Reaction of the Unsaturated Triosmium Clusters $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{8}{ }^{-}\right.$ $\left.\left\{\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}\right\}\right]$ and $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{8}\left\{\mathrm{Ph}_{2} \mathrm{PC}\left(=\mathrm{CH}_{2}\right) \mathrm{P}(\mathrm{Ph})-\right.\right.$ $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right\}$ ] with Phosphines and Phosphites; Crystal Structures of $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{8}\left\{\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}\right\}\left(\mathrm{PPr}_{3}{ }_{3}\right)\right],\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2}-\right.\right.$ $\left.\left.\mathrm{PPh}_{2}\right)\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}\right]$, and $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] \dagger$

Michael P. Brown, P. Ann Dolby, Marjorie M. Harding, A. Jane Mathews and Anthony K. Smith* The University of Liverpool, Department of Chemistry, PO Box 147, Liverpool L69 3BX, UK


#### Abstract

Treatment of the unsaturated clusters $\left[\mathrm{Os}_{3}(\mu-\mathrm{H})(\mathrm{CO})_{8}\left\{\mu-\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}\left(\mathrm{Ph}_{6}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right\}\right]$ 1a and $\left[\mathrm{Os}_{3}(\mu-\right.$ $\left.\mathrm{H})(\mathrm{CO})_{8}\left\{\mu-\mathrm{Ph}_{2} \mathrm{PC}\left(=\mathrm{CH}_{2}\right) \mathrm{P}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}\right\}\right] 1 \mathrm{~b}$ with two-electron donor ligands gave the saturated clusters $\left[\mathrm{Os}_{3}(\mu-\mathrm{H})(\mathrm{CO})_{8}\left\{\mu-\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}\left(\mathrm{Ph}_{6} \mathrm{C}_{6} \mathrm{H}_{4}\right\} \mathrm{L}\right]\left[\mathrm{L}=\mathrm{CO} 2 \mathrm{a}\right.\right.$ or $\mathrm{PR}_{3}$ or $\mathrm{P}(\mathrm{OR})_{3} 3\left(\mathrm{R}=\mathrm{Me}, \mathrm{Et}, \mathrm{Pr}^{\mathrm{i}}, \mathrm{Bu}\right.$ or $\mathrm{Ph})]$. $\left[\mathrm{Os}_{3}(\mu-\mathrm{H})(\mathrm{CO})_{8}\left\{\mu-\mathrm{Ph}_{2} \mathrm{PC}\left(=\mathrm{CH}_{2}\right) \mathrm{P}\left(\mathrm{Ph}_{6} \mathrm{C}_{6} \mathrm{H}_{4}\right\} \mathrm{L}\right] \quad(\mathrm{L}=\mathrm{CO} \quad 2 \mathrm{~b})\right.$ and $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}(\mathrm{dppm}) \mathrm{L}_{2}\right] \quad 4$ $\left[\mathrm{dppm}=\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2} ; \mathrm{L}=\mathrm{CO}, \mathrm{PR}_{3}\right.$ or $\left.\mathrm{P}(\mathrm{OR})_{3}\right]$. Two different isomers of complex 4 are observed depending on the ligand L. All the products have been characterised by IR and NMR spectroscopy. The structures of $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{8}\left\{\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}\left(\mathrm{Ph}^{2} \mathrm{C}_{6} \mathrm{H}_{4}\right\}\left(\mathrm{PPr}_{3}\right)\right] 3 \mathrm{3a},\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}(\mathrm{dppm})\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}\right] 4 \mathrm{a}\right.$ and $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}(\mathrm{dppm})\left(\mathrm{PPh}_{3}\right)_{2}\right] 4 \mathrm{c}$ have also been established by X -ray crystallography.


Bridging phosphorus ligands have been used a great deal in metal cluster chemistry because of their ability to maintain the metal cluster framework intact during chemical reactions and to act as templates for the synthesis of metal-metal bonds by bridge-assisted reactions. $\mathrm{We}^{1-3}$ and others ${ }^{4-6}$ have shown that these bridging ligands can quite readily undergo $\mathrm{C}-\mathrm{H}$ and $\mathrm{C}-\mathrm{P}$ bond-breaking, and $\mathrm{M}-\mathrm{H}, \mathrm{M}-\mathrm{C}$ bond-forming, reactions. However, it has also been demonstrated that $\mathrm{C}-\mathrm{H}$ bondcleavage reactions can be readily reversed, and that such reactions can provide convenient routes to substituted metal clusters. ${ }^{7} 9$

We have previously reported that the unsaturated cyclometallated cluster $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{8}\left\{\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}\right\}\right]$ 1a undergoes reaction with CO to form the cluster $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10^{-}}\right.$ $(\mathrm{dppm})]\left(\mathrm{dppm}=\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}\right),{ }^{1}$ with $\mathrm{H}_{2}$ to form $\left[\mathrm{Os}_{3} \mathrm{H}_{2}-\right.$ $\left.(\mathrm{CO})_{8}(\mathrm{dppm})\right],{ }^{8}$ and with diphenylacetylene to form [ $\mathrm{Os}_{3}{ }^{-}$ $\left.(\mathrm{CO})_{7}(\mathrm{dppm})(\mathrm{PhC} \equiv \mathrm{CPh})\right] .{ }^{10}$ In this paper we provide full details of the reaction of the triosmium cluster $1 \mathbf{a}$ with CO , and report on the extension of these studies to the reactions of 1 la and $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{8}\left\{\mathrm{Ph}_{2} \mathrm{PC}\left(=\mathrm{CH}_{2}\right) \mathrm{P}\left(\mathrm{Ph}_{6} \mathrm{C}_{6} \mathrm{H}_{4}\right\}\right] 1 \mathrm{lb}\right.$ with phosphines and phosphites. These studies show how two twoelectron donor ligands can be added to 1 under very mild reaction conditions.

