinic	Triclinic
Space group	Iba 2	PI	PI
a) \AA	25.713(3)	11.462(3)	12.476(5)
b / \AA	25.749(3)	11.895(3)	13.658(7)
c / \AA	11.6989(19)	27.019(10)	15.608(6)
$x /{ }^{\circ}$	90	78.503(18)	108.300(22)
$\beta /{ }^{\circ}$	90	84.729(13)	108.467(17)
$\gamma{ }^{\circ}$	90	67.118(18)	100.518(21)
U / \AA^{3}	7746	3325	2275
$D_{\mathrm{c}} / \mathrm{g} \mathrm{cm}^{-3}$	1.898	1.453	1.897
Z	16	2	2
μ / mm^{-1}	1.675	1.453	1.066
$F(000)$	4416	1504	1282
T / K	298	298	150
Reflections at $\pm \omega$ to refine cell	48	18	23
2θ range/ ${ }^{\circ}$	24.5-25.1	31-32	25-26
$\left.2 \theta_{\text {max }}\right]^{\circ}$	45	45	45
$h, k, /$ ranges	0-27, 0-27, 0-12	- 12 to $12,-12$ to $12,0-27$	-13 to $12,-14$ to 13, 0-16
Reflections measured			
Total	3134	8627	6175
Unique	2668	7925	5497
Observed $[F \geqslant 4 \sigma(F)]$			4693
Observed $[F \geqslant 6 \sigma(F)]$	2473	6344	
Parameters refined	326	634	576
Weighting scheme, g in $u^{-1}=\sigma^{2}(F)+g F^{2}$	0.000024	0.000086	0.000103
R, R^{\prime}	0.0597, 0.0719	0.0859, 0.1108	0.0493, 0.0588
S	1.414	1.117	1.093
Max. and min. residues in final ΔF synthesis (e \AA^{-3})	+0.66-0.58	+2.15-1.17	+0.83-0.87

Table 3 Bond lengths (\AA), angles and torsion angles $\left({ }^{\circ}\right)$ with estimated standard deviations (e.s.d.s) for $\left[\mathrm{Ag}_{n}\left([15] \operatorname{aneS}_{5}\right)_{n}\right]\left[\mathrm{PF}_{6}\right]_{n}$

$\mathrm{Ag}(1) \cdots \mathrm{S}(1)$	$3.219(5)$
$\mathrm{Ag}(1)-\mathrm{S}(4)$	$2.659(5)$
$\mathrm{Ag}(1)-\mathrm{S}(7)$	$2.651(6)$
$\mathrm{Ag}(1) \cdots \mathrm{S}(10)$	$3.075(7)$
$\mathrm{Ag}(1)-\mathrm{S}(13)$	$2.564(6)$
$\mathrm{Ag}(1)-\mathrm{S}(1 \mathrm{~B})$	$2.742(5)$
$\mathrm{S}(4)-\mathrm{Ag}(1)-\mathrm{S}(7)$	$79.79(18)$
$\mathrm{S}(4)-\mathrm{Ag}(1)-\mathrm{S}(13)$	$127.70(17)$
$\mathrm{S}(4)-\mathrm{Ag}(1)-\mathrm{S}(1 \mathrm{~B})$	$99.64(16)$
$\mathrm{S}(7)-\mathrm{Ag}(1)-\mathrm{S}(13)$	$141.82(19)$
$\mathrm{S}(7)-\mathrm{Ag}(1)-\mathrm{S}(1 \mathrm{~B})$	$101.34(18)$
$\mathrm{S}(13)-\mathrm{Ag}(1)-\mathrm{S}(1 \mathrm{~B})$	$99.17(16)$
$\mathrm{S}\left(4^{\prime}\right)-\mathrm{Ag}(2)-\mathrm{S}\left(10^{\prime}\right)$	$141.18(20)$
$\mathrm{S}\left(4^{\prime}\right)-\mathrm{Ag}(2)-\mathrm{S}\left(13^{\prime}\right)$	$126.83(18)$
$\mathrm{S}\left(4^{\prime}\right)-\mathrm{Ag}(2)-\mathrm{S}(1 \mathrm{D})$	$99.64(16)$
$\mathrm{S}\left(10^{\prime}\right)-\mathrm{Ag}(2)-\mathrm{S}\left(13^{\prime}\right)$	$78.65(20)$
$\mathrm{S}\left(10^{\prime}\right)-\mathrm{Ag}(2)-\mathrm{S}(1 \mathrm{D})$	$103.76(19)$
$\mathrm{S}\left(13^{\prime}\right)-\mathrm{Ag}(2)-\mathrm{S}(1 \mathrm{D})$	$100.35(17)$
$\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{C}(15)$	$102.1(8)$
$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$111.8(13)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$112.7(13)$
$\mathrm{Ag}(1)-\mathrm{S}(4)-\mathrm{C}(3)$	$109.5(6)$
$\mathrm{Ag}(1)-\mathrm{S}(4)-\mathrm{C}(5)$	$101.1(6)$
$\mathrm{C}(3)-\mathrm{S}(4)-\mathrm{C}(5)$	$102.6(9)$
$\mathrm{S}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$116.2(13)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{S}(7)$	$106.6(12)$
$\mathrm{Ag}(1)-\mathrm{S}(7)-\mathrm{C}(6)$	$99.3(6)$
$\mathrm{Ag}(1)-\mathrm{S}(7)-\mathrm{C}(8)$	$99.8(6)$
$\mathrm{C}(6)-\mathrm{S}(7)-\mathrm{C}(8)$	$95.7(8)$
$\mathrm{S}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$107.2(12)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{S}(10)$	$116.0(13)$
$\mathrm{C}(9)-\mathrm{S}(10)-\mathrm{C}(11)$	$105.6(9)$
$\mathrm{S}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$109.9(13)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{S}(13)$	$114.6(13)$
$\mathrm{Ag}(1)-\mathrm{S}(13)-\mathrm{C}(12)$	$108.5(6)$

$\mathrm{Ag}(2) \cdots \mathrm{S}\left(1^{\prime}\right)$	$3.263(5)$
$\mathrm{Ag}(2)-\mathrm{S}\left(4^{\prime}\right)$	$2.605(5)$
$\mathrm{Ag}(2) \cdots \mathrm{S}\left(7^{\prime}\right)$	$2.964(8)$
$\mathrm{Ag}(2)-\mathrm{S}\left(10^{\prime}\right)$	$2.713(7)$
$\mathrm{Ag}(2)-\mathrm{S}\left(13^{\prime}\right)$	$2.637(6)$
$\mathrm{Ag}(2)-\mathrm{S}(1 \mathrm{D})$	$2.714(5)$
$\mathrm{Ag}(1)-\mathrm{S}(13)-\mathrm{C}(14)$	$111.5(6)$
$\mathrm{C}(12)-\mathrm{S}(13)-\mathrm{C}(14)$	$106.9(9)$
$\mathrm{S}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$117.1(12)$
$\mathrm{S}(1)-\mathrm{C}(15)-\mathrm{C}(14)$	$116.3(11)$
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{S}\left(1^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)$	$102.6(8)$
$\mathrm{S}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	$106.6(13)$
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{S}\left(4^{\prime}\right)$	$115.2(13)$
$\mathrm{Ag}(2)-\mathrm{S}\left(4^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	$109.3(6)$
$\mathrm{Ag}\left(2-\mathrm{S}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)\right.$	$105.0(6)$
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{S}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	$104.5(9)$
$\mathrm{S}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	$117.0(14)$
$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{S}\left(7^{\prime}\right)$	$107.6(13)$
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{S}\left(7^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)$	$101.4(10)$
$\mathrm{S}\left(7^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)$	$114.4(15)$
$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)-\mathrm{S}\left(10^{\prime}\right)$	$108.9(14)$
$\mathrm{Ag}(2)-\mathrm{S}\left(10^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)$	$97.0(7)$
$\mathrm{Ag}\left(2-\mathrm{S}\left(10^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)\right.$	$96.7(6)$
$\mathrm{C}\left(9^{\prime}\right)-\mathrm{S}\left(10^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)$	$96.0(9)$
$\mathrm{S}\left(10^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)$	$106.7(12)$
$\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)-\mathrm{S}\left(13^{\prime}\right)$	$115.1(13)$
$\mathrm{Ag}(2)-\mathrm{S}\left(13^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)$	$103.2(6)$
$\mathrm{Ag}(2)-\mathrm{S}\left(13^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)$	$113.1(6)$
$\mathrm{C}\left(12^{\prime}\right)-\mathrm{S}\left(13^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)$	$105.7(9)$
$\mathrm{S}\left(13^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)$	$117.3(13)$
$\mathrm{S}\left(1^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)$	$118.0(13)$
$\mathrm{Ag}(1)-\mathrm{S}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})$	$104.7(6)$
$\mathrm{Ag}(1)-\mathrm{S}(1 \mathrm{~B})-\mathrm{C}(15 B)$	$98.2(5)$
$\mathrm{Ag}(2)-\mathrm{S}(1 \mathrm{D})-\mathrm{C}(2 \mathrm{D})$	$102.0(6)$
$\mathrm{Ag}(2)-\mathrm{S}(1 \mathrm{D})-\mathrm{C}(15 \mathrm{D})$	$99.4(5)$

