Synthesis and Characterization of New Octamolybdates containing Imidazole, 1-Methyl- or 2-Methyl-imidazole Co-ordinatively Bound to Molybdenum \dagger

Pedro Martín-Zarza, Juan Manuel Arrieta, ${ }^{\boldsymbol{b}}$ M. Carmen Muñoz-Roca ${ }^{\boldsymbol{c}}$ and Pedro Gili*a
${ }^{\text {a }}$ Departamento de Química Inorgánica, Universidad de La Laguna, Tenerife, Canary Islands, Spain
${ }^{\text {b }}$ Departamento de Química Inorgánica, Universidad del País Vasco, Apdo 644, Bilbao, Spain
${ }^{c}$ Departamento de Física Aplicada, Universidad Politécnica de Valencia, Camino de Vera s/n, 46071, Valencia, Spain

Abstract

The compounds $\left[\mathrm{H}_{2} \mathrm{im}\right]_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}(\mathrm{Him})_{2}\right]$ 1. $\left[\mathrm{NH}_{2} \mathrm{Me}_{2}\right]_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}(\mathrm{Him})_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ 2, $[1-\mathrm{Hmim}]_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}(1-\right.$ $\left.\mathrm{mim})_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O} 3$ and $[2-\mathrm{Hmim}]_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}(2-\mathrm{mim})_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O} 4$ (where Him = imidazole, $1-\mathrm{mim}=1$ methylimidazole and $2-\mathrm{mim}=2-$ methylimidazole) have been synthesized. Compounds 1 and 3 were prepared by the reaction between molybdenum trioxide and imidazole or 1 -methylimidazole in aqueous medium, whilst 2 and 4 were synthesized by reaction of molybdenum trioxide with imidazole or 2methylimidazole in dmf- $\mathrm{H}_{2} \mathrm{O}$ (dmf = dimethylformamide). The compounds have been characterized by elemental analysis, infrared and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopies and thermal measurements. The structures of compounds 2 and 3 were determined by X-ray crystallography and showed that both anions are composed of two MoNO_{5} and six MoO_{6} edge-sharing octahedra. The Mo-N and Mo-O bond strengths of both compounds have been calculated.

Polyoxometalate chemistry includes the study of compounds that are unique because of their topological and electronic versatility and their relevance to several disciplines. ${ }^{1}$ Recently polyoxomolybdates containing organic molecules have received considerable attention because of their use as models of the interactions between organic substrates and catalytic metal oxide surfaces in heterogeneous catalysis employing solid molybdenum oxides. ${ }^{2}$ Moreover, there is further interest in their structural complexity and reactivity and the interconversions within these large anions. ${ }^{3,4}$ In addition, certain polyoxomolybdates, in particular some organoammonium heptamolybdates, ${ }^{5}$ have been recognized as potential antitumour agents.

While many octamolybdates of organic bases are known ${ }^{3,4}$ where the organic base is bonded to the $\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$ anion by a hydrogen bond, only two octamolybdates containing an organic base co-ordinatively bound to molybdenum have been described. ${ }^{6.7}$ In this paper we report new octamolybdates containing imidazole (Him), 1-methylimidazole ($1-\mathrm{mim}$) or 2 methylimidazole ($2-\mathrm{mim}$), namely $\left[\mathrm{H}_{2} \mathrm{im}\right]_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}(\mathrm{Him})_{2}\right]$ 1, $\left[\mathrm{NH}_{2} \mathrm{Me}_{2}\right]_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}(\mathrm{Him})_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ 2, $[1-\mathrm{Hmim}]_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right.$ -$\left.(1-\mathrm{mim})_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O} 3$ and $[2-\mathrm{Hmim}]_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}(2-\mathrm{mim})_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ 4. The compounds have been characterized by elemental analyses, infrared and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopies and thermal measurements. The crystal structures of compounds 2 and 3 have also been determined.

Experimental

Materials and Apparatus.-All reagents obtained commercially were of reagent grade. Elemental analyses (C, H and N) were performed with a Carlo Erba 1106 automatic analyser. Infrared spectra were recorded in the range $4000-250 \mathrm{~cm}^{-1}$ on a Nicolet 5PCFT-IR spectrophotometer using KBr pellets. Hydrogen-1 and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 297 K

[^0]on a Bruker AC 200 spectrometer at 200 MHz , with tetramethylsilane as internal standard after dilution of the sample in deuteriated dimethyl sulfoxide. Thermogravimetric and calorimetric analyses were performed on a Netzsch STA 409 EP simultaneous thermobalance and a differential scanning calorimeter, respectively, at a heating rate of $10^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$ in static air under atmospheric pressure.

Preparation of Compounds. $\left[\mathrm{H}_{2} \mathrm{im}\right]_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}(\mathrm{Him})_{2}\right] 1$. A suspension of $\mathrm{MoO}_{3}(3.50 \mathrm{~g}, 24.3 \mathrm{mmol})$ and imidazole $(1.66 \mathrm{~g}, 24.4 \mathrm{mmol})$ in water $\left(1 \mathrm{dm}^{3}\right)$ was refluxed with stirring for 12 h . The resulting yellow solution was cooled and allowed to stand at room temperature. White crystals of 1 appeared after several weeks. They were filtered off, washed with water, then dried in air for a few hours and stored in a desiccator over CaCl_{2} (Found: C, 13.25; $\mathrm{H}, 1.65 ; \mathrm{N}, 10.25 ; \mathrm{MoO}_{3}, 72.40$. $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{Mo}_{8} \mathrm{~N}_{12} \mathrm{O}_{26}$ requires $\mathrm{C}, 13.55 ; \mathrm{H} \mathrm{1.75;} \mathrm{~N}, 10.55 ; \mathrm{MoO}_{3}$, 72.15%). A structural study of 1 was discarded because of its instability in air.
$\left[\mathrm{NH}_{2} \mathrm{Me}_{2}\right]_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}(\mathrm{Him})_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ 2. A suspension of $\mathrm{MoO}_{3}(3.00 \mathrm{~g}, 20.8 \mathrm{mmol})$ and imidazole ($1.42 \mathrm{~g}, 20.8 \mathrm{mmol}$) in $\mathrm{dmf}-\mathrm{H}_{2} \mathrm{O}\left(200 \mathrm{~cm}^{3}, 3: 1\right)(\mathrm{dmf}=$ dimethylformamide) was refluxed with stirring for 12 h . The resulting solution was cooled and allowed to stand at room temperature whereupon a white dust appeared after several weeks, which was filtered off. Prismatic transparent crystals of 2 were deposited on slow evaporation (Found: C, 11.10; H, 2.90; N, 7.30; $\mathrm{MoO}_{3} 73.40$. $\mathrm{C}_{14} \mathrm{H}_{46} \mathrm{Mo}_{8} \mathrm{~N}_{8} \mathrm{O}_{29}$ requires C, $10.80 ; \mathrm{H}, 2.95 ; \mathrm{N}, 7.20 ; \mathrm{MoO}_{3}$, 73.90%).
$[1-\mathrm{Hmim}]_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}(1-\mathrm{mim})_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ 3. This compound was prepared as described above for 1 from $\mathrm{MoO}_{3}(3.20 \mathrm{~g}, 22.2$ $\mathrm{mmol})$ and 1 -methylimidazole ($1.90 \mathrm{~g}, 23.1 \mathrm{mmol}$). White crystals of 3 were washed with water and stored in a desiccator over CaCl_{2} (Found: C, 16.75; H, 2.50; N, 9.80 ; $\mathrm{MoO}_{3} 66.95$. $\mathrm{C}_{24} \mathrm{H}_{44} \mathrm{Mo}_{8} \mathrm{~N}_{12} \mathrm{O}_{28}$ requires $\mathrm{C}, 16.80 ; \mathrm{H}, 2.60 ; \mathrm{N}, 9.80 ; \mathrm{MoO}_{3}$, 67.10%). Yellow crystals were obtained upon recrystallization from water which had the same chemical composition as the white ones.

