Synthesis and Characterization of Ruthenium Complexes which utilize a New Family of Terdentate Ligands based upon 2,6-Bis(pyrazol-1-yl)pyridine \dagger

Carol A. Bessel, ${ }^{\boldsymbol{a}}$ Ronald F. See, ${ }^{\boldsymbol{a}}$ Donald L. Jameson, ${ }^{*, b}$ Melvyn Rowen Churchill *.a and Kenneth J. Takeuchi ${ }^{*, a}$
${ }^{a}$ Department of Chemistry, State University of New York at Buffalo, Buffalo, NY 14214, USA
${ }^{b}$ Department of Chemistry, Gettysburg College, Gettysburg, PA 17325-1486, USA

To demonstrate the synthetic utility of a new family of terdentate ligands based on 2.6-bis(pyrazol-1yl) pyridine (bpp), reaction conditions were developed to generate a variety of $\left[R u L\left(\mathrm{NO}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right]$ complexes [$L=$ bpp, 2,6-bis(3,5 -dimethylpyrazol-1-yl)pyridine(bdmpp). 2,6-bis(3-phenylpyrazol-1yl) pyridine (bppp) or 2,6-bis(3-p-chlorophenylpyrazol-1-yl)pyridine (bcppp)]. These complexes were characterized by elemental analysis, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, infrared and UV/VIS spectroscopies, cyclic voltammetry, and single-crystal X-ray diffraction studies. The substituents of the terdentate bpp ligands sterically affected the Ru- N (pyrazole) bond lengths, the displacement of the nitrogen atoms of the nitro ligands from the RuL plane, and the twisting of the $\mathrm{N}-\mathrm{O}$ vectors of the nitro ligand from that plane. Also the substituents affected the potentials and peak-current ratios of the Ru"'-Ru" couples. The log ($i_{\mathrm{pc}} / i_{\mathrm{pa}}$) values ($i_{\mathrm{pc}}=$ cathodic peak current, $i_{\mathrm{po}}=$ anodic peak current) are linearly correlated with the steric size of the substituents as estimated by Tolman's cone angles and with the distance of the nitro ligand out of the RuL plane. A linear correlation was also found between the differences in infrared absorbances due to the $\mathrm{N}-\mathrm{O}$ symmetric and asymmetric stretches and the ratio of the $\mathrm{N}-\mathrm{O}$ bond distances observed from the four crystal structures.

Polypyridyl ligands such as $2,2^{\prime}$-bipyridine (bipy) have been utilized with great frequency as ligands for transition-metal complexes. ${ }^{1}$ In particular, bipy can stabilize a variety of oxidation states and co-ordination numbers with metal centres, and is often very stable towards redox reactions with high-oxidation-state metal centres. Also, due to the bidentate nature of bipy, this ligand is often resistant to dissociative ligand loss. Recently, there have been a number of studies involving complexes such as $\left[\mathrm{Ru}(\mathrm{bipy})_{3}\right]^{2+}$, where the bipy ligand imparts useful photochemical and photophysical properties onto the ruthenium centre. ${ }^{2}$ Again, the bidentate nature of bipy reduces the likelihood of photochemically induced ligand loss.

As a structural analogy to bipy, the terdentate ligand, $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine (terpy) has been the subject of a number of studies, involving a wide variety of metal centres. ${ }^{3}$ Although terpy complexes often differ significantly from those of bipy, terpy is a very versatile ligand and a number of geometries and metal oxidation states have been observed. ${ }^{4-12}$ In addition, due to the terdentate nature of terpy, it can occupy three meridional sites of a metal centre, and thus can be utilized to control and direct the reactivity of a transition-metal centre. In order to provide inorganic chemists with a new terdentate ligand which is structurally a terpy analogue, the family of ligands based on 2,6-bis(pyrazol-1-yl)pyridine (bpp) was developed. These new terdentate ligands are structurally similar to terpy, but are easier to modify synthetically.

With this paper we will establish that the family of bpp ligands [namely bpp, 2,6-bis(3,5-dimethylpyrazol-1-yl)pyridine (bdmpp), 2,6-bis(3-phenylpyrazol-1-yl)pyridine (bppp), and 2,6-bis(3 - p-chlorophenylpyrazol-1-yl)pyridine (bcppp)] can be successfully incorporated within the co-ordination sphere of ruthenium. We will also examine the steric ligand effects of the bpp family of ligands through the potential values $E_{\frac{1}{2}}\left[\left(E_{\mathrm{pc}}+\right.\right.$

[^0]$\left.E_{\mathrm{pa}} / 2\right]$ and the peak-current ratios, $i_{\mathrm{pc}} / i_{\mathrm{pa}}$ ($=$ cathodic peak current/anodic peak current ${ }^{13}$) of the $\mathrm{Ru}^{1{ }^{1 I}-}-\mathrm{Ru}^{\text {II }}$ redox couples. Interestingly, the $\log \left(i_{\mathrm{pc}} / i_{\mathrm{pa}}\right)$ values correlate linearly with cone angle values ${ }^{14}$ that are associated with the substituents of substituted bpp ligands (see below).

Since complete X-ray crystal structure determinations were conducted on four different ruthenium(II) complexes we also have a wealth of structural data concerning the structural effects of bpp ligands. In each complex a nitrite ligand is bonded in a monodentate fashion through the nitrogen atom (nitro coordination). These ruthenium(II) complexes maintain an octahedral ligand arrangement where two mutually transtrimethylphosphine ligands exert a constant electronic influence and minimum steric influence on the nitro ligands, and only the substituents of the bpp ligand were changed. In addition to the above correlation between $\log \left(i_{\text {pc }} / i_{p a}\right)$ and cone angle, the former is also correlated linearly with the distance of the nitro ligand out of the plane of the terdentate ligand. There have been studies regarding the co-ordination of nitrite to transition metals, where a nitro-nitrito interconversion has been reported as the principal steric ligand effect on bound nitrite. ${ }^{15}$ Notably, we do not observe such an interconversion with our complexes, but rather a novel nitro rotation in response to increased bpp steric size.

Experimental

Materials.-The ligands bpp, bdmpp, bppp and bcppp were prepared by literature methods or by slight modifications thereof. ${ }^{16}$ The compound $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ was obtained from Johnson Matthey Aesar/Alfa. Trimethylphosphine was purchased from Aldrich Chemical Co. as a $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in toluene or as a neat liquid. Ethylene glycol monoethyl ether was dried by distillation before use. All other solvents and materials were of reagent grade and were used without further purification. All reactions were conducted under $\mathrm{N}_{2}(\mathrm{~g})$ unless otherwise noted.

Measurements.-Elemental analyses were performed by Atlantic Microlabs (Norcross, GA). Infrared spectra of Nujol mulls on NaCl plates were recorded with a Perkin Elmer 710B or a 1430 ratio recording spectrophotometer, electronic absorption spectra with a Milton Roy Spectronic 3000 diodearray spectrophotometer equipped with a Hewlett-Packard 7470A plotter or with a Bausch and Lomb Spectronic 2000 spectrophotometer equipped with a Houston Instruments model 200 recorder. Proton NMR spectra were recorded with a JEOL FX90Q Fourier-transform or a EM 390 spectrometer, ${ }^{13} \mathrm{C}$ NMR with either a JEOL FX90Q or a Varian Gemini 300 Fourier-transform spectrometer. Chemical shifts are reported in ppm relative to tetramethylsilane. Cyclic voltammetric experiments were carried out in a three-electrode, onecompartment cell equipped with a platinum working electrode (Bioanalytical Systems), a platinum auxiliary electrode and a saturated sodium chloride calomel reference electrode (SSCE). It was conducted with an IBM EC/225 polarographic analyser equipped with a Houston Instruments model 100 recorder. Methylene chloride or acetonitrile was utilized with 0.1 mol dm^{-3} tetrabutylammonium tetrafluoroborate as the supporting electrolyte (prepared by standard methods ${ }^{17}$).
X-Ray Data Collection.-Crystals were aligned on a Siemensupgraded Syntex P2 $/$ R3 diffractometer equipped with a highly oriented graphite-crystal monochromator. The determination of the Laue symmetry, crystal class, unit-cell parameters and the crystal orientation matrix were carried out by previously described techniques. ${ }^{18 a}$ Room-temperature intensity data were collected with Mo-K α radiation ($\lambda=0.71073 \AA$), using the $\theta-2 \theta$ scan technique when possible, or the ω scan technique when peak overlap might otherwise be a problem. Details of data collection are in Table 3. All reflections in each data set were corrected for Lorentz and polarization effects and for absorption (semi empirical).

Solution and refinement of the structures. All crystallographic calculations were carried out on a VAX 3100 workstation with the use of the Siemens SHELXTL PLUS ${ }^{18 b}$ program set. The analytical scattering factors for neutral atoms were corrected for both the Δf^{\prime} and the $i \Delta f^{\prime \prime}$ components of anomalous dispersion. The structures were solved by a combination of direct methods and Fourier-difference techniques. All non-hydrogen atoms were refined anisotropically, and hydrogen atoms were included in calculated positions with $d(\mathrm{C}-\mathrm{H})=0.96 \AA .{ }^{18 c}$ Details of each structure solution and its refinement may be found in Table 3. Diagrams of the structures were generated using ORTEP II. ${ }^{19}$

Additional material available from the Cambridge Crystallographic Data Centre comprises H -atom coordinates, thermal parameters and remaining bond lengths and angles.

Preparations.-The complexes $\left[\mathrm{Ru}(\mathrm{bppp}) \mathrm{Cl}_{3}\right]$ 3, trans$\left[\mathrm{Ru}(\mathrm{bppp}) \mathrm{Cl}_{2}\left(\mathrm{PMe}_{3}\right)\right]$ 7, cis-[Ru(bppp) $\left.\mathrm{Cl}_{2}\left(\mathrm{PMe}_{3}\right)\right] 10$ and trans-[Ru(bppp)Cl(PMe $)_{2}$] 13, have been reported earlier. ${ }^{20}$
$\left[\mathrm{RuLCl} l_{3}\right](\mathrm{L}=\mathrm{bpp} 1$, bdmpp 2, bppp 3 or bcppp 4). A sample of $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}\left(0.271 \mathrm{~g}, 1.0 \times 10^{-3} \mathrm{~mol}\right)$ was combined with L (1.0-1.1 equivalents) in absolute $\mathrm{EtOH}\left(125 \mathrm{~cm}^{3}\right.$ for $\mathrm{L}=\mathrm{bpp}$) or in ethylene glycol monoethyl ether ($125 \mathrm{~cm}^{3}$ for $\mathrm{L}=$ bdmpp, bppp or bcppp). The solution was heated at reflux for 3 h . After cooling to room temperature, the precipitate was collected by vacuum filtration, washed thoroughly with absolute EtOH and $\mathrm{Et}_{2} \mathrm{O}$ and air dried. These materials were used without purification in the following syntheses. Yields $85-90 \%$.
trans- $\left[\mathrm{RuLCl}_{2}\left(\mathrm{PMe}_{3}\right)\right](\mathrm{L}=\operatorname{bpp} 5$, bdmpp 6, bppp 7 or bcppp 8). In a typical reaction, one of complexes $1-4(0.120 \mathrm{~g})$ was slurried in CHCl_{3} or $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(15 \mathrm{~cm}^{3}\right), \mathrm{PMe}_{3}(1.5$ equivalents) and triethylamine ($2 \mathrm{~cm}^{3}$) were added and the mixture was refluxed for $10-24 \mathrm{~h}$. The resultant brown solid was collected by vacuum filtration, washed with the minimum volume of absolute EtOH and $\mathrm{Et}_{2} \mathrm{O}$ and purified, if necessary, by passage through a short, deactivated ($1 \mathrm{~cm}^{3}$ distilled water, $10 \mathrm{~cm}^{3}$ alumina) basic alumina column eluted with 2% (v/v)
$\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent of the red-brown product band was completely removed with a rotary evaporator. The residue was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and titurated into hexanes. A brown product was collected by vacuum filtration and used without further purification. Yields $55-90 \%$.
cis-[$\left.\mathrm{RuLCl}_{2}\left(\mathrm{PMe}_{3}\right)\right](\mathrm{L}=$ bpp 9, or bppp 10). Complex 5 or $6(0.1 \mathrm{~g})$ was added to 1,2 -dichloroethane $\left(30-90 \mathrm{~cm}^{3}\right)$ and irradiated for $48-61 \mathrm{~h}$ with a 120 W tungsten light. The reactions were monitored by UV/VIS spectroscopy until no change occurred in the $\lambda_{\text {max }}$ of the visible range. The reddish brown solution was filtered and the solvent of the filtrate was reduced to dryness by rotary evaporation. The solid was slurried in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(4 \mathrm{~cm}^{3}\right)$ and titurated into hexanes or $\mathrm{Et}_{2} \mathrm{O}\left(c a .40 \mathrm{~cm}^{3}\right)$. The solid was collected by vacuum filtration and used without further purification. Yields $90-95 \%$.
CAUTION: While the authors have used perchlorate as a counter ion with a number of ruthenium complexes without incident, perchlorate salts of metal complexes with organic ligands are potentially explosive. Care should be exercised in using a spatula or stirring rod mechanically to agitate any solid perchlorate. These complexes, as well as any other pechlorate salt, should be handled only in small quantities, using the appropriate safety procedures. ${ }^{21}$
trans- $\left.\mathrm{RuL}(\mathrm{Cl})\left(\mathrm{PMe}_{3}\right)_{2}\right] \mathrm{ClO}_{4}(\mathrm{~L}=$ bpp 11, bdmpp 12, bppp 13 or bcppp 14). One-pot synthesis. In a typical reaction, one of complexes $1-4(1.0 \mathrm{~g})$ was slurried in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(300 \mathrm{~cm}^{3}\right), \mathrm{PMe}_{3}$ (4.5-7 equivalents) was added to the ruthenium suspension followed by $\mathrm{Zn} / \mathrm{Hg}$ amalgam (12 g), and the mixture refluxed for 24 h before the heating mantle was removed. The mixture was then irradiated under a 120 W spot light for several days. The reactions were monitored for completion by UV/VIS spectroscopy. After filtering off the $\mathrm{Zn} / \mathrm{Hg}$ amalgam and some insoluble green solids, the filtrate was reduced to dryness with a rotary evaporator. The orange residue was redissolved in the minimum volume of ethanol-water ($40: 60, \mathrm{v} / \mathrm{v}$), solid $\mathrm{NaClO}_{4}(2 \mathrm{~g})$ added and the volume slowly reduced on a rotary evaporator. The yellow-orange solid was vacuum filtered and washed with the minimum volume of water. The product was purified by passing down a deactivated ($1 \mathrm{~cm}^{3}$ water, $10 \mathrm{~cm}^{3}$ alumina) alumina column using acetone as the eluent. The initial orange band was collected and reduced to dryness on a rotary evaporator. The residue was redissolved in the minimum volume of acetone and titurated into $\mathrm{Et}_{2} \mathrm{O}$. The orange powder was washed with $\mathrm{Et}_{2} \mathrm{O}$ and air dried. Yield $40-60 \%$ from $1-4$.

Alternative procedure for complex 11 or 13. Complex 9 or 10 $(0.020 \mathrm{~g})$ was combined with 2 drops pure PMe_{3} in acetoneEtOH (2:1, $15 \mathrm{~cm}^{3}$), in an inert-atmosphere glove-box. The mixture was brought out of the glove-box and stirred in darkness, at room temperature, overnight. The solvent of the orange solution was completely removed using a rotary evaporator. The $\mathrm{PF}_{6}{ }^{-}$salt was isolated and purified as above. Yields $85-90 \%$ from 9 or $10 .{ }^{1} \mathrm{H}$ NMR: $11\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta$ $0.7\left(18 \mathrm{H}, \mathrm{t}, J=3, \mathrm{PMe}_{3}\right), 6.8(2 \mathrm{H}, \mathrm{s}$, pyrazolyl H), $7.8(3 \mathrm{H}, \mathrm{s}$, $\mathrm{NC}_{5} \mathrm{H}_{3}$), $8.1(2 \mathrm{H}$, m, pyrazolyl H$), 8.8(2 \mathrm{H}, \mathrm{s}$, pyrazolyl H) ($\mathrm{t}=$ second-order virtually coupled, $1: 2: 1$ triplet); $12(90 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right), \delta 0.8\left(18 \mathrm{H}, \mathrm{t}, J=3, \mathrm{PMe}_{3}\right), 2.6(6 \mathrm{H}, \mathrm{s}$, pyrazolyl Me), $2.9(6 \mathrm{H}, \mathrm{s}$, pyrazolyl Me), $6.3(2 \mathrm{H}$, s, pyrazolyl H$), 8.0(3 \mathrm{H}, \mathrm{m}$, $\mathrm{NC}_{5} \mathrm{H}_{3}$); $13\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 0.8\left(18 \mathrm{H}, \mathrm{t}, J=3, \mathrm{PMe}_{3}\right), 6.8$ $(2 \mathrm{H}, \mathrm{d}, J=3$, pyrazolyl H$), 7.3\left(6 \mathrm{H}, \mathrm{m}, m\right.$ - and $p-\mathrm{H}$ of $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right)$, $7.6\left(4 \mathrm{H}, \mathrm{m}, o-\mathrm{H}\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 8.1\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NC}_{5} \mathrm{H}_{3}\right), 8.8(2 \mathrm{H}, \mathrm{d}, J=$ 3 Hz , pyrazolyl H$)$; $14\left(90 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right), 0.9(18 \mathrm{H}, \mathrm{t}, J=$ 4, PMe_{3}), $7.1(2 \mathrm{H}, \mathrm{d}, J=4$, pyrazolyl H), $7.7(8 \mathrm{H}, \mathrm{dd}, J=16$, $8, o$ - and $m-\mathrm{H}$ of $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 8.3\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NC}_{5} \mathrm{H}_{3}\right)$ and $9.3(2 \mathrm{H}, \mathrm{d}$, $J=4 \mathrm{~Hz}$, pyrazolyl H) (Found: C, 31.9; H, 4.2. $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{ClF}_{6}-$ $\mathrm{N}_{5} \mathrm{P}_{3} \mathrm{Ru} 11$ requires $\mathrm{C}, 31.7 ; \mathrm{H}, 4.2$. Found: C, $40.5 ; \mathrm{H}, 6.35$. $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Ru} \cdot 0.75 \mathrm{C}_{6} \mathrm{H}_{14}$ requires $\mathrm{C}, 40.8 ; \mathrm{H}, 6.0$. Found: C, $46.3 ; \mathrm{H}, 4.7 . \mathrm{C}_{29} \mathrm{H}_{35} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Ru} 13$ requires C , 46.4; $\mathrm{H}, 4.7$. Found: $\mathrm{C}, 42.5 ; \mathrm{H}, 4.0 . \mathrm{C}_{29} \mathrm{H}_{33} \mathrm{Cl}_{4} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Ru}$ requires $\mathrm{C}, 42.5 ; \mathrm{H}, 4.05 \%$).
trans- $\left[\mathrm{RuL}\left(\mathrm{NO}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right] \mathrm{ClO}_{4}(\mathrm{~L}=$ bpp 15, bdmpp 16, bppp 17 or bcppp 18). In a typical preparation, one of complexes
$11-14(0.10 \mathrm{~g})$ was dissolved in $95 \% \mathrm{EtOH}$-water ($50: 50, \mathrm{v} / \mathrm{v} ; 30$ cm^{3}). Solid NaNO_{2} (20 equivalents) was added to the orange solution and the mixture refluxed for $1-3 \mathrm{~h}$. The yellow solution was reduced to $10 \mathrm{~cm}^{3}$ on a rotary evaporator and solid $\mathrm{NaClO}_{4}(1 \mathrm{~g})$ was added. The resulting yellow solid was filtered off, washed with diethyl ether and air dried. The complexes were purified by elution through a deactivated $\left(1 \mathrm{~cm}^{3}\right.$ water, $10 \mathrm{~cm}^{3}$ alumina) alumina column using acetone as the eluent. The initial yellow band was reduced in volume and titurated into toluene. Yield $70-90 \%$. The crystals for X -ray diffraction studies were prepared by slow evaporation over a period of days to weeks by the 'vial-within-a-vial' technique. For 15 and 16 a solution of acetone-cyclohexane was used while for 17 and 18 an EtOH -water mixture was used. NMR: ${ }^{1} \mathrm{H}, 15(90 \mathrm{MHz}$, CDCl_{3}), $\delta 0.8\left(18 \mathrm{H}, \mathrm{t}, J=3, \mathrm{PMe}_{3}\right), 6.9(2 \mathrm{H}, \mathrm{t}, J=3$, pyrazolyl H), $8.3\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NC}_{5} \mathrm{H}_{3}\right), 8.4(2 \mathrm{H}, \mathrm{d}, J=3$, pyrazolyl H), $8.9\left(2 \mathrm{H}, \mathrm{d}, J=3\right.$, pyrazolyl H); $16\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta 0.9$ $\left(18 \mathrm{H}, \mathrm{t}, J=3, \mathrm{PMe}_{3}\right), 2.4(6 \mathrm{H}, \mathrm{s}$, pyrazolyl Me), $3.0(6 \mathrm{H}, \mathrm{s}$, pyrazolyl Me), 6.4 (2 H, s, pyrazolyl H), 8.2 (3 H, m, NC ${ }_{5} \mathrm{H}_{3}$); $17\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 0.7\left(18 \mathrm{H}, \mathrm{t}, J=3, \mathrm{PMe}_{3}\right), 6.9(2 \mathrm{H}, \mathrm{d}$, $J=3$, pyrazolyl H), $7.3\left(6 \mathrm{H}, \mathrm{m}, m\right.$ - and $p-\mathrm{H}$ of $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 7.5(4 \mathrm{H}$, $\mathrm{m}, o-\mathrm{H}$ of $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 8.2\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NC}_{5} \mathrm{H}_{3}\right), 9.0(2 \mathrm{H}, \mathrm{d}, J=3$, pyrazolyl H); $18\left(90 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right), 0.8(18 \mathrm{H}, \mathrm{t}, J=4$, PMe_{3}), $7.2(2 \mathrm{H}, \mathrm{d}, J=4$, pyrazolyl H), $7.6(8 \mathrm{H}, \mathrm{dd}, J=35$, $12, m-$ and $p-\mathrm{H}$ of $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 8.4\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NC}_{5} \mathrm{H}_{3}\right), 9.4(2 \mathrm{H}, \mathrm{d}, J=$ 4, pyrazolyl H); ${ }^{13} \mathrm{C}(300 \mathrm{MHz}), 15\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right), \delta 10.8(\mathrm{t}$, $J=14), 109.0,112.1,133.4,140.9,146.8,150.4 ; 16\left(\mathrm{CDCl}_{3}\right)$, $12.1(\mathrm{t}, J=13), 13.6,14.9,108.1,113.1,140.8,145.6,149.2$, 157.1; $17\left(\mathrm{CDCl}_{3}\right), 12.9(\mathrm{t}, J=14), 107.9,112.8,115.3,128.6$, $128.7,128.9,130.6,133.8,148.1,162.5 ; 18\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right), 12.9$ $(\mathrm{t}, J=14 \mathrm{~Hz}), 108.2,112.9,127.3,129.2,129.9,134.0,148.0$, 161.5. IR $\left(v_{\text {sym }}, v_{\text {asym }}\right): 15,1300,1320 ; 16,1270,1290 ; 17,1300$, 1330; 18, 1290, $1330 \mathrm{~cm}^{-1}$ (Found: $\mathrm{C}, 33.6 ; \mathrm{H}, 4.4 . \mathrm{C}_{17} \mathrm{H}_{27^{-}}$ $\mathrm{ClN}_{6} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{Ru} 15$ requires $\mathrm{C}, 33.5 ; \mathrm{H}, 4.5$. Found: $\mathrm{C}, 36.9 ; \mathrm{H}$, 5.4. $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{ClN}_{6} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{Ru} 16$ requires $\mathrm{C}, 36.9 ; \mathrm{H}, 5.5$. Found: C , 45.4; $\mathrm{H}, 4.6 . \mathrm{C}_{29} \mathrm{H}_{35} \mathrm{ClN}_{6} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{Ru} 17$ requires $\mathrm{C}, 45.7 ; \mathrm{H}, 4.6$. Found: C, 41.75; $\mathrm{H}, 4.0 . \mathrm{C}_{29} \mathrm{H}_{33} \mathrm{Cl}_{3} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{Ru} 18$ requires C , 41.9; H, 4.0\%).
trans-[RuL(NO)(PMe $\left.)_{2}\right]\left[\mathrm{ClO}_{4}\right]_{3}(\mathrm{~L}=$ bpp 19, bdmpp 20, bppp 21 or bcppp 22). These reactions were not conducted under $\mathrm{N}_{2}(\mathrm{~g})$. In a typical preparation, one of complexes 15-18 (0.025 g) was dissolved in acetone $\left(2-5 \mathrm{~cm}^{3}\right)$. Three drops of 70% perchloric acid were added to the stirring solution causing an immediate colour change to light orange. After 2-3 min of stirring, diethyl ether $\left(20 \mathrm{~cm}^{3}\right)$ was added to precipitate the yellow-orange complex. The product was filtered off, washed with diethyl ether and air dried. Yields $85-95 \%$. IR $\left(v_{\mathrm{NO}}\right): 19$, 1920; 20, 1910; 21, 1920; 22, $1930 \mathrm{~cm}^{-1}$ (Found: C, 25.8; H, 3.4. $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{Cl}_{3} \mathrm{~N}_{6} \mathrm{O}_{13} \mathrm{P}_{2} \mathrm{Ru} 19$ requires $\mathrm{C}, 25.8 ; \mathrm{H}, 3.4$. Found: C, 29.4; $\mathrm{H}, 4.2 . \mathrm{C}_{21} \mathrm{H}_{35} \mathrm{Cl}_{3} \mathrm{~N}_{6} \mathrm{O}_{13} \mathrm{P}_{2} \mathrm{Ru} 20$ requires $\mathrm{C}, 29.7 ; \mathrm{H}, 4.2$. Found: C, 36.8; $\mathrm{H}, 3.8 . \mathrm{C}_{29} \mathrm{H}_{35} \mathrm{Cl}_{3} \mathrm{~N}_{6} \mathrm{O}_{13} \mathrm{P}_{2} \mathrm{Ru} 21$ requires C, 36.9; H, 3.7. Found: C, 34.2; H, 3.3. $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{Cl}_{5} \mathrm{~N}_{6} \mathrm{O}_{13} \mathrm{P}_{2} \mathrm{Ru} 22$ requires $\mathrm{C}, 34.35 ; \mathrm{H}, 3.3 \%$.
trans- $\left[\mathrm{Ru}(\mathrm{bpp})\left(\mathrm{NO}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right]\left[\mathrm{AsF}_{6}\right]_{2}$ 23. This reaction was not conducted in $\mathrm{N}_{2}(\mathrm{~g})$ and all reagents were first chilled in an ice-bath. Complex $15\left(0.020 \mathrm{~g}, 3.35 \times 10^{-5} \mathrm{~mol}\right)$ was dissolved in distilled water $\left(4.5 \mathrm{~cm}^{3}\right)$. The oxidant, $\left[\mathrm{NH}_{4}\right]_{2}\left[\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}\right](0.367 \mathrm{~g}, 20$ equivalents), was dissolved in the minimum of distilled water and added to the ruthenium solution. After 1 min , a solution of $\operatorname{LiAsF}_{6}(1 \mathrm{~g})$ dissolved in distilled water ($1 \mathrm{~cm}^{3}$) was added to precipitate the purple solid which was filtered immediately through a cold glass frit. The solid was washed with the minimum volume of cold water and allowed to air dry. Yields averaged 50%. The solid was stored in solid CO_{2}, and no elemental analysis was obtained.