Table 3 (continued)

$\mathrm{C}(15)-\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	168.4(13)	$\mathrm{C}\left(15^{\prime}\right)-\mathrm{S}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	-167.0(12)
$\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{C}(15)-\mathrm{C}(14)$	-59.8(14)	$\mathrm{C}\left(2^{\prime}\right)-\mathrm{S}\left(1^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)$	63.5(15)
$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{S}(4)$	-75.1(14)	$\mathrm{S}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{S}\left(4^{\prime}\right)$	78.6(14)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{S}(4)-\mathrm{C}(5)$	130.6(13)	$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{S}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	-143.4(14)
$\mathrm{C}(3)-\mathrm{S}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	-77.4(15)	$\mathrm{C}\left(3^{\prime}\right)-\mathrm{S}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	82.4(16)
$\mathrm{S}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{S}(7)$	-68.2(15)	$\mathbf{S}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{S}\left(7^{\prime}\right)$	72.0(16)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{S}(7)-\mathrm{C}(8)$	160.5(12)	$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{S}\left(7^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)$	-164.9(14)
$\mathrm{C}(6)-\mathrm{S}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	-177.1(12)	$\mathrm{C}\left(6^{\prime}\right)-\mathrm{S}\left(7^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)$	82.4(16)
$\mathrm{S}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{S}(10)$	61.6(15)	$\mathrm{S}\left(7^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)-\mathrm{S}\left(10^{\prime}\right)$	59.1(17)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{S}(10)-\mathrm{C}(11)$	73.6(15)	$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)-\mathrm{S}\left(10^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)$	-173.0(14)
$\mathrm{C}(9)-\mathrm{S}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	-165.0(13)	$\mathrm{C}\left(9^{\prime}\right)-\mathrm{S}\left(10^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)$	160.9(13)
$\mathrm{S}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{S}(13)$	$71.5(15)$	$\mathrm{S}\left(10^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)-\mathrm{S}\left(13^{\prime}\right)$	-68.6(15)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{S}(13)-\mathrm{C}(14)$	95.3(15)	$\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)-\mathrm{S}\left(13^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)$	-86.9(15)
$\mathrm{C}(12)-\mathrm{S}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	-64.6(15)	$\mathrm{C}\left(12^{\prime}\right)-\mathrm{S}\left(13^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)$	61.5(15)
$\mathrm{S}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{S}(1)$	-55.4(16)	$\mathrm{S}\left(13^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)-\mathrm{S}\left(1^{\prime}\right)$	51.4(18)

Table 4 Atomic coordinates with e.s.d.s for $\left[\mathrm{Ag}_{n}\left([15] \mathrm{aneS}_{5}\right)_{n}\right]\left[\mathrm{PF}_{6}\right]_{n}$

Atom	x	y	2	Atom	x	y	z
$\mathrm{Ag}(1)$	$0.19635(5)$	$0.00205(6)$	1.053 45(9)	F(33)	0.0397 (9)	0.5077 (9)	0.845 4(24)
$\mathrm{Ag}(2)$	0.000 65(6)	0.304 36(5)	0.946 55(9)	C(2)	0.118 1(5)	0.025 9(5)	0.807 3(23)
S(1)	0.177 36(18)	-0.01145(17)	0.783 2(5)	C(3)	0.129 6(8)	0.0814 (6)	0.834 5(11)
S(4)	0.154 08(20)	0.090 23(17)	0.9803 (5)	C(5)	0.2121 (5)	0.1302 (6)	0.958 O(22)
S(7)	$0.28098(19)$	0.059 91(21)	1.0303 (7)	C(6)	0.2591 (7)	0.102 6(7)	0.9150 (14)
S(10)	0.293 09(22)	-0.066 75(23)	1.083 9(6)	C(8)	0.319 9(7)	0.0171 (6)	0.939 1(14)
S(13)	0.162 66(20)	-0.090 61(19)	1.0227 (5)	C(9)	$0.3412(6)$	-0.025 2(7)	1.0140 (19)
S(1)	-0.012 19(16)	0.324 74(18)	1.220 4(5)	C(11)	0.267 2(7)	-0.108 5(7)	0.971 1(14)
S(4')	$0.09042(17)$	0.336 82(20)	1.021 1(5)	C(12)	0.218 1(5)	-0.134 0(6)	1.0110 (21)
S(7)	$0.06577(24)$	0.209 63(25)	0.9318 (9)	C(14)	0.1263 (6)	-0.0961(8)	0.889 9(11)
S(10')	-0.062 16(25)	0.219 73(23)	0.9507 (7)	C(15)	0.152 9(7)	-0.078 2(4)	0.782 9(15)
S(13')	-0.090 81(20)	0.347 35(23)	0.984 3(5)	C(2)	$0.0318(5)$	0.379 9(5)	1.200 4(23)
$\mathrm{P}(1)$	0.248 79(22)	$0.25912(20)$	0.7503 (5)	$\mathrm{C}\left(3^{\prime}\right)$	0.083 8(7)	0.3577 (9)	1.169 4(11)
F(11)	0.250 O(5)	0.2611 (5)	0.618 9(10)	$\mathrm{C}\left(5^{\prime}\right)$	$0.1309(6)$	$0.2787(5)$	1.028 4(22)
F(12)	$0.2464(6)$	0.257 6(5)	0.885 2(11)	$\mathrm{C}\left(6^{\prime}\right)$	$0.1042(8)$	0.2288 (7)	1.0567 (15)
F(13)	0.198 2(5)	0.2251 (6)	$0.7467(16)$	$\mathrm{C}\left(8^{\prime}\right)$	0.023 2(8)	$0.1602(7)$	0.993 3(22)
F(14)	0.2166 (7)	0.309 4(5)	$0.7515(14)$	C(9')	-0.023 7(7)	0.1814 (8)	1.053 2(15)
F(15)	0.3018 (6)	0.2913 (6)	0.756 4(14)	$\mathrm{C}\left(11^{\prime}\right)$	-0.108 6(7)	0.244 9(7)	1.055 6(15)
F(16)	0.2820 (5)	0.206 6(5)	0.747 8(15)	C(12')	-0.133 6(6)	0.291 6(6)	1.0028 (21)
$\mathrm{P}(2)$	0.0000	0.0000	0.564 5(7)	C(14')	-0.093 7(8)	0.3831 (7)	1.118 4(11)
F(21)	-0.000 1(12)	-0.039 9(7)	0.464 1(15)	$\mathrm{C}\left(15^{\prime}\right)$	-0.075 7(5)	0.355 6(8)	1.223 4(17)
F(22)	-0.059 3(4)	$0.0095(13)$	0.562 3(22)	F(24)	-0.045 8(11)	-0.0387(12)	0.568(4)
F(23)	0.007 4(12)	0.043 O(9)	0.656 2(23)	F(25)	-0.029(4)	0.052 6(23)	0.550(12)
$\mathrm{P}(3)$	0.0000	0.5000	$0.9304(8)$	F(26)	0.0000	0.0000	0.697 0(11)
F(31)	0.017 5(7)	0.443 2(4)	0.932 3(17)	F(27)	0.0000	0.0000	0.432 2211)
F(32)	$-0.0401(7)$	0.495 2(9)	$1.0303(22)$				