Table 1 Summary of crystallographic data for $\left[\mathrm{NH}_{2} \mathrm{Me}_{2}\right]_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}(\mathrm{Him})_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O} 2$ and $[1-\mathrm{Hmim}]_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\left(1-\mathrm{mim}^{2}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O} 3^{*}$

	2	3
Molecular formula	$\mathrm{C}_{14} \mathrm{H}_{40} \mathrm{Mo}_{8} \mathrm{~N}_{8} \mathrm{O}_{26} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{Mo}_{8} \mathrm{~N}_{12} \mathrm{O}_{26} \cdot \mathbf{2 H} \mathrm{H}_{2} \mathrm{O}$
M	1558.07	1716.20
Space group	$P 2_{1} / n$	C2/c
a / \AA	11.414(2)	21.449(6)
b / \AA	18.390(4)	10.372(4)
c / \AA	20.570(4)	23.240(5)
$\beta /{ }^{\circ}$	101.13(1)	102.84(2)
U / \AA^{3}	4237(1)	5040.8(8)
$D_{\mathrm{c}} / \mathrm{g} \mathrm{cm}^{-3}$	2.43	2.19
$\mu(\mathrm{Mo}-\mathrm{K} \alpha) / \mathrm{mm}^{-1}$	2.33	1.949
$F(000)$	3016	3328
Crystal dimensions/mm	$0.10 \times 0.03 \times 0.6$	$0.40 \times 0.30 \times 0.35$
Scan range $\omega-2 \theta /^{\circ}$	$1.9+0.35 \tan \theta$	$0.8+0.35 \tan \theta$
2θ Range $/{ }^{\circ}$	0-60	2-50
Range of $h k l$	0-16, 0-25, -28 to 28	-23 to 23, 0-12, 0-27
No. of reflections collected	12301	4872
No. of reflections in refinement	9473	3977
$R\left[\Sigma\left(\left\|F_{0}\right\|-\left\|F_{\mathrm{c}}\right\|\right) / \Sigma\left\|F_{\mathrm{o}}\right\|\right]$	0.030	0.046
$R^{\prime}\left\{\left[\Sigma\left(\left\|F_{0}\right\|-\left\|F_{\mathrm{c}}\right\|\right)^{2} / \Sigma\left\|F_{\mathrm{o}}\right\|^{2}\right]^{\frac{1}{2}}\right\}$	0.0356	0.046

* Details in common: crystal system, monoclinic; $Z=4$; colour, white; scan type $\omega-2 \theta$.
$[2-\mathrm{Hmim}]_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}(2-\mathrm{mim})_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ 4. This compound was obtained in the same way as 1 , starting from $\mathrm{MoO}_{3}(3.20 \mathrm{~g}, 22.2$ mmol) and 2-methylimidazole ($1.90 \mathrm{~g}, 23.1 \mathrm{mmol}$). After several weeks white crystals were deposited, which were washed with water and stored in a desiccator over CaCl_{2} (Found: $\mathrm{C}, 16.30 ; \mathrm{H}$, $2.55 ; \mathrm{N}, 9.30 . \mathrm{C}_{24} \mathrm{H}_{42} \mathrm{Mo}_{8} \mathrm{~N}_{12} \mathrm{O}_{27}$ requires $\mathrm{C}, 16.95 ; \mathrm{H}, 2.50$; $\mathrm{N}, 9.90 \%$). When the synthesis was carried out in dmf- $\mathrm{H}_{2} \mathrm{O}$ ($150: 20$) the compound $[2-\mathrm{Hmim}]_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}(2-\mathrm{mim})_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ 4 was obtained (Found: $\mathrm{C}, 16.80 ; \mathrm{H}, 2.50 ; \mathrm{N}, 9.45$. $\mathrm{C}_{24} \mathrm{H}_{46} \mathrm{Mo}_{8} \mathrm{~N}_{12} \mathrm{O}_{29}$ requires $\mathrm{C}, 16.60 ; \mathrm{H}, 2.65 ; \mathrm{N}, 9.70 \%$).

Crystals suitable for X-ray crystallography were obtained only for compounds 2 and 3.
X-Ray Structure Determination and Refinement.- $\left[\mathrm{NH}_{2}-\right.$ $\left.\mathrm{Me}_{2}\right]_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}(\mathrm{Him})_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ 2. Diffraction data were collected at 298 K using an Enraf Nonius CAD-4 diffractometer with graphite-monochromated Mo-K $\alpha(\lambda=0.7107 \AA)$ radiation. The crystal was sealed in a capillary under a nitrogen atmosphere. The cell parameters were determined by least squares from 25 automatically centred reflections in the range $18 \leqslant 2 \theta \leqslant 30^{\circ}$. Crystal parameters and the results of the refinement are summarized in Table 1. 12301 Independent reflections were measured with $\omega-2 \theta$ scans up to $2 \theta=60^{\circ}$. Three standard reflections ($-7,-4,2 ;-6,-7,-9,8$; and -5 , 7,14) were measured for every 100 reflections, which showed only random deviation from the mean intensity. After completion of the experiment the crystal was black. Lorentz and polarization, but not absorption, corrections were applied. Only 9473 reflections $[I>3 \sigma(I)$] were considered observed and were included in the refinement. The structure was solved by direct methods using SHELXS 86^{8} and the refinement carried out by least squares using SHELX 76. ${ }^{9}$ The function $\Sigma w(\Delta F)^{2}$ was minimized with anisotropic thermal parameters for the nonhydrogen atoms. The hydrogen atoms were included in the refinement in calculated positions, except for those of the ammonium groups, with an overall isotropic thermal parameter. The final R and R^{\prime} values were 0.030 and $0.0356\{w=$ $\left.K /\left[\sigma^{2}(F)+0.002102 F^{2}\right]\right\}$ respectively, and the goodness of fit was 0.9835 . Atomic scattering factors were taken from ref. 10 and the anomalous scattering factors were those of Cromer and Liberman. ${ }^{11}$ The maximum and minimum electron densities in the final difference map were +0.94 and $-1.04 \mathrm{e}^{-3}$ and the maximum Δ / σ was -0.575 for $O(6)$. All graphic representations were produced using the SCHAKAL program. ${ }^{12}$
[1-Hmim $]_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}(1-\mathrm{mim})_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ 3. Diffraction data were collected at 294 K with an Enraf Nonius CAD-4 diffractometer using graphite monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation $(\lambda=0.7107 \AA)$. Cell parameters were determined from the least-squares refinement of 25 centred reflections in the range $12<2 \theta<20^{\circ}$. Crystal parameters and the results of the refinements are summarized in Table 1. A total of 4872 reflections were recorded in the range $2<2 \theta<50^{\circ}$ with a scan speed of $0.091^{\circ} \mathrm{s}^{-1}$. Three reference reflections monitored throughout the data collection showed no significant sign of crystal deterioration. The usual corrections for Lorentz and polarization effects were carried out and an empirical absorption correction using the ψ scan was applied. The structure was solved by the Patterson method and refined by the full-matrix least-squares method. All the non-hydrogen atoms were refined anisotropically. Hydrogen atoms were located in a Fourier difference map and were refined with an overall isotropic thermal parameter. The maximum Δ / σ was 0.1 . The final fullmatrix least-squares refinement, minimizing $\Sigma w\left(\left|F_{\mathrm{o}}\right|-F_{\mathrm{c}} \mid\right)^{2}$, including 3977 reflections with $I \geqslant 3 \sigma(I)$, converged at R and $R^{\prime}=0.046$ and 0.046 . Atomic scattering factors were taken from ref. 10. All calculations were performed using SHELXS $86,{ }^{8}$ SHELX 76^{9} and SCHAKAL. ${ }^{12}$

Additional material available from the Cambridge Crystallographic Data Centre comprises H -atom coordinates, thermal parameters and remaining bond lengths and angles.

Results and Discussion

The structures of compounds 2 and 3 are discussed comparatively. For compound 2 the final fractional atomic coordinates for the non-hydrogen atoms and a list of bond lengths and angles are reported in Tables 2 and 3, respectively. Fig. 1 shows a stereoscopic view of the molecular structure. For 3, final atomic coordinates and bond lengths and angles are given in Tables 4 and 5 , respectively and its molecular structure is shown in Fig. 2. The anions of both compounds have crystallographic inversion symmetry and $\mathbf{2}$ has two independent centrosymmetric anions.

Both anions are composed of two MoNO_{5} and six MoO_{6} edge-sharing octahedra and are similar to those described by McCarron et al. ${ }^{6}$ and more recently in ref. 7. As shown previously ${ }^{6.7}$ the polyanions are related to $\beta-\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$ by a simple shearing of the $\left[\mathrm{Mo}_{4} \mathrm{O}_{13}\right]^{2-}$ asymmetric units of the parent β - $\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$ anion parallel to one another, producing

Table 2 Fractional atomic coordinates with estimated standard deviations (e.s.d.s.) in parentheses for $\left[\mathrm{NH}_{2} \mathrm{Me}_{2}\right]_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}(\mathrm{Him})_{2}\right]$ $3 \mathrm{H}_{2} \mathrm{O} 2$