Results and Discussion

This paper describes the preparation and characterization of a new series of trans-bis(phosphine)nitroruthenium complexes containing parent and substituted bpp ligands. The syntheses of
these new complexes followed the general methods reported recently for $\mathrm{Ru}(\mathrm{bppp}) \mathrm{Cl}^{20}$ and $\mathrm{Ru}($ terpy $)\left(\mathrm{NO}_{2}\right)$ complexes, ${ }^{22-24}$ with some important modifications. Longer reaction times and higher reaction temperatures were required to synthesise the $\mathrm{Ru}(\mathrm{bpp})$ complexes relative to the analogous (terpy) complex. However, we observed that even the sterically hindered bpp ligands such as bppp could be combined with ruthenium. This observation was unexpected and is particularly useful, because it is our experience that a sterically hindered terpy ligand, such as the $6,6^{\prime \prime}$-diphenyl derivative cannot be utilized to form the RuCl_{3} complex. ${ }^{20}$

NMR Spectroscopy.-Proton NMR spectroscopy of the trans-[RuL(Cl) $\left.\left(\mathrm{PMe}_{3}\right)_{2}\right]^{+} \quad 11-14$ and trans-[RuL(NO_{2})-$\left.\left(\mathrm{PMe}_{3}\right)_{2}\right]^{+}$15-18 complexes was utilized to determine the ligand arrangement about the ruthenium centre. The spectral data are consistent with terdentate bpp ligand co-ordination. A trans-phosphine arrangement, with overall $C_{2 v}$ symmetry of the cation, was suggested for all of the trans- $\left[\mathrm{RuL}(\mathrm{Cl})\left(\mathrm{PMe}_{3}\right)_{2}\right]$ ClO_{4} and trans- $\left[\mathrm{RuL}\left(\mathrm{NO}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$ complexes.

The resonances for the methyl protons of the trans- PMe_{3} ligands in both the trans- $\left[\mathrm{RuL}(\mathrm{Cl})\left(\mathrm{PMe}_{3}\right)_{2}\right]^{+}$and trans- $[\mathrm{RuL}-$ $\left.\left(\mathrm{NO}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right]^{+}$complexes occurred between $\delta 0.7$ and 0.9 in the ${ }^{1} \mathrm{H}$ NMR spectra. The complexes exhibited a $1: 2: 1$ triplet due to virtual coupling of the phosphorus atoms where the coupling constant was $3-4 \mathrm{~Hz}$. This strongly suggested the trans arrangement of the phosphine ligand. ${ }^{25-28}$ The trans-phosphine arrangement, along with the $C_{2 v}$ symmetry of the cations, was corroborated by the crystal structures of the nitroruthenium(II) complexes.
The completely proton-decoupled ${ }^{13} \mathrm{C}$ NMR spectra of the trans- $\left[\mathrm{RuL}\left(\mathrm{NO}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right]^{+}$cations also suggested an overall $C_{2 v}$ symmetry, consistent with an octahedral, trans-phosphine configuration. The spectra for these complexes displayed the appropriate number of resonances due to the unique carbon atoms of the bpp ligands. The resonances at $\delta 10.8-12.9$ were assigned to the six chemically equivalent carbon atoms from the two phosphine ligands. These resonances were also split into a virtual triplet due to coupling with both phosphorus nuclei, with $J=3-4 \mathrm{~Hz}$.

Infrared Spectroscopy.-The infrared spectra of the complexes 15-18 were used to investigate the bonding of the nitrite ligand. For all four complexes the nitrite ligand is in the N-bonded (nitro) configuration and assignments of $v_{\text {asym }}$ (asymmetric $\mathrm{N}-\mathrm{O}$ stretch) and $v_{\text {sym }}$ (symmetric $\mathrm{N}-\mathrm{O}$ stretch) were made by peak-by-peak inspection of the IR spectra of the trans- $\left[\mathrm{RuL}\left(\mathrm{NO}_{2}\right)\right.$ $\left.\left(\mathrm{PMe}_{3}\right)_{2}\right]_{\mathrm{ClO}_{4}}$ complexes in comparison to those of the trans$\left[\mathrm{RuL}(\mathrm{Cl})\left(\mathrm{PMe}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$ precursors. Absorbances for the bpp family of complexes occurred between 1270 and $1300 \mathrm{~cm}^{-1}$ for the $v_{\text {sym }}$ and 1290 and $1330 \mathrm{~cm}^{-1}$ for the $v_{\text {asym }} \mathrm{N}-\mathrm{O}$ stretches. Interestingly, typical nitro complexes have $v_{\text {sym }}\left(\mathrm{NO}_{2}\right)$ and $v_{\text {asym }}\left(\mathrm{NO}_{2}\right)$ absorbances in the $1340-1320$ and $1470-1370 \mathrm{~cm}^{-1}$ regions respectively, while nitrito complexes have two characteristic absorbances, $v(N=O)$ at $1485-1400$ and $v(N O)$ at $1110-$ $1050 \mathrm{~cm}^{-1} .{ }^{29-33}$ Although the IR absorbances observed for the bpp complexes have lower wavenumbers than those of most transition-metal nitro complexes, ${ }^{33}$ these absorbances were consistent with N-bonding of the nitro ligand in trans[Ru(terpy) $\left.\left(\mathrm{NO}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right] \mathrm{ClO}_{4}\left(v_{\text {asym }} 1324\right.$ and $\left.v_{\text {sym }} 1297 \mathrm{~cm}^{-1}\right)$ for which an isotopic (${ }^{15} \mathrm{NO}_{2}$) labelling study was reported. ${ }^{23}$ For comparison, the free $\mathrm{NO}_{2}{ }^{-}$anion exhibits absorbances at 1250 and $1335 \mathrm{~cm}^{-1}$ ($v_{\text {asym }}, v_{\text {sym }}$ respectively). ${ }^{15}$

Notably, a linear correlation exists (slope $=-0.046, R^{2}=$ 0.99) between the ratio of the $\mathrm{N}-\mathrm{O}$ bond distances and the differences in absorbance due to the symmetric and asymmetric $\mathrm{N}-\mathrm{O}$ stretches. The bond-distance ratio $=$ shorter $\mathrm{N}-\mathrm{O}$ bond distance/longer $\mathrm{N}-\mathrm{O}$ bond distance, and thus a ratio of unity is expected for nitro complexes. This correlation shows that the $\mathrm{N}-\mathrm{O}$ bond-distance ratios decrease (the bonds become more inequivalent in length) as the differences in the infrared

Table 1 The UV/VIS spectral data for $\mathrm{RuL}\left(\mathrm{PMe}_{3}\right)$ complexes

Complex

5 trans-[Ru(bpp) $\left.\mathrm{Cl}_{2}\left(\mathrm{PMe}_{3}\right)\right]$
6 trans-[Ru(dmbpp)Cl $\left.{ }_{2}\left(\mathrm{PMe}_{3}\right)\right]$
7 trans-[$\left.\mathrm{Ru}(\mathrm{bppp}) \mathrm{Cl}_{2}\left(\mathrm{PMe}_{3}\right)\right]^{b}$
8 trans-[$\left.\mathrm{Ru}(\mathrm{bcppp}) \mathrm{Cl}_{2}\left(\mathrm{PMe}_{3}\right)\right]^{b}$
9 cis $-\left[\mathrm{Ru}(\mathrm{bpp}) \mathrm{Cl}_{2}\left(\mathrm{PMe}_{3}\right)\right]$
10 cis- $\left[\mathrm{Ru}(\mathrm{bppp}) \mathrm{Cl}_{2}\left(\mathrm{PMe}_{3}\right)\right]^{b}$
11 trans-[Ru(bpp)Cl($\left.\left.\mathrm{PMe}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$
12 trans-[Ru(bdmpp)Cl(PMe $\left.)_{3}\right)_{2} \mathrm{ClO}_{4}$
13 trans-[Ru(bppp) $\left.\mathrm{Cl}\left(\mathrm{PMe}_{3}\right)_{2}\right] \mathrm{ClO}_{4}{ }^{\text {b }}$
14 trans- $\left[\mathrm{Ru}(\mathrm{bcppp}) \mathrm{Cl}\left(\mathrm{PMe}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$
15 trans- $\left[\mathrm{Ru}(\mathrm{bpp})\left(\mathrm{NO}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right] \mathrm{ClO}_{4}{ }^{\text {c }}$
16 trans-[Ru(bdmpp) $\left.\left(\mathrm{NO}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right] \mathrm{ClO}_{4}{ }^{\text {c }}$
17 trans-[Ru(bppp) $\left.\left(\mathrm{NO}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right] \mathrm{ClO}_{4}{ }^{c}$
18 trans-[Ru(bcppp) $\left.\left(\mathrm{NO}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right] \mathrm{ClO}_{4}{ }^{c}$
19 trans- $\left[\mathrm{Ru}(\mathrm{bpp})(\mathrm{NO})\left(\mathrm{PMe}_{3}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right]_{3}{ }^{c}$
20 trans-[Ru(bdmpp)(NO)($\left.\left.\mathrm{PMe}_{3}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right]_{3}{ }^{\text {c }}$ 21 trans- $\left[\mathrm{Ru}(\mathrm{bppp})(\mathrm{NO})\left(\mathrm{PMe}_{3}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right]_{3}{ }^{c}$
22 trans-[Ru(bcppp)(NO)($\left.\left.\mathrm{PMe}_{3}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right]_{3}{ }^{c}$
23 trans- $\left[\mathrm{Ru}(\mathrm{bpp})\left(\mathrm{NO}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right]\left[\mathrm{AsF}_{6}\right]_{2}{ }^{c}$
$\lambda_{\text {max }} / \mathrm{nm}\left(10^{-3} \varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)^{a}$
468(4.7), 343 (2.6), 307(22.5), 291 (sh),-275(17.0), 265(sh)
470 (5.2), 313 (25.9), 271 (29.9)
495 (3.4), 364 (2.9), 326 (14.7), 316 (sh), 292 (19.3)
494 (4.3), 327 (23.7), 292 (49.6)
446 (3.7), 408 (sh), 300 (12.3), 272 (14.6), 267 (sh)
483 (5.2), 319 (19.2), 292 (25.8)
426 (3.8), 386 (sh), 283 (23.7), 269 (27.6)
427 (6.4), 315 (22.8), 390 (sh), 270 (38.6)
434 (6.2), 320 (24.1), 284 (37.7)
426 (6.4), 320 (22.9), 292 (49.7)
368 (6.1), 303 (18.8), 292 (sh), 271 (27.3), 262 (sh)
391 (4.3), 314 (23.8), 306 (sh), 272 (33.0), 264 (sh)
397 (4.2), 324 (23.9), 283 (41.7)
408 (4.3), 329 (25.6), 290 (49.6)
361 (2.9), 300 (sh), 250 (27.9)
361 (2.9), 300 (sh), 250 (26.4)
382 (3.0), 326 (sh), 277 (34.0)
390 (3.0), 328 (sh), 280 (34.0)
363 (1.0), 321 (3.2), 300 (5.8), 262 (11.6), 216 (16.5)
${ }^{a}$ Spectra were taken in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; sh $=$ shoulder. ${ }^{b}$ Reported in ref. 20. ${ }^{c}$ Spectrum taken in MeCN.
absorbances increase towards the $\mathrm{N}-\mathrm{O}$ single- and double-bond frequencies observed for nitrito compounds such as MeONO. A linear correlation exists for complexes of $\mathrm{Ni}, \mathrm{Zn}, \mathrm{Cu}$ and Co containing chelated, asymmetrically chelated, monodentate nitrito and bridging nitrite groups ${ }^{15}$ and our study now extends this phenomenon to nitro complexes of ruthenium. Also, the differences in the absorbances due to the $\mathrm{N}-\mathrm{O}$ stretches and the inequality of the $\mathrm{N}-\mathrm{O}$ bond lengths increase as the substituents on the bpp ligand increase in size. The bpp ligand provides the greatest equality in $\mathrm{N}-\mathrm{O}$ bond distances and the smallest difference in symmetric and asymmetric $\mathrm{N}-\mathrm{O}$ stretching modes followed by bdmpp, bppp and beppp respectively. This ordering is also observed regarding the stability of the electrochemically generated nitroruthenium(III) complexes (see below).
The infrared spectra of the trans-[RuL(NO) $\left.\left(\mathrm{PMe}_{3}\right)_{2}\right]$ $\left[\mathrm{ClO}_{4}\right]_{3}$ 19-22 complexes suggested linear NO^{+}ligands with v_{NO} in the region of $1910-1930 \mathrm{~cm}^{-1}$. This was consistent with the linear NO range of Haymore and Ibers ${ }^{34}$ ($v_{\text {NO }}$ above 1620$1610 \mathrm{~cm}^{-1}$ were assigned to linear $\mathrm{M}-\mathrm{N}-\mathrm{O}$ systems, while v_{NO} below $1610 \mathrm{~cm}^{-1}$ were assigned to bent $\mathrm{M}-\mathrm{N}-\mathrm{O}$ systems).

Electronic Spectroscopy.-The ultraviolet-visible transitions of the $\mathrm{RuL}\left(\mathrm{PMe}_{3}\right)$ complexes are given in Table 1. For trans$\left[\mathrm{RuLCl}_{2}\left(\mathrm{PMe}_{3}\right)\right]$ 5-8 the transitions in the range of 495-470 nm were assigned to $\mathrm{d}_{\pi}(\mathrm{Ru}) \longrightarrow \pi^{*}(\mathrm{~L})$ metal-to-ligand chargetransfer (m.l.c.t.) bands as observed for other trans-phosphineruthenium(II) complexes. ${ }^{35-39}$ The lower-wavelength transition ($<400 \mathrm{~nm}$) were assigned as $\pi \longrightarrow \pi^{*}$ ligand-localized transitions, in analogy to those for other reported Ru(terpy) complexes. ${ }^{36-40}$ The transitions with low absorption coefficients ($\varepsilon<3000 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$) at 343 and 364 nm for complexes 5 and 7, respectively, could also be assigned to d-d transitions in analogy to other ruthenium(II) complexes with strong-field ligands.