located by a Patterson synthesis and the structure was developed by least-squares refinement and Fourier difference syntheses. ${ }^{24}$ During refinement some disorder in the macrocyclic methylene groups was identified. This was modelled using partial \mathbf{C} atoms, giving two equally likely sites for $\mathbf{C}\left(11^{\prime}\right)$ and $\mathrm{C}\left(12^{\prime}\right)$. These, together with the other C atoms, $\mathrm{C}(12)$ and $\mathrm{C}\left(\mathbf{1 4}^{\prime}\right)$, exhibiting high thermal parameters were refined isotropically, and the $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{S}$ bond lengths in the regions $S(7)$ to $S(13)$ and $S\left(7^{\prime}\right)$ to $S\left(13^{\prime}\right)$ were constrained to be 1.50 and $1.83 \AA$ respectively. All other non-H atoms were refined anisotropically. At isotropic convergence final corrections (minimum 0.691, maximum 1.146) for absorption effects were applied using DIFABS. ${ }^{26}$ Hydrogen atoms were included in fixed, calculated positions and the phenyl groups of the $\mathrm{BPh}_{4}{ }^{-}$ counter ions were refined as rigid groups.

Selected bond lengths, angles and torsion angles are given in Table 5, fractional atomic coordinates in Table 6.
(e) Synthesis of $\left[\mathrm{Ag}\left([15] \mathrm{aneS}_{5}\right)\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$--Procedure as for (a) above, but using $\mathrm{Li}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ in place of $\mathrm{NH}_{4} \mathrm{PF}_{6}$. Yield 72% (Found: C, 37.6; H, 1.85. Calc. for $\mathrm{C}_{34} \mathrm{H}_{20} \mathrm{AgBF}_{20} \mathrm{~S}_{5}$: C, $37.5 ; \mathrm{H}, 2.10 \%$). FAB mass spectrum: M^{+}at $m / z 407$,

409; calc. for $\left[{ }^{107} \mathrm{Ag}\left([15] \mathrm{aneS}_{5}\right)\right]^{+} m / z=407,\left[{ }^{109} \mathrm{Ag}([15]-\right.$ aneS_{5}) $]^{+} m / z=409$. IR (KBr disc): $2950 \mathrm{w}, 2920 \mathrm{~m}, 2845 \mathrm{w}$, $1640 \mathrm{~s}, 1600 \mathrm{w}, 1510 \mathrm{vs}, 1475 \mathrm{vs}, 1430 \mathrm{~m}, 1410 \mathrm{~m}, 1380 \mathrm{~m}, 1370 \mathrm{~m}$, $1300 \mathrm{w}, 1265 \mathrm{~s}, 1090 \mathrm{vs}, 1030 \mathrm{w}, 975 \mathrm{vs}, 930 \mathrm{w}, 915 \mathrm{w}, 870 \mathrm{w}, 855 \mathrm{w}$, $840 \mathrm{w}, 825 \mathrm{w}, 770 \mathrm{vs}, 765 \mathrm{~m}, 755 \mathrm{vs}, 745 \mathrm{w}, 735 \mathrm{~m}, 725 \mathrm{~m}, 680 \mathrm{vs}$, $660 \mathrm{vs}, 645 \mathrm{w}, 610 \mathrm{~m}, 600 \mathrm{~m}, 570 \mathrm{~m}, 470 \mathrm{w} \mathrm{cm}^{-1}$.
(f) Structure Determination of $\left[\mathrm{Ag}\left([15] \mathrm{aneS}_{5}\right)\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ 3.-Data collection and processing. Details as for complex 1, except that data were collected at 150 K rather than 298 K , the crystal being cooled using an Oxford Cryosystems lowtemperature device ${ }^{27}$ and no absorption correction was applied at this stage.

Structure solution and refinement. An Ag atom was located by a Patterson synthesis and the structure was developed by leastsquares refinement and Fourier difference syntheses. ${ }^{24}$ During refinement some disorder in the macrocyclic methylene groups was identified. This was modelled using partial \mathbf{C} atoms, giving two alternative sites for $\mathrm{C}(8)$ and $\mathrm{C}(9)[\mathrm{C}(8)$ and $\mathrm{C}(9) 62 \%$ occupied, $C\left(8^{\prime}\right)$ and $C\left(9^{\prime}\right) 38 \%$ occupied]. These, together with the other C atoms, $\mathrm{C}(12)$ and $\mathrm{C}\left(14^{\prime}\right)$, exhibiting high thermal parameters were refined isotropically, and the C-C and C-S

Table 5 Bond lengths (\AA), angles and torsion angles (${ }^{\circ}$) with e.s.d.s for $\left[\mathrm{Ag}_{2}\left([15] \mathrm{aneS}_{5}\right)_{2}\right]\left[\mathrm{BPh}_{4}\right]_{2}$