## Results and Discussion

The thermolysis of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{dppm})\right]$ in refluxing toluene leads to the formation of the unsaturated cyclometallated cluster $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{8}\left\{\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}\right\}\right]$ 1a. ${ }^{1}$ Under the same conditions, the cluster $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\right.$ dppen $\left.)\right]$ [dppen $=$ $\mathrm{Ph}_{2} \mathrm{PC}\left(=\mathrm{CH}_{2}\right) \mathrm{PPh}_{2}$ ] gives $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{8}\left\{\mathrm{Ph}_{2} \mathrm{PC}\left(=\mathrm{CH}_{2}\right) \mathrm{P}(\mathrm{Ph})-\right.\right.$ $\mathrm{C}_{6} \mathrm{H}_{4}$ \}] 1b which has been characterised as having an analogous structure to 1 la by IR, ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR, mass spectroscopy and microanalysis. Both complexes $1 \mathbf{a}$ and 1 b react readily with two-electron donor ligands to give both mono- and bis-addition products. Thus, bubbling CO through a toluene solution of 1 a at room temperature results in complete conversion into the saturated triosmium cluster

[^0]$\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{9}\left\{\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}\right\}\right]$ 2a after 2 h . This reaction can be reversed by refluxing the toluene solution of $\mathbf{2 a}$ under nitrogen for 4 h . If complex 2 a is allowed to stand under an atmosphere of carbon monoxide at room temperature for 2 d , it is completely converted into $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{dppm})\right]$. Similar reactions occur with complex 1 b , to give $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{9}-\right.$ $\left.\left\{\mathrm{Ph}_{2} \mathrm{PC}\left(=\mathrm{CH}_{2}\right) \mathrm{P}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}\right\}\right] \mathbf{2 b}$, and eventually $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10^{-}}\right.$ (dppen)]. The saturated, orthometallated complexes 2a and 2b have been characterised spectroscopically and by comparison with $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{8}\left\{\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}\right\}\left(\mathrm{PPr}_{3}{ }_{3}\right)\right]$ 3a (see below). The spectroscopic data are presented in Tables 1 and 2. Thus, the complexes $\mathbf{2 a}$ and $\mathbf{2 b}$ contain a bridging hydride group and a terminally bound orthometallated phenyl ring. That these complexes undergo further addition of CO at room temperature to form $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{dppm})\right]$ and $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10^{-}}\right.$ (dppen)], respectively, shows that the transfer of the hydride from the osmium to the orthometallated phenyl ring is facile. This type of behaviour has been observed previously, for example in $\left[\mathrm{Os}_{3} \mathrm{H}_{2}(\mathrm{CO})_{9}\left(\mathrm{HNC}_{6} \mathrm{H}_{4}\right)\right]^{11}$ and $\left[\mathrm{Os}_{3} \mathrm{H}_{2}(\mathrm{CO})_{9}-\right.$ $\left.\left\{\mathrm{P}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}\right\}\right]$. ${ }^{7}$

In order to investigate these addition reactions further, we have studied the reactions of complexes $1 \mathbf{1 a}$ and $1 \mathbf{b}$ with phosphorus-donor ligands. Typically, a green solution of 1a was stirred with an excess of ligand at room temperature until the solution became yellow. Reaction times varied from less than $1 \min \left[\mathrm{~L}=\mathrm{P}(\mathrm{OMe})_{3}\right]$ to several hours $\left(\mathrm{L}=\mathrm{PPh}_{3}\right)$. The products usually consisted of mixtures of the monoadduct $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{8}\left\{\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}\right\} \mathrm{L}\right] 3$ and the diadduct $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}(\mathrm{dppm}) \mathrm{L}_{2}\right] 4$. In most cases it was not possible to effect a complete separation of these two products by TLC, however they could be readily characterised by IR and ${ }^{31} \mathrm{P}$ and ${ }^{1} \mathrm{H}$ NMR spectroscopy (Tables 1 and 2). With the triisopropylphosphine ligand only the monoadduct 3 was formed. There are numerous structures possible for 3 . However, if it is assumed that the phosphorus ligand is co-ordinated at an equatorial site on one of the unsaturated osmium atoms, and that the hydride ligand remains bridging, then only four need be considered (Fig. 1). The ${ }^{1} \mathrm{H}$ NMR chemical shift of the hydride ligand in 3 is at high field (ranging from $\delta-15.9$ to -16.9 ), in agreement with the assumption that the hydride occupies a bridging site. Terminal hydride ligands tend to have ${ }^{1} \mathrm{H}$ NMR chemical shifts at lower field (for example, at

Table 1 Infrared data $v(\mathrm{CO}) / \mathrm{cm}^{-1}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ solution $)$
Complex

| 1 a | $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{8}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}\right\}\right]$ |
| :---: | :---: |
| 1b | $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{8}\left\{\mathrm{Ph}_{2} \mathrm{PC}\left(\mathrm{CH}_{2}\right) \mathrm{P}\left(\mathrm{Ph}^{2} \mathrm{C}_{6} \mathrm{H}_{4}\right\}\right]\right.$ |
| 2a | $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{9}\left\{\mathrm{Ph}_{2} \mathrm{PCH} \mathrm{H}_{2} \mathrm{P}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}\right\}\right]$ |
| 2b | $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{9}\left\{\mathrm{Ph}_{2} \mathrm{PC}\left(\mathrm{CH}_{2}\right) \mathrm{P}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}\right\}\right]$ |
| 3a | $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{8}\left\{\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}\right\}\left(\mathrm{PPr}^{\mathrm{i}}{ }_{3}\right)\right]$ |
| 3b | $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{\mathrm{g}}\left\{\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}\right\}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}\right]$ |
| 4 a | $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}(\mathrm{dppm})\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}\right]$ |
| 4b | $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}(\mathrm{dppm})\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}\right]$ |
| 4 c | $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}(\mathrm{dppm})\left(\mathrm{PPh}_{3}\right)_{2}\right]$ |
| 4 d | $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}(\mathrm{dppm})\left(\mathrm{PBu}_{3}\right)_{2}\right]$ |

2066s, 2020s, 1991vs, 1928 m
2060s, 2018s, 1990vs, 1930m
2079s, 2047s, 2018vs, 2006(sh), 1976s, 1955(sh), 1935(sh)
2080s, 2040s, 1998vs, 1970s, 1945m
$2057 \mathrm{vs}, 2018 \mathrm{vs}, 1987 \mathrm{vs}, 1965 \mathrm{w}, 1955 \mathrm{w}, 1931 \mathrm{~m}$
2026vs, 2020vs, 1997vs, 1979vs, 1965m, 1940m, 1925(sh)
2043w, 1985s, 1960vs, 1920m
2052m, 1989s, 1960vs, 1918vs, 1895(sh)
2040(sh), 1985s, 1960vs, 1925s, 1880w
2035w, 1970s, 1950vs, 1900m, 1875w