Atom	x	y	z
Mo(1)	0.544 54(3)	0.419 80(2)	0.124 07(2)
$\mathrm{Mo}(2)$	0.504 61(3)	$0.42313(2)$	-0.050 14(2)
Mo(3)	0.273 33(3)	0.404 47(2)	0.038 85(2)
Mo(4)	0.211 63(3)	$0.43095(2)$	-0.11814(2)
Mo(5)	$0.12710(3)$	0.161 38(2)	$0.11122(2)$
Mo(6)	-0.139 84(3)	0.157 61(2)	0.018 81(2)
Mo(7)	-0.000 47(3)	$0.00387(2)$	-0.083 21(2)
Mo(8)	-0.259 15(3)	0.004 52(2)	-0.036 22(2)
$\mathrm{O}(1)$	0.65890 (30)	$0.36212(18)$	$0.15391(17)$
$\mathrm{O}(2)$	$0.49237(30)$	0.448 29(18)	$0.19210(15)$
$\mathrm{O}(3)$	0.594 32(24)	$0.38578(15)$	$0.02086(14)$
$\mathrm{O}(4)$	0.413 24(24)	$0.35560(14)$	0.088 39(14)
$\mathrm{O}(5)$	0.572 46(23)	0.519 63(14)	-0.042 96(13)
$\mathrm{O}(6)$	0.374 61(23)	$0.49128(14)$	-0.109 48(14)
$\mathrm{O}(7)$	$0.55858(27)$	0.384 47(17)	-0.11366(15)
$\mathrm{O}(8)$	0.35913 (23)	0.375 02(14)	-0.049 09(13)
$\mathrm{O}(9)$	$0.19678(23)$	$0.46786(15)$	-0.034 06(14)
$\mathrm{O}(10)$	0.183 23(26)	$0.33055(16)$	$0.02234(16)$
$\mathrm{O}(11)$	0.221 21(27)	$0.45024(18)$	0.099 94(15)
$\mathrm{O}(12)$	$0.13756(29)$	0.49380 (18)	-0.170 17(16)
$\mathrm{O}(13)$	0.11761 (29)	0.357 96(18)	-0.124 32(16)
O (14)	$0.03510(25)$	-0.090 20(14)	-0.110 38(13)
O (15)	-0.154 20(23)	-0.059 48(14)	-0.072 67(14)
$\mathrm{O}(16)$	$0.14350(24)$	0.041 72(16)	-0.061 45(14)
$\mathrm{O}(17)$	-0.060 63(30)	0.046 99(17)	-0.154 68(15)
$\mathrm{O}(18)$	-0.076 05(23)	$0.05561(14)$	-0.020 01(13)
O(19)	-0.322 80(33)	$0.04654(20)$	-0.108 44(18)
$\mathrm{O}(20)$	-0.36704(29)	-0.052 62(20)	-0.019 00(20)
$\mathrm{O}(21)$	-0.262 65(25)	0.085 62(15)	0.021 42(16)
O (22)	-0.18384(28)	0.21870 (17)	$0.07235(17)$
$\mathrm{O}(23)$	$0.02788(24)$	$0.18643(15)$	0.030 24(14)
$\mathrm{O}(24)$	-0.18786(30)	$0.19385(18)$	-0.057 71(16)
O (25)	0.261 73(27)	$0.19674(17)$	0.103 99(17)
O (26)	0.074 20(27)	$0.21633(17)$	0.167 20(15)
$\mathrm{N}(1)$	$0.28531(33)$	0.375 47(20)	-0.195 90(17)
C(1)	0.348 80(48)	$0.40321(35)$	-0.236 28(27)
$\mathrm{N}(2)$	0.35940 (33)	$0.35591(22)$	-0.284 29(18)
C(2)	$0.30060(57)$	$0.29316(34)$	-0.27361(30)
C(3)	0.254 68(55)	$0.30516(29)$	-0.218 29(27)
N(5)	0.455 42(42)	0.219 44(27)	0.031 68(29)
N (7)	$0.53620(55)$	0.193 35(37)	0.091 68(35)
C(8)	$0.50773(63)$	$0.21380(35)$	-0.028 68(37)
N (6)	$0.85131(43)$	$0.37801(30)$	0.041 66(34)
$\mathrm{C}(9)$	0.88370 (75)	0.372 86(41)	-0.022 99(42)
C(10)	$0.95405(54)$	$0.37300(35)$	$0.09615(37)$
$\mathrm{N}(3)$	$0.21850(33)$	$0.10109(20)$	0.200 08(18)
C(4)	0.173 83(58)	$0.07153(35)$	0.247 59(28)
N(4)	$0.25848(38)$	$0.04097(24)$	0.292 73(19)
C(5)	0.364 90(63)	0.049 67(40)	0.272 59(33)
C(6)	0.339 52(51)	0.08670 (39)	0.215 58(30)
N (7)	0.327 13(53)	$0.07655(32)$	-0.139 28(28)
C(11)	$0.37090(69)$	0.002 03(43)	-0.137 60(43)
$\mathrm{C}(12)$	$0.22790(79)$	0.093 78(47)	-0.196 45(39)
$\mathrm{N}(8)$	-0.180 52(54)	$0.18025(30)$	-0.198 84(25)
C(13)	0.271 16(76)	$0.34516(46)$	0.233 32(35)
C(14)	0.428 67(83)	0.274 95(56)	0.298 39(66)
O (W1)	$0.62030(43)$	$0.26813(24)$	-0.193 24(22)
O(W2)	$0.20833(47)$	$0.20061(24)$	-0.064 24(25)
O(W3)	-0.486 34(55)	$0.13706(35)$	-0.18180(36)

the observed stoichiometry. In compounds 2 and $\mathbf{3}$ where a non-oxygen-bound ligand co-ordinates directly to a molybdenum atom of an isopolymolybdate anion, the co-ordination site is always the apical one and thus the structure of the $\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$ anion can also be considered to be γ-molybdate with two additional terminal positions satisfying the octahedral coordination of all eight molybdenum atoms. ${ }^{7}$

The octahedral distortion has been calculated using equations (1)-(3). ${ }^{7,13}$ where $R_{i}=$ an individual Mo-O or Mo-N

Fig. 1 Perspective view of one asymmetric unit of 2, showing hydrogen atoms only on the ammonium cations

$$
\begin{gather*}
\Delta l=\frac{1}{6} \Sigma\left[\left(R_{i}-R\right) / R\right]^{2} \tag{1}\\
\Delta e=\frac{1}{12} \Sigma\left[\left(D_{i}-D\right) / D\right]^{2} \tag{2}\\
\Delta \alpha=\frac{1}{3} \Sigma\left[\left(\alpha_{i}-180\right) / 180\right]^{2} \tag{3}
\end{gather*}
$$

distance, $R=$ the mean Mo-O or Mo-N distance, $D_{i}=$ an individual $\mathrm{O}-\mathrm{O}$ or $\mathrm{O}-\mathrm{N}$ distance, $\mathrm{D}=$ the mean $\mathrm{O}-\mathrm{O}$ or $\mathrm{O}-\mathrm{N}$ distance and $\alpha_{i}=$ an individual $\mathrm{O}-\mathrm{Mo}-\mathrm{O}$ or $\mathrm{O}-\mathrm{Mo}-\mathrm{N}$ angle. The values obtained are given in Table 6.

In compound 2 the octahedra of $\mathbf{M o (4)}$ and $\mathbf{M o (5) , ~ w h i c h ~}$ contain the MoNO_{5} units, are the least distorted with respect to Δl and $\Delta \alpha$ and neither occupies a central position in the polyanion as occurs in the pyrazole octamolybdate, ${ }^{7}$ while in N, N-dimethylanilinium β-octamolybdate dihydrate ${ }^{13}$ and bis(tetrabutylammonium)bis(triethylammonium) β-octamolybdate dihydrate the least distorted octahedron occupies the central position. In compound 3 , the least distorted octahedron with respect to Δl and Δe is that of $\mathrm{Mo}(3)$ which does not contain the MoNO_{5} unit. Octahedra in central positions are not observed in this compound.

The strengths of the Mo-O and Mo-N interactions, s, within the MoNO_{5} octahedra are calculated from equation (4), ${ }^{14}$

$$
\begin{equation*}
s=(d / 1.882)^{-6} \tag{4}
\end{equation*}
$$

where d is the bond length in \AA. These values differ from those calculated using equation (5), ${ }^{15}$ where $d_{1}=1.9144 \AA$ and $B=$

$$
\begin{equation*}
\log s^{\prime}=\left(d_{1}-d\right) / B \tag{5}
\end{equation*}
$$

0.953. The s and s^{\prime} values are given in Table 7. The difference between the Mo-O bond strengths (s^{\prime}) about an oxygen atom with co-ordination number n and the nominal value 2 is, as a consequence of the valence rule, ${ }^{16}$ the charge on that oxygen atom, i.e. c.u. $=s^{\prime}-2$. The charge units (c.u.s) of the oxygen atoms in the MoNO_{5} octahedra are also given in Table 7. In compound 2, the oxygen atoms $O(12)$ and $O(13)$ and $O(25)$ and $\mathrm{O}(26)$, form the strongest $\mathrm{Mo}-\mathrm{O}$ bonds to $\mathbf{M o}(4)$ and $\mathbf{M o (5)}$ respectively and as a consequence have the smallest c.u. values. Similarly O (3) and $O(19)$ form the strongest of Mo-O bonds in the $\mathbf{M o}(1)$ octahedron in compound 3. The Mo-N bond strengths s are 0.39 and 0.37 for 2 and 0.36 for 3 (Table 7) and are similar to pyridine octamolybdate ${ }^{6}(s=0.32)$ and pyrazole octamolybdate ${ }^{7}(s=0.35)$, indicating a covalent interaction in

Table 3 Selected bond lengths (\AA) and angles (${ }^{\circ}$) for $\left[\mathrm{NH}_{2} \mathrm{Me}_{2}\right]_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}(\mathrm{Him})_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O} 2$ with e.s.d.s in parentheses *