$\mathrm{Ag}(1) \cdots \mathrm{Ag}(2)$	4.2225(15)	$\mathrm{C}(14)-\mathrm{C}(15)$	1.421(18)
$\mathrm{Ag}(1) \cdots \mathrm{S}(1)$	2.907(3)	$\mathrm{Ag}(2) \cdots \mathrm{S}\left(1^{\prime}\right)$	3.131(3)
$\mathrm{Ag}(1) \cdots \mathrm{S}(4)$	3.555(4)	$\mathrm{Ag}(2) \cdots \mathrm{S}\left(4^{\prime}\right)$	3.994(4)
$\mathrm{Ag}(1)-\mathrm{S}(7)$	2.529(3)	$\mathrm{Ag}(2)-\mathrm{S}\left(7^{\prime}\right)$	2.558(4)
$\mathrm{Ag}(1)-\mathrm{S}(10)$	2.608(4)	$\mathrm{Ag}(2)-\mathrm{S}\left(10^{\prime}\right)$	2.623(5)
$\mathrm{Ag}(1) \cdots \mathrm{S}(13)$	3.319(4)	$\mathrm{Ag}(2)-\mathrm{S}\left(13^{\prime}\right)$	2.716(5)
$\mathrm{Ag}(1)-\mathrm{S}\left(1^{\prime}\right)$	2.537(3)	$\mathrm{S}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	1.814(11)
$\mathrm{S}(1)-\mathrm{C}(2)$	1.818(11)	$\mathrm{S}\left(1^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)$	1.848(12)
$\mathrm{S}(1)-\mathrm{C}(15)$	1.821(13)	$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	1.477(17)
$\mathrm{S}(1)-\mathrm{Ag}(2)$	2.486(3)	$\mathrm{C}\left(3^{\prime}\right)-\mathrm{S}\left(4^{\prime}\right)$	1.802(13)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.520(16)	$\mathrm{S}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	1.805(14)
$\mathrm{C}(3)-\mathrm{S}(4)$	1.817(12)	$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	1.493(19)
$\mathrm{S}(4)-\mathrm{C}(5)$	1.813(12)	$\mathrm{C}\left(6^{\prime}\right)-\mathrm{S}\left(7^{\prime}\right)$	1.802(13)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.516(17)	$\mathrm{S}\left(13^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)$	1.868(14)
$\mathrm{C}(6)-\mathrm{S}(7)$	1.807(13)		
$\mathrm{S}(1)-\mathrm{Ag}(1)-\mathrm{S}(7)$	112.53(10)	$\mathrm{Ag}(1)-\mathrm{S}\left(1^{\prime}\right)-\mathrm{Ag}(2)$	95.76(9)
$\mathrm{S}(1)-\mathrm{Ag}(1)-\mathrm{S}(10)$	132.46(11)	$\mathrm{Ag}(1)-\mathrm{S}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	111.3(4)
$\mathrm{S}(1)-\mathrm{Ag}(1)-\mathrm{S}\left(1^{\prime}\right)$	82.40(8)	$\mathrm{Ag}(1)-\mathrm{S}\left(1^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)$	115.1(4)
$\mathrm{S}(7)-\mathrm{Ag}(1)-\mathrm{S}(10)$	85.20(12)	$\mathrm{Ag}(2)-\mathrm{S}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	127.8(4)
$\mathrm{S}(7)-\mathrm{Ag}(1)-\mathrm{S}\left(1^{\prime}\right)$	135.90(11)	$\mathrm{Ag}(2)-\mathrm{S}\left(1^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)$	104.6(4)
$\mathrm{S}(10)-\mathrm{Ag}(1)-\mathrm{S}\left(1^{\prime}\right)$	115.87(11)	$\mathrm{C}\left(2^{\prime}\right)-\mathrm{S}\left(1^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)$	102.8(5)
$\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{C}(15)$	102.0(5)	$\mathrm{S}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	111.3(8)
$\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{Ag}(2)$	111.7(4)	$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{S}\left(4^{\prime}\right)$	117.8(9)
$\mathrm{C}(15)-\mathrm{S}(1)-\mathrm{Ag}(2)$	112.0(4)	$\mathrm{C}\left(3^{\prime}\right)-\mathrm{S}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	103.1(6)
$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	109.6(8)	$\mathrm{S}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	115.8(10)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{S}(4)$	116.6(8)	$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{S}\left(7^{\prime}\right)$	109.6(9)
$\mathrm{C}(3)-\mathrm{S}(4)-\mathrm{C}(5)$	104.3(6)	$\mathrm{Ag}(2)-\mathrm{S}\left(7^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	109.2(4)
$\mathrm{S}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	116.6(9)	$\mathrm{Ag}(2)-\mathrm{S}\left(7^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)$	95.2(5)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{S}(7)$	110.8(9)	$\mathrm{C}\left(6^{\prime}\right)-\mathrm{S}\left(7^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)$	94.4(6)
$\mathrm{Ag}(1)-\mathrm{S}(7)-\mathrm{C}(6)$	102.6(4)	$\mathrm{S}\left(7^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)$	108.5(10)
$\mathrm{Ag}(1)-\mathrm{S}(7)-\mathrm{C}(8)$	94.6(3)	$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)-\mathrm{S}\left(10^{\prime}\right)$	114.6(11)
$\mathrm{C}(6)-\mathrm{S}(7)-\mathrm{C}(8)$	101.2(5)	$\mathrm{Ag}(2)-\mathrm{S}\left(10^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)$	99.6(5)
$\mathrm{Ag}(1)-\mathrm{S}(10)-\mathrm{C}(9)$	96.9(3)	$\mathrm{Ag}(2)-\mathrm{S}\left(10^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)$	104.5(6)
$\mathrm{Ag}(1)-\mathrm{S}(10)-\mathrm{C}(11)$	107.1(3)	$\mathrm{Ag}(2)-\mathrm{S}\left(10^{\prime}\right)-\mathrm{C}(11 \mathrm{D})$	103.5(7)
$\mathrm{C}(9)-\mathrm{S}(10)-\mathrm{C}(11)$	111.9(4)	$\mathrm{C}\left(9^{\prime}\right)-\mathrm{S}\left(10^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)$	101.2(8)
$\mathrm{C}(12)-\mathrm{S}(13)-\mathrm{C}(14)$	98.7(5)	$\mathrm{C}\left(9^{\prime}\right)-\mathrm{S}\left(10^{\prime}\right)-\mathrm{C}(11 \mathrm{D})$	122.7(9)
$\mathrm{S}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	120.8(9)	$\mathrm{S}\left(10^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)$	109.2(12)
$\mathrm{S}(1)-\mathrm{C}(15)-\mathrm{C}(14)$	116.1(9)	$\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)-\mathrm{S}\left(13^{\prime}\right)$	109.1(11)
$\mathrm{S}(1)-\mathrm{Ag}(2)-\mathrm{S}\left(1^{\prime}\right)$	78.71(8)	$\mathrm{Ag}(2)-\mathrm{S}\left(13^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)$	91.7(5)
$\mathrm{S}(1)-\mathrm{Ag}(2)-\mathrm{S}\left(7^{\prime}\right)$	125.68(11)	$\mathrm{Ag}(2)-\mathrm{S}\left(13^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)$	107.3(5)
$\mathrm{S}(1)-\mathrm{Ag}(2)-\mathrm{S}\left(10^{\prime}\right)$	131.25(12)	$\mathrm{Ag}(2)-\mathrm{S}\left(13^{\prime}\right)-\mathrm{C}(12 \mathrm{D})$	100.8(6)
$\mathrm{S}(1)-\mathrm{Ag}(2)-\mathrm{S}\left(13^{\prime}\right)$	110.16(12)	$\mathrm{C}\left(12^{\prime}\right)-\mathrm{S}\left(13^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)$	91.8(6)
$\mathbf{S}\left(1^{\prime}\right)-\mathrm{Ag}(2)-\mathbf{S}\left(7^{\prime}\right)$	97.10(10)	$\mathrm{C}\left(14^{\prime}\right)-\mathrm{S}\left(13^{\prime}\right)-\mathrm{C}(12 \mathrm{D})$	108.0(8)
$\mathrm{S}\left(1^{\prime}\right)-\mathrm{Ag}(2)-\mathrm{S}\left(10^{\prime}\right)$	142.82(12)	$\mathrm{S}\left(13^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)$	107.9(9)
$\mathrm{S}\left(1^{\prime}\right)-\mathrm{Ag}(2)-\mathrm{S}\left(13^{\prime}\right)$	68.95(11)	$\mathrm{S}\left(1^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)$	110.5(8)
$\mathrm{S}\left(7^{\prime}\right)-\mathrm{Ag}(2)-\mathrm{S}\left(10^{\prime}\right)$	82.40(13)	$\mathrm{S}\left(10^{\prime}\right)-\mathrm{C}(11 \mathrm{D})-\mathrm{C}(12 \mathrm{D})$	109.1(14)
$\mathrm{S}\left(7^{\prime}\right)-\mathrm{Ag}(2)-\mathrm{S}\left(13^{\prime}\right)$	118.61(13)	$\mathrm{S}\left(13^{\prime}\right)-\mathrm{C}(12 \mathrm{D})-\mathrm{C}(11 \mathrm{D})$	109.1(14)
$\mathrm{S}\left(10^{\prime}\right)-\mathrm{Ag}(2)-\mathrm{S}\left(13^{\prime}\right)$	78.68(14)		
$\mathrm{C}(15)-\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	173.3(8)	$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{S}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	-69.2(10)
$\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{C}(15)-\mathrm{C}(14)$	68.5(10)	$\mathrm{C}\left(3^{\prime}\right)-\mathrm{S}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	88.3(11)
$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{S}(4)$	55.9(10)	$\mathrm{S}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{S}\left(7^{\prime}\right)$	66.1(11)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{S}(4)-\mathrm{C}(5)$	70.0(10)	$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{S}\left(7^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)$	164.8(10)
$\mathrm{C}(3)-\mathrm{S}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	-94.6(10)	$\mathrm{C}\left(6^{\prime}\right)-\mathrm{S}\left(7^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)$	174.4(10)
$\mathrm{S}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{S}(7)$	-59.2(11)	$\mathrm{S}\left(7^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)-\mathrm{S}\left(10^{\prime}\right)$	-67.5(12)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{S}(7)-\mathrm{C}(8)$	-174.6(8)	$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)-\mathrm{S}\left(10^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)$	-78.2(12)
$\mathrm{C}(6)-\mathrm{S}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	-164.9(6)	$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)-\mathrm{S}\left(10^{\prime}\right)-\mathrm{C}(11 \mathrm{D})$	-84.2(14)
$\mathrm{S}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{S}(10)$	78.5(6)	$\mathrm{C}\left(9^{\prime}\right)-\mathrm{S}\left(10^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)$	74.4(12)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{S}(10)-\mathrm{C}(11)$	66.5(6)	$\mathrm{C}\left(9^{\prime}\right)-\mathrm{S}\left(10^{\prime}\right)-\mathrm{C}(11 \mathrm{D})-\mathrm{C}(12 \mathrm{D})$	59.8(17)
$\mathrm{C}(9)-\mathrm{S}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	-120.5(6)	$\mathrm{S}\left(10^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)-\mathrm{S}\left(13^{\prime}\right)$	72.4(12)
$\mathrm{S}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{S}(13)$	84.5(6)	$\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)-\mathrm{S}\left(13^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)$	-178.2(11)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{S}(13)-\mathrm{C}(14)$	174.5(7)	$\mathrm{C}\left(12^{\prime}\right)-\mathrm{S}\left(13^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)$	162.9(9)
$\mathrm{C}(12)-\mathrm{S}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	66.8(11)	$\mathrm{C}(12 \mathrm{D})-\mathrm{S}\left(13^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)$	178.4(10)
$\mathrm{S}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{S}(1)$	42.6(13)	$\mathrm{C}\left(14^{\prime}\right)-\mathrm{S}\left(13^{\prime}\right)-\mathrm{C}(12 \mathrm{D})-\mathrm{C}(11 \mathrm{D})$	- 164.1(13)
$\mathrm{C}\left(15^{\prime}\right)-\mathrm{S}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	-176.6(8)	$\mathrm{S}\left(13^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)-\mathrm{S}\left(1^{\prime}\right)$	-66.0(10)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{S}\left(1^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)$	- 103.8(9)	$\mathrm{S}\left(10^{\prime}\right)-\mathrm{C}(11 \mathrm{D})-\mathrm{C}(12 \mathrm{D})-\mathrm{S}\left(13^{\prime}\right)$	72.4(15)
$\mathrm{S}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{S}\left(4^{\prime}\right)$	-48.7(11)		