Table 2 The NMR data for compounds 1, 2, $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{8}\left\{\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}\right\} \mathrm{L}\right] 3$ and $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}(\mathrm{dppm}) \mathrm{L}_{2}\right] 4$

| Complex | L | ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}^{a}$ | ${ }^{1} \mathrm{H}^{\text {b }}$ |
| :---: | :---: | :---: | :---: |
| 1 a |  | -18.0 [d, J( $\left.\left.\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}}\right) 69.6\right],-20.2(\mathrm{~d})$ | -13.4 [dd, $\left.J\left(\mathrm{P}_{\mathrm{A}} \mathrm{H}\right) 28.9, J\left(\mathrm{P}_{\mathrm{B}} \mathrm{H}\right) 12.1\right]$ |
| 1b |  | 8.6 [d, $\left.J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}}\right) 132\right],-1.2(\mathrm{~d})$ | -13.3 [dd, $\left.J\left(\mathrm{P}_{\mathrm{A}} \mathrm{H}\right) 30.0, J\left(\mathrm{P}_{\mathrm{B}} \mathrm{H}\right) 10.0\right]$ |
| 2a |  | -13.5 [d, J ( $\left.\left.\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}}\right) 70.9\right],-22.4(\mathrm{~d})$ | -16.5 [dd, $J$ ( $\left.\left.\mathrm{P}_{\mathrm{A}} \mathrm{H}\right) 9.3, J\left(\mathrm{P}_{\mathrm{B}} \mathrm{H}\right) 1.1\right]$ |
| 2b |  | $1.1\left[\mathrm{~d}, J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}}\right) 115\right],-11.5(\mathrm{~d})$ | -16.6[d, $J\left(\mathrm{P}_{\mathrm{A}} \mathrm{H}\right)$ 10.0] |
| 3a | $\mathrm{PPr}^{\mathbf{i}}{ }_{3}$ | $\begin{aligned} & 13.4\left[\mathrm{dd}, J\left(\mathrm{P}_{\mathrm{x}} \mathrm{P}_{\mathrm{A}}\right) 7.5, J\left(\mathrm{P}_{\mathrm{x}} \mathrm{P}_{\mathrm{B}}\right) 23.2\right],-13.3\left[\mathrm{dd}, J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{x}}\right) 7.5, J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}}\right)\right. \\ & 67.7],-28.6\left[\mathrm{dd}, J\left(\mathrm{P}_{\mathrm{B}} \mathrm{P}_{\mathrm{x}}\right) 23.2, J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}}\right) 67.7\right] \end{aligned}$ | -16.7(m) |
| 3b | $\mathrm{P}(\mathrm{OMe})_{3}$ | $104.7\left[\mathrm{dd}, J\left(\mathrm{P}_{\mathrm{x}} \mathrm{P}_{\mathrm{A}}\right) 11.5, J\left(\mathrm{P}_{\mathrm{x}} \mathrm{P}_{\mathrm{B}}\right) 37.9\right],-14.3\left[\mathrm{dd}, J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{x}}\right) 11.5, J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}}\right)\right.$ | -16.9 [t, J(PH) 11.2] |
| 3 c | $\mathrm{PPh}_{3}$ | $-4.7\left[\mathrm{dd}, J\left(\mathrm{P}_{\mathrm{x}} \mathrm{P}_{\mathrm{A}}\right) 8.9, J\left(\mathrm{P}_{\mathrm{x}} \mathrm{P}_{\mathrm{B}}\right) 21.9\right],-13.2\left[\mathrm{dd}, J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{x}}\right) 8.9, J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}}\right)\right.$ | - $15.9[\mathrm{t}, J(\mathrm{PH}) 9.7]$ |
| 3d | $\mathrm{PBu}_{3}$ | $-26.8\left[\mathrm{~d}, J\left(\mathrm{P}_{\mathrm{x}} \mathrm{P}_{\mathrm{A}}\right) 21.7\right],-13.6\left[\mathrm{dd}, J\left(\mathrm{P}_{\mathrm{x}} \mathrm{P}_{\mathrm{A}}\right) 21.7, J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}}\right) 71.6\right],-22.7[\mathrm{~d},$ |  |
| 3 e | $\mathrm{PEt}_{3}$ | $\begin{aligned} & -21.1{ }^{\prime}\left[\mathrm{d}, J\left(\mathrm{P}_{\mathrm{x}} \mathrm{P}_{\mathrm{B}}\right) 21.8\right],-13.9\left[\mathrm{~d}, J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}}\right) 69.5\right],-22.7\left[\mathrm{dd}, J\left(\mathrm{P}_{\mathrm{B}} \mathrm{P}_{\mathrm{x}}\right)\right. \\ & \left.21.8, J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}}\right) 69.5\right] \end{aligned}$ |  |
| 3 f | $\mathrm{P}\left(\mathrm{OPr}^{\mathrm{i}}\right)_{3}$ | $\begin{aligned} & 97.6\left[\mathrm{dd}, J\left(\mathrm{P}_{\mathrm{x}} \mathrm{P}_{\mathrm{A}}\right) 10.5, J\left(\mathrm{P}_{\mathrm{x}} \mathrm{P}_{\mathrm{B}}\right) 37.5\right],-14.7\left[\mathrm{dd}, J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{x}}\right) 10.5, J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}}\right)\right. \\ & 69.7],-22.9\left[\mathrm{dd}, J\left(\mathrm{P}_{\mathrm{B}} \mathrm{P}_{\mathrm{X}}\right) 37.5, J\left(\mathrm{P}_{\mathrm{B}} \mathrm{P}_{\mathrm{A}}\right) 69.7\right] \end{aligned}$ | - $16.8[\mathrm{t}, J(\mathrm{PH}) 10.7]$ |
| 3g | $\mathrm{P}(\mathrm{OBu})_{3}$ | $\begin{aligned} & 99.2\left[\mathrm{dd}, J\left(\mathrm{P}_{\mathrm{X}} \mathrm{P}_{\mathrm{A}}\right) 8.0, J\left(\mathrm{P}_{\mathrm{x}} \mathrm{P}_{\mathrm{B}}\right) 36.1\right],-14.5\left[\mathrm{dd}, J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{X}}\right) 8.0, J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}}\right)\right. \\ & 71.4],-22.8\left[\mathrm{dd}, J\left(\mathrm{P}_{\mathrm{B}} \mathrm{P}_{\mathrm{X}}\right) 36.1, J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}}\right) 71.4\right] \end{aligned}$ |  |
| 3h | $\mathrm{P}(\mathrm{OPh})_{3}$ | $\begin{aligned} & 87.5\left[\mathrm{dd}, J\left(\mathrm{P}_{\mathrm{x}} \mathrm{P}_{\mathrm{A}}\right) 11.7, J\left(\mathrm{P}_{\mathrm{x}} \mathrm{P}_{\mathrm{B}}\right) 39.5\right],-13.8\left[\mathrm{dd}, J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{x}}\right) 11.7, J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}}\right)\right. \\ & 69.4],-21.5\left[\mathrm{dd}, J\left(\mathrm{P}_{\mathrm{B}} \mathrm{P}_{\mathrm{x}}\right) 39.5, J\left(\mathrm{P}_{\mathrm{B}} \mathrm{P}_{\mathrm{A}}\right) 69.4\right] \end{aligned}$ | -16.8[t, J(PH) 11.4] |
| 4a | $\mathrm{P}(\mathrm{OMe})_{3}$ | 105.7(s), -29.0(s) |  |
| 4b | $\mathrm{P}(\mathrm{OMe})_{3}$ |  |  |
| 4c | $\mathrm{PPh}_{3}$ | $\begin{aligned} & 0.4\left[\mathrm{~d}, J\left(\mathrm{P}_{\mathrm{X}} \mathrm{P}_{\mathrm{A}}\right) 7.8\right],-9.4(\mathrm{~s}),-26.9\left[\mathrm{dd}, J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{x}}\right) 7.8, J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}}\right) 53.1\right], \\ & -28.7\left[\mathrm{~d}, J\left(\mathrm{P}_{\mathrm{B}} \mathrm{P}_{\mathrm{A}}\right) 53.1\right] \end{aligned}$ |  |
| 4d | $\mathrm{PBu}_{3}$ | 48.7(s), -30.6(s) |  |
| 4 e | $\mathrm{PEt}_{3}$ | 52.5(s), - 32.1(s) |  |
| 4 f | $\mathrm{P}\left(\mathrm{OPr}^{\text {i }}\right)_{3}$ | 95.6(s), -30.5(s) |  |
| 4g | $\mathrm{P}(\mathrm{OBu})_{3}$ | 98.4(s), -29.4(s) |  |
| 4h | $\mathrm{P}(\mathrm{OPh})_{3}$ | 75.9 [ $\left.\mathrm{t}, J\left(\mathrm{P}_{\mathbf{x}} \mathrm{P}_{\mathrm{A}}\right) 8.8\right],-29.0\left[\mathrm{t}, J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathbf{x}}\right) 8.8\right]$ |  |