$\mathrm{Mo}(1)-\mathrm{O}(1)$	1.702(3)	$\mathrm{Mo}(3)-\mathrm{O}(9)$	1.966(3)	$\mathbf{M o (4) - N (1)}$	2.197(4)	Mo(6)-O(24)	1.699(3)
$\mathrm{Mo}(1) \mathrm{O}(2)$	1.706(3)	$\mathrm{Mo}(3)-\mathrm{O}(8)$	2.282(3)	$\mathrm{Mo}(4)-\mathrm{O}(6)$	2.144(3)	$\mathrm{Mo}(6)-\mathrm{O}(18)$	2.216(3)
$\mathrm{Mo}(1)-\mathrm{O}(3)$	2.385(3)	$\mathrm{Mo}(7)-\mathrm{O}(18 \mathrm{~B})$	$2.398(3)$	$\mathrm{Mo}(4)-\mathrm{O}(8)$	2.233(3)	$\mathrm{Mo}(8)-\mathrm{O}(18)$	2.257(3)
$\mathrm{Mo}(1)-\mathrm{O}(4)$	1.938(3)	Mo (7)-O(16B)	$1.761(3)$	$\mathbf{M o (4) - O (9)}$	1.896(3)	$\mathrm{Mo}(8)-\mathrm{O}(15)$	1.931(3)
$\mathrm{Mo}(1)-\mathrm{O}(5)$	2.224(2)	$\mathrm{Mo}(7)-\mathrm{O}(14)$	$1.886(3)$	Mo(4)-O(13)	1.708(3)	$\mathrm{Mo}(8)-\mathrm{O}(20)$	1.707(4)
$\mathrm{Mo}(1)-\mathrm{O}(6)$	1.929(3)	Mo (7)-O(18)	1.942(3)	$\mathrm{Mo}(4)-\mathrm{O}(12)$	1.687(3)	$\mathrm{Mo}(8)-\mathrm{O}(21)$	1.911(3)
$\mathrm{Mo}(2) \mathrm{O}(3)$	1.754(3)	Mo (7)-O(15)	$2.152(3)$	Mo(5)-N(3)	2.219(3)	$\mathrm{Mo}(8)-\mathrm{O}(19)$	1.707(3)
$\mathrm{Mo}(2)-\mathrm{O}(5)$	1.930 (3)	$\mathrm{Mo}(7)-\mathrm{O}(17)$	1.695(3)	$\mathrm{Mo}(5)-\mathrm{O}(25)$	$1.701(3)$	$\mathrm{Mo}(8)-\mathrm{O}(16 \mathrm{~B})$	$2.341(3)$
$\mathrm{Mo}(2)-\mathrm{O}(7)$	$1.704(3)$	$\mathrm{N}(1)-\mathrm{C}(3)$	1.394(6)	$\mathrm{Mo}(5)-\mathrm{O}(15 \mathrm{~B})$	2.081(3)	$\mathrm{N}(3)-\mathrm{C}(4)$	$1.305(8)$
$\mathrm{Mo}(2)-\mathrm{O}(6)$	$2.136(3)$	$\mathrm{C}(2)-\mathrm{C}(3)$	1.360(9)	$\mathrm{Mo}(5)-\mathrm{O}(26)$	1.726(3)	$\mathrm{C}(4)-\mathrm{N}(4)$	1.329(7)
$\mathrm{Mo}(2)-\mathrm{O}(8)$	$1.885(3)$	$\mathrm{C}(2)-\mathrm{N}(2)$	1.374(8)	$\mathrm{Mo}(5)-\mathrm{O}(14 \mathrm{~B})$	2.265(3)	$\mathrm{N}(4)-\mathrm{C}(5)$	$1.367(9)$
$\mathrm{Mo}(2)-\mathrm{O}(5 \mathrm{~A})$	2.490(3)	$\mathrm{N}(2)-\mathrm{C}(1)$	1.339(7)	$\mathrm{Mo}(5)-\mathrm{O}(23)$	1.882(3)	$\mathrm{C}(5)-\mathrm{C}(6)$	1.339(9)
$\mathrm{Mo}(3)-\mathrm{O}(5 \mathrm{~A})$	2.235(3)	$\mathrm{C}(1)-\mathrm{N}(1)$	1.307(7)	Mo(6)-O(23)	1.956(3)	$\mathrm{C}(6)-\mathrm{N}(3)$	1.382(7)
$\mathrm{Mo}(3)-\mathrm{O}(4)$	1.941(3)	$\mathrm{N}(5)-\mathrm{C}(7)$	1.471(8)	$\mathrm{Mo}(6)-\mathrm{O}(14 \mathrm{~B})$	2.376 (3)	$\mathrm{N}(5)-\mathrm{C}(8)$	1.482 (10)
$\mathrm{Mo}(3)-\mathrm{O}(11)$	$1.712(3)$	$\mathrm{C}(5)-\mathrm{C}(6)$	1.339(9)	$\mathrm{Mo}(6)-\mathrm{O}(22)$	$1.715(3)$	$\mathrm{N}(4)-\mathrm{C}(5)$	$1.366(9)$
$\mathrm{Mo}(3)-\mathrm{O}(10)$	1.699(3)	$\mathrm{C}(4)-\mathrm{N}(4)$	1.329(7)	Mo(6)-O(21)	1.936(3)	$\mathrm{N}(6)-\mathrm{C}(9)$	1.450(12)
$\mathrm{O}(3)-\mathrm{Mo}(1)-\mathrm{O}(4)$	78.6(1)	$\mathrm{O}(23)-\mathrm{Mo}(5)-\mathrm{O}(25)$	103.2(2)	$\mathrm{O}(7)-\mathrm{Mo}(2)-\mathrm{O}(8)$	105.2(1)	$\mathrm{O}(22)-\mathrm{Mo}(6)-\mathrm{O}(23)$	98.4(1)
$\mathrm{O}(3)-\mathrm{Mo}(1)-\mathrm{O}(2)$	172.7(1)	$\mathrm{O}(25)-\mathrm{Mo}(5)-\mathrm{O}(14 \mathrm{~B})$	166.2(1)	$\mathrm{O}(6)-\mathrm{Mo}(2)-\mathrm{O}(7)$	96.9(1)	$\mathrm{O}(21)-\mathrm{Mo}(6)-\mathrm{O}(23)$	151.5(1)
$\mathrm{O}(1)-\mathrm{Mo}(1)-\mathrm{O}(4)$	103.9(1)	$\mathrm{O}(22)-\mathrm{Mo}(5)-\mathrm{O}(24)$	104.8(2)	$\mathrm{O}(5)-\mathrm{Mo}(2)-\mathrm{O}(8)$	140.5(1)	$\mathrm{O}(18)-\mathrm{Mo}(6)-\mathrm{O}(23)$	83.7(1)
$\mathrm{O}(1)-\mathrm{Mo}(1)-\mathrm{O}(5)$	152.9(1)	$\mathrm{O}(17)-\mathrm{Mo}(7)-\mathrm{O}(18)$	101.1(1)	$\mathrm{O}(3)-\mathrm{Mo}(2)-\mathrm{O}(6)$	159.2(1)	$\mathrm{O}(20)-\mathrm{Mo}(8)-\mathrm{O}(21)$	104.4(2)
$\mathrm{O}(6)-\mathrm{Mo}(1)-\mathrm{O}(4)$	144.6(1)	$\mathrm{O}(16)-\mathrm{Mo}(7)-\mathrm{O}(18)$	98.6(1)	$\mathrm{O}(7)-\mathrm{Mo}(2)-\mathrm{O}(5)$	179.4(1)	$\mathrm{O}(19)-\mathrm{Mo}(8)-\mathrm{O}(21)$	97.5(2)
$\mathrm{O}(1)-\mathrm{Mo}(1)-\mathrm{O}(2)$	105.1(2)	$\mathrm{O}(15)-\mathrm{Mo}(7)-\mathrm{O}(18)$	73.8(1)	$\mathrm{O}(6)-\mathrm{Mo}(2)-\mathrm{O}(8)$	76.4(1)	$\mathrm{O}(19)-\mathrm{Mo}(8)-\mathrm{O}(20)$	104.8(2)
$\mathrm{O}(11)-\mathrm{Mo}(3)-\mathrm{O}(8)$	164.1(1)	$\mathrm{O}(15)-\mathrm{Mo}(7)-\mathrm{O}(16)$	158.0(1)	$\mathrm{O}(9)-\mathrm{Mo}(4)-\mathrm{O}(1)$	160.9(1)	$\mathrm{O}(18)-\mathrm{Mo}(8)-\mathrm{O}(21)$	73.3(1)
$\mathrm{O}(9)-\mathrm{Mo}(3)-\mathrm{O}(4)$	150.9(1)	$\mathrm{O}(14)-\mathrm{Mo}(7)-\mathrm{O}(17)$	104.3(1)	$\mathrm{O}(8)-\mathrm{Mo}(4)-\mathrm{N}(1)$	84.3(1)	$\mathrm{O}(15)-\mathrm{Mo}(8)-\mathrm{O}(19)$	97.5(2)
$\mathrm{O}(8)-\mathrm{Mo}(3)-\mathrm{O}(9)$	74.4(1)	$\mathrm{O}(14)-\mathrm{Mo}(7)-\mathrm{O}(16)$	101.2(1)	$\mathrm{O}(6)-\mathrm{Mo}(4)-\mathrm{O}(13)$	159.3(1)	$\mathrm{O}(18)-\mathrm{Mo}(8)-\mathrm{O}(20)$	155.5(2)
$\mathrm{O}(4)-\mathrm{Mo}(3)-\mathrm{O}(8)$	82.6(1)	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(3)$	106.6(4)	$\mathrm{O}(6)-\mathrm{Mo}(4)-\mathrm{O}(8)$	69.5(1)	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{N}(2)$	110.8(5)
$\mathrm{O}(9)-\mathrm{Mo}(3)-\mathrm{O}(11)$	95.9(1)	$\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	106.1(5)	$\mathrm{O}(13)-\mathrm{Mo}(4)-\mathrm{N}(1)$	84.5(1)	$\mathrm{N}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	105.7(6)
$\mathrm{O}(10)-\mathrm{Mo}(3)-\mathrm{O}(11)$	104.9(2)	$\mathrm{C}(7)-\mathrm{N}(5)-\mathrm{C}(8)$	113.0 (5)	$\mathrm{O}(8)-\mathrm{Mo}(4)-\mathrm{O}(9)$	76.9(1)	$\mathrm{C}(9)-\mathrm{N}(6)-\mathrm{C}(10)$	113.0(6)
$\mathrm{O}(23)-\mathrm{Mo}(5)-\mathrm{N}(3)$	163.4(1)	$\mathrm{N}(3)-\mathrm{C}(4)-\mathrm{N}(4)$	$111.3(5)$	$\mathrm{O}(23)-\mathrm{Mo}(6)-\mathrm{O}(24)$	97.9(1)	$\mathrm{N}(3)-\mathrm{C}(6)-\mathrm{C}(5)$	109.7(5)
$\mathrm{O}(25)-\mathrm{Mo}(5)-\mathrm{N}(3)$	88.5(2)	$\mathrm{C}(4)-\mathrm{N}(4)-\mathrm{C}(5)$	107.9(5)	$\mathrm{O}(21)-\mathrm{Mo}(6)-\mathrm{O}(24)$	100.8(2)	$\mathrm{C}(11)-\mathrm{N}(7)-\mathrm{C}(12)$	114.9(6)
$\mathrm{O}(23)-\mathrm{Mo}(5)-\mathrm{O}(26)$	102.6(1)			$\mathrm{O}(22)-\mathrm{Mo}(6)-\mathrm{O}(24)$	104.8(2)		