The addition of a second phosphine to form the trans$\left[\mathrm{RuL}(\mathrm{Cl})\left(\mathrm{PMe}_{3}\right)_{2}\right]^{+} \mathbf{1 1 - 1 4}$ complexes and the change from a neutral to a positively charged complex resulted in a shift of all of the m.l.c.t. transitions to shorter wavelengths. Complexes $11-$ 14 demonstrated a shift of $80-100 \mathrm{~nm}$ to shorter wavelengths for the m.l.c.t. transitions on substitution of the chloride ligand for trimethylphosphine. This was less than the decrease of 142 nm observed for the change from trans- $\left[\mathrm{Ru}(\right.$ terpy $\left.) \mathrm{Cl}_{2}\left(\mathrm{PMe}_{3}\right)\right]$ to trans- $\left[\mathrm{Ru}(\text { terpy }) \mathrm{Cl}\left(\mathrm{PMe}_{3}\right)_{2}\right]^{+} .{ }^{23}$ Those transitions at wavelengths $<350 \mathrm{~nm}$ were again assigned to $\pi \longrightarrow \pi^{*}$ ligandlocalized transitions by analogy to $\mathrm{Ru}\left(\right.$ terpy) complexes. ${ }^{36-40}$

The UV/VIS spectra of trans-[RuL($\left.\left.\mathrm{NO}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right]^{+}$15-18
complexes contained three absorbances. The shift to shorter wavelengths upon substitution of the Cl^{-}ligand by the $\mathrm{NO}_{2}{ }^{-}$ ligand was consistent with the observed increase in the potentials of the $\mathrm{Ru}^{\text {III }}-\mathrm{Ru}^{\text {II }}$ couple of $\mathbf{1 5 - 1 8}$ relative to those of 11-14. The visible wavelength transitions of the trans-[RuL$\left.\left(\mathrm{NO}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right]^{+}$complexes were $42-82 \mathrm{~nm}$ lower than those of the analogous trans- $\left[\mathrm{Ru}(\text { terpy })\left(\mathrm{NO}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right]^{+}$complex. ${ }^{23}$

The electronic spectrum of trans- $\left[\mathrm{Ru}(\mathrm{bpp})\left(\mathrm{NO}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right]-$ $\left[\mathrm{AsF}_{6}\right]_{2} 23$ showed a shift in the m.l.c.t. transitions to shorter wavelengths due to the increase in charge of the complex (over that of 15). This shift resulted in no visible transitions. The ultraviolet spectrum was composed of complicated and unresolved overlapping absorbances.

Cyclic Voltammetry.-Table 2 lists the $E_{\frac{1}{2}}$ potentials, ΔE_{p} and $i_{\mathrm{pc}} / i_{\mathrm{pa}}$ ratios for the newly synthesised phosphineruthenium(II) and -(III) complexes. The trans- $\left[\mathrm{RuLCl}_{2}\left(\mathrm{PMe}_{3}\right)\right]$ 5-8, cis$\left[\mathrm{RuLCl}_{2}\left(\mathrm{PMe}_{3}\right)\right] 9,10$ and trans- $\left[\mathrm{RuL}(\mathrm{Cl})\left(\mathrm{PMe}_{3}\right)_{2}\right]^{+} 11-14$ complexes all displayed one reversible $\mathrm{Ru}^{\mathrm{III}}-\mathrm{Ru}^{\text {II }}$ couple. Fig. 1 demonstrates the cyclic voltammetry associated with trans$\left[\mathrm{RuL}\left(\mathrm{NO}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right]^{+}$complexes. Initiating each scan at 0.0 V $v s$. SSCE, an oxidative wave was present for all complexes at $c a$. $+1.0-1.3 \mathrm{~V}$ vs. SSCE corresponding to the oxidation of the ruthenium centre to ruthenium(III). Notably, oxidation of the nitroruthenium(iI) complexes occurred without substantial decomposition only in the case of 15 [Fig. 1(a)]. For cyclic voltammograms $(b)-(d)$ of Fig. 1 the reductive peak current corresponding to the interconversion of nitroruthenium-(III) to -(II) was much smaller than the oxidative peak current. This decrease indicated decomposition of the nitroruthenium(III) complexes. Furthermore, a reversible couple at $c a .+0.3-0.45 \mathrm{~V}$ was present once the nitroruthenium(II) complexes, 16-18, were oxidized. By comparison with authentic samples, this reversible wave at $+0.3-0.45 \mathrm{~V}$ was assigned to the formation of the trans$\left[\mathrm{RuL}(\mathrm{NO})\left(\mathrm{PMe}_{3}\right)_{2}\right]^{3+}$ complex. ${ }^{23,32.41} \mathrm{We}$ believe that the decomposition of the $\left[\mathrm{RuL}\left(\mathrm{NO}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right]^{2+}$ complexes follows the pathways postulated by Meyer ${ }^{41}$ based on cyclic voltammetry at much higher scan rates. A further investigation of the rates and mechanisms of decomposition of $\left[\mathrm{RuL}\left(\mathrm{NO}_{2}\right)\right.$ $\left.\left(\mathrm{PR}_{3}\right)_{2}\right]^{2+}$ complexes is currently underway. ${ }^{42}$

The stabilities of the nitroruthenium(III) complexes were quantified primarily through $i_{\mathrm{pc}} / i_{\mathrm{pa}}$ ratios obtained through cyclic voltammetry experiments. ${ }^{13}$ For example, the trans$\left[\mathrm{Ru}(\text { terpy })\left(\mathrm{NO}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right]^{+}$and trans- $\left[\mathrm{Ru}(\mathrm{bpp})\left(\mathrm{NO}_{2}\right)\right.$ $\left.\left(\mathrm{PMe}_{3}\right)_{2}\right]^{+}$complexes had $i_{\mathrm{pc}} / i_{\mathrm{pa}}$ ratios of 0.90 and $0.86: 1$ respectively. These $i_{\mathrm{pc}} / i_{\mathrm{pa}}$ ratios indicated the terpy complex was

Table 2 Potentials $E_{\frac{1}{2}}, \Delta E_{\mathrm{p}}$ and $i_{\mathrm{pc}} / i_{\mathrm{pa}}$ for $\mathrm{Ru}{ }^{\mathrm{II}} \mathrm{L}\left(\mathrm{PMe}_{3}\right)$ complexes

Complex	$E_{\frac{1}{2}}{ }^{a} / \mathrm{V}$ vs. SSCE	$\Delta E_{\mathrm{p}} / \mathrm{V}$	$i_{\mathrm{pa}} / i_{\mathrm{pc}}{ }^{\text {b }}$
5	+0.42	0.11	
6	+0.32	0.16	
$7{ }^{\circ}$	+0.41	0.08	
8	+0.46	0.08	
9	+0.65	0.08	
$10^{\text {c }}$	+0.56	0.08	
11	+1.00	0.10	
12	+0.91	0.14	
$13^{\text {c }}$	+0.94	0.14	
14	+1.02	0.15	
15^{d}	+0.14	0.12	0.86
$16^{\text {d }}$	$+1.07$	0.16	0.47
$17^{\text {d }}$	$+1.18{ }^{e}$	-	0.20
$18{ }^{\text {d }}$	$+1.22^{e}$	-	0.21
$19^{\text {d }}$	$+0.31$	0.05	
	-0.40	0.05	
20^{d}	$+0.34$	0.10	
	-0.56	0.10	
$21^{\text {d }}$	+0.40	0.05	
	-0.30	0.05	
$22^{\text {d }}$	+0.45	0.06	
	-0.25	0.11	
$23^{\text {d. } f}$	$+1.13$	0.06	

${ }^{a}$ Conditions: $0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NBu}_{4} \mathrm{BF}_{4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; platinum working electrode; SSCE reference electrode; scan rate $100 \mathrm{mV} \mathrm{s}{ }^{-1} . E_{\frac{1}{2}}=$ $\left(E_{\mathrm{p}, \text { anodic }}+E_{\mathrm{p} \text {. cathodic }}\right) / 2 ; \Delta E_{\mathrm{p}}=\left(E_{\mathrm{p}, \text { anodic }}-E_{\mathrm{p} . \text { cathodic }}\right) .{ }^{\mathrm{b}}$ The $i_{\mathrm{pc}}^{2} / i_{\mathrm{p} a}$ (where $i_{\mathrm{pc}}=$ cathodic peak current and $i_{\mathrm{pa}}=$ anodic peak current) ratios were obtained through the steady-state method of cyclic voltammetry. ${ }^{14}$ The estimated error associated with these measurements is less than 20%. ${ }^{c}$ Reported in ref. $20 .{ }^{d} 0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NBu}_{4} \mathrm{BF}_{4}$ in MeCN . ${ }^{e}$ Cyclic voltammogram was irreversible; E_{p} is for the anodic wave. ${ }^{5}$ Cyclic voltammogram was taken in solid CO_{2}-chlorobenzene bath; $-39^{\circ} \mathrm{C}$.
slightly more stable to oxidation than the corresponding bpp complex. When the two nitroruthenium(iI) complexes were oxidized chemically and isolated that containing the terpy ligand was more thermally stable than the bpp complex, being easily handled at room temperature. Thus $i_{\mathrm{pc}} / i_{\mathrm{pa}}$ ratios were a useful measure of the stability of the chemically generated oxidized species.

Steric effects were first recognized as important in reactivity and equilibrium studies of organic reactions. ${ }^{43}$ For transitionmetal complexes, the most frequently employed measure of the steric properties of phosphorus and related ligands has been the cone angle, θ, developed by Tolman. Tolman defined θ as the angle which defines a cone, $2.28 \AA$ from the centre of the P atom, which touches the outermost van der Waals radii of the substituent atoms in a Corey-Pauling-Koltun (CPK) ${ }^{44}$ molecular model. ${ }^{14}$ Although cone angle parameters have been used extensively to correlate the steric size of phosphine ligands to the rate constants of ligand substitution, CO infrared stretching frequencies, and NMR chemical shifts, similar parameters are not available in terms of multidentate pyridine-based ligands. Thus, as a first approximation of the relative steric size of the substituted bpp ligands, we utilized Tolman's cone angle values directly. For bpp (where the substituent is H) we used the cone angle of the PH_{3} ligand (87°), for bdmpp (Me substituted) we used the cone angle for trimethyl-substituted phosphine (PMe_{3}, 118°), for bppp (Ph substituted) and beppp ($p-\mathrm{ClC}_{6} \mathrm{H}_{4}$ substituted) we used the cone angle value of triphenyl-substituted phosphine $\left(\mathrm{PPh}_{3}, 145^{\circ}\right)$. Even though θ was originally established for phosphine ligands, the $\log \left(i_{\mathrm{pc}} / i_{\mathrm{pa}}\right)$ ratios for the terdentate bpp ligands were linearly correlated (slope $=$ $-0.011 \mathrm{deg}^{-1}, R^{2}=0.99$) with the relative increases in steric size observed with θ. This correlation led us to conclude that increasing the steric size of the substituents on the bpp ligands causes the instability of the electrochemically generated nitroruthenium(III) complexes.

Fig. 1 Cyclic voltammograms in $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NBu}_{4} \mathrm{BF}_{4}$ in acetonitrile at a platinum working electrode versus SSCE at a scan rate of 100 $\mathrm{mV} \mathrm{s}{ }^{-1}:(a)\left[\mathrm{Ru}(\mathrm{bpp})\left(\mathrm{NO}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right] \mathrm{ClO}_{4} \mathbf{1 5}$, (b) $\left[\mathrm{Ru}(\mathrm{bdmpp})\left(\mathrm{NO}_{2}\right)-\right.$ $\left.\left(\mathrm{PMe}_{3}\right)_{2}\right] \mathrm{ClO}_{4} 16,(c)\left[\mathrm{Ru}(\right.$ bppp $\left.)\left(\mathrm{NO}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right] \mathrm{ClO}_{4} 17$ and (d) $\left[\mathrm{Ru}(\mathrm{bcppp})\left(\mathrm{NO}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right] \mathrm{ClO}_{4} 18$

The $\log \left(i_{\mathrm{pc}} / i_{\mathrm{pa}}\right)$ ratios also produced a linear correlation (slope $=-5.6 \AA^{-1}, R^{2}=0.93$) with the distance of the nitro ligand out of the RuL plane. Movement of the co-ordinated nitrogen of the nitro ligand away from the meridional coordination plane (defined by the three co-ordinating nitrogens of the terdentate ligand) is another mechanism which might relieve steric crowding. In 15 , which has no substituents, the nitrogen atom of the nitro ligand is found precisely in the meridional co-ordination plane. In 16, which has methyl substituents, the nitrogen atom of the nitrite ligand is displaced only $0.012 \AA$ from the meridional plane. In 17 and 18 , with bulky groups (phenyl and p-chlorophenyl, respectively) as substituents, the nitrogen atoms of the nitrite groups are displaced by 0.100 and $0.091 \AA$, respectively. This correlation indicates that the stability of the nitroruthenium(iII) complexes decreases as the distance of the nitro ligand out of the plane increases. While the decomposition of nitroruthenium(III) complexes has been studied extensively in terms of product distributions, ${ }^{32,41}$ these two correlations [namely $\log \left(i_{\mathrm{pc}} / i_{\mathrm{pa}}\right) v s$. θ and $v s$. distance of the nitro nitrogen from the meridional plane] allow us to offer new insight into the underlying cause of this decomposition. We postulate that, for these complexes, the cause of nitroruthenium(III) decomposition is primarily steric in nature.

Crystal Structure Analysis.-The crystal structures of complexes $15,16 \cdot \mathrm{H}_{2} \mathrm{O}, 17$, and $18 \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ consisted of ordered arrays of ruthenium cations and $\mathrm{ClO}_{4}{ }^{-}$anions in a $1: 1$ stoichiometry. Two of the crystal structures also revealed water of hydration. The experimental data for these X-ray diffraction studies are collected in Table 3. Atomic coordinates for all four structures are given in Tables 4-7. The perchlorate anions in the structures of 15 and 17 suffer from disorder.
trans- $\left[\mathrm{Ru}(\mathrm{bpp})\left(\mathrm{NO}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$ 15. Interatomic distances and angles and their estimated standard deviations

Table 3 Experimental data for the crystallographic studies*

Compound	15	16. $\mathrm{H}_{2} \mathrm{O}$	17	18.0.5 $\mathrm{H}_{2} \mathrm{O}$
Empirical formula	$\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{ClN}_{6} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{Ru}$	$\begin{aligned} & \mathrm{C}_{21} \mathrm{H}_{35} \mathrm{ClN}_{6} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{Ru} \\ & \mathrm{H}_{2} \mathrm{O} \end{aligned}$	$\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{ClN}_{6} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{Ru}$	$\begin{aligned} & \mathrm{C}_{29} \mathrm{H}_{33} \mathrm{Cl}_{3} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{Ru} \cdot \\ & 0.5 \mathrm{H}_{2} \mathrm{O} \end{aligned}$
Formula weight	609.9	684.0	762.1	840.0
Colour, habit	Lemon-yellow crystal	Lemon-yellow crystal	Yellow crystal	Yellow-green crystal
Crystal size (mm)	$0.35 \times 0.3 \times 0.3$	$0.3 \times 0.3 \times 0.25$	$0.4 \times 0.4 \times 0.5$	$0.4 \times 0.35 \times 0.3$
Crystal system	Tetragonal	Orthorhombic	Monoclinic	Monoclinic
Space group	$P 42{ }_{1}$ m	$P 2,{ }_{1}{ }_{1}{ }_{1}$	$P 2_{1} / \boldsymbol{n}$	Pc
a / \AA	9.5890(10)	9.370(2)	9.9420 (10)	15.249(2)
b / \AA		9.803(2)	24.073(4)	10.168(2)
c / \AA	13.525(2)	32.860(11)	14.303(2)	23.360(3)
$\beta /{ }^{\circ}$			93.32(1)	93.49(1)
$\boldsymbol{U} / \AA^{\mathbf{3}}$	1243.6(4)	3018.3(14)	3417.3(9)	3615.3(9)
Z	2	4	4	4
$D_{\mathrm{c}} / \mathrm{Mg} \mathrm{m}^{\mathbf{3}}$	1.629	1.501	1.481	1.543
μ / mm^{-1}	0.895	0.748	0.667	0.784
$F(000)$	620	1404	1560	1708
2θ Range $/{ }^{\circ}$	5.0-50.0	$5.0-45.0$	8.0-50.0	5.0-50.0
Scan type	$2 \theta-\theta$	ω	ω	$2 \theta-\theta$
Scan speed $/{ }^{\circ} \mathrm{min}^{-1}$	Constant, 1.75	2.00	2.76	3.00
Scan range ($\omega /{ }^{\circ}$)	0.48° plus $\mathrm{K} \alpha$ separation	0.70	0.60	0.50
h, k, l	$\begin{aligned} & -11 \text { to } 0,-11 \text { to } 11, \\ & -16 \text { to } 16 \end{aligned}$	$0-10,0-10,-35$ to 35	$\begin{aligned} & -12 \text { to } 12,0-29,-18 \\ & \text { to } 18 \end{aligned}$	$\begin{aligned} & -18 \text { to } 18,0-12,-27 \\ & \text { to } 27 \end{aligned}$
Reflections collected	4714	4496	12360	13572
Independent reflections $\left(R_{\mathrm{inn}} \text { in } \%\right. \text {) }$	1212 (0.78)	3960 (0.85)	6026 (1.7)	12780 (2.4)
Reflections > $6 \boldsymbol{\sigma}$	1155	3138	4286	8716
Minimum, maximum transmission	0.5328, 0.5767	0.6758, 0.7222	0.6225, 0.6382	0.6555, 0.6914
Absolute structure, η	1.06(9)	1.04(8)	Not applicable	1.08(7)
Hydrogen atoms	Riding model, refined isotropic U	Fixed isotropic U	Fixed isotropic U	Fixed isotropic U
Extinction correction, χ	0.000 07(5)	0.000 48(11)	0.000 40(9)	0.000 08(4)
Weighting scheme, w^{-1}	$\sigma^{2}(F)+0.0007 F^{2}$	$\sigma^{2}(F)+0.0016 F^{2}$	$\sigma^{2}(F)+0.0008 F^{2}$	$\sigma^{2}(F)+0.0027 F^{2}$
Number of parameters refined	109	344	419	855
Final indices R, R^{\prime} (all data)	0.0210, 0.0292	0.0471, 0.0523	0.0550, 0.0540	0.0677, 0.0683
(6σ data)	0.0196, 0.0282	0.0332, 0.0462	0.0352, 0.0474	0.0425, 0.0569
Goodness-of-fit	0.97	0.96	1.19	0.85
Largest and mean Δ / σ	0.011, 0.001	0.001, 0.000	0.009, 0.001	0.014, 0.000
Data-to-parameter ratio	11.1:1	11.5:1	14.4:1	14.9:1
Largest difference peak, hole/e \AA^{-3}	0.47, -0.32	0.84, -0.80	0.55, -0.50	0.99, -0.87

* Details in common: background measurement, stationary crystal-stationary counter at beginning and end of scan, each for 25% of total scan time; three standard reflections every 97 ; full-matrix least-squares refinement; quantity minimized $\Sigma w\left(F_{0}-F_{\mathrm{c}}\right)^{2} ; F^{*}=F\left[1+\left(0.002 \chi F^{2} / \sin 2 \theta\right)\right]^{-1}$.

Fig. 2 An ORTEP II view of $\left[\mathrm{Ru}(\mathrm{bpp})\left(\mathrm{NO}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right] \mathrm{ClO}_{4} 15$
(e.s.d.s) are listed in Table 8. A perspective view of the molecule, with the atomic numbering scheme, is shown in Fig. 2. The crystal structure confirmed the $C_{2 v}$ symmetry assigned to this complex. It is important to note that the ruthenium atom lies at the intersection of two mirror planes, one of which contains all atoms of the bpp ligand, while the other contains the phosphorus atoms of the PMe_{3} ligands and the nitrogen atom of the nitro ligand $\left[\mathrm{Ru}-\mathrm{NO}_{2} 2.058(4) \AA\right]$. The angles $\mathrm{Ru}(1)-\mathrm{N}(1)-$ $\mathrm{O}(1)$ and $\mathrm{Ru}(1)-\mathrm{N}(1)-\mathrm{O}(1 \mathrm{a})$ are each 122.9(2) ${ }^{\circ}$, and all atoms of the nitro ligand are contained in the plane of the ruthenium atom and all atoms of the bpp ligand. The angle $\mathrm{O}(1)-\mathrm{N}(1)-$ $\mathrm{O}(1 \mathrm{a})$ is $114.1(5)^{\circ}$. The $\mathrm{O}-\mathrm{N}-\mathrm{O}$ angles of all four nitro complexes reported here are in the middle of the range (113$127^{\circ}$) of those in nitro complexes of such transition metals as $\mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}, \mathrm{Pd}, \mathrm{Pt}$ and $\mathrm{Ru} .^{45,46}$
The symmetry of this molecule requires that the two trimethylphosphine ligands be directly opposite each other, where the $\mathrm{P}(1)-\mathrm{Ru}-\mathrm{P}(1 \mathrm{a})$ bond angle is $176.0(1)^{\circ}$. The observed Ru-P bond distances are 2.360 (1) \AA and are within the range of $2.26-2.41 \AA$ reported for other $\mathrm{Ru}-\mathrm{P}$ complexes. ${ }^{23,45-51}$ The bpp ligand is bound to the three remaining co-ordination sites in a meridional fashion through three of the nitrogen atoms. The central pyridine fragment of the terdentate ligand is

Fig. 3 An ORTEP II view of $\left[\mathrm{Ru}(\right.$ bdmpp $\left.)\left(\mathrm{NO}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right] \mathrm{ClO}_{4} 16$
bound trans to the nitro ligand, with $\mathrm{Ru}-\mathrm{N}(11) 1.990(3) \AA$. The $\mathrm{Ru}-\mathrm{N}$ (central pyridine) bond length in [Ru(terpy) $\left(\mathrm{NO}_{2}\right)$ $\left.\left(\mathrm{PMe}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$ and in all of the $\left[\mathrm{RuL}\left(\mathrm{NO}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$ complexes are within $0.01 \AA$ of $1.99 \AA$. These values can be compared to those of the $\left[\mathrm{Ru}(\mathrm{bipy})_{3}\right]^{2+}$ complex where the average $\mathrm{Ru}-\mathrm{N}($ bipy) bond distance is $2.056 \AA$ and of [Ru(py$\left.)_{6}\right]^{2+}$ ($\mathrm{py}=$ pyridine) where the average $\mathrm{Ru}-\mathrm{N}$ (pyridine) bond distance is $2.12 \AA .{ }^{52}$ Finally, the constraints of the bpp ligand result in a significant deviation from a regular octahedral co-ordination geometry, as is shown by the $\mathrm{Ru}-\mathrm{N}(21)$ and $\mathrm{Ru}-\mathrm{N}(21 \mathrm{a})$ bond lengths of $2.070(3) \AA$ [some $0.080 \AA$ longer than the $\mathrm{Ru}-\mathrm{N}(11)$ distance of $1.990(3) \AA]$ and the acute $\mathrm{N}(11)-\mathrm{Ru}-\mathrm{N}(21)$ and $\mathrm{N}(11)-\mathrm{Ru}-\mathrm{N}(21 \mathrm{a})$ bond angles of $78.6(1)^{\circ}$.
trans- $\left[\mathrm{Ru}(\right.$ bdmpp $\left.)\left(\mathrm{NO}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right] \mathrm{ClO}_{4} \cdot \mathrm{H}_{2} \mathrm{O} \mathbf{1 6} \cdot \mathrm{H}_{2} \mathrm{O}$. Interatomic distances and angles are given in Table 9 and the molecule is illustrated in Fig. 3. This crystal consists of an array of ruthenium-containing cations and perchlorate anions with one $\mathrm{H}_{2} \mathrm{O}$ solvent molecule for each cation-anion pair. The $\mathrm{Ru}-\mathrm{N}$ (nitro) bond distance of $2.087(5) \AA$ is similar to that [2.074(6) \AA] reported for trans-[Ru(terpy) $\left.\left(\mathrm{NO}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right]$ $\mathrm{ClO}_{4}{ }^{23}$ The N -O bond distances are 1.247(7) and 1.243(8) \AA, and the $\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{O}(2)$ bond angle of $117.0(5)^{\circ}$ is within the normal range for transition-metal nitro complexes. ${ }^{45,46}$ These bond distances and angles can be compared to that of the free nitrite ion. In NaNO_{2} the $\mathrm{N}-\mathrm{O}$ bond distance was found to be $1.240(3) \AA$ and the $\mathrm{O}-\mathrm{N}-\mathrm{O}$ angle $114.9(5)^{\circ} .{ }^{53.54} \mathrm{Our}$ crystal structure supports the conclusions of Hitchman and Rowbottom ${ }^{15}$ on the N-bonding (nitro) of the nitrite ligand. They suggested that co-ordination of a nitro ligand has little effect on the $\mathrm{N}-\mathrm{O}$ bond lengths (ours were the same within error). Further that the nitro bonding mode caused a significant opening of the $\mathrm{O}-\mathrm{N}-\mathrm{O}$ angle, by about 2°, on co-ordination to a divalent metal ion. ${ }^{15}$ We have observed an opening of 2.1°.