${ }^{a}$ Chemical shifts relative to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$; coupling constants in $\mathrm{Hz} . \mathrm{P}_{\mathrm{X}}$ represents phosphine or phosphite adduct, $\mathrm{P}_{\mathrm{A}}$ and $\mathrm{P}_{\mathrm{B}}$ are the P atoms of dppm (arbitrary assignment). ${ }^{b}$ Chemical shifts relative to $\mathrm{SiMe}_{4}$; coupling constants in Hz .


Fig. 1 Possible structures for $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{8}\left\{\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}\right\} \mathrm{L}\right] 3$
$\delta-10.1$ for $\left.\left[\mathrm{Os}_{3} \mathrm{H}_{2}(\mathrm{CO})_{10}\left\{\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4}\left(\mathrm{CH}=\mathrm{CH}_{2}\right)\right\}\right]\right){ }^{12} \quad \mathrm{~A}$ comparison of the IR and ${ }^{31} \mathrm{P}$ NMR data for 3 (see Tables 1 and 2) indicates that all these monoadducts adopt the same structure. The ${ }^{31} \mathrm{P}$ NMR spectra essentially consist of three doublets of doublets, with a large coupling constant between the $P$ atoms of the metallated dppm ligand ( $71.6-67.7 \mathrm{~Hz}$ ), and smaller coupling constants between these $P$ atoms and the $P$ atom of the added ligand [7.5-11.5 (in some cases this coupling was not resolved well enough to be determined) and 21.7-39.5 Hz (the larger couplings arising for the phosphite ligands, as expected ${ }^{13}$ )]. The spectroscopic data do not allow a full structural characterisation to be made, although steric factors would suggest that structures $\mathbf{B}$ and $\mathbf{D}$ should not be favoured due to the strain forced onto the orthometallated dppm ligand.

A full structural characterisation of the $\mathrm{PPr}^{\mathrm{i}}{ }_{3}$ derivative 3a was carried out by X-ray diffraction. This showed that 3a adopts the structure $\mathbf{C}\left(\mathrm{L}=\mathrm{PPr}_{3}{ }_{3}\right)$ in Fig. 1. The molecular structure is shown in Fig. 2 and selected bond lengths and angles are given in Table 3. Complex 3a consists of an approximate isosceles triangle of osmium atoms with one long


Fig. 2 The molecular structure of $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{8}\left\{\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}\left(\mathrm{Ph}^{2} \mathrm{C}_{6} \mathrm{H}_{4}\right\}\left(\mathrm{PPr}_{3}{ }_{3}\right)\right]\right.$ 3a with H atoms omitted

Table 3 Selected bond lengths $(\AA)$ and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{8}\right.$ $\left.\left\{\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}\right\}\left(\mathrm{PPr}^{\mathrm{i}}{ }_{3}\right)\right]$ 3a

| $\mathrm{Os}(1)-\mathrm{Os}(2)$ | $3.137(2)$ | $\mathrm{Os}(2)-\mathrm{C}(5)$ | $1.87(4)$ |
| :--- | :---: | :--- | :--- |
| $\mathrm{Os}(1)-\mathrm{Os}(3)$ | $2.957(3)$ | $\mathrm{Os}(2)-\mathrm{C}(221)$ | $2.15(3)$ |
| $\mathrm{Os}(1)-\mathrm{P}(1)$ | $2.442(7)$ | $\mathrm{Os}(3)-\mathrm{P}(2)$ | $2.334(8)$ |
| $\mathrm{Os}(1)-\mathrm{P}(3)$ | $2.411(8)$ | $\mathrm{Os}(3)-\mathrm{C}(6)$ | $1.95(3)$ |
| $\mathrm{Os}(1)-\mathrm{C}(1)$ | $1.82(4)$ | $\mathrm{Os}(3)-\mathrm{C}(7)$ | $1.96(4)$ |
| $\mathrm{Os}(1)-\mathrm{C}(2)$ | $1.92(3)$ | $\mathrm{Os}(3)-\mathrm{C}(8)$ | $1.87(4)$ |
| $\mathrm{Os}(2)-\mathrm{Os}(3)$ | $2.848(2)$ | $\mathrm{P}(1)-\mathrm{C}(9)$ | $1.84(3)$ |
| $\mathrm{Os}(2)-\mathrm{C}(3)$ | $1.94(3)$ | $\mathrm{P}(2)-\mathrm{C}(9)$ | $1.79(3)$ |
| $\mathrm{Os}(2)-\mathrm{C}(4)$ | $1.86(4)$ |  |  |
|  |  |  | $94(1)$ |
| $\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{Os}(3)$ | $55.64(6)$ | $\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{C}(4)$ | 9. |
| $\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{P}(1)$ | $97.9(2)$ | $\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{C}(221)$ | $90.4(7)$ |
| $\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{P}(3)$ | $118.9(2)$ | $\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{Os}(2)$ | $65.39(4)$ |
| $\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{C}(2)$ | $87.2(8)$ | $\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{P}(2)$ | $85.3(2)$ |
| $\mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{C}(1)$ | $86(1)$ | $\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{C}(6)$ | $94(1)$ |
| $\mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{C}(2)$ | $82.8(9)$ | $\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{C}(7)$ | $98(1)$ |
| $\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{Os}(3)$ | $58.97(5)$ | $\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{P}(2)$ | $85.6(2)$ |
| $\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{C}(3)$ | $85.8(8)$ | $\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{C}(6)$ | $90.8(8)$ |
| $\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{C}(4)$ | $152(1)$ | $\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{C}(8)$ | $96(1)$ |
| $\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{C}(5)$ | $112(1)$ | $\mathrm{P}(1)-\mathrm{C}(9)-\mathrm{P}(2)$ | $110(2)$ |
| $\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{C}(3)$ | $90.1(8)$ |  |  |
|  |  |  |  |