bond lengths in the regions $S(7)$ to $S(13)$ and $S\left(7^{\prime}\right)$ to $S\left(13^{\prime}\right)$ were constrained to be 1.50 and $1.83 \AA$ respectively. At isotropic convergence corrections (minimum 0.840 , maximum 1.231) for
absorption effects were applied using DIFABS. ${ }^{26}$ All fully occupied non-H atoms were refined anisotropically. A peak ca. $1.3 \AA$ from Ag refined as a fragment of another silver ion with

Table 6 Atomic coordinates with e.s.d.s for $\left[\mathrm{Ag}_{2}\left([15] \mathrm{aneS}_{5}\right)_{2}\right]\left[\mathrm{BPh}_{4}\right]_{2}$

Atom	x	y	z	Atom	x	y	z
$\mathrm{Ag}(1)$	0.766 90(10)	0.074 96(9)	0.679 49(4)	C(14R)	0.273 4(5)	0.5608 (5)	$0.60582(22)$
S(1)	0.566 02(23)	0.102 98(22)	0.755 63(10)	C(15R)	0.1969 (5)	0.506 6(5)	$0.59114(22)$
C(2)	0.4839 (9)	0.255 3(9)	0.772 6(4)	C(16R)	0.077 6(5)	0.5811 (5)	0.571 32(22)
C(3)	0.575 4(10)	0.2901 (10)	0.7977 (4)	C(17R)	0.034 8(5)	0.709 8(5)	$0.56615(22)$
S(4)	0.718 4(3)	0.288 0(3)	$0.76007(13)$	C(18R)	0.1113 (5)	0.763 9(5)	$0.58081(22)$
C(5)	0.6631 (11)	0.4187 (9)	0.710 6(5)	C(19R)	$0.4687(4)$	0.697 4(5)	0.589 73(20)
C(6)	0.637 3(10)	$0.3912(10)$	$0.6612(5)$	C(20R)	0.478 6(4)	0.655 4(5)	0.544 28(20)
S(7)	0.778 6(3)	0.280 2(3)	0.637 31(12)	C(21R)	0.594 6(4)	0.618 2(5)	0.518 43(20)
C(8)	0.724 8(9)	0.277 1(3)	$0.57607(20)$	C(22R)	0.7006 (4)	0.6231 (5)	0.538 00(20)
C(9)	0.816 7(10)	0.1659 9(6)	0.556 12(17)	C(23R)	0.6907 (4)	0.665 2(5)	0.583 45(20)
S(10)	0.7881 (3)	0.027 9(3)	0.58810 (14)	$\mathrm{C}(24 \mathrm{R})$	$0.5747(4)$	0.7023 (5)	0.609 32(20)
C(11)	0.634 2(4)	0.0331 (9)	0.5721 (3)	B(2)	0.122 8(10)	0.252 3(9)	0.878 0(4)
S(13)	0.476 6(4)	0.183 2(3)	0.634 22(14)	C(25R)	0.1819 9(6)	0.0960 (4)	0.895 59(21)
C(14)	0.379 7(11)	0.148 2(13)	0.688 1(3)	C (26R)	0.1347 (6)	0.038 0(4)	0.938 08(21)
C(15)	0.4368 (10)	0.072 9(11)	0.734 O(4)	$\mathrm{C}(27 \mathrm{R})$	0.1877 76)	-0.090 6(4)	0.952 47(21)
$\mathrm{Ag}(2)$	0.675 28(10)	-0.054 73(8)	0.829 16(4)	C (28R)	$0.2879(6)$	-0.161 4(4)	0.924 36(21)
S(1)	0.890 84(23)	-0.104 35(22)	0.746 65(10)	C(29R)	0.3351 (6)	-0.103 4(4)	0.881 87(21)
$\mathrm{C}\left(2^{\prime}\right)$	0.970 9(9)	-0.245 1(9)	0.720 7(4)	C(30R)	0.2821 (6)	0.025 3(4)	0.867 49(21)
$\mathrm{C}\left(3^{\prime}\right)$	0.882 0(11)	-0.273 1(10)	0.693 8(5)	C(31R)	0.105 5(6)	0.2864 (5)	0.814 19(15)
S(4')	0.735 4(3)	-0.269 0(3)	0.72541 (14)	C(32R)	0.056 2(6)	0.2183 (5)	0.792 02(15)
$\mathrm{C}\left(5^{\prime}\right)$	0.7860 (11)	-0.401 7(9)	0.775 8(6)	C(33R)	0.0377 (6)	0.245 2(5)	0.739 99(15)
$\mathrm{C}\left(6^{\prime}\right)$	0.819 7(11)	-0.378 9(10)	0.824 O(5)	C(34R)	0.068 4(6)	0.3403 (5)	0.710 15(15)
$\mathrm{S}\left(7^{\prime}\right)$	0.6802 (3)	-0.275 8(3)	0.851 83(13)	$\mathrm{C}(35 \mathrm{R})$	0.1176 (6)	0.408 4(5)	0.732 34(15)
$\mathrm{C}\left(8^{\prime}\right)$	0.751 5(14)	-0.310 0(14)	0.913 7(3)	C(36R)	$0.1362(6)$	0.3815 (5)	0.784 34(15)
$\mathrm{C}\left(9^{\prime}\right)$	$0.6603(18)$	-0.226 0(6)	0.9465 (6)	C(37R)	0.2204 (6)	0.3131 (6)	0.894 84(24)
S(10')	0.633 9(4)	-0.061 8(4)	0.926 61(15)	$\mathrm{C}(38 \mathrm{R})$	0.176 5(6)	0.4417 (6)	0.890 13(24)
S(13')	0.873 6(4)	-0.009 9(4)	0.855 97(16)	C(39R)	0.255 2(6)	$0.4969(6)$	0.901 95(24)
$\mathrm{C}\left(15^{\prime}\right)$	1.021 8(10)	-0.084 8(11)	0.774 3(4)	C(40R)	0.378 0(6)	0.423 4(6)	0.918 51(24)
B(1)	0.325 6(9)	0.7518 (9)	0.619 4(4)	$\mathrm{C}(41 \mathrm{R})$	$0.4219(6)$	0.2948 (6)	0.923 23(24)
$\mathrm{C}(1 \mathrm{R})$	$0.3418(6)$	0.7178 (5)	0.682 88(15)	C(42R)	0.343 1(6)	0.2397 (6)	0.911 39(24)
$\mathrm{C}(2 \mathrm{R})$	0.389 2(6)	0.786 6(5)	0.705 59(15)	C(43R)	-0.018 9(5)	0.3081 (5)	0.907 24(21)
$\mathrm{C}(3 \mathrm{R})$	0.404 4(6)	0.7608 (5)	0.757 80(15)	C(44R)	-0.024 8(5)	0.342 6(5)	0.954 09(21)
$\mathrm{C}(4 \mathrm{R})$	0.372 4(6)	0.666 2(5)	0.787 29(15)	C(45R)	-0.139 9(5)	0.3811 (5)	0.980 46(21)
$\mathrm{C}(5 \mathrm{R})$	0.3251 (6)	0.597 5(5)	0.764 61(15)	C(46R)	-0.249 2(5)	0.385 3(5)	0.959 95(21)
C (6R)	$0.3098(6)$	0.623 3(5)	$0.71237(15)$	C(47R)	-0.243 3(5)	$0.3508(5)$	0.913 07(21)
$\mathrm{C}(7 \mathrm{R})$	0.264 5(6)	0.907 6(4)	$0.60235(22)$	$\mathrm{C}(48 \mathrm{R})$	-0.128 2(5)	0.3123 (5)	$0.88671(21)$
C (8R)	0.1673 (6)	0.977 9(4)	0.631 73(22)	C(12)	0.5561 (5)	0.027 1(5)	0.619 5(4)
C(9R)	$0.1139(6)$	1.106 6(4)	0.617 74(22)	C(11')	0.7767 (12)	-0.057 3(23)	0.949 95(17)
$\mathrm{C}(10 \mathrm{R})$	0.157 6(6)	$1.1651(4)$	0.574 38(22)	$\mathrm{C}\left(12^{\prime}\right)$	0.887 2(5)	-0.1150(17)	0.916 6(5)
C(11R)	0.2547 (6)	1.094 9(4)	$0.54501(22)$	C(14')	$1.0207(13)$	-0.122 0(13)	$0.8307(4)$
C(12R)	$0.3082(6)$	0.966 2(4)	0.558 99(22)	C(11D)	$0.7387(18)$	0.006 4(24)	0.944 3(5)
C(13R)	0.230 6(5)	0.689 4(5)	$0.60066(22)$	C(12D)	0.870 0(11)	-0.058(3)	0.924 61(21)