The $\mathrm{Ru}-\mathrm{N}(1)-\mathrm{O}$ angles are $121.0(4)^{\circ}$ for $\mathrm{O}(1)$ and $121.9(4)^{\circ}$ for $O(2)$. Notably, while the nitro ligand of 15 lies in the plane of the terdentate bpp ligand, the nitro group of 16 is oriented so that it lies almost perpendicular to the meridional co-ordination plane of the bdmpp ligand. The angle between the nitro ligand plane and the meridional co-ordination plane is 88.1°, with the nitrogen atom of the nitro ligand being displaced by $0.012 \AA$ from the meridional co-ordination plane. The two trimethylphosphine ligands are almost directly trans to one another, the $\mathrm{P}(1)-\mathrm{Ru}-\mathrm{P}(2)$ angle being 178.4(1) ${ }^{\circ}$.

The $\mathrm{N}-\mathrm{Ru}-\mathrm{N}$ angles between the nitrogen of the pyridine fragment $[\mathrm{N}(11)]$ and the co-ordinating nitrogen atoms of the pyrazole fragments [$\mathrm{N}(21)$ and $\mathrm{N}(31)]$ show contractions from the regular octahedral value of 90° due to the geometric constraints of the terdentate ligand, with $\mathrm{N}(11)-\mathrm{Ru}-\mathrm{N}(21)$ 78.2(2) and $\mathrm{N}(11)-\mathrm{Ru}-\mathrm{N}(31) 78.9(2)^{\circ}$. Evidence of steric

Table 4 Atomic coordinates $\left(\times 10^{4}\right)$ for trans- $\left[\mathrm{Ru}(\mathrm{bpp})\left(\mathrm{NO}_{2}\right)\right.$ $\left.\left(\mathrm{PMe}_{3}\right)_{2}\right]_{\mathrm{ClO}}^{4} 15$

Atom	x	y	z
Ru	10000	5000	$8180(1)$
$\mathrm{P}(1)$	$8261(1)$	$6739(1)$	$8240(1)$
$\mathrm{C}(1)$	$8793(5)$	$8313(4)$	$8879(4)$
$\mathrm{C}(2)$	$7620(5)$	$7380(5)$	$7077(5)$
$\mathrm{N}(1)$	10000	5000	$9701(3)$
$\mathrm{O}(1)$	$9269(3)$	$4269(3)$	$10176(3)$
$\mathrm{N}(11)$	10000	5000	$6708(3)$
$\mathrm{C}(12)$	$9132(3)$	$4132(3)$	$6226(3)$
$\mathrm{C}(13)$	$9102(4)$	$4102(4)$	$5206(3)$
$\mathrm{C}(14)$	10000	5000	$4710(3)$
$\mathrm{N}(21)$	$8503(3)$	$3503(3)$	$7877(2)$
$\mathrm{N}(22)$	$8337(2)$	$3337(2)$	$6865(2)$
$\mathrm{C}(23)$	$7336(4)$	$2336(4)$	$6704(5)$
$\mathrm{C}(24)$	$6885(4)$	$1885(4)$	$7574(4)$
$\mathrm{Cl}(1 \mathrm{c})$	10000	10000	5000
$\mathrm{O}(1 \mathrm{c})$	$10542(20)$	$10386(35)$	$4015(16)$
$\mathrm{O}(2 \mathrm{c})$	$8799(9)$	$10577(9)$	$4793(8)$

Table 5 Atomic coordinates $\left(\times 10^{4}\right)$ for trans-[Ru(bdmpp) $\left(\mathrm{NO}_{2}\right)$ $\left.\left(\mathrm{PMe}_{3}\right)_{2}\right] \mathrm{ClO}_{4} \cdot \mathrm{H}_{2} \mathrm{O} \quad 16 \cdot \mathrm{H}_{2} \mathrm{O}$

Atom	x	y	z
Ru	2499(1)	9444 (1)	$1537(1)$
$\mathrm{P}(1)$	4153(2)	8 384(2)	$1986(1)$
C(1)	$5858(8)$	9 234(9)	$2054(3)$
C(2)	4719 (10)	6 684(8)	1843 (3)
C(3)	3 574(9)	$8118(10)$	2 499(2)
P(2)	807(2)	10 455(2)	$1097(1)$
C(4)	156(8)	9 329(9)	697(2)
C(5)	-872(8)	$11018(8)$	$1338(3)$
C(6)	1440 (8)	$11933(7)$	815(2)
N(1)	2450 (7)	$11145(5)$	$1919(1)$
$\mathrm{O}(1)$	$3165(5)$	$11178(5)$	2 239(2)
O(2)	$1738(7)$	$12178(5)$	$1835(2)$
N(11)	2 610(6)	$7827(4)$	$1172(1)$
C(12)	$1731(7)$	6 784(6)	$1228(2)$
C(13)	$1799(9)$	5 627(8)	992(2)
C(14)	2844 (9)	5 606(9)	697(2)
C(15)	$3770(8)$	6 675(9)	633(2)
C(16)	3 609(7)	7806 (7)	874(2)
N(21)	880(5)	8 225(5)	$1764(2)$
N(22)	744(6)	6 992(5)	$1555(1)$
C(23)	-334(7)	6 228(7)	$1714(2)$
C(24)	-897(7)	6 973(6)	$2023(2)$
C(25)	-113(7)	8 206(7)	$2050(2)$
C(26)	-770(10)	4 852(7)	1 574(2)
C(27)	-319(7)	9 322(8)	2342 (2)
N(31)	4 143(6)	$10012(6)$	$1152(2)$
N(32)	$4404(6)$	8 998(6)	864(2)
C(33)	5 457(7)	9 461(10)	591(2)
C(34)	$5811(8)$	$10728(8)$	717(2)
C(35)	$5006(8)$	$11036(7)$	$1057(2)$
C(36)	$6008(10)$	8 685(11)	238(2)
C(37)	$5019(9)$	$12311(8)$	$1304(2)$
$\mathrm{Cl}(1)$	2 668(3)	171(3)	9 572(1)
$\mathrm{O}(1 \mathrm{~s})$	2 612(15)	-338(14)	9 950(3)
$\mathrm{O}(2 \mathrm{~s})$	$2894(20)$	-954(13)	$9321(4)$
$\mathrm{O}(3 \mathrm{~s})$	$1375(15)$	590(18)	$9535(7)$
$\mathrm{O}(4 \mathrm{~s})$	3631 (17)	$1052(13)$	$9486(4)$
$\mathrm{O}(1 \mathrm{x})$	3851 (13)	3330 (11)	$10046(3)$

strain is also seen in the $\mathrm{Ru}-\mathrm{N}$ bond lengths, where that to the central pyridine fragment $[\mathrm{Ru}-\mathrm{N}(11)]$ is $1.992(4) \AA$ and those to the pyrazole fragments are longer, 2.071(5) and 2.068(6) \AA. The Ru (bdmpp) moiety is not quite planar, with the ruthenium(II) atom $0.022 \AA$ out of the meridional co-ordination plane of the bdmpp ligand.

Fig. 4 An ORTEP II view of $\left[\mathrm{Ru}(\mathrm{bppp})\left(\mathrm{NO}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right] \mathrm{ClO}_{4} 17$

Table 6 Atomic coordinates $\left(\times 10^{4}\right)$ for trans- $\left[\mathrm{Ru}(\mathrm{bppp})\left(\mathrm{NO}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right] \mathrm{ClO}_{4} 17$

Atom	x	y	z	Atom	x	y	z
Ru	1178(1)	1556(1)	2802(1)	N(35)	-491(3)	575(1)	2488(2)
$\mathbf{P}(1)$	-464(1)	1921(1)	3792(1)	C(41)	2852(4)	3032(2)	2571(3)
C(1)	-455(6)	1713(3)	5009(4)	C(42)	2848(6)	3576(2)	2888(4)
C(2)	-2193(5)	1718(3)	3421(5)	C(43)	3994(8)	3804(3)	3324(4)
C(3)	-579(7)	2662(2)	3838(5)	C(44)	5125(8)	3506(3)	3429(5)
P (2)	2716(1)	1167(1)	1771(1)	C(45)	5146(6)	2965(3)	3150(5)
C(4)	2901(10)	1588(3)	752(5)	C(46)	4005(5)	2726(2)	2727(4)
C(5)	2220(7)	536(3)	1239(5)	C(51)	1903(4)	225(2)	4384(3)
C(6)	4424(6)	1070(4)	2073(7)	C(52)	2219(5)	657(2)	4992(3)
$\mathrm{N}(1)$	2658(3)	1746(1)	3817(2)	C(53)	3145(5)	586(2)	5743(3)
$\mathrm{O}(1)$	2399(3)	2096(2)	4431(2)	C(54)	3732(5)	69(3)	5888(4)
$\mathrm{O}(2)$	3796(3)	1550(2)	3868(3)	C(55)	3442(6)	- 359(2)	5284(4)
$\mathrm{N}(11)$	-301(3)	1425(1)	1824(2)	C(56)	2530(5)	-287(2)	4538(3)
C(12)	-671(4)	1830(2)	1221(3)	$\mathrm{Cl}(1)$	-726(1)	4309(1)	3566(1)
C(13)	-1714(4)	1769(2)	559(3)	$\mathrm{O}(1 \mathrm{pa})$	-34(17)	3876(7)	4033(13)
C(14)	-2392(5)	1264(2)	536(3)	$\mathrm{O}(1 \mathrm{pb})$	130(19)	4348(10)	4462(13)
C(15)	-2047(4)	846(2)	1160(3)	$\mathrm{O}(1 \mathrm{pc})$	-62(8)	4067(4)	4337(6)
C(16)	-983(4)	944(2)	1798(3)	$\mathrm{O}(2 \mathrm{pa})$	-610(31)	4891(14)	4127(24)
$\mathrm{N}(21)$	1145(3)	2313(1)	2060(2)	$\mathrm{O}(2 \mathrm{pb})$	- 1441(17)	4739(7)	3636(11)
C(22)	1672(4)	2827(2)	2013(3)	$\mathrm{O}(2 \mathrm{pc})$	-2129(11)	4439(5)	3939(7)
C(23)	958(5)	3139(2)	1315(3)	O(2pd)	-2080(18)	4136(8)	3474(13)
C(24)	9(5)	2807(2)	923(3)	O(2pe)	- 1494(14)	3873(5)	2978(9)
$\mathrm{N}(25)$	104(3)	2307(1)	1369(2)	$\mathrm{O}(2 \mathrm{pf})$	-630(16)	3932(6)	2811(9)
N(31)	565(3)	733(1)	3114(2)	$\mathrm{O}(2 \mathrm{pg})$	143(16)	4307(7)	2724(11)
C(32)	853(4)	271(2)	3621(3)	$\mathrm{O}(2 \mathrm{ph})$	277(16)	4598(7)	3043(12)
C(33)	-7(5)	-165(2)	3313(3)	$\mathrm{O}(2 \mathrm{pj})$	-733(12)	4874(5)	3254(8)
C(34)	-830(4)	33(2)	2613(3)				

trans- $\left[\mathrm{Ru}(\mathrm{bppp})\left(\mathrm{NO}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$ 17. Interatomic distances and angles are given in Table 10 and the molecule is illustrated in Fig. 4. This crystal consists of an array of $\left[\mathrm{Ru}(\mathrm{bppp})\left(\mathrm{NO}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right]^{+}$cations and $\mathrm{ClO}_{4}{ }^{-}$anions in a $1: 1$ stoichiometry. The $\mathrm{Ru}-\mathrm{N}($ nitro) bond distance of $2.057(3) \AA$, the $\mathrm{N}(1)-\mathrm{O}(1)$ bond distance of $1.255(5) \AA$ and $\mathrm{N}(1)-\mathrm{O}(2)$ bond distance of $1.224(5) \AA$, with an $\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{O}(2)$ angle of $116.3(3)^{\circ}$ are all within the range normally found for transitionmetal nitro complexes. ${ }^{15}$ The two $\mathrm{Ru}-\mathrm{N}-\mathrm{O}$ angles have significantly different values, with $\mathrm{Ru}-\mathrm{N}(1)-\mathrm{O}(1) 118.4(3)$ and $\mathrm{Ru}-\mathrm{N}(1)-\mathrm{O}(2) 125.3(3)^{\circ}$. The plane of the nitro ligand is oriented at 70.6° to the meridional co-ordination plane of the bppp ligand, with the nitrogen atom of the nitro group lying
$0.100 \AA$ from the meridional co-ordination plane. The transphosphine ligand arrangement was confirmed with the $\mathrm{P}(1)-$ $\mathrm{Ru}-\mathrm{P}(2)$ angle being $176.9(1)^{\circ}$ and $\mathrm{Ru}-\mathrm{P}$ bond distances of 2.389 (1) and $2.377(1) \AA$, each within the range reported for other ruthenium complexes. ${ }^{47-51}$ The bppp ligand is bound to the three remaining co-ordination sites in a meridional fashion through three of its nitrogen atoms. The central pyridine fragment of bppp is bound trans to the nitro ligand, with a $\mathrm{N}(11)-\mathrm{Ru}-\mathrm{N}(1)$ angle of $176.1(1)^{\circ}$. The $\mathrm{N}-\mathrm{Ru}-\mathrm{N}$ angles between the nitrogen atom of the pyridine fragment $[\mathrm{N}(11)]$ and the pyrazole fragments [$\mathrm{N}(21$) and $\mathrm{N}(22)$ show the usual distortions due to the geometric constraints of the terdentate ligand, with $\mathrm{N}(11)-\mathrm{Ru}-\mathrm{N}(21) 78.1(1)$ and $\mathrm{N}(11)-\mathrm{Ru}-\mathrm{N}(31)$

Table 7 Atomic coordinates ($\times 10^{4}$) for trans- $\left[\mathrm{Ru}(\right.$ bcppp $\left.)\left(\mathrm{NO}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right] \mathrm{ClO}_{4} \cdot 0.5 \mathrm{H}_{2} \mathrm{O} \mathbf{1 8} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$

Atom	x	y	z	Atom	x	y	z
$\mathrm{Ru}(\mathrm{la})$	5000	2340 (1)	5000	C(4b)	$9872(9)$	-136(11)	745(5)
$\mathrm{Ru}(\mathrm{lb})$	10230 (1)	3016 (1)	1310 (1)	C(5b)	8 304(7)	979(14)	$1135(5)$
$\mathrm{P}(\mathrm{la})$	$5711(1)$	701(2)	4 458(1)	C(6b)	8 948(6)	$1816(10)$	82(3)
C(1a)	5 993(7)	$1287(11)$	3 767(4)	N(lb)	9 261(4)	4 403(7)	$1179(2)$
C (2a)	6 783(6)	227(12)	$4772(4)$	$\mathrm{O}(\mathrm{lb})$	$9339(4)$	5 552(5)	$1348(2)$
C(3a)	5 218(8)	-851(10)	4 261(6)	$\mathrm{O}(2 \mathrm{~b})$	$8535(3)$	4 101(6)	931(3)
$\mathrm{P}(2 \mathrm{a})$	$4327(2)$	3 997(3)	5 537(1)	N(11b)	$11186(4)$	$1691(6)$	1463 (3)
C(4a)	3 263(8)	4 535(14)	5 303(5)	C(12b)	11 193(5)	959(7)	$1932(3)$
$\mathrm{C}(5 \mathrm{a})$	4816 (13)	5 525(13)	5 543(10)	C(13b)	$11854(7)$	64(10)	2077(5)
C(6a)	4230 (10)	3702 (19)	6 286(4)	C(14b)	12 493(6)	-78(11)	1 693(5)
N (1a)	4 049(4)	$1074(7)$	5 260(3)	C(15b)	12491 (6)	620(10)	1 192(5)
O (1a)	$4022(4)$	- 129(7)	$5165(3)$	C(16b)	$11814(5)$	$1524(8)$	$1093(3)$
$\mathrm{O}(2 \mathrm{a})$	3 425(6)	$1482(9)$	5 484(5)	N(21b)	$9872(4)$	$2152(6)$	2 085(3)
N (11a)	$5886(4)$	3 644(6)	4756 (2)	C(22b)	9 219(5)	2044(7)	2 451(3)
C(12a)	5 706(5)	$4375(7)$	4 278(3)	C(23b)	$9422(6)$	1 052(9)	$2851(4)$
C(13a)	6 256(6)	$5317(8)$	4 105(4)	C(24b)	10201 (6)	558(9)	$2727(4)$
C(14a)	7 027(6)	5 544(9)	4 438(4)	N(25b)	10 484(4)	$1212(6)$	2 271(3)
C(15a)	7 238(5)	4810 (8)	4 937(3)	$\mathrm{N}(31 \mathrm{~b})$	10 982(4)	$3185(6)$	564(3)
C(16a)	6 629(4)	3 866(7)	5 072(3)	C(32b)	$10974(5)$	3 662(8)	32(3)
N(21a)	$4361(4)$	3 125(6)	4 255(3)	C(33b)	11 676(5)	$3132(8)$	-259(4)
C(22a)	3 596(5)	3 191(7)	3 934(3)	C(34b)	$12125(6)$	2311 (10)	118(4)
C (23a)	3 625(6)	4 200(9)	3 528(4)	N(35b)	11 684(4)	$2324(6)$	$611(3)$
C(24a)	4 422(6)	4 739(9)	3 574(3)	C(41b)	8424 (5)	$2825(8)$	2 429(3)
$\mathrm{N}(25 \mathrm{a})$	$4893(4)$	$4083(6)$	4015 (3)	C(42b)	$8414(5)$	$4182(8)$	$2377(3)$
N(31a)	$6001(4)$	2 224(6)	5 672(3)	C(43b)	$7637(6)$	$4867(10)$	$2369(4)$
C(32a)	6 219(5)	1704 (7)	$6181(3)$	C(44b)	$6858(6)$	4 225(12)	2 412(4)
C(33a)	7 047(5)	2 207(8)	6 399(3)	C(45b)	$6849(6)$	$2888(12)$	2 474(4)
C(34a)	7 303(5)	3 079(9)	$6004(3)$	C(46b)	$7625(6)$	2 172(10)	2 477(4)
N (35a)	6 685(4)	$3077(6)$	5 562(2)	$\mathrm{Cl}(4 \mathrm{~b})$	$5881(2)$	$5092(4)$	2 408(2)
C(41a)	$2838(5)$	2350 (9)	4018 (3)	C(51b)	10327 (5)	4 593(8)	-206(3)
C(42a)	$2882(6)$	999(10)	$4035(4)$	C(52b)	10046 (6)	5 640(8)	111(3)
$\mathrm{C}(43 \mathrm{a})$	2 148(6)	225(12)	$4078(4)$	C(53b)	$9411(6)$	6491 (10)	-128(4)
C(44a)	$1365(6)$	815(13)	$4114(4)$	C(54b)	$9087(6)$	6 299(10)	-687(4)
C(45a)	1 296(7)	$2151(13)$	4 096(5)	C(55b)	$9366(6)$	$5318(10)$	$-1009(4)$
C(46a)	$2007(6)$	$2919(11)$	4 024(5)	C(56b)	9 983(7)	4 449(10)	-772(3)
$\mathrm{Cl}(4 \mathrm{a})$	423(2)	- 143(4)	4 169(1)	$\mathrm{Cl}(5 \mathrm{~b})$	8 309(2)	7 406(4)	-978(2)
C(51a)	5 690(5)	763(8)	$6482(3)$	$\mathrm{Cl}(1 \mathrm{a})$	$13071(3)$	7 594(3)	$3135(2)$
C(52a)	5 335(6)	- 352(8)	6 226(4)	$\mathrm{O}(1 \mathrm{sa})$	13 363(14)	6749(12)	$2736(5)$
C(53a)	$4835(6)$	- 1 198(10)	6 533(5)	$\mathrm{O}(2 \mathrm{sa})$	$12130(15)$	7540 (23)	3 108(11)
C(54a)	$4721(6)$	- 942(9)	$7097(4)$	$\mathrm{O}(3 \mathrm{sa})$	13 284(7)	8 927(9)	$3018(5)$
C(55a)	$5059(7)$	125(10)	$7357(4)$	$\mathrm{O}(4 \mathrm{sa})$	$13258(9)$	7327 (10)	3 703(5)
C(56a)	5 561(6)	991(9)	7050 (3)	$\mathrm{Cl}(1 \mathrm{~b})$	7823 (2)	8 244(2)	3 282(1)
$\mathrm{Cl}(5 \mathrm{a})$	$4120(2)$	-2062(4)	$7481(2)$	$\mathrm{O}(1 \mathrm{sb})$	$7858(8)$	8 545(11)	2 719(4)
$\mathrm{P}(1 \mathrm{~b})$	$11135(1)$	4 600(2)	1830 (1)	$\mathrm{O}(2 \mathrm{sb})$	$8374(11)$	7 319(15)	3 446(9)
C(lb)	11380 (7)	6 193(9)	$1501(5)$	$\mathrm{O}(3 \mathrm{sb})$	$7003(9)$	$7738(14)$	3 365(6)
$\mathrm{C}(2 \mathrm{~b})$	12261 (6)	$4029(11)$	$1995(5)$	$\mathrm{O}(4 \mathrm{sb})$	7 994(7)	9391 (11)	3 607(4)
$\mathrm{C}(3 \mathrm{~b})$	$10824(7)$	$5057(12)$	$2528(4)$	$\mathrm{O}(1 \mathrm{~s})$	$9464(12)$	8071 (15)	$2000(8)$
$\mathrm{P}(2 \mathrm{~b})$	9333 (1)	1441 (2)	813(1)				