[ $\mathrm{Os}(1)-\mathrm{Os}(2) 3.137(2) \AA$ ] and two shorter bonds. The $\mathrm{PPr}^{\mathrm{i}}{ }_{3}$ ligand is co-ordinated to $\mathrm{Os}(1)$ in the equatorial plane, and the result of this addition to the starting cluster $1 \mathbf{1 a}$ is that the bridging orthometallated phenyl group now adopts a terminal axial co-ordination site, on $\operatorname{Os}(2)$. The bridging hydride ligand was not located directly, but from the lengthening of the $\mathrm{Os}(1)-\mathrm{Os}(2)$ bond, and from the carbonyl ligand distribution [in particular, $\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{C}(5) 112(1)^{\circ}$ ], it is considered to bridge the $\mathrm{Os}(1)-\mathrm{Os}(2)$ edge. The phosphorus atoms of the orthometallated dppm ligand occupy axial co-ordination sites,
as required by the co-ordination of one of the phenyl groups of this ligand to $\mathrm{Os}(2)$. It is noteworthy that the phosphorus atom $\mathrm{P}(1)$ bonded to $\mathrm{Os}(1)$ has a significantly longer bond [2.442(7) $\AA]$ than the $\mathrm{P}(2)-\mathrm{Os}(3)$ bond distance $[2.334(8) \AA]$. This is presumably a consequence of the extra electron density on $\mathrm{Os}(1)$ due to the presence of the $\mathrm{PPr}^{\mathrm{i}}{ }_{3}$ ligand, which also shows a relatively long $\mathrm{Os}(1)-\mathrm{P}(3)$ bond length $[2.411(8) \AA]$.

The addition of two phosphorus-donor ligands to the unsaturated clusters 1 leads to reversal of the cyclometallation and gives the tetra(phosphorus donor)-substituted clusters 4. Again assuming that the phosphorus donors occupy equatorial co-ordination sites, there are four possible structures (Fig. 3). Structure $\mathbf{H}$ is considered to be most unlikely due to the electron-density imbalance created by having no phosphorus donor co-ordinated to $\operatorname{Os}(2)$. Structure $\mathbf{F}$ may be readily distinguished from $\mathbf{E}$ and $\mathbf{G}$ by ${ }^{31} \mathrm{P}$ NMR spectroscopy due to the equivalence of the two monodentate phosphorus-donor ligands, and the equivalence of the two $P$ atoms of the bidentate phosphine ligand. The ${ }^{31} \mathrm{P}$ NMR spectra of the diadducts 4 (Table 2) show that, except for $\mathrm{L}=\mathrm{PPh}_{3}$ (4c) and for the minor product obtained when $\mathrm{L}=\mathrm{P}(\mathrm{OMe})_{3}(\mathbf{4 b})$ (see below), the two added ligands, $L$, are equivalent as are the two phosphorus atoms of the dppm ligand. This indicates that these diadducts have structure F. Phosphorus-phosphorus coupling between the ligands L and the dppm ligand was only resolved for $\mathrm{L}=\mathrm{P}(\mathrm{OPh})_{3}$; the other spectra showed only slight broadening of the resonances ( $J_{\mathrm{PP}}<5 \mathrm{~Hz}$ ) and may be regarded as singlets. To confirm the structure of these symmetrical diadducts, a crystal structure determination was carried out on the bis(trimethyl phosphite) derivative 4a. The molecular structure is shown in Fig. 4 and selected bond lengths and angles are given in Table 4. All the phosphorus atoms are co-ordinated in equatorial sites, with the two phosphite ligands bonded to the same osmium atom, $\mathrm{Os}(2)$. This confirms that the diadducts (4a and 4d-h) have structure F (Fig. 3). The structure
of the dppen analogue of 4 a , namely $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}(\mathrm{dp}-\right.$ pen) $\left.\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}\right]$, has also been determined and is essentially identical to that of 4 a. ${ }^{14}$

A minor product of the reaction of the cyclometallated complex 1a with $\mathrm{P}(\mathrm{OMe})_{3}$ was also isolated. The ${ }^{31} \mathrm{P}$ NMR spectrum of this product $\mathbf{4 b}$ (see Table 2) shows that two phosphite ligands have been added to 1a, and that these phosphite ligands are not equivalent. Complex $\mathbf{4 b}$ is thus assumed to be a structural isomer of $\mathbf{4 a}$, and to have structure $\mathbf{E}$ or $\mathbf{G}$ (Fig. 3); $\mathbf{E}$ is preferred since this is the structure adopted by $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}(\mathrm{dppm})\left(\mathrm{PPh}_{3}\right)_{2}\right] 4 \mathrm{c}$ (see below).

The diadduct formed by the reaction of complex 1 1a with $\mathrm{PPh}_{3}$, complex 4c, has inequivalent $\mathrm{PPh}_{3}$ ligands, as shown by ${ }^{31} \mathrm{P}$ NMR spectroscopy (Table 2). Only one of the $\mathrm{PPh}_{3}$ ligands shows coupling to one of the phosphorus atoms of the dppm ligand. The resonance for the other $\mathrm{PPh}_{3}$ ligands appears as a singlet, and is thus suggested to be co-ordinated to $\mathrm{Os}(2)$ as in structure $\mathbf{E}$ or $\mathbf{G}$ in Fig. 3, since the diphosphine adducts having structure $\mathbf{F}$ show no coupling between the phosphine ligands and the dppm ligand. In order to confirm the structure of the bis(triphenylphosphine) complex 4c a crystal structure determination was carried out. The molecular structure is shown in Fig. 5 and selected bond lengths and angles are given in Table 5. The molecule consists of a triangle of osmium atoms with all the four phosphorus-donor atoms in the equatorial plane. The two triphenylphosphine groups are co-ordinated to different osmium atoms, in a mutually trans configuration on $\mathrm{Os}(1)$ and $\mathrm{Os}(2)$, presumably to minimise steric interactions. Thus, complex $4 \mathbf{c}$ adopts the structure $\mathbf{E}$ shown in Fig. 3.