*For the octahedra of $\operatorname{Mo}(1)-\operatorname{Mo}(4), \mathrm{O}(n \mathrm{~A})$ is at $1-x, 1-y,-z$ and for $\operatorname{Mo}(5)-\mathrm{Mo}(8), \mathrm{O}(n \mathrm{~B})$ is at $-x,-y,-z$.

Fig. 2 Perspective view of 3 showing the atom labelling scheme. Hydrogen atoms are omitted for clarity

Table 4 Fractional atomic coordinates with e.s.d.s. in parentheses for $[1-\mathrm{Hmim}]_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}(1-\mathrm{mim})_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O} 3$

Atom	x	y	z
Mo(1)	$0.84136(3)$	0.318 52(6)	0.660 54(3)
Mo(2)	0.735 63(3)	0.091 97(5)	0.477 96(3)
Mo(3)	0.688 22(3)	0.257 87(6)	$0.62155(3)$
Mo(4)	$0.61127(3)$	0.273 30(7)	0.484 22(3)
$\mathrm{O}(1)$	0.754 4(2)	0.4143 (4)	$0.6004(2)$
$\mathrm{O}(2)$	0.7757 (3)	0.192 5(5)	0.649 2(2)
$\mathrm{O}(3)$	0.8269 (3)	0.3938 (6)	0.7218 (3)
$\mathrm{O}(4)$	0.652 4(2)	0.193 6(5)	0.427 0(2)
N (5)	$0.8962(3)$	$0.4982(7)$	0.6541 (3)
$\mathrm{O}(7)$	0.6238 (2)	0.344 2(5)	0.563 5(2)
$\mathrm{O}(8)$	$0.7078(2)$	$0.2087(4)$	0.5329 (2)
$\mathrm{O}(9)$	0.679 0(3)	0.343 3(5)	0.682 1(2)
$\mathrm{O}(10)$	0.652 6(3)	0.1129 (5)	0.627 6(3)
$\mathrm{O}(11)$	0.6968 (3)	-0.047 7(5)	0.4861 (3)
$\mathrm{O}(12)$	0.687 4(3)	0.437 2(5)	0.4826 (3)
$\mathrm{O}(13)$	0.565 3(3)	0.1457 77)	0.4941 (3)
$\mathrm{O}(14)$	0.559 2(3)	0.377 4(7)	0.443 2(3)
$\mathrm{O}(19)$	0.906 8(3)	0.228 6(7)	$0.6865(3)$
N(20)	$0.7805(4)$	0.933 9(6)	0.642 5(3)
N(21)	0.757 0(3)	0.748 4(6)	0.671 3(3)
$\mathrm{C}(22)$	0.755 5(5)	0.874 3(7)	0.682 9(4)
C(23)	0.798 9(5)	0.845 8(9)	0.604 9(4)
C (24)	0.7357 (5)	0.647 3(8)	0.708 2(4)
C(25)	0.7837 (5)	0.7287 (8)	0.624 9(4)
N(26)	0.581 6(4)	0.769 4(8)	$0.6130(4)$
N (27)	$0.6131(5)$	0.609 4(8)	0.568 5(5)
$\mathrm{C}(28)$	0.6149 (5)	0.817 6(9)	0.573 9(5)
C(29)	0.5813 (5)	0.642 5(10)	0.6090 (6)
$\mathrm{C}(30)$	0.634 4(6)	0.7167 (12)	0.545 6(6)
C(31)	$0.5538(7)$	0.847 2(15)	0.653 6(6)
$\mathrm{N}(32)$	0.951 2(3)	$0.6527(8)$	$0.6259(3)$
C(33)	0.920 4(4)	0.5435 (9)	$0.6109(4)$
C(34)	0.9463 (5)	0.682 4(10)	$0.6827(4)$
C(35)	$0.9117(5)$	0.586 9(9)	0.7003 (4)
C(36)	0.9857 (6)	0.728 2(12)	0.588 2(6)
$\mathrm{O}(37)$	$0.5780(9)$	0.453 5(20)	0.728 6(9)
$\mathrm{O}(38)$	0.538 5(10)	$0.5179(18)$	$0.3345(10)$

all these cases, while for $\mathrm{K}_{6}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}(\mathrm{NCS})_{2}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}^{17}$ the s value of 0.46 indicates an electrostatic component in the Mo-N bonding.

The cation of $\left[\mathrm{NH}_{2} \mathrm{Me}_{2}\right]_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}(\mathrm{Him})_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O} 2$ is formed in acid medium by dmf hydrolysis, in accordance with equation (6), this reaction is probably catalysed by MoO_{3}.

$$
\begin{equation*}
\mathrm{Me}_{2} \mathrm{NCOH}+\mathrm{H}_{3} \mathrm{O}^{+} \longrightarrow\left[\mathrm{NH}_{2} \mathrm{Me}_{2}\right]^{+}+\mathrm{HCO}_{2} \mathrm{H} \tag{6}
\end{equation*}
$$

The $\left[\mathrm{NH}_{2} \mathrm{Me}_{2}\right]^{+}$cation is more abundant than the imidazolium cation and therefore acts as the counterion in the isopolymolybdate obtained.

The four $\left[\mathrm{NH}_{2} \mathrm{Me}_{2}\right]^{+}$cations are bonded to oxygen atoms of the $\left[\mathrm{Mo}_{8} \mathrm{O}_{26}(\mathrm{Him})_{2}\right]^{4-}$ anion by hydrogen bonds (Table 8) with distances in the range $2.97-3.27 \AA$. There are also some relatively short C-H...O (3.25-3.47 \AA) hydrogen contacts between the oxygen atoms of the anions and the carbon atoms of the cations which cannot be considered to be hydrogen bonds, but they do indicate some degree of polarization and the role of this type of interaction in the octamolybdates of organic bases has been examined previously. ${ }^{18}$ For compound 2, there are also intermolecular hydrogen bonds between $\mathrm{N}(2)$ and $\mathrm{O}(22)$ [3.203(5) \AA, symmetry relation $\left.x+\frac{1}{2},-y-\frac{1}{2}, z-\frac{1}{2}\right]$, $\mathrm{N}(2)$ and $\mathrm{O}(26)$ [3.117(5) $\left.\AA, x+\frac{1}{2},-y-\frac{1}{2}, z-\frac{1}{2}\right]$ and $\mathrm{N}(4)$ and $\mathrm{O}(11)\left[2.741(5) \AA, x+\frac{1}{2},-y-\frac{1}{2}, z-\frac{1}{2}\right]$, and two water molecules are bonded to oxygen atoms of the polyanion by hydrogen bonds, i.e. $\mathrm{O}(\mathrm{W} 3) \cdots \mathrm{O}(19)[2.729(7) \AA, x+1, y, z+$ $1]$ and $\mathrm{O}(\mathrm{W} 2) \cdots \mathrm{O}(10)\left[3.027(6) \AA, x, y, z+\frac{1}{2}\right]$. The latter water molecule is also hydrogen-bonded to the nitrogen atom of $\left[\mathrm{NH}_{2} \mathrm{Me}_{2}\right]^{+}\left[\mathrm{O}(\mathrm{W} 2) \cdots \mathrm{N}(5) 3.134(7) \AA, x-\frac{1}{2},-y+\frac{1}{2}, z-\right.$ $\left.\frac{1}{2}\right]$ and one water molecule is also bonded to another $[\mathrm{O}(\mathrm{W} 3) \cdots \mathrm{O}(\mathrm{W} 1) 2.731(8) \AA, x+1, y, z]$.