Table 7 Bond lengths (\AA), angles and torsion angles $\left({ }^{\circ}\right)$ with e.s.d.s for $\left[\operatorname{Ag}\left([15]\right.\right.$ aneS $\left.\left._{5}\right)\right]\left[B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$

$\mathrm{Ag}-\mathrm{S}(1)$	2.4712(19)	S(4)-C(5)	1.819(8)
$\mathrm{Ag}-\mathrm{S}(4)$	2.7262(20)	$\mathrm{C}(5)-\mathrm{C}(6)$	1.515(12)
$\mathrm{Ag}-\mathrm{S}(7)$	2.6847(21)	$\mathrm{C}(6)-\mathrm{S}(7)$	1.814(9)
$\mathrm{Ag}-\mathrm{S}(10)$	2.5621(19)	$\mathrm{S}(10)-\mathrm{C}(11)$	1.813(9)
$\mathrm{Ag} \cdot \mathrm{C}(13)$	2.8813(19)	$\mathrm{C}(11)-\mathrm{C}(12)$	1.511(12)
$\mathrm{S}(1)-\mathrm{C}(2)$	1.815(7)	$\mathrm{C}(12)-\mathrm{S}(13)$	1.826(8)
$\mathrm{S}(1)-\mathrm{C}(15)$	1.819(8)	S(13)-C(14)	1.818(8)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.531(10)	$\mathrm{C}(14)-\mathrm{C}(15)$	1.541(11)
$\mathrm{C}(3)-\mathrm{S}(4)$	1.804(8)		
S(1)-Ag-S(4)	85.20(6)	$\mathrm{Ag}-\mathrm{S}(7)-\mathrm{C}(8)$	99.8(4)
$\mathrm{S}(1)-\mathrm{Ag}-\mathrm{S}(7)$	127.86(6)	$\mathbf{A g - S}(7)-\mathrm{C}\left(8^{\prime}\right)$	87.0(5)
$\mathrm{S}(1)-\mathrm{Ag}-\mathrm{S}(10)$	139.36(6)	$\mathrm{C}(6)-\mathrm{S}(7)-\mathrm{C}(8)$	110.7(5)
$\mathrm{S}(1)-\mathrm{Ag}-\mathrm{S}(13)$	82.64(6)	$\mathrm{C}(6)-\mathrm{S}(7)-\mathrm{C}\left(8^{\prime}\right)$	87.3(6)
S(4)-Ag-S(7)	80.64(6)	$\mathrm{S}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	113.6(8)
$\mathrm{S}(4)-\mathrm{Ag}-\mathrm{S}(10)$	131.96(6)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{S}(10)$	112.2(8)
$\mathrm{S}(4)-\mathrm{Ag}-\mathrm{S}(13)$	90.29(6)	$\mathrm{Ag}-\mathrm{S}(10)-\mathrm{C}(9)$	91.6(4)
$\mathrm{S}(7)-\mathrm{Ag}-\mathrm{S}(10)$	81.01(6)	$\mathrm{Ag}-\mathrm{S}(10)-\mathrm{C}\left(11^{\prime}\right)$	101.3(3)
$\mathrm{S}(7)-\mathrm{Ag}-\mathrm{S}(13)$	146.66(6)	$\mathrm{Ag}-\mathrm{S}(10)-\mathrm{C}\left(9^{\prime}\right)$	100.7(6)
$\mathrm{S}(10)-\mathrm{Ag}-\mathrm{S}(13)$	81.59(6)	$\mathrm{C}(9)-\mathrm{S}(10)-\mathrm{C}(11)$	96.1(5)
$\mathrm{Ag}-\mathrm{S}(1)-\mathrm{C}(2)$	101.29(24)	$\mathrm{C}(11)-\mathrm{S}(10)-\mathrm{C}\left(9^{\prime}\right)$	109.8(6)
$\mathrm{Ag}-\mathrm{S}(1)-\mathrm{C}(15)$	103.7(3)	$\mathrm{S}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	113.0(6)
$\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{C}(15)$	104.7(3)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{S}(13)$	112.2(6)
$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	117.8(5)	$\mathrm{Ag}-\mathrm{S}(13)-\mathrm{C}(12)$	94.0(3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{S}(4)$	118.3(5)	$\mathrm{Ag}-\mathrm{S}(13)-\mathrm{C}(14)$	88.75(25)
$\mathrm{Ag}-\mathrm{S}(4)-\mathrm{C}(3)$	98.56(24)	$\mathrm{C}(12)-\mathrm{S}(13)-\mathrm{C}(14)$	102.2(4)
$\mathrm{Ag}-\mathrm{S}(4)-\mathrm{C}(5)$	95.9(2)	$\mathrm{S}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	110.1(5)

Table 7 (continued)

$\mathrm{C}(3)-\mathrm{S}(4)-\mathrm{C}(5)$	103.2(4)	$\mathrm{S}(1)-\mathrm{C}(15)-\mathrm{C}(14)$	111.3(5)
$\mathrm{S}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	109.8(6)	$\mathrm{S}(7)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)$	111.0(12)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{S}(7)$	112.9(6)	$\mathrm{S}(10)-\mathrm{C}\left(9^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)$	115.5(12)
$\mathrm{Ag}-\mathrm{S}(7)-\mathrm{C}(6)$	100.6(3)		
$\mathrm{C}(15)-\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-62.5(6)	S(7)-C(8)-C(9)-S(10)	-62.2(10)
$\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{C}(15)-\mathrm{C}(14)$	146.5(5)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{S}(10)-\mathrm{C}(11)$	171.5(8)
$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{S}(4)$	-51.9(7)	$\mathrm{C}(9)-\mathrm{S}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	-144.6(7)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{S}(4)-\mathrm{C}(5)$	-72.5(6)	$\mathrm{C}\left(9^{\prime}\right)-\mathrm{S}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	-157.6(8)
$\mathrm{C}(3)-\mathrm{S}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	159.7(5)	$\mathrm{C}(11)-\mathrm{S}(10)-\mathrm{C}\left(9^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)$	96.7(13)
$\mathrm{S}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{S}(7)$	-74.8(6)	$\mathrm{S}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{S}(13)$	75.5(7)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{S}(7)-\mathrm{C}(8)$	146.1(6)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{S}(13)-\mathrm{C}(14)$	-138.3(6)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{S}(7)-\mathrm{C}\left(8^{\prime}\right)$	127.8(8)	$\mathrm{C}(12)-\mathrm{S}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	154.6(5)
$\mathrm{C}(6)-\mathrm{S}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	-89.4(9)	$\mathrm{S}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{S}(1)$	-78.1(6)
$\mathrm{C}(6)-\mathrm{S}(7)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)$	-170.3(12)	$\mathrm{S}(7)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)-\mathrm{S}(10)$	60.1(15)