E


G

$F$


H

Fig. 3 Possible structures for $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}(\mathrm{dppm}) \mathrm{L}_{2}\right] 4$

A number of studies were carried out in order to investigate these reactions further. The minor isomer $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}(\mathrm{dppm})\right.$ $\left.\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}\right] 4 \mathrm{~b}$ was heated to $50^{\circ} \mathrm{C}$ for 12 h . No evidence for the formation of $4 a$ was obtained. It is thus unlikely that the symmetrical diadducts are formed by rearrangement of any initially formed unsymmetrical diadducts. The reactions of $\mathrm{P}(\mathrm{OMe})_{3}$ and $\mathrm{PPh}_{3}$ with $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{8}\left\{\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{Ph})\right.\right.$ $\left.\mathrm{C}_{6} \mathrm{H}_{4}{ }^{3}\right]$ 1a were followed by ${ }^{31} \mathrm{P}$ NMR spectroscopy. In both cases it was observed that the first products formed were the monoadducts 3 b and 3 c . As the reaction proceeded, peaks due to the diadducts $\mathbf{4 a}$ and $\mathbf{4 b}$ (minor amount) for the reaction with $\mathrm{P}(\mathrm{OMe})_{3}$, and 4 c for the reaction with $\mathrm{PPh}_{3}$, appeared and increased. However, the resonances due to the monoadducts did not decrease in intensity but remained constant even though the phosphine or phosphite was present in excess. Also, no reaction occurred when the monoadduct $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{8}{ }^{-}\right.$ $\left\{\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}\left(\mathrm{Ph}^{2} \mathrm{C}_{6} \mathrm{H}_{4}\right\}\left\{\mathrm{P}\left(\mathrm{OPr}^{\mathrm{i}}\right)_{3}\right\}\right] \quad 3 \mathrm{~F}$ was treated with $\mathrm{P}\left(\mathrm{OPr}^{\mathrm{i}}\right)_{3}$ at room temperature. These observations suggest that the diadduct is not formed by further addition to the monoadduct. This is not surprising in view of the fact that such a

Table 4 Selected bond lengths $(\AA)$ and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}\right.$ (dppm) $\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}$ ] 4a

| $\mathrm{Os}(1)-\mathrm{Os}(2)$ | $2.883(1)$ | $\mathrm{Os}(2)-\mathrm{C}(4)$ | $1.93(2)$ |
| :--- | :---: | :--- | :---: |
| $\mathrm{Os}(1)-\mathrm{Os}(3)$ | $2.894(1)$ | $\mathrm{Os}(2)-\mathrm{C}(5)$ | $1.92(2)$ |
| $\mathrm{Os}(1)-\mathrm{P}(2)$ | $2.320(4)$ | $\mathrm{Os}(3)-\mathrm{P}(1)$ | $2.319(4)$ |
| $\mathrm{Os}(1)-\mathrm{C}(1)$ | $1.87(2)$ | $\mathrm{Os}(3)-\mathrm{C}(6)$ | $1.98(2)$ |
| $\mathrm{Os}(1)-\mathrm{C}(2)$ | $1.91(2)$ | $\mathrm{Os}(3)-\mathrm{C}(7)$ | $1.88(2)$ |
| $\mathrm{Os}(1)-\mathrm{C}(3)$ | $1.87(2)$ | $\mathrm{Os}(3)-\mathrm{C}(8)$ | $1.95(2)$ |
| $\mathrm{Os}(2)-\mathrm{Os}(3)$ | $2.881(1)$ | $\mathrm{P}(1)-\mathrm{C}(9)$ | $1.84(2)$ |
| $\mathrm{Os}(2)-\mathrm{P}(3)$ | $2.258(4)$ | $\mathrm{P}(2)-\mathrm{C}(9)$ | $1.81(2)$ |
| $\mathrm{Os}(2)-\mathrm{P}(4)$ | $2.236(5)$ |  |  |
|  |  |  |  |
| $\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{Os}(3)$ | $59.80(4)$ | $\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{C}(4)$ | $90.2(5)$ |
| $\mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{P}(2)$ | $92.6(1)$ | $\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{C}(5)$ | $91.8(5)$ |
| $\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{C}(1)$ | $104.5(6)$ | $\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{Os}(2)$ | $59.93(4)$ |
| $\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{C}(2)$ | $86.1(5)$ | $\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{P}(1)$ | $91.5(1)$ |
| $\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{C}(3)$ | $87.7(6)$ | $\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{C}(6)$ | $91.9(5)$ |
| $\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{Os}(1)$ | $60.30(4)$ | $\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{C}(7)$ | $106.4(6)$ |
| $\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{P}(3)$ | $100.1(1)$ | $\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{C}(8)$ | $81.7(5)$ |
| $\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{P}(4)$ | $97.5(1)$ | $\mathrm{P}(1)-\mathrm{C}(9)-\mathrm{P}(2)$ | $114.2(9)$ |
| $\mathrm{P}(3)-\mathrm{Os}(2)-\mathrm{P}(4)$ | $102.3(2)$ |  |  |



Fig. 4 The molecular structure of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}(\mathrm{dppm})\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}\right] \mathbf{4 a}$


Fig. 5 The molecular structure of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}(\mathrm{dppm})\left(\mathrm{PPh}_{3}\right)_{2}\right] 4 \mathbf{c}$

Table 5 Selected bond lengths $(\AA)$ and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}\right.$ $\left.(\mathrm{dppm})\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathbf{4 c}$