In $[1-\mathrm{Hmim}]_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}(1-\mathrm{mim})_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O} 3$ there are four [1-Hmim] ${ }^{+}$cations bonded to oxygen atoms of $\left[\mathrm{Mo}_{8} \mathrm{O}_{26}(1-\right.$ $\left.\mathrm{mim})_{2}\right]^{4-}$ by hydrogen bonds $(2.76-2.69 \AA$). The two water molecules are hydrogen-bonded to oxygen atoms of the isopolymolybdate anion $[\mathrm{O}(37)-\mathrm{H} \cdots \mathrm{O}(9) \quad 2.864(7)$ and $\mathrm{O}(38)-\mathrm{H} \cdots \mathrm{O}(14) 2.865(4) \AA]$. These water molecules are in the same asymmetric unit.

Table 5 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $[1-\mathrm{Hmim}]_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}(1-\mathrm{mim})_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O} 3$ with e.s.d.s. in parentheses *

$\mathrm{Mo}(1)-\mathrm{O}(1)$	2.294(5)	$\mathrm{Mo}(3)-\mathrm{O}(10)$	1.707(5)	$\mathrm{Mo}(2)-\mathrm{O}(4)$	2.182(5)	Mo(4)-O(14)	1.688(7)
$\mathrm{Mo}(1)-\mathrm{O}(2)$	1.896(5)	$\mathrm{C}(22)-\mathrm{N}(20)$	1.333(11)	$\mathrm{Mo}(2)-\mathrm{O}(8)$	1.947(5)	$\mathrm{C}(28)-\mathrm{N}(26)$	$1.368(14)$
$\mathrm{Mo}(1)-\mathrm{O}(3)$	$1.711(6)$	$\mathrm{C}(23)-\mathrm{N}(20)$	1.380(11)	$\mathrm{Mo}(2)-\mathrm{O}(11)$	1.702(5)	$\mathrm{C}(29)-\mathrm{N}(26)$	$1.319(13)$
$\mathrm{Mo}(1)-\mathrm{O}(19)$	1.682(7)	$\mathrm{C}(22)-\mathrm{N}(21)$	$1.335(10)$	$\mathrm{Mo}(2)-\mathrm{O}(1 \mathrm{~A})$	1.882(5)	$\mathrm{C}(31)-\mathrm{N}(26)$	$1.466(14)$
$\mathrm{Mo}(1) \mathrm{O}(4 \mathrm{~A})$	2.072(6)	$\mathrm{C}(24)-\mathrm{N}(21)$	1.490 (10)	$\mathrm{Mo}(2)-\mathrm{O}(8 \mathrm{~A})$	2.438(5)	$\mathrm{C}(29)-\mathrm{N}(27)$	$1.324(15)$
$\mathrm{Mo}(1)-\mathrm{N}(5)$	2.227(7)	$\mathrm{C}(25)-\mathrm{N}(21)$	1.344(11)	$\mathrm{Mo}(2)-\mathrm{O}(12 \mathrm{~A})$	1.727(6)	$\mathrm{C}(30)-\mathrm{N}(27)$	1.358(15)
$\mathrm{Mo}(3)-\mathrm{O}(1)$	2.280(5)	$\mathrm{C}(25)-\mathrm{C}(23)$	$1.365(12)$	$\mathrm{Mo}(4)-\mathrm{O}(4)$	1.937(5)	$\mathrm{C}(30)-\mathrm{C}(28)$	1.352(15)
$\mathrm{Mo}(3)-\mathrm{O}(2)$	$1.964(5)$	$\mathrm{C}(33)-\mathrm{N}(5)$	1.316(11)	$\mathrm{Mo}(4)-\mathrm{O}(7)$	1.946 (5)	$\mathrm{C}(34)-\mathrm{N}(32)$	$1.382(12)$
$\mathrm{Mo}(3) \mathrm{O}(7)$	$1.925(5)$	C(35)-N(5)	$1.396(11)$	$\mathrm{Mo}(4)-\mathrm{O}(8)$	2.231(5)	$\mathrm{C}(36)-\mathrm{N}(32)$	$1.490(12)$
$\mathrm{Mo}(3)-\mathrm{O}(8)$	2.251(5)	$\mathrm{C}(33)-\mathrm{N}(32)$	1.317(11)	$\mathrm{Mo}(4)-\mathrm{O}(12)$	$2.364(5)$	$\mathrm{C}(35)-\mathrm{C}(34)$	$1.355(14)$
$\mathrm{Mo}(3)-\mathrm{O}(9)$	1.712(5)			$\mathbf{M o (4) - O (1 3)}$	1.696(6)		
$\mathrm{O}(2)-\mathrm{Mo}(1)-\mathrm{O}(1)$	74.7(2)	$\mathrm{O}(13)-\mathrm{Mo}(4)-\mathrm{O}(4)$	97.3(2)	$\mathrm{O}(8)-\mathrm{Mo}(2)-\mathrm{O}(4)$	73.9(2)	$\mathrm{O}(10)-\mathrm{Mo}(3)-\mathrm{O}(8)$	93.1(2)
$\mathrm{O}(3)-\mathrm{Mo}(1)-\mathrm{O}(1)$	92.0(2)	$\mathrm{O}(13)-\mathrm{Mo}(4)-\mathrm{O}(7)$	97.4(3)	$\mathrm{O}(11)-\mathrm{Mo}(2)-\mathrm{O}(4)$	96.4(2)	$\mathrm{O}(10)-\mathrm{Mo}(3)-\mathrm{O}(9)$	104.6(3)
$\mathrm{O}(3)-\mathrm{Mo}(1)-\mathrm{O}(2)$	99.4(2)	$\mathrm{O}(13)-\mathrm{Mo}(4)-\mathrm{O}(8)$	$101.5(3)$	$\mathrm{O}(11)-\mathrm{Mo}(2)-\mathrm{O}(8)$	103.2(2)	$\mathrm{O}(13)-\mathrm{Mo}(4)-\mathrm{O}(12)$	171.1(3)
$\mathrm{N}(5)-\mathrm{Mo}(1)-\mathrm{O}(1)$	88.1(2)	$\mathrm{O}(14)-\mathrm{Mo}(4)-\mathrm{O}(4)$	103.4(3)	$\mathrm{O}(2)-\mathrm{Mo}(3)-\mathrm{O}(1)$	73.8(2)	$\mathrm{O}(14)-\mathrm{Mo}(4)-\mathrm{O}(7)$	103.1(3)
$\mathrm{N}(5)-\mathrm{Mo}(1)-\mathrm{O}(2)$	162.7(2)	$\mathrm{O}(14)-\mathrm{Mo}(4)-\mathrm{O}(8)$	154.4(3)	$\mathrm{O}(7)-\mathrm{Mo}(3)-\mathrm{O}(1)$	84.4(2)	$\mathrm{O}(14)-\mathrm{Mo}(4)-\mathrm{O}(12)$	84.5(3)
$\mathrm{N}(5)-\mathrm{Mo}(1) \mathrm{O}(3)$	82.5(3)	$\mathrm{O}(14)-\mathrm{Mo}(4)-\mathrm{O}(13)$	104.1(4)	$\mathrm{O}(7)-\mathrm{Mo}(3)-\mathrm{O}(2)$.151.1(2)	$\mathrm{C}(35)-\mathrm{N}(5)-\mathrm{C}(33)$	106.5(7)
$\mathrm{O}(19)-\mathrm{Mo}(1)-\mathrm{O}(1)$	163.7(3)	$\mathrm{C}(23)-\mathrm{N}(20)-\mathrm{C}(22)$	110.8(7)	$\mathrm{O}(8)-\mathrm{Mo}(3)-\mathrm{O}(1)$	73.3(2)	$\mathrm{C}(24)-\mathrm{N}(21)-\mathrm{C}(22)$	123.2(7)
$\mathrm{O}(19)-\mathrm{Mo}(1)-\mathrm{O}(2)$	101.7(3)	$\mathrm{C}(25)-\mathrm{N}(21)-\mathrm{C}(22)$	$110.2(7)$	$\mathrm{O}(8)-\mathrm{Mo}(3)-\mathrm{O}(2)$	82.1(2)	$\mathrm{C}(25)-\mathrm{N}(21)-\mathrm{C}(24)$	126.5(7)
$\mathrm{O}(19)-\mathrm{Mo}(1)-\mathrm{O}(3)$	104.2(3)	$\mathrm{N}(21)-\mathrm{C}(22)-\mathrm{N}(20)$	106.2(7)	$\mathrm{O}(8)-\mathrm{Mo}(3)-\mathrm{O}(7)$	73.4(2)	$\mathrm{C}(25)-\mathrm{C}(23)-\mathrm{N}(20)$	104.5(7)
$\mathrm{O}(19)-\mathrm{Mo}(1)-\mathrm{N}(5)$	94.4(3)	$\mathrm{C}(23)-\mathrm{C}(25)-\mathrm{N}(21)$	108.3(7)	$\mathrm{O}(9)-\mathrm{Mo}(3)-\mathrm{O}(1)$	90.0(2)	$\mathrm{C}(31)-\mathrm{N}(26)-\mathrm{C}(28)$	125.0(10)
$\mathrm{O}(7)-\mathrm{Mo}(4)-\mathrm{O}(4)$	145.4(2)	$\mathrm{C}(31)-\mathrm{N}(26)-\mathrm{C}(29)$	126.7(11)	$\mathrm{O}(9)-\mathrm{Mo}(3)-\mathrm{O}(2)$	100.7(3)	$\mathrm{C}(30)-\mathrm{N}(27)-\mathrm{C}(29)$	109.8(9)
$\mathrm{O}(8)-\mathrm{Mo}(4) \mathrm{O}(4)$	72.9(2)	$\mathrm{C}(30)-\mathrm{C}(28)-\mathrm{N}(26)$	107.7(9)	$\mathrm{O}(9)-\mathrm{Mo}(3)-\mathrm{O}(7)$	98.0(2)	$\mathrm{N}(27)-\mathrm{C}(29)-\mathrm{N}(26)$	108.2(10)
$\mathrm{O}(8)-\mathrm{Mo}(4)-\mathrm{O}(7)$	73.5(2)	$\mathrm{C}(28)-\mathrm{C}(30)-\mathrm{N}(27)$	105.9(10)	$\mathrm{O}(9)-\mathrm{Mo}(3)-\mathrm{O}(8)$	161.7(2)	$\mathrm{C}(34)-\mathrm{N}(32) \mathrm{C}(33)$	107.8(8)
$\mathrm{O}(12)-\mathrm{Mo}(4)-\mathrm{O}(4)$	82.8(2)	$\mathrm{C}(36)-\mathrm{N}(32)-\mathrm{C}(33)$	125.5(9)	$\mathrm{O}(10)-\mathrm{Mo}(3)-\mathrm{O}(1)$	163.0(2)	$\mathrm{C}(36)-\mathrm{N}(32)-\mathrm{C}(34)$	126.7(8)
$\mathrm{O}(12)-\mathrm{Mo}(4)-\mathrm{O}(7)$	78.1(2)	$\mathrm{N}(32)-\mathrm{C}(33)-\mathrm{N}(5)$	111.3(8)	$\mathrm{O}(10)-\mathrm{Mo}(3)-\mathrm{O}(2)$	94.7(3)	$\mathrm{C}(35)-\mathrm{C}(34)-\mathrm{N}(32)$	106.7(8)
$\mathrm{O}(12)-\mathrm{Mo}(4)-\mathrm{O}(8)$	70.0(2)	$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{N}(5)$	107.7(9)	$\mathrm{O}(10)-\mathrm{Mo}(3)-\mathrm{O}(7)$	101.7(3)		

