Synthesis and Structure of a Stable Selenodiimide Complex

Judith Gindl, Már Björgvinsson, Herbert W. Roesky, Cristina Freire-Erdbrügger and George M. Sheldrick

Institut für Anorganische Chemie der Universität Göttingen, Tammannstrasse 4, W-3400 Göttingen, Germany

The stable selenodiimide complex $SnCl_4[(Bu'N=)_2Se]$ 1 has been prepared from $Se[NBu'(SiMe_3)]_2$ and $SnCl_4$, and also by treating the unstable $(Bu'N=)_2Se$ (obtained from $NBu'H_2$ and $SeCl_4$) with $SnCl_4$; the crystal structure of 1.2thf indicates appreciable Se=N double-bond character [171.0(3) pm] but also shows that the selenium atom is unexpectedly co-ordinated by the two tetrahydrofuran (thf) oxygens.

The syntheses and properties of sulfodiimides have been investigated intensively in recent decades. These compounds proved to be versatile precursors for the synthesis of heterocyclics and preparation of metal complexes.¹⁻⁵ In contrast, little is known about the analogous selenium compounds,⁶⁻⁹ the majority of which decompose at room temperature (selenodiimides with perfluorinated substituents are stable to higher temperatures). The thermolabile (Me₃SiN=)₂Se⁷ was used in the synthesis of the cyclophosphazaselenene $N(Ph_2P)_2N_2$ -SeCl.^{10,11} Sharpless *et al.*¹² reported on selenodiimides as precursors in organic synthesis. To our knowledge there have been no structural investigations of selenodiimides or use of them as ligands in metal complexes. We have now found that SnCl₄ reacts with Se[NBu¹(SiMe₃)]₂¹³ to yield SnCl₄- $[(Bu'N=)_2Se] 1$ (Scheme 1), which could be obtained as a yellow crystalline adduct 1.2thf after recrystallisation from tetrahydrofuran (thf).* An alternative route to 1 is the preparation of the less-stable (Bu'N=)₂Se from NBu'H₂ and SeCl₄, followed immediately by the addition of SnCl₄ in CH₂Cl₂.⁴

Fig. 1 shows the structure of 1-2thf.⁺ It has a crystallographic two-fold axis passing through Se and Sn. The atoms Se, N(1), C(1), Sn, N(1') and C(1') are coplanar within 3 pm. The Se–N distance indicates appreciable double-bond character when compared with Pauling's Se–N single bond distance of 186 pm¹⁶ or the prediction of 185 pm based on a recent version¹⁷ of the Schomaker–Stevenson equation; a true Se=N double bond should be about 20 pm shorter,¹⁶ *i.e. ca.* 165 pm. The much longer Se–N distances of 181.5(12)¹⁸ in 2 and 179.1(4) pm¹⁹ in 3

Scheme 1 (i) CH_2Cl_2 , $-SnCl_2$, $-2SiMe_3Cl_3$

indicate that the selenodiimide resonance extreme only makes a minor contribution to these structures.

A closer approximation to a N=Se=N description may apply when the selenium is bonded to an additional electronegative atom, e.g. as in N(Ph₂P)₂N₂SeCl (average 173 pm)¹⁰ or [N(Ph₂P)(PhC)N₂Se]₂ (174 pm).¹¹ Compound 1 may also be compared with the analogous sulfodiimide adduct SnCl₄[(Me₃-SiN=)₂S]²⁰ 4, which crystallised from liquid SO₂ without solvent molecules. Compounds 1 and 4 show a symmetric (C_{2n}) distortion of the co-ordination octahedron at tin, with N-Sn-N angles of 66.5(2) and 62.6(2)°, respectively. The unusual interaction of the thf oxygens with selenium in 1-2thf [266.8(3)

† Crystal data. $C_{16}H_{34}Cl_4N_2O_2SeSn$, M = 625.8, orthorhombic, space group *Pbcn*, a = 1596.5(2), b = 894.7(1), c = 1743.2(2) pm, U = 2.490 nm³, Z = 4, $D_c = 1.670$ Mg m⁻³, F(000) = 1248; crystal dimensions, $0.35 \times 0.31 \times 0.27$ mm. Data were collected at 153 K on a Stoe-Siemens-AED four-circle diffractometer using Mo-K α radiation ($\lambda = 71.073$ pm). 2202 Reflections ($2\theta = 8-50^{\circ}$) were measured, and a semiempirical absorption correction based on 349 ψ -scan data employed [μ (Mo-K α) = 2.930 mm⁻¹, transmission 0.75–0.94]. The structure was solved by direct methods (SHELXS 90)¹⁴ and refined by full-matrix least squares against F^2 (SHELXL 92)¹⁵ to R = 0.027 [for 1776 $F > 4\sigma(F)$] and $wR_2 = \Sigma w(F_o^2 - F_c^2)^2 / \Sigma wF_o^4 = 0.065$ (for all 2190 unique data). Weighting scheme used, $w = [\sigma^2(F_o^2) +$ ($0.022p)^2 + 3.99p$]⁻¹ where $p = (F_o^2 + 2F_c^2)$ 13. Atomic coordinates, thermal parameters and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre. See Instructions for Authors, J. Chem. Soc., Dalton Trans., 1993, Issue 1, pp. xxiii–xxviii.