Table 8 Atomic coordinates with e.s.d.s for $\left[\operatorname{Ag}\left([15] \mathrm{aneS}_{5}\right)\right]\left[B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$

Atom	x	y	z	Atom	x	y	z
Ag	1.001 91(4)	0.155 22(5)	1.044 51(4)	F(12)	0.3397 7(3)	0.0958 (3)	0.748 13(24)
S(1)	$0.95089(14)$	0.103 24(13)	1.168 15(12)	C(13R)	0.5012 (3)	0.330 6(3)	0.644 9(3)
C(2)	1.075 4(5)	0.197 5(5)	1.281 4(4)	C(14R)	0.6213 (3)	0.3415 (3)	0.6900 (3)
C(3)	1.1147 (6)	$0.3165(5)$	1.295 7(5)	C(15R)	0.7001 (3)	0.370 5(3)	0.649 1(3)
S(4)	1.144 22(15)	0.346 44(14)	1.199 15(13)	C(16R)	0.658 9(3)	0.388 5(3)	0.5631 (3)
C(5)	$1.2838(5)$	0.318 5(6)	1.209 4(5)	C(17R)	0.5389 9(3)	0.377 6(3)	0.5179 (3)
C(6)	1.299 3(6)	0.3001 (6)	$1.1138(6)$	C(18R)	0.4600 (3)	0.3487 (3)	0.558 8(3)
S(7)	$1.20490(15)$	0.168 76(16)	1.01680 (13)	F(14)	0.6658 (3)	0.3231 (3)	0.769 22(25)
S(10)	0.917 05(14)	0.102 44(14)	0.858 02(12)	F(15)	0.813 9(3)	0.377 3(3)	0.689 9(3)
C(11)	0.812 8(7)	0.178 8(7)	0.844 3(5)	F(16)	0.735 5(4)	0.4169 (3)	0.523 4(3)
C(12)	0.7278 (6)	0.1605 (6)	0.892 6(5)	F(17)	0.5000 (4)	0.3947 (3)	0.435 2(3)
S(13)	0.798 83(14)	$0.23201(14)$	1.026 47(12)	F(18)	0.349 2(3)	0.3364 (3)	$0.51152(25)$
C(14)	0.739 4(5)	0.1318 (6)	1.0673 (5)	C(19R)	0.677 3(3)	-0.159 47(24)	0.410 61(23)
C(15)	0.825 7(6)	0.1525 (6)	1.1715 (5)	C(20R)	0.613 2(3)	-0.085 69(24)	$0.41614(23)$
B	0.3953 (6)	0.285 2(6)	0.6823 (5)	C(21R)	0.663 6(3)	0.017 09(24)	0.492 92(23)
C(1R)	0.309 2(3)	0.368 4(3)	0.697 2(3)	C(22R)	0.778 2(3)	$0.04609(24)$	$0.56418(23)$
C(2R)	0.335 6(3)	0.4729 (3)	0.6988 (3)	C(23R)	0.842 3(3)	-0.027 69(24)	0.558 66(23)
C(3R)	0.2628 (3)	$0.5362(3)$	0.7168 (3)	C(24R)	0.7919 (3)	-0.130 47(24)	$0.48187(23)$
$\mathrm{C}(4 \mathrm{R})$	0.163 7(3)	0.4950 (3)	0.733 2(3)	F(20)	0.5063 (3)	-0.107 4(3)	0.351 02(25)
C(5R)	0.137 4(3)	0.390 5(3)	0.731 6(3)	F(21)	0.604 6(3)	0.090 2(3)	0.4987 7(3)
C(6R)	0.2101 (3)	0.327 2(3)	0.713 6(3)	F(22)	0.829 2(4)	0.148 3(3)	0.635 6(3)
F(2)	0.4304 (3)	0.519 9(3)	0.6903 (3)	F(23)	0.952 2(3)	0.0014 (3)	0.626 3(3)
F(3)	0.286 6(3)	0.6358 8(3)	0.717 4(3)	F(24)	0.856 9(3)	-0.195 8(3)	0.484 45(25)
F(4)	0.0914 (3)	0.556 3(3)	0.748 3(3)	C(1S)	$1.5118(7)$	0.1413 (9)	0.3018 (6)
F(5)	0.042 2(3)	0.3527 (3)	0.747 6(3)	$\mathrm{Cl}(1 \mathrm{~S})$	1.381 40(17)	$0.11100(17)$	0.321 03(15)
F(6)	0.1806 (3)	0.2297 (3)	0.713 42(24)	$\mathrm{Cl}(2 \mathrm{~S})$	$1.48975(22)$	$0.12131(22)$	0.182 48(17)
C(7R)	0.448 4(3)	0.2816 (3)	0.79583 (19)	C(2S)	0.911 6(7)	0.259 6(6)	1.500 6(5)
$\mathrm{C}(8 \mathrm{R})$	0.523 2(3)	0.3801 (3)	0.873 22(19)	$\mathrm{Cl}(3 \mathrm{~S})$	0.975 96(20)	0.365 43(18)	1.474 79(16)
C(9R)	0.5625 (3)	0.3877 (3)	0.970 00(19)	$\mathrm{Cl}(4 \mathrm{~S})$	0.826 51(20)	$0.14149(22)$	1.395 94(15)
C(10R)	0.527 1(3)	0.2968 (3)	0.989 37(19)	$\mathrm{Cl}(5 \mathrm{~S})$	-0.123 19(22)	0.487 35(19)	-0.013 20(20)
C(11R)	0.452 3(3)	0.1984 (3)	0.911 98(19)	C(8)	1.157 3(8)	0.177 6(10)	0.897 3(6)
C(12R)	0.4129 (3)	0.1908 (3)	0.815 20(19)	C(9)	1.042 7(7)	0.205 6(9)	0.8691 (9)
F(8)	0.557 3(3)	0.468 2(3)	0.859 62(25)	$\mathrm{C}\left(8^{\prime}\right)$	1.153 2(14)	$0.2419(13)$	$0.9385(11)$
F(9)	0.634 2(3)	0.4819 (3)	1.043 99(25)	$\mathrm{C}\left(9^{\prime}\right)$	1.047 8(11)	0.166 2(16)	$0.8435(11)$
F(10)	0.565 2(3)	0.304 4(3)	$1.08308(25)$	Ag^{\prime}	1.002 8(10)	$0.2611(10)$	1.070 1(8)
F(11)	0.4207 (3)	$0.1115(3)$	0.931 1(3)	$\mathrm{C}(3 \mathrm{~S})$	0.009 2(14)	0.499 6(14)	0.0641 (11)

occupancy 5.4% arising from a very small fragment of another crystal attached to the main crystal. As Ag is significantly heavier than any other atoms in the cation, no partial S or \mathbf{C} atoms associated with this twin were identified. Hydrogen atoms were included in fixed, calculated positions and the phenyl rings of the $\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]^{-}$counter ions were refined as rigid hexagons.
Selected bond lengths, angles and torsion angles are given in Table 7, fractional atomic coordinates in Table 8. Atomic scattering factors were inlaid, ${ }^{24}$ or taken from ref. 28. Molecular geometry calculations utilised CALC ${ }^{25}$ and the Figures were produced by ORTEP II. ${ }^{29}$

Additional material available from the Cambridge Crystallographic Data Centre comprises H -atom co-ordinates, thermal parameters and remaining bond lengths and angles.