[^1]Table 6 Degree of distortion of MoO_{6} and MoNO_{5} octahedra for 2 and 3
(a) $\left[\mathrm{NH}_{2} \mathrm{Me}_{2}\right]_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}(\mathrm{Him})_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O} 2$

Distortion $\left(\times 10^{4}\right)$	$\operatorname{Mo}(1)$	$\operatorname{Mo}(2)$	$\operatorname{Mo}(3)$	$\operatorname{Mo}(4)$	$\operatorname{Mo}(5)$	$\operatorname{Mo}(6)$	$\operatorname{Mo}(7)$	$\operatorname{Mo}(8)$
Δl	161	179	132	130	128	154	147	155
Δe	36	34	15	22	27	17	26	29
$\Delta \alpha$	209	204	147	120	131	148	192	207

(b) $[1-\mathrm{Hmim}]_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}(1-\mathrm{min})_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O} 3$

Distortion $\left(\times 10^{4}\right)$	$\operatorname{Mo}(1)$	$\operatorname{Mo}(2)$	$\operatorname{Mo(3)}$	$\operatorname{Mo(4)}$
Δl	143	171	134	162
Δe	36	63	17	30
$\Delta \alpha$	121	264	150	199

Table 7 Bond lengths (d) and bond strengths (s and s^{\prime}) of Mo-O and Mo- N bonds and c.u. values for oxygen atoms in the MoNO_{5} octahedra of the octamolybdate compounds 2 and 3

	d / \AA	s	s^{\prime}	c.u.
$(a)\left[\mathrm{NH}_{2} \mathrm{Me}_{2}\right]_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}(\mathrm{Him})\right] \cdot 3 \mathrm{H}_{2} \mathrm{O} 2$				
$\mathrm{Mo}(4)-\mathrm{O}(6)$	2.144	0.46	0.57	-1.43
$\mathrm{Mo}(4)-\mathrm{O}(8)$	2.233	0.36	0.46	-1.54
$\mathrm{Mo}(4)-\mathrm{O}(9)$	1.896	0.96	1.04	-0.96
$\mathrm{Mo}(4)-\mathrm{O}(13)$	1.708	1.79	1.64	-0.36
$\mathrm{Mo}(4)-\mathrm{O}(12)$	1.687	1.93	1.73	-0.27
$\mathrm{Mo}(4)-\mathrm{N}(1 \mathrm{~A})$	2.197	0.39	0.50	
Σs		5.88	5.94	
$\mathrm{Mo}(5)-\mathrm{O}(25)$	1.701	1.83	1.67	-0.33
$\mathrm{Mo}(5)-\mathrm{O}(15 \mathrm{~A})$	2.081	0.55	0.67	-1.33
$\mathrm{Mo}(5)-\mathrm{O}(26)$	1.726	1.68	1.76	-0.24
$\mathrm{Mo}(5)-\mathrm{O}(14 \mathrm{~A})$	2.265	0.33	0.43	-1.57
$\mathrm{Mo}(5)-\mathrm{O}(23)$	1.882	1.00	1.08	-0.92
$\mathrm{Mo}(5)-\mathrm{N}(3)$	2.219	0.37	0.48	
Σs		5.76	6.09	
$(b)[1-\mathrm{Hmim}]_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}(1-\mathrm{mim}){ }_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O} 3$				
$\mathrm{Mo}(1)-\mathrm{O}(1)$	2.294	0.30	0.40	-1.60
$\mathrm{Mo}(1)-\mathrm{O}(3)$	1.711	1.77	1.62	-0.37
$\mathrm{Mo}(1)-\mathrm{O}(2)$	1.896	0.96	1.04	-0.96
$\mathrm{Mo}(1)-\mathrm{O}(19)$	1.682	1.96	1.75	-0.25
$\mathrm{Mo}(1)-\mathrm{O}(4 \mathrm{~A})$	2.072	0.56	0.68	-1.32
$\mathrm{Mo}(1)-\mathrm{N}(5)$	2.227	0.36	0.47	-1.53
Σs		5.91	5.97	

The values found for all the hydrogen bonds are similar to those described in the literature for other organic isopolymolybdates. ${ }^{3,4,7,18}$ However, while the angles $\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(3)$ and $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{N}(2)$ of the co-ordinated imidazole in the first asymmetric unit of $\left[\mathrm{NH}_{2} \mathrm{Me}_{2}\right]_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}(\mathrm{Him})_{2}\right] 2$ [106.6(4) ${ }^{\circ}$ and $110.8(5)^{\circ}$, respectively] are the same as in the pyrazole octamolybdate, ${ }^{7}$ those in the second asymmetric unit of the same compound $[C(4)-N(3)-C(6)$ and $N(3)-C(4)-N(4)]$ are $105.4(5)$ and $111.3(5)^{\circ}$, respectively. These values together with the other imidazole angles indicate that in second unit the imidazole ring is less regular than in first. For compound 3, the angles $\mathrm{C}(35)-\mathrm{N}(5)-\mathrm{C}(33)$ and $\mathrm{N}(5)-\mathrm{C}(35)-\mathrm{C}(34)$ are $106.5(7)$ and $107.7(9)^{\circ}$, respectively, and therefore are more regular than in 2. In both octamolybdates, all the imidazole rings are essentially planar, with negligible deviation from the best leastsquares plane.

The yellow form of compound 3 has the same molecular structure as the white but much thermal motion. The colour may be due to the presence of defects in the crystal.

The infrared spectra of compounds 2 and 3 show a band at $3440 \mathrm{~cm}^{-1}$ corresponding to the stretching vibrations of the OH groups of the water molecules involved in hydrogen bonding. ${ }^{19}$ The deformation vibrations of the water molecules ${ }^{19}$ are observed at $1626 \mathrm{~cm}^{-1}$. For compound 2 there is a complex

Table 8 Interatomic contacts (\AA) involving hydrogen bonds for $\left[\mathrm{NH}_{2} \mathrm{Me}_{2}\right]_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}(\mathrm{Him})_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O} 2$

$\mathrm{N}(6) \cdots \mathrm{O}\left(3^{1}\right)$	$2.855(6)$
$\mathrm{N}(6) \cdots \mathrm{O}\left(9^{\text {II }}\right)$	$2.886(6)$
$\mathrm{N}(5) \cdots \mathrm{O}\left(25^{\mathrm{I}}\right)$	$2.923(7)$
$\mathrm{N}(5) \cdots \mathrm{O}\left(20^{\text {III }}\right)$	$3.224(6)$
$\mathrm{N}(6) \cdots\left(22^{\text {lv }}\right)$	$3.040(6)$
$\mathrm{N}(7) \cdots \mathrm{O}\left(20^{\mathrm{v}}\right)$	$3.229(7)$
$\mathrm{N}(7) \cdots \mathrm{O}\left(16^{\text {vI }}\right)$	$2.943(7)$
$\mathrm{N}(8) \cdots \mathrm{O}\left(17^{\text {Iv }}\right)$	$2.868(6)$
$\mathrm{C}(12) \cdots \mathrm{O}\left(2^{\mathrm{l}}\right)$	$3.272(8)$
$\mathrm{C}(7) \cdots \mathrm{O}\left(25^{\mathrm{I}}\right)$	$3.192(7)$