$78.0(1)^{\circ}$. Evidence of steric strain is further seen in the Ru-N bond lengths, where that to the central pyridine fragment $[\mathrm{Ru}-\mathrm{N}(11) 1.995(3) \AA]$ is substantially shorter than those to the peripheral pyrazole fragments $[\mathrm{Ru}-\mathrm{N}(21) 2.109(3)$ and $\mathrm{Ru}-\mathrm{N}(31)$ 2.127(3) \AA].
An interesting feature of the trans- $\left[\mathrm{Ru}(\mathrm{bppp})\left(\mathrm{NO}_{2}\right)\right.$ $\left.\left(\mathrm{PMe}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$ structure is the angle that the phenyl rings make with the meridional co-ordination plane. Both of these rings are twisted in the same direction, a general orientation they share with the nitrite ligand. The $\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{O}(2)$ angle is $116.3(3)$. The plane of the ring containing $\mathrm{C}(41)$ makes an angle of 47.3° with the meridional co-ordination plane, while that containing $\mathrm{C}(51)$ is angled at 38.0°, so although the angles are quite different, all three fragments are loosely oriented along the same general diagonal.
trans- $\left[\mathrm{Ru}(\right.$ bcppp $\left.)\left(\mathrm{NO}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right] \mathrm{ClO}_{4} \cdot 0.5 \mathrm{H}_{2} \mathrm{O} \quad 18 \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$. The crystal consists of an ordered array of trans-[Ru(bcppp)$\left.\left(\mathrm{NO}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right]^{+}$cations, $\mathrm{ClO}_{4}{ }^{-}$anions and $\mathrm{H}_{2} \mathrm{O}$ molecules of solvation in a $2: 2: 1$ ratio. Interatomic distances and angles are collected in Table 11. The crystallographic asymmetric unit consists of two cations, two anions and an $\mathrm{H}_{2} \mathrm{O}$ molecule (see

Fig. 5). The cations are labelled as a and b . The b cations alone participate in hydrogen bonding to the single $\mathrm{H}_{2} \mathrm{O}$ molecule of solvation, through atom $O(2 b)$ of its nitrite ligand. The following discussion will emphasize the a cation, which is illustrated in Fig. 6, the corresponding values for the b cation being cited in square brackets immediately following those for the a molecule. An exception to this will be for those values concerning hydrogen bonding to the nitro ligand in which only the b cation participates.
The two phosphine ligands of complex 18 lie almost directly trans to one another, with the $P(1 a)-R u(1 a)-P(2 a)$ angle being $178.6(1)\left[179.0(1)^{\circ}\right]$. The observed $\mathrm{Ru}-\mathrm{P}$ bond distances were 2.392(2) and 2.371(3) [2.402(2) and 2.364(2) \AA], both within the range of $2.26-2.41 \AA$ previously reported. The bcppp ligand is bound to the three remaining octahedral co-ordination sites in a meridional fashion through three of its nitrogen atoms. The central pyridine fragment of the terdentate ligand is bound to ruthenium in a location trans to the nitro ligand, with $\mathrm{N}(1 \mathrm{la})-\mathrm{Ru}(1 \mathrm{a})-\mathrm{N}(1 \mathrm{a}) 177.2$ (3) $\left[178.1(2)^{\circ}\right]$. Steric strain is again evidenced in the $\mathrm{N}-\mathrm{Ru}-\mathrm{N}$ bond angles between the central pyridine nitrogen [$\mathrm{N}(11 \mathrm{a})$] and the terminal pyrazoles [N (21a)

Fig. 5 The crystallographic asymmetric unit of $\left[\mathrm{Ru}(\mathrm{bcppp})\left(\mathrm{NO}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right] \mathrm{ClO}_{4} \cdot 0.5 \mathrm{H}_{2} \mathrm{O} \mathbf{1 8} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$

Fig. 6 An ORTEP II view of cation a of $\left[\mathrm{Ru}(\mathrm{bcppp})\left(\mathrm{NO}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right]^{+}$in 18
and $\mathrm{N}(31 \mathrm{a})$], angles of interest being $78.4(2)^{\circ}$ for $\mathrm{N}(11 a)-$ $\mathrm{Ru}(1 \mathrm{a})-\mathrm{N}(21 \mathrm{a})$ and 77.3(2) ${ }^{\circ}$ for $\mathrm{N}(11 \mathrm{a})-\mathrm{Ru}(1 \mathrm{a})-\mathrm{N}(31 \mathrm{a})$ [77.9(2) and $77.3(2)^{\circ}$. The $\mathrm{Ru}-\mathrm{N}$ bond lengths again show distortion from ideal octahedral geometry, with the central $\mathrm{Ru}-\mathrm{N}$ (pyridine) bond shorter at $2.001(6)$ [2.001(6) \AA] than the terminal $\mathrm{Ru}-\mathrm{N}$ bonds to the pyrazole fragments, which have values of $2.099(6)$ and $2.125(6)$ [2.113(6) and $2.151(6) \AA]$. The $\mathrm{Ru}(\mathrm{bcppp})$ moiety is not quite planar, with the ruthenium atom lying $0.086(0.091 \AA)$ from the meridional co-ordination plane of the bcppp ligand. The phenyl rings bonded to the bcppp ligand form opposing angles to the meridional co-ordination plane of the bcppp, with the angle for the plane of the ring containing $\mathrm{C}(41 \mathrm{a})$ being 59.2 (55.5°) and that containing C(51a) being 53.0 (50.6°) from the meridional co-ordination plane.

The $\mathrm{Ru}-\mathrm{N}($ nitro $)$ bond distances of $2.058(7)$ [2.052(6) \AA] are not significantly different from one another. The hydrogen bonding in the b molecule, however, does effect the $\mathrm{N}-\mathrm{O}$ bond distances. Interestingly, the $\mathrm{N}-\mathrm{O}$ bond distances in the unper-
turbed molecule a are inequivalent with values of $1.244(10) \AA$ for $\mathrm{N}(1 \mathrm{a})-\mathrm{O}(1 \mathrm{a})$ and $1.189(12) \AA$ for $\mathrm{N}(1 \mathrm{a})-\mathrm{O}(2 \mathrm{a})$, whereas those in molecule b (where there is $\mathrm{NO}_{2} \cdots \mathrm{H}_{2} \mathrm{O}$ hydrogen bonding) are nearly equivalent with values of $1.237(8)$ and $1.256(8) \AA$. The average $\mathrm{N}-\mathrm{O}$ distance in molecule b is, as expected, increased from that in a ($1.247 \mathrm{vs} .1 .217 \AA$) due to hydrogen bonding between the nitro group and the water molecule. The hydrogen-bonding distance $\mathrm{O}(1 \mathrm{~b}) \cdots \mathrm{O}(1 \mathrm{~s})$ is $2.995 \AA$, while $\mathrm{O}(1 \mathrm{~b}) \cdots \mathrm{H}(1 \mathrm{~s})$ is $2.234 \AA$. The $\mathrm{O}-\mathrm{N}-\mathrm{O}$ angles in the two molecules are also significantly different, with $113.7(7)^{\circ}$ for $\mathrm{O}(1 \mathrm{a})-\mathrm{N}(1 \mathrm{a})-\mathrm{O}(2 \mathrm{a})$ and $116.3(6)^{\circ}$ for $\mathrm{O}(1 \mathrm{~b})-\mathrm{N}(1 \mathrm{~b})-\mathrm{O}(2 \mathrm{~b})$, each being within the 113-127 ${ }^{\circ}$ range. ${ }^{29}$ The $\mathrm{Ru}-\mathrm{N}-\mathrm{O}$ bond angles are $125.4(5)^{\circ}$ for $\mathrm{Ru}(1 \mathrm{a})-\mathrm{N}(1 \mathrm{a})-\mathrm{O}(1 \mathrm{a}), 120.6(7)^{\circ}$ for $\mathrm{Ru}(1 \mathrm{a})-\mathrm{N}(1 \mathrm{a})-\mathrm{O}(2 \mathrm{a}), 123.2(4)^{\circ}$ for $\mathrm{Ru}(1 \mathrm{~b})-\mathrm{N}(1 \mathrm{~b})-\mathrm{O}(1 \mathrm{~b})$ and $120.5(5)^{\circ}$ for $\mathrm{Ru}(1 \mathrm{~b})-\mathrm{N}(1 \mathrm{~b})-\mathrm{O}(2 \mathrm{~b})$. The plane of the nitro ligand is also affected by hydrogen bonding. The nitro ligand in molecule a is oriented at an angle of 81.4° to the meridional coordination plane of the bcppp ligand, with the nitrogen atom
$0.08 \AA$ from the meridional co-ordination plane. The nitro ligand in the hydrogen-bonded molecule b is oriented at an angle of 88.0°, with the nitrogen atom now being displaced by $0.24 \AA$.

Additional Comments.-The effects of steric crowding in the vicinity of the nitrite ligand manifest themselves in the lengthening of the adjacent $\mathrm{Ru}-\mathrm{N}$ (pyrazole) bonds and the twisting of the nitrite plane relative to the meridional coordination plane. As steric crowding about the nitrite ligand increases, we observe that in addition to the nitro ligand displacement from the RuL plane the $\mathrm{Ru}-\mathrm{N}$ (pyrazole) bond distances increase. It appears as if the terdentate ligand were being 'wedged open' by the nitrite group. Indeed, while the $\mathrm{Ru}-\mathrm{N}($ pyrazole $)$ distances for complexes 17 [2.109(3) and $2.127(3) \AA$] and 18 [2.099(6) and $2.125(6) \AA]$ are similar to each

Table 8 Interatomic distances (\AA) and angles (${ }^{\circ}$) with e.s.d.s for complex 15

Ru-N(1)	2.058(4)	$\mathrm{Ru}-\mathrm{N}(11)$	1.990(3)
$\mathrm{Ru}-\mathrm{N}(21)$	2.070(3)	$\mathrm{Ru}-\mathrm{P}(1)$	2.360 (1)
$\mathrm{P}(1)-\mathrm{C}(1)$	1.812(4)	$\mathrm{P}(1)-\mathrm{C}(2)$	$1.798(6)$
$\mathrm{N}(1)-\mathrm{O}(1)$	1.182(4)	$\mathrm{N}(11)-\mathrm{C}(12)$	1.346(4)
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.380(6)$	$\mathrm{C}(12)-\mathrm{N}(22)$	1.381(5)
$\mathrm{C}(13)-\mathrm{C}(14)$	1.391 (6)	$\mathrm{N}(21)-\mathrm{N}(22)$	$1.387(4)$
$\mathrm{N}(21)-\mathrm{C}(25)$	$1.322(5)$	$\mathrm{N}(22)-\mathrm{C}(23)$	$1.374(6)$
$\mathrm{C}(23)-\mathrm{C}(24)$	$1.326(8)$	$\mathrm{C}(24)-\mathrm{C}(25)$	1.384(7)
$\mathrm{N}(1)-\mathrm{Ru}-\mathrm{N}(11)$	180.0(-)	$\mathrm{N}(1)-\mathrm{Ru}-\mathrm{N}(21)$	101.4(1)
$\mathrm{N}(11)-\mathrm{Ru}-\mathrm{N}(21)$	78.6(1)	$\mathrm{N}(1)-\mathrm{Ru}-\mathrm{P}(1)$	88.0(1)
$\mathrm{N}(11)-\mathrm{Ru}-\mathrm{P}(1)$	92.0(1)	$\mathrm{N}(21)-\mathrm{Ru}-\mathrm{P}(1)$	90.4(1)
$\mathrm{P}(1)-\mathrm{Ru}-\mathrm{P}(1 \mathrm{a})$	176.0(1)	$\mathrm{N}(21)-\mathrm{Ru}-\mathrm{N}(21 \mathrm{a})$	157.2(2)
$\mathbf{C}(1)-P(1)-C(2)$	103.2(2)	$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{Ru}$	114.0(1)
$\mathrm{C}(2)-\mathrm{P}(1)-\mathrm{Ru}$	116.9(1)	$\mathrm{Ru}-\mathrm{N}(1)-\mathrm{O}(1)$	122.9(2)
$\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{O}(1 \mathrm{a})$	114.1(5)	$\mathrm{Ru}-\mathrm{N}(11)-\mathrm{C}(12)$	119.0(2)
$\mathrm{C}(12)-\mathrm{N}(11)-\mathrm{C}(12 \mathrm{a})$	122.0(4)	$\mathrm{N}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	120.7(4)
$\mathrm{N}(11)-\mathrm{C}(12)-\mathrm{N}(22)$	112.3(3)	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{N}(22)$	127.0(4)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	117.1(4)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(13 \mathrm{a})$	122.4(5)
$\mathrm{Ru}-\mathrm{N}(21)-\mathrm{N}(22)$	110.8(2)	$\mathrm{Ru}-\mathrm{N}(21)-\mathrm{C}(25)$	143.9(3)
$\mathrm{N}(22)-\mathrm{N}(21)-\mathrm{C}(25)$	105.4(3)	$\mathrm{C}(12)-\mathrm{N}(22)-\mathrm{N}(21)$	119.4(3)
$\mathrm{C}(12)-\mathrm{N}(22)-\mathrm{C}(23)$	132.2(4)	$\mathrm{N}(21)-\mathrm{N}(22)-\mathrm{C}(23)$	108.4(4)
$\mathrm{N}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	108.4(5)	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	106.6(5)
$\mathrm{N}(21)-\mathrm{C}(25)-\mathrm{C}(24)$	111.2(4)		

other, they are significantly longer than the analogous distances for 15 [2.070(3) \AA] and 16 [2.071(5) and 2.068(6) \AA], which have a less-crowded nitrite position.
A more sensitive indicator of steric crowding around the nitrite ligand is the orientation of the $\mathrm{O}-\mathrm{N}-\mathrm{O}$ plane relative to the meridional co-ordination plane. Since there should be essentially free rotation about the $\mathrm{Ru}-\mathrm{N}\left(\mathrm{NO}_{2}\right)$ bond, the $\mathrm{O}-\mathrm{N}-\mathrm{O}$ plane should be oriented so as to minimize steric strain in the solid state. In complex 15 the $\mathrm{O}-\mathrm{N}-\mathrm{O}$ plane is contained within the meridional co-ordination plane, while for $16-18$ it is close to perpendicular to the meridional plane. We have defined the twist angle as the acute angle between the $\mathrm{O}-\mathrm{N}-\mathrm{O}$ plane of the nitrite ligand and the meridional co-ordination plane. The twist angles are as follows: $0.0,15 ; 88.8,16 ; 70.6,17$; and 81.2°, 18. These observations lend support to the mechanisms postulated by Muidaka ${ }^{32}$ and Meyer ${ }^{41}$ and co-workers for the decomposition of nitroruthenium(III) complexes where they suggest that the nitro ligand isomerizes to the O-bound nitrito form.

From our structural studies we can now contrast the steric properties of bpp with one of the most often studied terdentate ligands, terpy. The $\mathrm{Ru}-\mathrm{N}($ terminal pyridine) bond lengths of 2.088(6) and 2.093(7) \AA for the $\left[\mathrm{Ru}(\text { terpy })\left(\mathrm{PMe}_{3}\right)_{2}\left(\mathrm{NO}_{2}\right)\right]^{+}$ complex are slightly longer than the $\mathrm{Ru}-\mathrm{N}$ (terminal pyrazole) bond lengths of $2.070(3) \AA$ in 15 . Also, although the N atom of the nitro ligand was not displaced from the RuL in either complex, the nitro ligand in the $\left[\mathrm{Ru}(\text { terpy })\left(\mathrm{PMe}_{3}\right)_{2}\left(\mathrm{NO}_{2}\right)\right]^{+}$ complex is twisted slightly (19.8°) out of the Ru(terpy) plane while that of 15 is contained within the $\mathrm{Ru}(\mathrm{bpp})$ plane. Thus, we propose that bpp may be slightly sterically smaller than terpy because the latter causes a lengthening of the $\mathrm{Ru}-\mathrm{N}$ (terminal pyridine or pyrazole) bond length and a twisting of the $\mathrm{N}-\mathrm{O}$ vectors of the nitro ligand from the RuL plane.