| Os(1)-Os(2) | $2.929(2)$ |  |  |
| :--- | :--- | :--- | :--- |
| Oss(2)-C(4) | $1.91(2)$ |  |  |
| $\mathrm{Os}(1)-\mathrm{Os}(3)$ | $2.910(2)$ | $\mathrm{Os}(2)-\mathrm{C}(5)$ | $1.92(2)$ |
| $\mathrm{Os}(1)-\mathrm{P}(1)$ | $2.322(4)$ | $\mathrm{Os}(3)-\mathrm{P}(2)$ | $2.330(4)$ |
| $\mathrm{Os}(1)-\mathrm{P}(3)$ | $2.360(5)$ | $\mathrm{Os}(3)-\mathrm{C}(6)$ | $1.95(2)$ |
| $\mathrm{Os}(1)-\mathrm{C}(1)$ | $1.94(2)$ | $\mathrm{Os}(3)-\mathrm{C}(7)$ | $1.91(2)$ |
| $\mathrm{Os}(1)-\mathrm{C}(2)$ | $1.92(2)$ | $\mathrm{Os}(3)-\mathrm{C}(8)$ | $1.91(2)$ |
| $\mathrm{Os}(2)-\mathrm{Os}(3)$ | $2.922(2)$ | $\mathrm{P}(1)-\mathrm{C}(9)$ | $1.86(1)$ |
| $\mathrm{Os}(2)-\mathrm{P}(4)$ | $2.358(4)$ | $\mathrm{P}(2)-\mathrm{C}(9)$ | $1.86(1)$ |
| $\mathrm{Os}(2)-\mathrm{C}(3)$ | $1.88(2)$ |  |  |
|  |  |  |  |
| $\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{Os}(3)$ | $60.06(2)$ | $\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{P}(4)$ | $99.4(1)$ |
| $\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{P}(3)$ | $98.3(1)$ | $\mathrm{P}(4)-\mathrm{Os}(2)-\mathrm{C}(3)$ | $94.7(5)$ |
| $\mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{P}(1)$ | $92.4(1)$ | $\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{Os}(2)$ | $60.30(2)$ |
| $\mathrm{P}(1)-\mathrm{Os}(1)-\mathrm{P}(3)$ | $109.2(1)$ | $\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{P}(2)$ | $93.3(1)$ |
| $\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{Os}(3)$ | $59.65(2)$ | $\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{C}(8)$ | $108.2(5)$ |
| $\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{C}(3)$ | $106.4(5)$ | $\mathrm{P}(2)-\mathrm{Os}(3)-\mathrm{C}(8)$ | $98.6(5)$ |
| $\mathrm{P}(1)-\mathrm{C}(9)-\mathrm{P}(2)$ | $116.0(7)$ |  |  |
|  |  |  |  |

reaction would require a phosphine or phosphite ligand moving from one osmium atom to an adjacent Os atom, at room temperature. Although such rearrangements are known, they only occur at high temperature. ${ }^{7}$ It seems likely therefore that the diadducts are formed via a different route to that of the monoadducts. It is clear from the structure 3a that the monoadducts are formed by the addition of the donor ligand to 1a with loss of the unsaturation of the cluster but the retention of the orthometallation of the phenyl ring. We suggest that the diadducts are formed by first addition leading to the


Scheme 1 Proposed routes to the formation of compounds 3 and 4

Table 6 Crystal data, details of data collection and refinement

Complex
Formula
Crystal system
Space group
a/ $\AA$
$b / \AA$
$c / \AA$
$\beta /{ }^{\circ}$
$U / \AA^{3}$
$Z$
$D$
$D_{\mathrm{c}} / \mathrm{g} \mathrm{cm}^{-3}$
$F(000)$
$\mu / \mathrm{cm}^{-1}$
Diffractometer
Scan mode
Total number of reflections $\theta$ range $/{ }^{\circ}$
Number of unique reflections
Number of observed reflections
Absorption correction
Number of refined parameters
Weighting scheme, w
Final $R$
Final $R^{\prime}$

3a
$\mathrm{C}_{42} \mathrm{H}_{43} \mathrm{O}_{8} \mathrm{Os}_{3} \mathrm{P}_{3}$
Monoclinic
$P 2_{1} / c$
$16.414(6)$
$12.90(1)$
$20.431(8)$
$94.08(3)$
4315
4
2.06
2528
89.79
Rigaku AFC6S
$\omega-2 \theta$
8286
$6 \leqslant 2 \theta \leqslant 50$
7989
$2885\left[F_{\mathrm{o}}>4 \sigma\left(F_{\mathrm{o}}\right)\right]$
DIFABS
295
$1 / \sigma^{2}(F)$
0.052
0.060

4a

| $\mathrm{C}_{39} \mathrm{H}_{40} \mathrm{O}_{14} \mathrm{Os}_{3} \mathrm{P}_{4}$ | $\mathrm{C}_{69} \mathrm{H}_{52} \mathrm{O}_{8} \mathrm{Os}_{3} \mathrm{P}_{4}$ |
| :--- | :--- |
| Monoclinic | Orthorhombic |
| $I 2_{1} / a$ | Pbca |
| $22.793(1)$ | $26.514(18)$ |
| $10.273(4)$ | $22.94(2)$ |
| $38.898(1)$ | $22.346(10)$ |
| $91.58(3)$ | 90 |
| 9105 | 13610 |
| 8 | 8 |
| 2.08 | 1.66 |
| 5392 | 6544 |
| 90.76 | 60.80 |
| CAD-4 | Stoë Stadi-2 |
| $\omega-2 \theta$ | $\omega$ |
| 8351 | 10545 |
| $0 \leqslant 2 \theta \leqslant 50$ | $6 \leqslant 2 \theta \leqslant 45$ |
| 7744 | 9455 |
| $4597\left[F_{\mathrm{o}}>6 \sigma\left(F_{\mathrm{o}}\right)\right]$ | $6430\left[F_{\mathrm{o}}>4 \sigma\left(F_{\mathrm{o}}\right)\right]$ |
| Empirical (based on azimuthal scans) | Empirical (based on $\omega)$ |
| 299 | 357 |
| $0.1198 /\left[\sigma^{2}(F)+0.0518 F^{2}\right]$ | $1 /\left[\sigma^{2}(F)-0.000316 F^{2}\right]$ |
| 0.058 | 0.057 |
| 0.062 | 0.051 |

demetallated, but therefore still unsaturated, monoadduct, which is not observed, but immediately reacts with the excess of ligand to give the symmetrical diadduct (Scheme 1).
The observation of a different isomer for the bis(triphenylphosphine) cluster $\mathbf{4 c}$ is probably due to steric reasons, since $\mathrm{PPh}_{3}$ has the largest cone angle ${ }^{15}$ of the phosphines or phosphites producing diadducts in this study. Thus, when the reactive, unsaturated intermediate is formed, the excess of $\mathrm{PPh}_{3}$, co-ordinates to the unsaturated Os atom having the substituent with the smaller cone angle $\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}\right.$, cone angle $121^{\circ} ; \mathrm{PPh}_{3}$, cone angle $145^{\circ}$ ), ${ }^{15}$ leading to the formation of the unsymmetrical diadduct 4 c .