Acknowledgements

We thank the SERC for support, the Royal Society of Edinburgh and Scottish Office Education Department for a Support Research Fellowship (to M. S.) and the Royal Society of London for a Fellowship (to D. C.).

References

1 M. Schröder, Pure Appl. Chem., 1988, 60, 517; A. J. Blake and M. Schröder, Adv. Inorg. Chem., 1990, 35, 1; G. Reid and M. Schröder, Chem. Soc. Rev., 1990, 19, 239.
2 S. R. Cooper, Acc. Chem. Res., 1988, 21, 141; S. C. Rawle and S. R. Cooper, Struct. Bonding (Berlin), 1990, 72, 1.
3 S. G. Murray and F. R. Hartley, Chem. Rev., 1981, 81, 365.

4 K. Wieghardt, H.-J. Kuppers and J. Weiss, Inorg. Chem., 1985, 24, 3067; A. J. Blake, A. J. Holder, T. I. Hyde and M. Schröder, J. Chem. Soc., Chem. Commun., 1989, 1433.
5 A. J. Blake, R. O. Gould, M. A. Halcrow, A. J. Holder and M. Schröder, J. Chem. Soc., Dalton Trans., 1992, 3427.
6 A. J. Blake, A. J. Holder, T. I. Hyde and M. Schröder, J. Chem. Soc., Chem. Commun., 1987, 987.
7 A. J. Blake, R. O. Gould, A. J. Holder, T. I. Hyde and M. Schröder, J. Chem. Soc., Dalton Trans., 1988, 1861; S. C. Rawle, R. Yagbasan, K. Prout and S. R. Cooper, J. Am. Chem. Soc., 1987, 109, 6181; S. R. Cooper, S. C. Rawle and R. Yagbasan, J. Am. Chem. Soc., 1991, 113 , 1600; A. J. Blake, M. A. Halcrow and M. Schröder, J. Chem. Soc., Chem. Commun., 1991, 253; D. Collison, G. Reid and M. Schröder, Polyhedron, in the press.
8 A. J. Blake, R. O. Gould, A. J. Holder, T. I. Hyde, G. Reid and M. Schröder, J. Chem. Soc., Dalton Trans., 1990, 1759.
9 A. J. Blake, A. J. Holder, T. I. Hyde, Y. V. Roberts, A. J. Lavery and M. Schröder, J. Organomet. Chem., 1987, 323, 261; A. J. Blake, R. O. Gould, A. J. Lavery and M. Schröder, Angew. Chem., 1986, 98, 282; Angew. Chem., Int. Ed. Engl., 1986, 25, 274; G. Reid, A. J. Blake, T. I Hyde and M. Schröder, J. Chem. Soc., Chem. Commun., 1988, 1397; A. J. Blake, G. Reid and M. Schröder, J. Chem. Soc., Dalton Trans., 1990, 3363.
10 A. J. Blake, R. O. Gould, A. J. Holder, T. I. Hyde, M. O. Odulate, A. J. Lavery and M. Schröder, J. Chem. Soc., Chem. Commun., 1987, 118.

11 A. J. Blake, G. Reid and M. Schröder, J. Chem. Soc., Dalton Trans., 1991, 615.
12 A. J. Blake, R. O. Gould, A. J. Holder, T. I. Hyde and M. Schröder, Polyhedron, 1989, 8, 513.
13 A. J. Blake, R. O. Gould, J. A. Greig, A. J. Holder, T. I. Hyde and M. Schröder, J. Chem. Soc., Chem. Commun., 1989, 876; A. J. Blake, J. A Greig, A. J. Holder, T. I. Hyde, A. Taylor and M. Schröder, Angew. Chem., 1990, 102, 203; Angew. Chem., Int. Ed. Engl., 1990, $29,197$.
14 A. J. Blake, R. O. Gould, A. J. Holder, T. I. Hyde, G. Reid, A. Taylor, M. Schröder and D. Collison, NATO ASI Series, NATO Advanced Workshop on Molecular Electrochemistry of Inorganic, Bioinorganic and Organometallic Compounds, eds. A. J. L. Pombeiro and J. A. McCleverty, Kluwer Academic Press, 1992, in the press.

15 J. Clarkson, R. Yagbasan, P. J. Blower, S. C. Rawle and S. R. Cooper, J. Chem. Soc., Chem. Commun., 1987, 950; J. A. Clarkson, R. Yagbasan, P. J. Blower, S. C. Rawle and S. R. Cooper, J. Chem. Soc., Chem. Commun., 1989, 1244; P. J. Blower, J. A. Clarkson, S. C. Rawle, J. R. Hartman, R. E. Wolf, R. Yagbasan, S. G. Bott and S. R. Cooper, Inorg. Chem., 1989, 28, 4040.
16 H.-J. Kuppers, K. Wieghardt, Y.-H. Tsay, C. Kruger, B. Nuber and J. Weiss, Angew. Chem., Int. Ed. Engl., 1987, 26, 575.

17 C. R. Lucas, S. Liu, M. J. Newlands, J.-P. Charland and E. J. Gabe, Can. J. Chem., 1990, 68, 644; J. Buter, R. M. Kellog and F. van Bolhuis, J. Chem. Soc., Chem. Commun., 1991, 910; B. de Groot and S. J. Loeb, Inorg. Chem., 1991, 30, 3103; B. de Groot, G. R. Giesbiecht, S. J. Loeb and G. K. H. Shimizu, Inorg. Chem., 1991, 30 177.

18 A. J. Blake, R. O. Gould, G. Reid and M. Schröder, J. Chem. Soc., Chem. Commun., 1990, 974.
19 A. J. Blake, G. Reid and M. Schröder, J. Chem. Soc., Chem. Commun., 1992, 1074.
20 J. Cragel, jun., V. B. Pett, M. D. Glick and R. E. DeSimone, Inorg. Chem., 1978, 17, 2885.
21 A. J. Blake, R. O. Gould, A. J. Lavery and M. Schröder, Angew. Chem., 1986, 98, 282; Angew. Chem., Int. Ed. Engl., 1986, 25, 274.
22 D. Collison and F. E. Mabbs, J. Chem. Soc., Dalton Trans., 1982, 1565; B. Gahan and F. E. Mabbs, J. Chem. Soc., Dalton Trans., 1983, 1713.

23 W. Clegg, Acta Crystallogr., Sect. A, 1981, 37, 22.
24 SHELX 76, program for crystal structure refinement, G. M. Sheldrick, University of Cambridge, 1976.
25 CALC, program for molecular geometry calculations, R. O. Gould and P. Taylor, University of Edinburgh, 1985.
26 DIFABS, program for empirical absorption corrections, N. Walker and D. Stuart, Acta Crystallogr., Sect. A, 1983, 39, 158.
27 J. Cosler and A. H. Glazer, J. Appl. Crystallogr., 1986, 19, 105.
28 D. T. Cromer and J. B. Mann, Acta Crystallogr., Sect. A, 1968, 24, 321.
29 ORTEP II, interactive version, P. D. Mallinson and K. W. Muir, J. Appl. Crystallogr., 1985, 18, 51.

[^0]: \dagger Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1993, Issue 1, pp. xxiii-xxviii.
 Non-SI unit employed: $G=10^{-4} \mathrm{~T}$.

[^1]: $\ddagger[18]$ aneS $_{6}=1,4,7,10,13,16$-Hexathiacyclooctadecane, [18]ane $\mathrm{N}_{2} \mathrm{~S}_{4}$ $=1,4,10,13$-tetrathia-7,16-diazacyclooctadecane, $\mathrm{Me}_{2}[18]$ ane $_{2} \mathrm{~S}_{4}=$ 7,16-dimethyl-1,4,10,13-tetrathia-7,16-diazacyclooctadecane,
 [15]ane $\mathrm{S}_{2} \mathrm{O}_{3}=1,4,7$-trioxa-10,13-dithiacyclopentadecane

[^2]: * CAUTION: Perchloric acid and its salts are highly explosive particularly in the presence of organic materials. They should only be handled with utmost care.