Acknowledgements

We gratefully acknowledge the National Science Foundation (CHE 9120602) (K. J. T.), the Donors of the Petroleum Research Fund administered by the American Chemical Society (D. L. J.), the Whitaker Foundation of Research Corporation (D. L. J.), Gettysburg College through an Institutional Self Renewal Grant (D. L. J.), and ARCO Chemical Corporation

Table 9 Interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.s for complex $16 \cdot \mathrm{H}_{2} \mathrm{O}$

Ru-P(1)	2.378(2)	$\mathrm{Ru}-\mathrm{P}(2)$	2.364(2)	$\mathrm{C}(13)-\mathrm{C}(14)$	1.378(11)	$\mathrm{C}(14)-\mathrm{C}(15)$	1.377(12)
Ru - $\mathrm{N}(1)$	2.087(5)	$\mathrm{Ru}-\mathrm{N}(11)$	1.992(4)	$\mathrm{C}(15)-\mathrm{C}(16)$	1.370 (10)	$\mathrm{C}(16)-\mathrm{N}(32)$	1.386(9)
$\mathrm{Ru}-\mathrm{N}(21)$	2.071(5)	$\mathrm{Ru}-\mathrm{N}(31)$	2.068(6)	$\mathrm{N}(21)-\mathrm{N}(22)$	1.396(7)	$\mathrm{N}(21)-\mathrm{C}(25)$	1.321(8)
$\mathrm{P}(1)-\mathrm{C}(1)$	1.816(8)	$\mathrm{P}(1)-\mathrm{C}(2)$	1.810(8)	$\mathrm{N}(22)-\mathrm{C}(23)$	1.361(8)	$\mathrm{C}(23)-\mathrm{C}(24)$	$1.356(9)$
$\mathrm{P}(1)-\mathrm{C}(3)$	1.791(8)	$\mathrm{P}(2)-\mathrm{C}(4)$	1.821(8)	$\mathrm{C}(23)-\mathrm{C}(26)$	1.484(10)	C (24)-C(25)	$1.418(9)$
$\mathrm{P}(2)-\mathrm{C}(5)$	$1.846(8)$	$\mathrm{P}(2)-\mathrm{C}(6)$	1.819(8)	$\mathrm{C}(25)-\mathrm{C}(27)$	1.468(10)	$\mathrm{N}(31)-\mathrm{N}(32)$	$1.395(8)$
$\mathrm{N}(1)-\mathrm{O}(1)$	1.247(7)	$\mathrm{N}(1)-\mathrm{O}(2)$	1.243(8)	$\mathrm{N}(31)-\mathrm{C}(35)$	1.327(9)	$\mathrm{N}(32)-\mathrm{C}(33)$	1.408(9)
$\mathrm{N}(11)-\mathrm{C}(12)$	$1.326(8)$	$\mathrm{N}(11)-\mathrm{C}(16)$	$1.355(8)$	$\mathrm{C}(33)-\mathrm{C}(34)$	1.351(12)	$\mathrm{C}(33)-\mathrm{C}(36)$	$1.480(12)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.375(9)$	$\mathrm{C}(12)-\mathrm{N}(22)$	1.433(8)	$\mathrm{C}(34)-\mathrm{C}(35)$	1.381(10)	$\mathrm{C}(35)-\mathrm{C}(37)$	1.489(11)
$\mathrm{P}(1)-\mathrm{Ru}-\mathrm{P}(2)$	178.4(1)	$\mathrm{P}(1)-\mathrm{Ru}-\mathrm{N}(1)$	89.5(2)	$\mathrm{N}(11)-\mathrm{C}(12)-\mathrm{N}(22)$	113.3(5)	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{N}(22)$	124.8(6)
$\mathrm{P}(2)-\mathrm{Ru}-\mathrm{N}(1)$	91.0(2)	$\mathrm{P}(1)-\mathrm{Ru}-\mathrm{N}(11)$	89.5(1)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	116.2(7)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	122.9(7)
$\mathrm{P}(2)-\mathrm{Ru}-\mathrm{N}(11)$	90.0(2)	$\mathrm{N}(1)-\mathrm{Ru}-\mathrm{N}(11)$	178.3(2)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	117.3(7)	$\mathrm{N}(11)-\mathrm{C}(16)-\mathrm{C}(15)$	120.3(6)
$\mathrm{P}(1)-\mathrm{Ru}-\mathrm{N}(21)$	90.1(1)	$\mathrm{P}(2)-\mathrm{Ru}-\mathrm{N}(21)$	88.3(1)	$\mathrm{N}(11)-\mathrm{C}(16)-\mathrm{N}(32)$	112.1(5)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{N}(32)$	127.5(6)
$\mathrm{N}(1)-\mathrm{Ru}-\mathrm{N}(21)$	103.2(2)	$\mathrm{N}(11)-\mathrm{Ru}-\mathrm{N}(21)$	78.2(2)	$\mathrm{Ru}-\mathrm{N}(21)-\mathrm{N}(22)$	112.9(3)	$\mathrm{Ru}-\mathrm{N}(21)-\mathrm{C}(25)$	141.2(4)
$\mathrm{P}(1)-\mathrm{Ru}-\mathrm{N}(31)$	90.7(2)	$\mathrm{P}(2)-\mathrm{Ru}-\mathrm{N}(31)$	90.7(2)	$\mathrm{N}(22)-\mathrm{N}(21)-\mathrm{C}(25)$	105.9(5)	$\mathrm{C}(12)-\mathrm{N}(22)-\mathrm{N}(21)$	115.7(5)
$\mathrm{N}(1)-\mathrm{Ru}-\mathrm{N}(31)$	99.7(2)	$\mathrm{N}(11)-\mathrm{Ru} u-\mathrm{N}(31)$	78.9(2)	$\mathrm{C}(12)-\mathrm{N}(22)-\mathrm{C}(23)$	133.5(5)	$\mathrm{N}(21)-\mathrm{N}(22)-\mathrm{C}(23)$	110.8(5)
$\mathrm{N}(21)-\mathrm{Ru}-\mathrm{N}(31)$	157.0(2)	$\mathrm{Ru}-\mathrm{P}(1)-\mathrm{C}(1)$	116.7(3)	$\mathrm{N}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	106.3(6)	$\mathrm{N}(22)-\mathrm{C}(23)-\mathrm{C}(26)$	125.8(6)
$\mathrm{Ru}-\mathrm{P}(1)-\mathrm{C}(2)$	115.7(3)	$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(2)$	101.3(4)	$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(26)$	128.0(6)	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	107.7(6)
$\mathrm{Ru}-\mathrm{P}(1)-\mathrm{C}(3)$	116.7(3)	$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(3)$	102.5(4)	$\mathrm{N}(21)-\mathrm{C}(25)-\mathrm{C}(24)$	109.4(5)	$\mathrm{N}(21)-\mathrm{C}(25)-\mathrm{C}(27)$	123.2(6)
$\mathrm{C}(2)-\mathrm{P}(1)-\mathrm{C}(3)$	101.5(4)	$\mathrm{Ru}-\mathrm{P}(2)-\mathrm{C}(4)$	114.4(3)	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(27)$	127.5(6)	$\mathrm{Ru}-\mathrm{N}(31)-\mathrm{N}(32)$	110.8(4)
$\mathrm{Ru}-\mathrm{P}(2)-\mathrm{C}(5)$	115.7(3)	$\mathrm{C}(4)-\mathrm{P}(2)-\mathrm{C}(5)$	101.9(4)	$\mathrm{Ru}-\mathrm{N}(31)-\mathrm{C}(35)$	143.3(5)	$\mathrm{N}(32)-\mathrm{N}(31)-\mathrm{C}(35)$	105.8(6)
$\mathrm{Ru}-\mathrm{P}(2)-\mathrm{C}(6)$	115.2(3)	$\mathrm{C}(4)-\mathrm{P}(2)-\mathrm{C}(6)$	103.0(4)	$\mathrm{C}(16)-\mathrm{N}(32)-\mathrm{N}(31)$	119.4(5)	$\mathrm{C}(16)-\mathrm{N}(32)-\mathrm{C}(33)$	131.5(6)
$\mathrm{C}(5)-\mathrm{P}(2)-\mathrm{C}(6)$	105.0(4)	$\mathrm{Ru}-\mathrm{N}(1)-\mathrm{O}(1)$	121.0(4)	$\mathrm{N}(31)-\mathrm{N}(32)-\mathrm{C}(33)$	109.0(6)	$\mathrm{N}(32)-\mathrm{C}(33)-\mathrm{C}(34)$	105.8(6)
$\mathrm{Ru}-\mathrm{N}(1)-\mathrm{O}(2)$	121.9(4)	$\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{O}(2)$	117.0(5)	$\mathrm{N}(32)-\mathrm{C}(33)-\mathrm{C}(36)$	125.3(8)	$\mathrm{C}(34)-\mathrm{C}(33)-\mathrm{C}(36)$	128.9(7)
$\mathrm{Ru}-\mathrm{N}(11)-\mathrm{C}(12)$	119.9(4)	$\mathrm{Ru}-\mathrm{N}(11)-\mathrm{C}(16)$	118.9(4)	$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)$	108.4(7)	$\mathrm{N}(31)-\mathrm{C}(35)-\mathrm{C}(34)$	111.0(7)
$\mathrm{C}(12)-\mathrm{N}(11)-\mathrm{C}(16)$	121.2(5)	$\mathrm{N}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	121.9(6)	$\mathrm{N}(31)-\mathrm{C}(35)-\mathrm{C}(37)$	120.8(6)	$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(37)$	128.3(7)

Table 10 Interatomic distances (\AA) and angles (${ }^{\circ}$) with e.s.d.s for complex 17

Ru-P(1)	2.389(1)	$\mathrm{Ru}-\mathrm{P}(2)$	2.377(1)	$\mathrm{C}(22)-\mathrm{C}(23)$	1.407(6)	$\mathrm{C}(22)-\mathrm{C}(41)$	1.466(5)
Ru-N(1)	2.057(3)	Ru-N(11)	1.995(3)	$\mathrm{C}(23)-\mathrm{C}(24)$	1.335(6)	$\mathrm{C}(24)-\mathrm{N}(25)$	1.363(5)
$\mathrm{Ru}-\mathrm{N}(21)$	2.109(3)	$\mathrm{Ru}-\mathrm{N}(31)$	2.127(3)	$\mathrm{N}(31)-\mathrm{C}(32)$	$1.350(5)$	$\mathrm{N}(31)-\mathrm{N}(35)$	1.392(4)
$\mathrm{P}(1)-\mathrm{C}(1)$	$1.811(6)$	$\mathrm{P}(1)-\mathrm{C}(2)$	1.836(5)	$\mathrm{C}(32)-\mathrm{C}(33)$	1.409(6)	$\mathrm{C}(32)-\mathrm{C}(51)$	1.470(5)
$\mathrm{P}(1)-\mathrm{C}(3)$	1.789(5)	$\mathrm{P}(2)-\mathrm{C}(4)$	1.794(8)	$\mathrm{C}(33)-\mathrm{C}(34)$	1.344(6)	$\mathrm{C}(34)-\mathrm{N}(35)$	$1.362(5)$
$\mathrm{P}(2)-\mathrm{C}(5)$	1.757(7)	$\mathrm{P}(2)-\mathrm{C}(6)$	1.744(6)	$\mathrm{C}(41)-\mathrm{C}(42)$	$1.385(6)$	$\mathrm{C}(41)-\mathrm{C}(46)$	$1.370(6)$
$\mathrm{N}(1)-\mathrm{O}(1)$	$1.255(5)$	$\mathrm{N}(1)-\mathrm{O}(2)$	1.224(5)	$\mathrm{C}(42)-\mathrm{C}(43)$	1.381(9)	$\mathrm{C}(43)-\mathrm{C}(44)$	$1.335(11)$
$\mathrm{N}(11)-\mathrm{C}(12)$	$1.338(5)$	$\mathrm{N}(11)-\mathrm{C}(16)$	1.341 (5)	$\mathrm{C}(44)-\mathrm{C}(45)$	1.363(11)	$\mathrm{C}(45)-\mathrm{C}(46)$	$1.380(8)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.371(5)$	$\mathrm{C}(12)-\mathrm{N}(25)$	$1.392(5)$	$\mathrm{C}(51)-\mathrm{C}(52)$	$1.380(6)$	$\mathrm{C}(51)-\mathrm{C}(56)$	$1.392(6)$
$\mathrm{C}(13)-\mathrm{C}(14)$	1.390(7)	$\mathrm{C}(14)-\mathrm{C}(15)$	$1.375(6)$	$\mathrm{C}(52)-\mathrm{C}(53)$	$1.384(6)$	$\mathrm{C}(53)-\mathrm{C}(54)$	1.387(9)
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.377(5)$	C(16)-N(35)	1.395(5)	$\mathrm{C}(54)-\mathrm{C}(55)$	1.364(9)	C(55)-C(56)	1.371(7)
$\mathrm{N}(21)-\mathrm{C}(22)$	1.347(5)	$\mathrm{N}(21)-\mathrm{N}(25)$	1.390(4)				
$\mathrm{P}(1)-\mathrm{Ru}-\mathrm{P}(2)$	176.9(1)	$\mathrm{P}(1)-\mathrm{Ru}-\mathrm{N}(1)$	89.2(1)	$\mathrm{N}(11)-\mathrm{C}(16)-\mathrm{N}(35)$	112.0(3)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{N}(35)$	125.8(4)
$\mathrm{P}(2)-\mathrm{Ru}-\mathrm{N}(1)$	93.8(1)	$\mathrm{P}(1)-\mathrm{Ru}-\mathrm{N}(11)$	88.4(1)	$\mathrm{Ru}-\mathrm{N}(21)-\mathrm{C}(22)$	145.6(2)	$\mathrm{Ru}-\mathrm{N}(21)-\mathrm{N}(25)$	109.7(2)
$\mathrm{P}(2)-\mathrm{Ru}-\mathrm{N}(11)$	88.7(1)	$\mathrm{N}(1)-\mathrm{Ru}-\mathrm{N}(11)$	176.1(1)	$\mathrm{C}(22)-\mathrm{N}(21)-\mathrm{N}(25)$	104.5(3)	$\mathrm{N}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	110.1(3)
$\mathrm{P}(1)-\mathrm{Ru}-\mathrm{N}(21)$	89.4(1)	$\mathrm{P}(2)-\mathrm{Ru}-\mathrm{N}(21)$	91.2(1)	$\mathrm{N}(21)-\mathrm{C}(22)-\mathrm{C}(41)$	125.6(3)	$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(41)$	124.2(4)
$\mathrm{N}(1)-\mathrm{Ru}-\mathrm{N}(21)$	98.8(1)	$\mathrm{N}(11)-\mathrm{Ru}-\mathrm{N}(21)$	78.1(1)	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	107.1(4)	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{N}(25)$	107.7(4)
$\mathrm{P}(1)-\mathrm{Ru}-\mathrm{N}(31)$	90.2(1)	$\mathrm{P}(2)-\mathrm{Ru}-\mathrm{N}(31)$	88.0(1)	$\mathrm{C}(12)-\mathrm{N}(25)-\mathrm{N}(21)$	120.0(3)	$\mathrm{C}(12)-\mathrm{N}(25)-\mathrm{C}(24)$	129.4(3)
$\mathrm{N}(1)-\mathrm{Ru}-\mathrm{N}(31)$	105.1(1)	$\mathrm{N}(11)-\mathrm{Ru}-\mathrm{N}(31)$	78.0(1)	$\mathrm{N}(21)-\mathrm{N}(25)-\mathrm{C}(24)$	110.6(3)	$\mathrm{Ru}-\mathrm{N}(31)-\mathrm{C}(32)$	145.6(2)
$\mathrm{N}(21)-\mathrm{Ru}-\mathrm{N}(31)$	156.1(1)	$\mathrm{Ru}-\mathrm{P}(1)-\mathrm{C}(1)$	120.1(2)	Ru-N(31)-N(35)	109.5(2)	$\mathrm{C}(32)-\mathrm{N}(31)-\mathrm{N}(35)$	104.4(3)
$\mathrm{Ru}-\mathrm{P}(1)-\mathrm{C}(2)$	113.0(2)	$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(2)$	99.0(3)	$\mathrm{N}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	109.9(3)	$\mathrm{N}(31)-\mathrm{C}(32)-\mathrm{C}(51)$	125.5(3)
$\mathrm{Ru}-\mathrm{P}(1)-\mathrm{C}(3)$	115.8(2)	$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(3)$	103.7(3)	$\mathrm{C}(33)-\mathrm{C}(32)-\mathrm{C}(51)$	124.6(4)	$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)$	107.5(4)
$\mathrm{C}(2)-\mathrm{P}(1)-\mathrm{C}(3)$	102.5(3)	$\mathrm{Ru}-\mathrm{P}(2)-\mathrm{C}(4)$	112.4(3)	$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{N}(35)$	107.0(4)	$\mathrm{C}(16)-\mathrm{N}(35)-\mathrm{N}(31)$	120.1(3)
$\mathrm{Ru}-\mathrm{P}(2)-\mathrm{C}(5)$	115.8(2)	$\mathrm{C}(4)-\mathrm{P}(2)-\mathrm{C}(5)$	100.1(3)	$\mathrm{C}(16)-\mathrm{N}(35)-\mathrm{C}(34)$	128.5(3)	$\mathrm{N}(31)-\mathrm{N}(35)-\mathrm{C}(34)$	111.2(3)
$\mathrm{Ru}-\mathrm{P}(2)-\mathrm{C}(6)$	123.5(3)	$\mathrm{C}(4)-\mathrm{P}(2)-\mathrm{C}(6)$	97.6(5)	$\mathrm{C}(22)-\mathrm{C}(41)-\mathrm{C}(42)$	118.6(4)	$\mathrm{C}(22)-\mathrm{C}(41)-\mathrm{C}(46)$	122.9(4)
$\mathrm{C}(5)-\mathrm{P}(2)-\mathrm{C}(6)$	103.7(4)	$\mathrm{Ru}-\mathrm{N}(1)-\mathrm{O}(1)$	118.4(3)	$\mathrm{C}(42)-\mathrm{C}(41)-\mathrm{C}(46)$	118.3(4)	$\mathrm{C}(41)-\mathrm{C}(42)-\mathrm{C}(43)$	120.4(5)
$\mathrm{Ru}-\mathrm{N}(1)-\mathrm{O}(2)$	125.3(3)	$\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{O}(2)$	116.3(3)	$\mathrm{C}(42)-\mathrm{C}(43)-\mathrm{C}(44)$	120.3(6)	$\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{C}(45)$	120.5(7)
$\mathrm{Ru}-\mathrm{N}(11)-\mathrm{C}(12)$	120.1(2)	$\mathrm{Ru}-\mathrm{N}(11)-\mathrm{C}(16)$	120.4(2)	$\mathrm{C}(44)-\mathrm{C}(45)-\mathrm{C}(46)$	120.1(6)	$\mathrm{C}(41)-\mathrm{C}(46)-\mathrm{C}(45)$	120.3(5)
$\mathrm{C}(12)-\mathrm{N}(11)-\mathrm{C}(16)$	119.4(3)	$\mathrm{N}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	122.4(4)	$\mathrm{C}(32)-\mathrm{C}(51)-\mathrm{C}(52)$	122.4(4)	$\mathrm{C}(32)-\mathrm{C}(51)-\mathrm{C}(56)$	118.4(4)
$\mathrm{N}(11)-\mathrm{C}(12)-\mathrm{N}(25)$	111.9(3)	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{N}(25)$	125.6(4)	$\mathrm{C}(52)-\mathrm{C}(51)-\mathrm{C}(56)$	119.0(4)	$\mathrm{C}(51)-\mathrm{C}(52)-\mathrm{C}(53)$	120.9(4)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$117.2(4)$	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	121.5(4)	$\mathrm{C}(52)-\mathrm{C}(53)-\mathrm{C}(54)$	$118.8(5)$	$\mathrm{C}(53)-\mathrm{C}(54)-\mathrm{C}(55)$	120.8(5)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	117.3(4)	$\mathrm{N}(11)-\mathrm{C}(16)-\mathrm{C}(15)$	122.3(4)	$\mathrm{C}(54)-\mathrm{C}(55)-\mathrm{C}(56)$	120.2(5)	$\mathrm{C}(51)-\mathrm{C}(56)-\mathrm{C}(55)$	120.3(4)

Table 11 Interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.s for complex $18 \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$