^{* (}a) To a solution of Se[NBu'(SiMe₃)]₂ (2.16 g, 5.8 mmol) in CH₂Cl₂ (20 cm³) was added SnCl₄ (3.03 g, 11.6 mmol) in CH₂Cl₂ (10 cm³) at room temperature. After stirring for 3 d at room temperature a green solid (1.42 g) separated. It was dissolved in thf (500 cm³) and the insoluble by-products filtered off. The solvent of the yellow solution was removed *in vacuo*. Yellow solid 1 (0.87 g, 31%) remained. The compound decomposes at 142 °C. (*b*) The compound SeCl₄ (0.55 g, 2.5 mmol) in diethyl ether (20 cm³) was allowed to react with *tert*-butylamine (1.58 cm³, 15 mmol) according to the literature method.⁸ The solvent was removed *in vacuo* and the residue dissolved in CH₂Cl₂ (8 cm³). To this solution was added dropwise SnCl₄ (0.65 g, 2.5 mmol) in CH₂Cl₂ (10 cm³) at room temperature. Immediately a yellow solid was formed. It was filtered off, dissolved in thf (200 cm³) and red by-products removed by filtration. After removing the solvent, 0.35 g (29%) of 1 remained, decomp. 141 °C. The NMR measurements were performed in (CD₃)₂SO, although rapid decomposition was observed: ¹H (reference SiMe₄), δ 1.57 (s); ¹¹⁹Sn (SnMe₄), δ – 501.6 (s); ⁷⁷Se (SeMe₂), δ 1392.0 (s). (Found: C, 20.1; H, 3.8; Cl, 29.3; N, 5.7; Se, 16.4. Calc. for C₈H₁₈Cl₄N₂SeSn: C, 19.95; H, 3.75; Cl, 29.5; N, 5.80; Se, 16.40%).

Fig. 1 Molecular structure of SnCl₄[(Bu'N=)₂Se]·2thf at 153 K in the crystal. Atoms generated by the crystallographic two-fold axis are indicated by primes; hydrogen atoms have been omitted for clarity. Selected bond lengths (pm) and angles (°): Se-N(1) 171.0(3), Sn-N(1) 225.8(3), Sn-Cl(1) 237.8(2), Sn-Cl(2) 240.0(2), N(1)-C(1) 150.0(4), Se...O 266.8(3); N(1)-Sn-N(1') 66.5(2), N(1)-Se-N(1') 92.8(2), O-Se-O' 139.7(2)

pm] suggests that the selenium is positively charged. The large O-Se-O' angle [139.7(2)°] indicates some stereochemical activity of the lone pair on selenium. The smaller N-Sn distances in 1 [225.8(3) pm] than in 4 [232.6(4) pm] also suggest that the Se^+-N^- or S^+-N^- resonance extreme is more important for the Se=N as opposed to the S=N bond. The appreciably smaller N(1)-Se-N(1') angle of 1 [92.8(2)°] than N-S-N in 4 $[103.7(2)^{\circ}]$ may be correlated with the thf adduct formation.

Acknowledgements

We are grateful to the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support.

References

- 1 N. Baumann, H.-J. Fachmann, A. Kubry and B. Ledüc, Gmelin Handbook of Inorganic Chemistry, Sulfur-Nitrogen Compounds Part 7, System Number 9, Springer, Berlin, 1991, pp. 1-336.
- 2 H. G. Heal, The Inorganic Heterocyclic Chemistry of Sulfur, Nitrogen and Phosphorus, Academic Press, New York, 1980.
- 3 H. W. Roesky, Adv. Inorg. Chem. Radiochem., 1979, 22, 239.
- 4 T. Chivers and R. T. Oakley, Top. Curr. Chem., 1982, 102, 117.
- 5 M. M. Labes, P. Love and L. F. Nichols, Chem. Rev., 1979, 79, 1. 6 N. Y. Derkach and G. G. Barashenkov, Zh. Org. Khim., 1976, 12, 2484; J. Org. Chem., USSR (Engl. Trans.), 1976, 12, 2408.
- 7 F. Fockenberg and A. Haas, Z. Naturforsch., Teil B, 1986, 41, 413.
- 8 M. Herberhold and W. Jellen, Z. Naturforsch., Teil B, 1986, 41, 144.
- 9 W. Behrendt and U. W. Gerworth, Gmelin Handbook of Inorganic Chemistry, Selenium, System Number 10, Springer, Berlin, 1981, Suppl. vol. B1, p. 321. 10 A. W. Cordes, K. Bestari and R. T. Oakley, Acta Crystallogr., Sect. C,
- 1990, 46, 504.
- 11 K. Bestari, A. W. Cordes, R. T. Oakley and K. M. Young, J. Am. Chem. Soc., 1990, 112, 2249. 12 K. B. Sharpless, T. Hori, L. K. Truesdale and C. O. Dietrich, J. Am.
- Chem. Soc., 1976, 98, 269.
- 13 M. Björgvinsson, H. W. Roesky, F. Pauer, D. Stalke and G. M. Sheldrick, Eur. J. Solid State Inorg. Chem., 1992, 29, 759; M. Björgvinsson and H. W. Roesky, Polyhedron, 1991, 10, 2353.
- 14 G. M. Sheldrick, Acta Crystallogr., Sect. A, 1990, 46, 467.
- 15 G. M. Sheldrick, SHELXL 92, University of Göttingen, 1992.
- 16 L. Pauling, The Nature of the Chemical Bond, 3rd edn., Cornell University Press, Ithaca, NY, 1960.
- 17 R. Blom and A. Haaland, J. Mol. Struct., 1985, 128, 21.
- 18 A. Gieren, V. Lamm, R. C. Haddon and M. L. Kaplan, J. Am. Chem. Soc., 1980, 102, 5070.
- 19 A. Gieren, H. Betz, T. Hübner, V. Lamm, R. Neidlein and D. Droste, Z. Naturforsch., Teil B, 1984, 39, 485.
- 20 H. W. Roesky, H.-G. Schmidt, M. Noltemeyer and G. M. Sheldrick, Chem. Ber., 1983, 116, 1411.

Received 14th December 1992; Communication 2/06612B