*Atoms related by the symmetry operations: $\mathrm{I} x-\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$; II $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2} ;$ III $-x-\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$; IV $x+\frac{1}{2}$, $-y+\frac{1}{2}, z+\frac{1}{2} ; \mathrm{V}-x,-y,-z+1 ;$ VI $x, y, z+1$.
series of absorptions between 2800 and $2000 \mathrm{~cm}^{-1}$ which are attributed to the $\mathrm{N}-\mathrm{H}$ stretching vibrations of the ammonium groups ${ }^{20}\left[\mathrm{NH}_{2} \mathrm{Me}_{2}\right]^{+}$. The infrared spectra of the white and yellow forms of 3 are similar, although the yellow form shows broader bands. It is important to emphasize that all the compounds studied show absorptions at frequencies corresponding to the imidazole ring stretching vibrations ($1540-1390 \mathrm{~cm}^{-1}$), which are different to those of free imidazole indicating the existence of a donor-acceptor bond ${ }^{21}$ between imidazole and molybdenum. This has been confirmed by the X-ray structure determination of compounds 2 and 3 (vide supra). Out-of-plane hydrogen bending together with the molybdenum-oxygen stretching and bending vibrations of the isopolymolybdate anion occur between 940 and $830 \mathrm{~cm}^{-1}$. $4,7,18$

The ${ }^{1} \mathrm{H}$ NMR spectrum of compound 1 shows two singlets at $\delta 7.42$ and 8.58 which are assigned to H^{a} and H^{b} (7.42) and H^{c} (8.58) in agreement with the proton integration curves. These

resonances correspond to the imidazolium cation. ${ }^{22}$ Thus, the peak at $\delta 5.00$ is attributed to H^{d}. The ${ }^{13} \mathrm{C}$ NMR spectrum shows resonances at $\delta 120.18\left(\mathrm{C}^{\mathrm{b}}\right)$ and $134.84\left(\mathrm{C}^{c}\right)$, characteristic of the imidazolium cation. ${ }^{22,23}$ The ${ }^{1} \mathrm{H}$ spectrum of 3 shows singlets at $\delta 6.87\left(\mathrm{H}^{\mathrm{b}}\right), 6.99\left(\mathrm{H}^{\mathrm{a}}\right)$ and $7.99\left(\mathrm{H}^{\mathrm{c}}\right)$, typical of the 1-methylimidazolium cation and the methyl resonance is observed at $\delta 3.34 .{ }^{21}$ The ${ }^{13} \mathrm{C}$ NMR spectrum displays resonances at $\delta 122.09\left(\mathrm{C}^{\mathrm{a}}\right), 123.20\left(\mathrm{C}^{\mathrm{b}}\right)$ and $136.67\left(\mathrm{C}^{\mathrm{c}}\right)$ and the methyl group is observed at $\delta 34.6$. Finally, the ${ }^{1} \mathrm{H}$ spectrum of 4 shows singlet resonances at $\delta 6.68\left(\mathrm{H}^{\mathrm{a}}\right.$ and $\left.\mathrm{H}^{\mathrm{b}}\right), 4.38\left(\mathrm{H}^{\mathrm{d}}\right)$ and 2.04 (Me). The ${ }^{13} \mathrm{C}$ NMR spectrum shows singlets at $\delta 119.46$ (s, C^{a} and C^{b}), $143.91\left(\mathrm{~s} \mathrm{C} \mathrm{C}^{\mathrm{c}}\right.$) and $11.92(\mathrm{Me})$.

The thermogravimetric curve for 1 comprises two steps. In
the first there is a loss of weight between 240 and $270^{\circ} \mathrm{C}$, corresponding to two imidazole molecules (calc., 8.53; found, 8.40%). The final product is obtained at $400^{\circ} \mathrm{C}$ and is identified as MoO_{3} (calc., 72.15 ; found, 72.41%). The thermogravimetric and differential scanning calorimetric curves show four stages in the thermal decomposition of 2 . At $135^{\circ} \mathrm{C}$ the compound loses the three water molecules (theoretical loss, 3.46; experimental loss, 3.68%) with an endothermic effect. The first decomposition step is followed by an endothermic process between 200 and $260^{\circ} \mathrm{C}$ which corresponds to the loss of two NHMe_{2} molecules (calc., 5.79; found, 5.61) overlapped with the following exothermic stage $\left(260-350^{\circ} \mathrm{C}\right)$, which corresponds to the loss of imidazole. At $540^{\circ} \mathrm{C}$ a residual constant weight equal to that expected for MoO_{3} is obtained (calc., 73.90 ; found, 73.40), which was confirmed by X-ray powder diffraction. The thermogravimetric and calorimetric curves of 3 show that decomposition occurs in four steps. The first and second steps are endothermic and correspond to loss of water and imidazole molecules while the last two are exothermic. At $400^{\circ} \mathrm{C}$ a residual constant weight is obtained, equal to that expected for MoO_{3} (calc., 67.09 ; found, 66.95%), also confirmed by X-ray powder diffraction. The final residue MoO_{3} has been observed for other isopolymolybdates of organic bases. ${ }^{7,18.24,25}$

Acknowledgements

We acknowledge the assistance of Mr. P. Lorenzo Luis in the synthesis of the compounds and Professor M. Julve, University of Valencia, Spain, for valuable discussions. The authors also gratefully acknowledge support from the Education Council, Gobierno de Canarias (Project No. 125/31-07-1989).

References

1 M. T. Pope and A. Müller, Angew. Chem., Int. Ed. Engl., 1991, 30, 34; M. T. Pope, Heteropoly and Isopoly Oxometalates, Springer-Verlag, Berlin, 1983.
2 S. Liü, L. Ma, D. McGowty and J. Zubieta, Polyhedron, 1990, 9, 1541.
3 M. L. Niven, J. J. Cruywagen and J. B. Heyns, J. Chem. Soc., Dalton Trans., 1991, 2007.

4 X. Wang, X. Xu, Q. Wang and Y. Zhai, Polyhedron, 1992, 11, 1423.
5 T. Yamase and K. Tomita, Inorg. Chim. Acta, 1990, 169, 147.
6 E. M. McCarron, III, J. F. Whitney and D. B. Chase, Inorg. Chem., 1984, 23, 3275.
7 P. Gili, P. Martín Zarza, G. Martín-Reyes, J. M. Arrieta and G. Madariaga, Polyhedron, 1992, 11, 115.

8 G. M. Sheldrick, SHELX 86, A program for crystal structure determination, University of Göttingen, 1986.
9 G. M. Sheldrick, SHELX•76, A computer program for crystal structure determination, University of Cambridge, 1976.
10 International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4.
11 D. T. Cromer and J. B. Liberman, J. Chem. Phys., 1970, 53, 1891.
12 K . Keller, SCHAKAL, A program for the graphic representation of molecular and crystallographic models, University of Freiburg, 1987.
13 P. Roman, J. M. Gutiérrez-Zorrilla, M. Martínez-Ripoll and S. García-Blanco, Polyhedron, 1986, 5, 1799.

14 I. D. Brown, Structure and Bonding in Crystals, ed. M. O'Keefe and A. Naviotsky. Academic Press, New York, 1981, vol 2, pp. 1-30.

15 B. Krebs, S. Stiller, K. H. Tytko and J. Mehmke, Eur. J. Solid State Inorg. Chem., 1991, 28, 883.
16 I. D. Brown, Chem. Soc. Rev., 1978, 7, 359.
17 B. Kamenar, M. Benavic and B. Marcovic, Acta Crystallogr., Sect. C, 1988, 44, 1521.
18 P. Roman, A. Luque, J. M. Gutiérrez-Zorrilla and S. Garcia-Granda, Polyhedron, 1991, 10, 2057.
19 K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley, New York, 4th edn., 1986, pp. 107 and 228.
20 L. J. Bellamy, The Infrared Spectra of Complex Molecules, Chapman and Hall, London, 3rd edn., 1975, pp. 278, 290 and 318.
21 M. R. Bermejo, M. Gayoso, M. I. Fernández, A. Hermida and E. Gómez, An. Quim., 1988, 84, 303.

22 E. Pretsch, R. Clerc, J. Seibl and W. Simon, Tablas para la Elucidación Estructural de Compuestos Orgánicos por Métodos Espectroscópicos, ed. Alhambra, Madrid, 1980, p. 157.
23 R. J. Pugmire and D. M. Grant, J. Am. Chem. Soc., 1968, 90, 4332.
24 P. Gili, C. Santiago, P. Roman and L. Lorente, Thermochim. Acta, 1981, 43, 221.
25 P. Roman, A. Luque, A. Aranzabe and J. M. Gutierrez-Zorrilla, Polyhedron, 1992, 11, 2027.

[^0]: \dagger Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1993, Issue 1, pp. xxiii-xxviii.

[^1]: * The atoms $\mathrm{O}(n \mathrm{~A})$ are related to $\mathrm{O}(n)$ by the symmetry operation $1.5-x, 0.5-y, 1 \sim z$.