$\mathrm{Ru}(1 \mathrm{a})-\mathrm{P}(1 \mathrm{a})$	2.392(2)	$\mathrm{Ru}(1 \mathrm{a})-\mathrm{P}(2 \mathrm{a})$	2.371(3)	C(51a)-C(56a)	1.373(11)	C(52a)-C(53a)	1.379(13)
$\mathrm{Ru}(\mathrm{la}-\mathrm{N}(1 \mathrm{a})$	2.058(7)	$\mathrm{Ru}(1 a)-\mathrm{N}(1 \mathrm{a})$	$2.001(6)$	C(53a)-C(54a)	1.364(15)	C(54a)-C(55a)	$1.332(13)$
$\mathrm{Ru}(1 a)-\mathrm{N}(21 \mathrm{a})$	2.099(6)	$\mathrm{Ru}(1 a)-\mathrm{N}(31 \mathrm{a})$	$2.125(6)$	$\mathrm{C}(54 \mathrm{a})-\mathrm{Cl}(5 \mathrm{a})$	1.743(10)	$\mathrm{C}(55 \mathrm{a})-\mathrm{C}(56 \mathrm{a})$	1.393(13)
$\mathrm{Ru}(\mathrm{lb})-\mathrm{P}(\mathrm{lb})$	2.402(2)	$\mathrm{Ru}(1 \mathrm{~b})-\mathrm{P}(2 \mathrm{~b})$	2.364 (2)	$\mathrm{P}(1 \mathrm{~b})-\mathrm{C}(1 \mathrm{~b})$	1.841(10)	$\mathrm{P}(1 \mathrm{~b})-\mathrm{C}(2 \mathrm{~b})$	1.831(10)
$\mathrm{Ru}(\mathrm{lb})-\mathrm{N}(\mathrm{lb})$	2.052(6)	$\mathrm{Ru}(1 \mathrm{~b})-\mathrm{N}(11 \mathrm{~b})$	$2.001(6)$	$\mathrm{P}(1 \mathrm{~b})-\mathrm{C}(3 \mathrm{~b})$	1.787(10)	$\mathrm{P}(2 \mathrm{~b})-\mathrm{C}(4 \mathrm{~b})$	1.814(12)
$\mathrm{Ru}(1 \mathrm{~b})-\mathrm{N}(2 \mathrm{lb})$	$2.113(6)$	$\mathrm{Ru}(1 \mathrm{~b})-\mathrm{N}(31 \mathrm{~b})$	$2.151(6)$	$\mathrm{P}(2 \mathrm{~b})-\mathrm{C}(5 \mathrm{~b})$	1.841(12)	$\mathrm{P}(2 \mathrm{~b})-\mathrm{C}(6 \mathrm{~b})$	$1.814(9)$
$\mathrm{P}(1 \mathrm{a})-\mathrm{C}(1 \mathrm{a})$	1.797(9)	$\mathrm{P}(1 \mathrm{a})-\mathrm{C}(2 \mathrm{a})$	1.815(10)	$\mathrm{N}(1 \mathrm{~b})-\mathrm{O}(1 \mathrm{~b})$	$1.237(8)$	$\mathrm{N}(1 \mathrm{~b})-\mathrm{O}(2 \mathrm{~b})$	$1.256(8)$
$\mathrm{P}(1 \mathrm{a})$-C(3a)	1.796(11)	$\mathrm{P}(2 \mathrm{a})-\mathrm{C}(4 \mathrm{a})$	1.767(12)	$\mathrm{N}(11 \mathrm{~b}) \mathrm{C}(12 \mathrm{~b})$	1.324(10)	$\mathrm{N}(11 \mathrm{~b}) \mathrm{C}(16 \mathrm{~b})$	1.340 (10)
$\mathbf{P}(2 \mathrm{a})-\mathrm{C}(5 \mathrm{a})$	1.723(15)	$\mathrm{P}(2 \mathrm{a})-\mathrm{C}(6 \mathrm{a})$	1.791(11)	$\mathrm{C}(12 \mathrm{~b})-\mathrm{C}(13 \mathrm{~b})$	1.384(12)	$\mathrm{C}(12 \mathrm{~b})-\mathrm{N}(25 \mathrm{~b})$	1.403(10)
$\mathrm{N}(1 \mathrm{a})-\mathrm{O}(\mathrm{la})$	1.244(10)	$\mathrm{N}(1 \mathrm{a})-\mathrm{O}(2 \mathrm{a})$	1.189(12)	$\mathrm{C}(13 \mathrm{~b})-\mathrm{C}(14 \mathrm{~b})$	1.371(15)	$\mathrm{C}(14 \mathrm{~b})-\mathrm{C}(15 \mathrm{~b})$	1.369(16)
$\mathrm{N}(11 \mathrm{a}) \mathrm{C}(12 \mathrm{a})$	$1.355(9)$	$\mathrm{N}(11 \mathrm{a}) \mathrm{C}(16 \mathrm{a})$	$1.332(9)$	$\mathrm{C}(15 \mathrm{~b})-\mathrm{C}(16 \mathrm{~b})$	1.392(12)	$\mathrm{C}(16 \mathrm{~b})-\mathrm{N}(35 \mathrm{~b})$	1.393(11)
C(12a)-C(13a)	$1.351(11)$	$\mathrm{C}(12 \mathrm{a})-\mathrm{N}(25 \mathrm{a})$	$1.382(9)$	$\mathrm{N}(21 \mathrm{~b}) \mathrm{C}(22 \mathrm{~b})$	1.356(10)	$\mathrm{N}(21 \mathrm{~b})-\mathrm{N}(25 \mathrm{~b})$	1.387(8)
C(13a)-C(14a)	1.387(12)	$\mathrm{C}(14 \mathrm{a})-\mathrm{C}(15 \mathrm{a})$	1.405(12)	$\mathrm{C}(22 \mathrm{~b})-\mathrm{C}(23 \mathrm{~b})$	1.397(11)	$\mathrm{C}(22 \mathrm{~b})-\mathrm{C}(41 \mathrm{~b})$	1.447(11)
C(15a)-C(16a)	1.386(11)	$\mathrm{C}(16 \mathrm{a})-\mathrm{N}(35 \mathrm{a})$	1.397(9)	C(23b)-C(24b)	1.337(13)	$\mathrm{C}(24 \mathrm{~b})-\mathrm{N}(25 \mathrm{~b})$	1.350 (11)
$\mathrm{N}(21 \mathrm{a}) \mathrm{C}(22 \mathrm{a})$	1.350(9)	$\mathrm{N}(21 \mathrm{a})-\mathrm{N}(25 \mathrm{a})$	1.407(8)	$\mathrm{N}(31 \mathrm{~b}) \mathrm{C}(32 \mathrm{~b})$	$1.334(9)$	$\mathrm{N}(31 \mathrm{~b})-\mathrm{N}(35 \mathrm{~b})$	$1.381(9)$
$\mathrm{C}(22 \mathrm{a}-\mathrm{C}(23 \mathrm{a})$	1.399(11)	C(22a)-C(41a)	1.460(11)	C(32b)-C(33b)	1.409(11)	$\mathrm{C}(32 \mathrm{~b})-\mathrm{C}(51 \mathrm{~b})$	1.453(10)
$\mathrm{C}(23 \mathrm{a})-\mathrm{C}(24 \mathrm{a})$	1.331(13)	$\mathrm{C}(24 \mathrm{a})-\mathrm{N}(25 \mathrm{a})$	1.390(10)	C(33b)-C(34b)	1.366(12)	$\mathrm{C}(34 \mathrm{~b})-\mathrm{N}(35 \mathrm{~b})$	1.368(11)
$\mathrm{N}(31 \mathrm{a})-\mathrm{C}(32 \mathrm{a})$	$1.324(9)$	$\mathrm{N}(31 \mathrm{a})-\mathrm{N}(35 \mathrm{a})$	$1.392(8)$	C(41b)-C(42b)	1.385(12)	$\mathrm{C}(41 \mathrm{~b})-\mathrm{C}(46 \mathrm{~b})$	1.397(13)
C(32a)-C(33a)	1.427(10)	C(32a)-C(51a)	1.460(10)	C(42b)-C(43b)	1.373(12)	$\mathrm{C}(43 \mathrm{~b})-\mathrm{C}(44 \mathrm{~b})$	1.364(13)
$\mathrm{C}(33 \mathrm{a})-\mathrm{C}(34 \mathrm{a})$	1.353(12)	$\mathrm{C}(34 \mathrm{a})-\mathrm{C}(35 \mathrm{a})$	$1.356(9)$	C(44b)-C(45b)	1.368(17)	$\mathrm{C}(44 \mathrm{~b})-\mathrm{Cl}(4 \mathrm{~b})$	1.731(10)
C(41a)-C(42a)	1.376(13)	$\mathrm{C}(41 \mathrm{a})-\mathrm{C}(46 a)$	1.394(12)	$\mathrm{C}(45 \mathrm{~b})-\mathrm{C}(46 \mathrm{~b})$	1.389(14)	$\mathrm{C}(51 \mathrm{~b})-\mathrm{C}(52 \mathrm{~b})$	1.380(11)
C(42a)-C(43a)	$1.376(13)$	$\mathrm{C}(43 \mathrm{a})-\mathrm{C}(44 \mathrm{a})$	1.343(14)	$\mathrm{C}(51 \mathrm{~b})-\mathrm{C}(56 \mathrm{~b})$	1.400(11)	$\mathrm{C}(52 \mathrm{~b})-\mathrm{C}(53 \mathrm{~b})$	1.390(12)
C(44a)-C(45a)	1.363(19)	$\mathrm{C}(44 \mathrm{a})-\mathrm{Cl}(4 \mathrm{a})$	1.747(11)	$\mathrm{C}(53 \mathrm{~b})-\mathrm{C}(54 \mathrm{~b})$	1.383(13)	$\mathrm{C}(54 \mathrm{~b})-\mathrm{C}(55 \mathrm{~b})$	1.334(14)
C(45a)-C(46a)	1.356(15)	$\mathrm{C}(51 \mathrm{a})-\mathrm{C}(52 \mathrm{a})$	$1.376(11)$	$\mathrm{C}(54 \mathrm{~b})-\mathrm{Cl}(5 \mathrm{~b})$	1.743(10)	$\mathrm{C}(55 \mathrm{~b})-\mathrm{C}(56 \mathrm{~b})$	i.380(13)
$\mathrm{P}(1 a)-\mathrm{Ru}(1 a)-\mathrm{P}(2 \mathrm{a})$	178.6(1)	$\mathrm{P}(1 a)-\mathrm{Ru}(1 \mathrm{a})-\mathrm{N}(1 \mathrm{a})$	94.1(2)	$\mathrm{C}(43 \mathrm{a})-\mathrm{C}(44 \mathrm{a})-\mathrm{C}(45 \mathrm{a})$	120.7(10)	$\mathrm{C}(43 \mathrm{a})-\mathrm{C}(44 \mathrm{a})-\mathrm{Cl}(4 a)$	119.6(10)
$\mathrm{P}(2 \mathrm{a})-\mathrm{Ru}(1 a)-\mathrm{N}(1 a)$	87.3(2)	$\mathrm{P}(1 \mathrm{a})-\mathrm{Ru}(1 \mathrm{a})-\mathrm{N}(11 \mathrm{a})$	88.6(2)	$\mathrm{C}(45 \mathrm{a})-\mathrm{C}(44 \mathrm{a})-\mathrm{Cl}(4 \mathrm{a})$	119.7(8)	$\mathrm{C}(44 \mathrm{a})-\mathrm{C}(45 \mathrm{a})-\mathrm{C}(46 a)$	121.1(10)
$\mathrm{P}(2 \mathrm{a})-\mathrm{Ru}(1 \mathrm{a})-\mathrm{N}(11 \mathrm{a})$	90.1(2)	$\mathrm{N}(1 \mathrm{a})-\mathrm{Ru}(1 a)-\mathrm{N}(11 \mathrm{a})$	177.2(3)	$\mathrm{C}(41 \mathrm{a})-\mathrm{C}(46 \mathrm{a})-\mathrm{C}(45 \mathrm{a})$	119.8(10)	$\mathrm{C}(32 \mathrm{a})-\mathrm{C}(51 \mathrm{a})-\mathrm{C}(52 \mathrm{a})$	123.0(7)
$\mathrm{P}(1 \mathrm{a})-\mathrm{Ru}(1 a)-\mathrm{N}(21 \mathrm{a})$	91.7(2)	$\mathrm{P}(2 \mathrm{a})-\mathrm{Ru}(1 a)-\mathrm{N}(21 a)$	88.5(2)	$\mathrm{C}(32 \mathrm{a})-\mathrm{C}(51 \mathrm{a})-\mathrm{C}(56 \mathrm{a})$	118.1(7)	$\mathrm{C}(52 \mathrm{a})-\mathrm{C}(51 \mathrm{a})-\mathrm{C}(56 \mathrm{a})$	118.9(8)
$\mathrm{N}(1 a)-\mathrm{Ru}(\mathrm{la})-\mathrm{N}(21 \mathrm{a})$	100.5(2)	$\mathrm{N}(11 \mathrm{a})-\mathrm{Ru}(1 a)-\mathrm{N}(21 \mathrm{a})$	78.4(2)	$\mathrm{C}(51 \mathrm{a})-\mathrm{C}(52 \mathrm{a})-\mathrm{C}(53 \mathrm{a})$	120.2(8)	$\mathrm{C}(52 \mathrm{a})-\mathrm{C}(53 \mathrm{a})-\mathrm{C}(54 \mathrm{a})$	119.4(9)
$\mathrm{P}(1 \mathrm{a})-\mathrm{Ru}(1 \mathrm{a})-\mathrm{N}(31 \mathrm{a})$	91.4(2)	$\mathrm{P}(2 \mathrm{a})-\mathrm{Ru}(1 a)-\mathrm{N}(31 \mathrm{a})$	87.9(2)	C(53a)-C(54a)-C(55a)	121.7(9)	$\mathrm{C}(53 \mathrm{a})-\mathrm{C}(54 \mathrm{a})-\mathrm{Cl}(5 \mathrm{a})$	118.3(7)
$\mathrm{N}(1 \mathrm{a})-\mathrm{Ru}(1 a)-\mathrm{N}(31 \mathrm{a})$	103.5(2)	$\mathrm{N}(11 \mathrm{a})-\mathrm{Ru}(1 \mathrm{a})-\mathrm{N}(31 \mathrm{a})$	77.3(2)	$\mathrm{C}(55 \mathrm{a})-\mathrm{C}(54 \mathrm{a})-\mathrm{Cl}(5 \mathrm{a})$	120.0(8)	$\mathrm{C}(54 \mathrm{a})-\mathrm{C}(55 \mathrm{a})-\mathrm{C}(56 \mathrm{a})$	$119.3(8)$
$\mathrm{N}(21 \mathrm{a})-\mathrm{Ru}(1 a)-\mathrm{N}(31 \mathrm{a})$	155.5(2)	$\mathrm{P}(1 \mathrm{~b})-\mathrm{Ru}(1 \mathrm{~b})-\mathrm{P}(2 \mathrm{~b})$	179.0(1)	$\mathrm{C}(51 \mathrm{a})-\mathrm{C}(56 \mathrm{a})-\mathrm{C}(55 \mathrm{a})$	120.4(8)	$\mathrm{Ru}(\mathrm{lb})-\mathrm{P}(\mathrm{lb})-\mathrm{C}(1 \mathrm{~b})$	120.3(3)
$\mathrm{P}(\mathrm{lb})-\mathrm{Ru}(1 \mathrm{l})-\mathrm{N}(1 \mathrm{l})$	90.0(2)	$\mathrm{P}(2 \mathrm{~b})-\mathrm{Ru}(1 \mathrm{~b})-\mathrm{N}(1 \mathrm{~b})$	90.1(2)	Ru(lb)-P(lb)-C(2b)	113.4(4)	$\mathrm{C}(1 \mathrm{~b})-\mathrm{P}(1 \mathrm{~b})-\mathrm{C}(2 \mathrm{~b})$	98.9(5)
$\mathrm{P}(1 \mathrm{~b})-\mathrm{Ru}(1 \mathrm{~b})-\mathrm{N}(11 \mathrm{~b})$	88.4(2)	$\mathrm{P}(2 \mathrm{~b})-\mathrm{Ru}(1 \mathrm{~b})-\mathrm{N}(11 \mathrm{~b})$	91.4(2)	$\mathrm{Ru}(1 \mathrm{~b})-\mathrm{P}(\mathrm{lb})-\mathrm{C}(3 \mathrm{~b})$	117.4(4)	$\mathrm{C}(1 \mathrm{~b})-\mathrm{P}(1 \mathrm{~b})-\mathrm{C}(3 \mathrm{~b})$	102.9(5)
$\mathrm{N}(1 \mathrm{~b})-\mathrm{Ru}(1 \mathrm{~b})-\mathrm{N}(11 \mathrm{~b})$	178.1(2)	$\mathrm{P}(1 \mathrm{~b})-\mathrm{Ru}(1 \mathrm{~b})-\mathrm{N}(21 \mathrm{~b})$	90.9(2)	$\mathrm{C}(2 \mathrm{~b})-\mathrm{P}(1 \mathrm{~b})-\mathrm{C}(3 \mathrm{~b})$	$100.8(5)$	$\mathrm{Ru}(1 \mathrm{~b})-\mathrm{P}(2 \mathrm{~b})-\mathrm{C}(4 \mathrm{~b})$	113.0(4)
$\mathrm{P}(2 \mathrm{~b})-\mathrm{Ru}(1 \mathrm{~b})-\mathrm{N}(21 \mathrm{~b})$	88.1(2)	$\mathrm{N}(1 \mathrm{~b})-\mathrm{Ru}(1 \mathrm{~b})-\mathrm{N}(2 \mathrm{lb})$	101.1(2)	$\mathrm{Ru}(1 \mathrm{~b})-\mathrm{P}(2 \mathrm{~b})-\mathrm{C}(5 \mathrm{~b})$	117.0(4)	$\mathrm{C}(4 \mathrm{~b})-\mathrm{P}(2 \mathrm{~b})-\mathrm{C}(5 \mathrm{~b})$	102.3(6)
$\mathrm{N}(11 \mathrm{~b})-\mathrm{Ru}(1 \mathrm{~b})-\mathrm{N}(21 \mathrm{~b})$	77.9(2)	$\mathrm{P}(1 \mathrm{~b})-\mathrm{Ru}(1 \mathrm{l})-\mathrm{N}(31 \mathrm{~b})$	92.2(2)	$\mathrm{Ru}(1 \mathrm{~b})-\mathrm{P}(2 \mathrm{~b})-\mathrm{C}(6 \mathrm{~b})$	117.7(3)	$\mathrm{C}(4 \mathrm{~b})-\mathrm{P}(2 \mathrm{~b})-\mathrm{C}(6 \mathrm{~b})$	103.1(5)
$\mathrm{P}(2 \mathrm{~b})-\mathrm{Ru}(1 \mathrm{~b})-\mathrm{N}(3 \mathrm{lb})$	88.7(2)	$\mathrm{N}(1 \mathrm{~b})-\mathrm{Ru}(1 \mathrm{~b})-\mathrm{N}(31 \mathrm{~b})$	103.8(2)	$\mathrm{C}(5 \mathrm{~b})-\mathrm{P}(2 \mathrm{~b})-\mathrm{C}(6 \mathrm{~b})$	101.7(5)	$\mathrm{Ru}(1 \mathrm{~b})-\mathrm{N}(1 \mathrm{~b})-\mathrm{O}(1 \mathrm{~b})$	123.2(4)
$\mathrm{N}(11 \mathrm{~b})-\mathrm{Ru}(1 \mathrm{~b})-\mathrm{N}(31 \mathrm{~b})$	77.3(2)	$\mathrm{N}(21 \mathrm{~b})-\mathrm{Ru}(1 \mathrm{~b})-\mathrm{N}(31 \mathrm{~b})$	154.9(2)	$\mathrm{Ru}(\mathrm{lb})-\mathrm{N}(1 \mathrm{~b})-\mathrm{O}(2 \mathrm{~b})$	120.5(5)	$\mathrm{O}(1 \mathrm{~b})-\mathrm{N}(1 \mathrm{~b})-\mathrm{O}(2 \mathrm{~b})$	116.3(6)

Table 11 (continued)

$\mathrm{Ru}(\mathrm{la})-\mathrm{P}(\mathrm{la})-\mathrm{C}(1 \mathrm{a})$	112.7(3)	$\mathrm{Ru}(1 a)-\mathrm{P}(1 \mathrm{a})-\mathrm{C}(2 \mathrm{a})$	113.4(3)
$C(1 a)-P(1 a)-C(2 a)$	101.1(5)	$\mathrm{Ru}(1 a)-\mathrm{P}(1 \mathrm{a})-\mathrm{C}(3 \mathrm{a})$	123.5(4)
$\mathrm{C}(1 \mathrm{a})-\mathrm{P}(1 \mathrm{a})-\mathrm{C}(3 \mathrm{a})$	100.4(5)	$\mathrm{C}(2 \mathrm{a})-\mathrm{P}(1 \mathrm{a})-\mathrm{C}(3 \mathrm{a})$	102.9(5)
$\mathrm{Ru}(1 a)-\mathrm{P}(2 \mathrm{a})-\mathrm{C}(4 \mathrm{a})$	118.4(4)	$\mathrm{Ru}(\mathrm{la})-\mathrm{P}(2 \mathrm{a})-\mathrm{C}(5 \mathrm{a})$	116.3(7)
C(4a)-P(2a)-C(5a)	96.4(8)	$\mathrm{Ru}(1 \mathrm{a})-\mathrm{P}(2 \mathrm{a})-\mathrm{C}(6 \mathrm{a})$	117.5(6)
$\mathbf{C}(4 a)-P(2 a)-C(6 a)$	103.0(6)	$\mathbf{C}(5 a)-P(2 a)-C(6 a)$	101.8(10)
$\mathrm{Ru}(1 \mathrm{a})-\mathrm{N}(1 \mathrm{a})-\mathrm{O}(1 \mathrm{a})$	125.4(5)	$\mathrm{Ru}(1 \mathrm{a})-\mathrm{N}(1 \mathrm{a})-\mathrm{O}(2 \mathrm{a})$	120.6(7)
$\mathrm{O}(1 \mathrm{a})-\mathrm{N}(1 \mathrm{a})-\mathrm{O}(2 \mathrm{a})$	113.7(7)	$\mathrm{Ru}(1 a)-\mathrm{N}(11 \mathrm{a})-\mathrm{C}(12 \mathrm{a})$	$119.5(5)$
$\mathrm{Ru}(1 a)-\mathrm{N}(11 \mathrm{a}) \mathrm{C}(16 \mathrm{a})$	121.3(5)	$\mathrm{C}(12 \mathrm{a})-\mathrm{N}(11 \mathrm{a})-\mathrm{C}(16 \mathrm{a})$	119.1(6)
$\mathrm{N}(11 \mathrm{a})-\mathrm{C}(12 \mathrm{a})-\mathrm{C}(13 \mathrm{a})$	122.4(7)	$\mathrm{N}(11 \mathrm{a})-\mathrm{C}(12 \mathrm{a})-\mathrm{N}(25 \mathrm{a})$	112.3(6)
$\mathrm{C}(13 \mathrm{a})-\mathrm{C}(12 \mathrm{a})-\mathrm{N}(25 \mathrm{a})$	125.2(7)	$\mathrm{C}(12 \mathrm{a})-\mathrm{C}(13 \mathrm{a})-\mathrm{C}(14 \mathrm{a})$	118.1(8)
$\mathrm{C}(13 \mathrm{a})-\mathrm{C}(14 \mathrm{a})-\mathrm{C}(15 \mathrm{a})$	121.3(8)	$\mathrm{C}(14 \mathrm{a})-\mathrm{C}(15 \mathrm{a})-\mathrm{C}(16 \mathrm{a})$	115.7(7)
$\mathrm{N}(11 \mathrm{a})-\mathrm{C}(16 \mathrm{a})-\mathrm{C}(15 \mathrm{a})$	123.4(7)	$\mathrm{N}(11 \mathrm{a})-\mathrm{C}(16 \mathrm{a})-\mathrm{N}(35 \mathrm{a})$	111.4(6)
$\mathrm{C}(15 \mathrm{a})-\mathrm{C}(16 \mathrm{a})-\mathrm{N}(35 \mathrm{a})$	125.2(6)	$\mathrm{Ru}(1 \mathrm{a})-\mathrm{N}(21 \mathrm{a}-\mathrm{C}(22 \mathrm{a})$	145.2(5)
$\mathrm{Ru}(1 \mathrm{a})-\mathrm{N}(21 \mathrm{a})-\mathrm{N}(25 \mathrm{a})$	110.2(4)	$\mathrm{C}(22 \mathrm{a})-\mathrm{C}(21 \mathrm{a})-\mathrm{N}(25 \mathrm{a})$	104.1(5)
$\mathrm{N}(21 \mathrm{a})-\mathrm{C}(22 \mathrm{a})-\mathrm{C}(23 \mathrm{a})$	110.5(7)	$\mathrm{N}(21 \mathrm{a})-\mathrm{C}(22 \mathrm{a})-\mathrm{C}(41 \mathrm{a})$	124.1(7)
$\mathrm{C}(23 \mathrm{a}-\mathrm{C}(22 \mathrm{a})-\mathrm{C}(41 \mathrm{a})$	125.3(7)	$\mathrm{C}(22 \mathrm{a})-\mathrm{C}(23 \mathrm{a})-\mathrm{C}(24 \mathrm{a})$	108.3(7)
$\mathrm{C}(23 \mathrm{a})-\mathrm{C}(24 \mathrm{a})-\mathrm{N}(25 \mathrm{a})$	106.8(7)	$\mathrm{C}(12 \mathrm{a})-\mathrm{N}(25 \mathrm{a})-\mathrm{N}(21 \mathrm{a})$	119.6(6)
$\mathrm{C}(12 \mathrm{a})-\mathrm{N}(25 \mathrm{a})-\mathrm{C}(24 \mathrm{a})$	129.5(7)	$\mathrm{N}(21 \mathrm{a})-\mathrm{N}(25 \mathrm{a})-\mathrm{C}(24 \mathrm{a})$	110.1(6)
$\mathrm{Ru}(1 a)-\mathrm{N}(31 \mathrm{a})-\mathrm{C}(32 \mathrm{a})$	144.6(5)	$\mathrm{Ru}(1 \mathrm{a})-\mathrm{N}(31 \mathrm{a})-\mathrm{N}(35 \mathrm{a})$	109.9(4)
$\mathrm{C}(32 \mathrm{a})-\mathrm{N}(31 \mathrm{a})-\mathrm{N}(35 \mathrm{a})$	105.3(5)	$\mathrm{N}(31 \mathrm{a})-\mathrm{C}(32 \mathrm{a})-\mathrm{C}(33 \mathrm{a})$	110.2(6)
$\mathrm{N}(31 \mathrm{a})-\mathrm{C}(32 \mathrm{a})-\mathrm{C}(51 \mathrm{a})$	125.3(6)	$\mathrm{C}(33 \mathrm{a})-\mathrm{C}(32 \mathrm{a})-\mathrm{C}(51 \mathrm{a})$	124.5(6)
$\mathrm{C}(32 \mathrm{a})-\mathrm{C}(33 \mathrm{a})-\mathrm{C}(34 \mathrm{a})$	106.1(7)	$\mathrm{C}(33 \mathrm{a})-\mathrm{C}(34 \mathrm{a})-\mathrm{N}(35 \mathrm{a})$	107.5(7)
$\mathrm{C}(16 \mathrm{a})-\mathrm{N}(35 \mathrm{a})-\mathrm{N}(31 \mathrm{a})$	120.0(5)	$\mathrm{C}(16 \mathrm{a})-\mathrm{N}(35 \mathrm{a})-\mathrm{C}(34 \mathrm{a})$	129.0(6)
$\mathrm{N}(31 \mathrm{a}-\mathrm{N}(35 \mathrm{a})-\mathrm{C}(34 \mathrm{a})$	110.7(6)	$\mathrm{C}(22 \mathrm{a})-\mathrm{C}(41 \mathrm{a})-\mathrm{C}(42 \mathrm{a})$	123.4(7)
$\mathrm{C}(22 \mathrm{a})-\mathrm{C}(41 \mathrm{a})-\mathrm{C}(46 \mathrm{a})$	119.1(8)	$\mathrm{C}(42 \mathrm{a})-\mathrm{C}(41 \mathrm{a})-\mathrm{C}(46 \mathrm{a})$	117.2(8)
$\mathrm{C}(41 \mathrm{a})-\mathrm{C}(42 \mathrm{a})-\mathrm{C}(43 \mathrm{a})$	122.3(8)	$\mathrm{C}(42 \mathrm{a})-\mathrm{C}(43 \mathrm{a})-\mathrm{C}(44 \mathrm{a})$	118.7(11)

(K. J. T.) for partial support of this research. We also thank Johnson Matthey Aesar/Alfa for a generous loan of RuCl_{3}. $3 \mathrm{H}_{2} \mathrm{O}$, Ms. Lisa F. Szczepura for her assistance with the electrochemical measurements, and Professor Kenneth A. Goldsby for many helpful discussions. Upgrade of the diffractometer was made possible by Grant 89-13733 from the Chemical Instrumentation Program of the National Science Foundation.

References

1 F. P. Dwyer and D. P. Mellor, Chelating Agents and Metal Chelates, Academic Press, Orlando, 1964.
2 Y. I. Kim, S. Salim, M. J. Hug and T. E. Mallouk, J. Am. Chem. Soc., 1991, 113, 9561 ; S. L. Mecklenburg, B. M. Peek, B. W. Erickson and T. J. Meyer, J. Am. Chem. Soc., 1991, 113, 8540; D. P. Rillema, A. K. Edwards, S. C. Perine and A. L. Crumbliss, Inorg. Chem., 1991, 30, 4421.

3 E. C. Constable, Adv. Inorg. Chem. Radiochem., 1989, 34, 1.
4 E. C. Constable and M. D. Ward, J. Chem. Soc., Dalton Trans., 1990, 1405; P. J. Steel and E. C. Constable, J. Chem. Soc., Dalton Trans., 1990, 1389; E. C. Constable, Adv. Inorg. Chem. Radiochem., 1986, 30, 69.

5 C. R. Heckler, P. E. Fanwick and D. R. Millin, Inorg. Chem., 1991, 30, 659.

6 R. Hage, R. Prins, J. G. Haasnoot, J. Reedijk and J. G. Vos, J. Chem. Soc., Dalton Trans., 1987, 1389.
7 J.-P. Collin, S. Guillerez, J.-P. Sauvage, F. Barigelletti, L. DeCola, L. Flamigni and V. Balzani, Inorg. Chem., 1991, 30, 4230.
8 R. D. Gillard, Coord. Chem. Rev., 1983, 50, 303.
9 K. P. Seddon, Coord. Chem. Rev., 1982, 41, 79.
10 K. Kalyanasundaram, Coord. Chem. Rev., 1982, 46, 159.
11 N. Baidya, M. Olmstead and P. K. Mascharak, Inorg. Chem., 1991, 30, 929.
12 J. P. Sauvage and M. Ward, Inorg. Chem., 1991, 30, 3869.
13 G. A. Mabbot, J. Chem. Educ., 1983, 60, 697; P. T. Kissinger and W. R. Heineman, J. Chem. Educ., 1983, 60, 702.

14 C. A. Tolman, Chem. Rev., 1977, 77, 313.
15 M. A. Hitchman and G. L. Rowbottom, Coord. Chem. Rev., 1982, 42, 55 and refs. therein.
16 D. J. Jameson and K. A. Goldsby, J. Org. Chem., 1990, 55, 4992.
17 P. T. Kissinger and W. R. Heineman, Laboratory Techniques in Electroanalytical Chemistry, Marcel Dekker, New York, 1984.
18 (a) M. R. Churchill, R. A. Lashewycz and F. J. Rotella, Inorg.
$\mathrm{Ru}(1 \mathrm{~b})-\mathrm{N}(11 \mathrm{~b})-\mathrm{C}(12 \mathrm{~b}) \quad 119.7(5)$ $\mathrm{C}(12 \mathrm{~b})-\mathrm{N}(11 \mathrm{~b})-\mathrm{C}(16 \mathrm{~b}) \quad 119.5(6)$ $\mathrm{N}(11 \mathrm{~b})-\mathrm{C}(12 \mathrm{~b})-\mathrm{N}(25 \mathrm{~b}) \quad 113.3(6)$ $\mathrm{C}(12 \mathrm{~b})-\mathrm{C}(13 \mathrm{~b})-\mathrm{C}(14 \mathrm{~b}) \quad 116.4(9)$ $\mathrm{C}(14 \mathrm{~b})-\mathrm{C}(15 \mathrm{~b})-\mathrm{C}(16 \mathrm{~b}) \quad 116.6(9)$ $\mathrm{N}(11 \mathrm{~b})-\mathrm{C}(16 \mathrm{~b})-\mathrm{N}(35 \mathrm{~b}) \quad 112.1(6)$ $\mathrm{Ru}(1 \mathrm{~b})-\mathrm{N}(21 \mathrm{~b})-\mathrm{C}(22 \mathrm{~b}) \quad 144.3(5)$ $\mathrm{C}(22 \mathrm{~b})-\mathrm{N}(21 \mathrm{~b})-\mathrm{N}(25 \mathrm{~b}) \quad 104.6(6)$ $\mathrm{N}(21 \mathrm{~b})-\mathrm{C}(22 \mathrm{~b})-\mathrm{C}(41 \mathrm{~b}) \quad 125.4(7)$ $\mathrm{C}(22 \mathrm{~b})-\mathrm{C}(23 \mathrm{~b})-\mathrm{C}(24 \mathrm{~b}) \quad 106.9(8)$ $\mathrm{C}(12 \mathrm{~b})-\mathrm{N}(25 \mathrm{~b})-\mathrm{N}(2 \mathrm{lb}) \quad 118.5(6)$ $\mathrm{N}(21 \mathrm{~b})-\mathrm{N}(25 \mathrm{~b})-\mathrm{C}(24 \mathrm{~b}) \quad 110.2(6)$
$\mathrm{Ru}(1 \mathrm{~b})-\mathrm{N}(31 \mathrm{~b})-\mathrm{N}(35 \mathrm{~b}) \quad 109.5(4)$
$\mathrm{N}(31 \mathrm{~b})-\mathrm{C}(32 \mathrm{~b})-\mathrm{C}(33 \mathrm{~b}) \quad 110.2(7)$
C(33b)-C(32b)-C(51b) 125.6(7)
$\mathrm{C}(33 \mathrm{~b})-\mathrm{C}(34 \mathrm{~b})-\mathrm{N}(35 \mathrm{~b}) \quad 106.5(7)$
$\mathrm{C}(16 \mathrm{~b})-\mathrm{C}(35 \mathrm{~b})-\mathrm{C}(34 \mathrm{~b}) \quad 128.4(7)$
$\mathrm{C}(22 \mathrm{~b})-\mathrm{C}(41 \mathrm{~b})-\mathrm{C}(42 \mathrm{~b}) \quad 123.7(7)$
$\mathrm{C}(42 \mathrm{~b})-\mathrm{C}(41 \mathrm{~b})-\mathrm{C}(46 \mathrm{~b}) \quad 118.4(8)$
C(42b)-C(43b)-C(44b) 120.7(9)
$\mathrm{C}(43 \mathrm{~b})-\mathrm{C}(44 \mathrm{~b})-\mathrm{Cl}(4 \mathrm{~b}) \quad 120.6(9)$
$\mathrm{C}(44 \mathrm{~b})-\mathrm{C}(45 \mathrm{~b})-\mathrm{C}(46 \mathrm{~b}) \quad 120.4(9)$
C(32b)-C(51b)-C(52b) 121.5(7)
C(52b)-C(51b)-C(56b) 118.4 (7)
$\mathrm{C}(52 \mathrm{~b})-\mathrm{C}(53 \mathrm{~b})-\mathrm{C}(54 \mathrm{~b}) \quad 119.4(9)$
$\mathrm{C}(53 \mathrm{~b})-\mathrm{C}(54 \mathrm{~b})-\mathrm{Cl}(5 \mathrm{~b}) \quad 118.2(8)$
$\mathrm{C}(54 \mathrm{~b})-\mathrm{C}(55 \mathrm{~b})-\mathrm{C}(56 \mathrm{~b}) \quad 119.1(8)$
$\mathrm{Ru}(1 \mathrm{~b})-\mathrm{N}(11 \mathrm{~b})-\mathrm{C}(16 \mathrm{~b}) \quad 120.7(5)$
$\mathrm{N}(11 \mathrm{~b})-\mathrm{C}(12 \mathrm{~b})-\mathrm{C}(13 \mathrm{~b}) \quad 122.8(8)$
$\mathrm{C}(13 \mathrm{~b})-\mathrm{C}(12 \mathrm{~b})-\mathrm{N}(25 \mathrm{~b}) \quad 123.9(8)$ $\mathrm{C}(13 \mathrm{~b})-\mathrm{C}(14 \mathrm{~b})-\mathrm{C}(15 \mathrm{~b}) \quad 122.7(9)$ $\mathrm{N}(11 \mathrm{~b})-\mathrm{C}(16 \mathrm{~b})-\mathrm{C}(15 \mathrm{~b}) \quad 121.9(8)$ $\mathrm{C}(15 \mathrm{~b})-\mathrm{C}(16 \mathrm{~b})-\mathrm{N}(35 \mathrm{~b}) \quad 126.0(8)$
$\mathrm{Ru}(1 \mathrm{~b})-\mathrm{N}(21 \mathrm{~b})-\mathrm{N}(25 \mathrm{~b}) \quad 110.5(4)$
$\mathrm{N}(21 \mathrm{~b})-\mathrm{C}(22 \mathrm{~b})-\mathrm{C}(23 \mathrm{~b}) \quad 109.8(7)$
C(23b)-C(22b)-C(41b) $\quad 124.8(7)$
$\mathrm{C}(23 \mathrm{~b})-\mathrm{C}(24 \mathrm{~b})-\mathrm{N}(25 \mathrm{~b}) \quad 108.4(8)$
$\mathrm{C}(12 \mathrm{~b})-\mathrm{N}(25 \mathrm{~b})-\mathrm{C}(24 \mathrm{~b}) \quad 130.5(7)$
$\mathrm{Ru}(\mathrm{b})-\mathrm{N}(31 \mathrm{~b})-\mathrm{C}(32 \mathrm{~b}) \quad 144.0(5)$
$\mathrm{C}(32 \mathrm{~b})-\mathrm{N}(31 \mathrm{~b})-\mathrm{N}(35 \mathrm{~b}) \quad 105.5(6)$
$\mathrm{N}(31 \mathrm{~b})-\mathrm{C}(32 \mathrm{~b})-\mathrm{C}(51 \mathrm{~b}) \quad 124.1(7)$
$\mathrm{C}(32 \mathrm{~b})-\mathrm{C}(33 \mathrm{~b})-\mathrm{C}(34 \mathrm{~b}) \quad 106.7(7)$
$\mathrm{C}(16 \mathrm{~b})-\mathrm{N}(35 \mathrm{~b})-\mathrm{N}(31 \mathrm{~b}) \quad 120.3(6)$
$\mathrm{N}(31 \mathrm{~b})-\mathrm{N}(35 \mathrm{~b})-\mathrm{C}(34 \mathrm{~b}) \quad 110.9(6)$
$\mathrm{C}(22 \mathrm{~b})-\mathrm{C}(41 \mathrm{~b})-\mathrm{C}(46 \mathrm{~b}) \quad 117.9(8)$
C(41b)-C(42b)-C(43b) 120.7(8)
$\mathrm{C}(43 \mathrm{~b})-\mathrm{C}(44 \mathrm{~b})-\mathrm{C}(45 \mathrm{~b}) \quad 119.9(9)$
$\mathrm{C}(45 \mathrm{~b})-\mathrm{C}(44 \mathrm{~b})-\mathrm{Cl}(4 \mathrm{~b}) \quad 119.4(7)$
$\mathrm{C}(4 \mathrm{lb})-\mathrm{C}(46 \mathrm{~b})-\mathrm{C}(45 \mathrm{~b}) \quad 119.9(10)$
$\mathrm{C}(32 \mathrm{~b})-\mathrm{C}(51 \mathrm{~b})-\mathrm{C}(56 \mathrm{~b}) \quad 120.0(7)$
C(51b)-C(52b)-C(53b) 119.8(7)
$\mathrm{C}(53 \mathrm{~b})-\mathrm{C}(54 \mathrm{~b})-\mathrm{C}(55 \mathrm{~b}) \quad 122.0(9)$
$\mathrm{C}(55 \mathrm{~b})-\mathrm{C}(54 \mathrm{~b})-\mathrm{Cl}(5 \mathrm{~b}) \quad 119.8(7)$
$\mathrm{C}(51 \mathrm{~b})-\mathrm{C}(56 \mathrm{~b})-\mathrm{C}(55 \mathrm{~b}) \quad 121.2(8)$

Chem., 1977, 16, 265; (b) G. M. Sheldrick, SHELXTL PLUS, Siemens Analytical Instruments, Madison, WI, 1983; (c) M. R. Churchill, Inorg. Chem., 1973, 12, 1213.
19 C. K. Johnson, ORTEP II, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1974.
20 C. A. Bessel, R. F. See, D. L. Jameson, M. R. Churchill and K. J. Takeuchi, J. Chem. Soc., Dalton Trans., 1991, 2801.
21 W. C. Wosley, J. Chem. Educ., 1973, 50, A335; K. Raymond, Chem. Eng. News, 1983, 61, 4.
22 R. A. Leising and K. J. Takeuchi, J. Am. Chem. Soc., 1988, 110, 4079.

23 R. A. Leising, S. A. Kubow, M. R. Churchill, L. A. Buttrey, J. W. Ziller and K. J. Takeuchi, Inorg. Chem., 1990, 29, 1306.
24 R. A. Leising and K. J. Takeuchi, submitted for publication.
25 B. P. Sullivan, J. M. Calvert and T. J. Meyer, Inorg. Chem., 1980, 19, 1404.

26 D. W. Krassowski, J. H. Nelson, K. R. Brower, D. Hauenstẹin and R. A. Jacobson, Inorg. Chem., 1988, 27, 4294.

27 R. O. Roste, D. J. Cole-Hamilton and G. Wilkinson, J. Chem. Soc., Dalton Trans., 1984, 2067.
28 E. J. Probitts, D. R. Saunders, D. H. Stone and R. J. Mawby, J. Chem. Soc., Dalton Trans., 1986, 1167 and refs. therein.
29 M. J. Cleare and W. P. Griffith, J. Chem. Soc. A, 1967, 1144.
30 S. Pinchase and I. Lauchlit, Infrared Spectra of Labelled Compounds, Academic Press, London, 1971.
31 S. A. Adeymi, F. J. Miller and T. J. Meyer, Inorg. Chem., 1972, 11, 994.
32 H. Nagao, M. Mukaida, K. Shimizu, F. S. Howell and H. Kakihana, Inorg. Chem., 1986, 25, 4312.
33 N. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th edn., Wiley, New York, 1986.
34 B. A. Haymore and J. A. Ibers, Inorg. Chem., 1975, 14, 3060.
35 R. A. Leising, J. J. Grzybowski and K. J. Takeuchi, Inorg. Chem., 1988, 27, 1020.
36 R. P. Thummel and Y. Jahng, Inorg. Chem., 1986, 25, 2527.
37 J. M. Calvert, D. L. Peebles and R. J. Nowak, Inorg. Chem., 1985, 24, 3111.

38 J. M. Calvert and T. J. Meyer, Inorg. Chem., 1985, $20,27$.
39 M. J. Root and E. Deutsch, Inorg. Chem., 1985, 24, 1464.
40 M. J. Suen, S. W. Wilson, M. Pomerantz and J. L. Walsh, Inorg. Chem., 1989, 28, 786
41 F. R. Keene, D. J. Salmon, J. L. Walsh, H. A. Abruna and T. J. Meyer, Inorg. Chem., 1980, 19, 1896 and refs. therein; H. D. Abruna, J. L. Walsh, T. J. Meyer and W. R. Murray Inorg. Chem., 1981, 20, 1481
42 S. A. Kubow, L. F. Szczepura, C. A. Bessel and K. J. Takeuchi, unpublished work.

43 C. K. Ingold, Q. Rev. Chem. Soc., 1957, 11, 1; H. C. Brown, H. Batholomay, jun., and M. D. Traylor, J. Am. Chem. Soc., 1944, 66, 435; R. W. Taft, jun., Steric Effects in Organic Chemistry, Wiley, New York, 1956; T. L. Brown, Inorg. Chem., 1992, 31, 1286.
44 R. A. Harte, Molecules in Three Dimensions, American Society of Biological Chemists, Bethesda, MD, 1969.
45 S. H. Simonsen and M. H. Mueller, J. Inorg. Nucl. Chem., 1965, 27, 309.

46 G. R. Clark, J. M. Waters and K. R. Whittle, J. Chem. Soc., Dalton Trans., 1975, 2556
47 M. F. McGuiggan and L. H. Pignolet, Cryst. Struct. Commun., 1978, 7, 583.
48 R. A. Sanchez-Delgado, U. Thewalt, N. Valencia, A. Andrillo, R.-L. Marquez-Silva, J. Puga, H. Schollhorn, H.-P. Klein and B. Fontal, Inorg. Chem., 1986, 25, 1097.

49 S. D. Robinson and M. F. Uttley, J. Chem. Soc., Dalton Trans., 1973, 1912.

50 A. C. Skapski and F. A. Stephens, J. Chem. Soc., Dalton Trans., 1974 390.

51 R. Mason, K. M. Thomas, D. F. Gill and B. L. Shaw, J. Organomet. Chem., 1972, 40, C67.
52 E. A. Seddon and K. R. Seddon, The Chemistry of Ruthenium Elsevier, New York, 1984 and refs. therein.
53 C. T. Huang, J. A. Weil and B. E. Robertson, Acta Crystallogr., Sect. B, 1975, 31, 914.
54 U. Thewalt and R. E. Marsh, Inorg. Chem., 1970, 9, 1604

[^0]: \dagger Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1993, Issue 1, pp. xxiii-xxviii.