## Experimental

All reactions were carried out under nitrogen unless otherwise stated, using dry, degassed solvents and standard Schlenk-line techniques. Infrared spectra were recorded as dichloromethane solutions in 0.5 mm NaCl cells on a Perkin Elmer 681 spectrometer, NMR spectra on JEOL FX-60 or Bruker WM250 instruments. Chemical shifts are relative to $\mathrm{SiMe}_{4}$ for ${ }^{1} \mathrm{H}$ and $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ for ${ }^{31} \mathrm{P}$. Microanalyses were carried out in the Department of Chemistry, University of Liverpool. The compounds dppen ${ }^{16}$ and $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{8}\left\{\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{Ph})\right.\right.$ $\left.\left.\mathrm{C}_{6} \mathrm{H}_{4}\right\}\right]^{1}$ were prepared according to published procedures.
$\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{8}\left\{\mathrm{Ph}_{2} \mathrm{PC}\left(\mathrm{CH}_{2}\right) \mathrm{P}\left(\mathrm{Ph}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right\}\right]\right.$ 1b.-The compound $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\right.$ dppen $\left.)\right](0.250 \mathrm{~g}, 0.20 \mathrm{mmol})$ in toluene ( 50 $\mathrm{cm}^{3}$ ) was heated under reflux for 5 h . The resulting brown solution was evaporated to dryness and the brown residue separated by TLC $\left[\mathrm{SiO}_{2}\right.$; eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-heptane ( $1: 1 \mathrm{v} / \mathrm{v}$ ) $]$ to give 1b as green crystals after recrystallisation from cold acetone-ethanol ( $0.105 \mathrm{~g}, 45 \%$ ) (Found: C, 34.5; H, 2.1\%; M+ $\mathrm{H}^{+}, m / z 1192 . \mathrm{C}_{34} \mathrm{H}_{22} \mathrm{O}_{8} \mathrm{Os}_{3} \mathrm{P}_{2}$ requires $\mathrm{C}, 34.3 ; \mathrm{H}, 1.9 \% ; \mathrm{M}^{+}$, $m / z 1191$ ).

Reactions of Compound 1a.-With CO. Carbon monoxide was bubbled through a stirred solution of compound $1 \mathbf{1 a}(0.18 \mathrm{~g}$, 0.153 mmol ) in toluene ( $20 \mathrm{~cm}^{3}$ ) at room temperature until the solution became yellow ( 2 h ). The ${ }^{31} \mathrm{P}$ NMR spectrum showed complete conversion into the saturated cluster 2a. Attempts to recrystallise $\mathbf{2 a}$ under a carbon monoxide atmosphere led to its conversion into $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{dppm})\right]$ over a period of 2 d . The
toluene solution of 2 a was refluxed under nitrogen for 4 h to give a quantitative conversion into 1 a .

Complex 1b reacts with CO in a similar manner to la giving 2 b and eventually $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\right.$ dppen $\left.)\right]$.

With $\mathrm{PPr}^{\mathrm{i}}{ }_{3}$. A large excess of triisopropylphosphine ( 0.0525 $\mathrm{g}, 0.33 \mathrm{mmol}$ ) was added to a chloroform solution ( $5 \mathrm{~cm}^{3}$ ) of $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{8}\left\{\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}\left(\mathrm{Ph}_{6} \mathrm{C}_{6} \mathrm{H}_{4}\right\}\right](0.0549 \mathrm{~g}, 0.046 \mathrm{mmol})\right.$. The solution was stirred at room temperature for 3 h . The resulting yellow solution was evaporated to dryness, and the residue was separated by TLC. Only one band was obtained which yielded the complex $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{8}\left\{\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{Ph})\right.\right.$ $\left.\left.\mathrm{C}_{6} \mathrm{H}_{4}\right\}\left(\operatorname{PPr}^{\mathrm{i}}{ }_{3}\right)\right] 3 \mathrm{3a}$ as yellow crystals after recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-heptane ( $0.0497 \mathrm{~g}, 79 \%$ ) (Found: C, $36.9 ; \mathrm{H}, 3.0 \% ; M^{+}$, $m / z$ 1339. $\mathrm{C}_{42} \mathrm{H}_{43} \mathrm{O}_{8} \mathrm{Os}_{3} \mathrm{P}_{3}$ requires $\mathrm{C}, 37.7 ; \mathrm{H}, 3.2 \% ; M, m / z$ 1339).

With $\mathrm{PPh}_{3}$. An excess of $\mathrm{PPh}_{3}(0.043 \mathrm{~g}, 0.164 \mathrm{mmol})$ was added to a toluene solution ( $35 \mathrm{~cm}^{3}$ ) of $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{8}{ }^{-}\right.$ $\left.\left\{\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}\right\}\right]$ 1a ( $0.1745 \mathrm{~g}, 0.148 \mathrm{mmol}$ ) and the mixture was stirred at room temperature for 7 h . The yellow solution was evaporated to dryness and the residue subjected to TLC which gave four bands. A yellow product was characterised as $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{dppm})\right](0.0295 \mathrm{~g}, 18 \%)$ on the basis of ${ }^{31} \mathrm{P}$ NMR and IR spectroscopy. A second yellow band was characterised as $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{8}\left\{\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}\right\}\right.$ $\left.\left(\mathrm{PPh}_{3}\right)\right] 3 \mathrm{c}(0.0815 \mathrm{~g})$, although it could not be obtained in a pure form due to contamination by minor product bands, even after a second TLC separation. An orange band was characterised as $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}(\mathrm{dppm})\left(\mathrm{PPh}_{3}\right)_{2}\right] 4 \mathrm{c}(0.069 \mathrm{~g}, 27 \%)$ (Found: C, 49.0; H, 3.4\%; $M^{+}, m / z 1703 . \mathrm{C}_{69} \mathrm{H}_{52} \mathrm{O}_{8} \mathrm{Os}_{3} \mathrm{P}_{4}$ requires C, $48.7 ; \mathrm{H}, 3.2 \% ; M, m / z 1703$ ). A fourth yellow band was isolated in a trace amount and was not characterised.

With $\mathrm{PBu}_{3}$. To a solution of $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{8}\left\{\mathrm{Ph}_{2} \mathrm{PCH}_{2}-\right.\right.$ $\left.\left.\mathrm{P}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}\right\}\right](0.096 \mathrm{~g}, 0.08 \mathrm{mmol})$ in toluene $\left(10 \mathrm{~cm}^{3}\right)$ was added an excess of $\mathrm{PBu}_{3}(0.063 \mathrm{~g}, 0.31 \mathrm{mmol})$. The solution was stirred at room temperature for 1 h and then evaporated to dryness. On TLC of the residue two products were obtained. An orange band was characterised as $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}(\mathrm{dppm})\left(\mathrm{PBu}_{3}\right)_{2}\right]$ 4d $(0.059 \mathrm{~g}, 46 \%)$ (Found: C, $42.9 ; \mathrm{H}, 4.9 \% ; M^{+}, m / z 1584$. $\mathrm{C}_{57} \mathrm{H}_{76} \mathrm{O}_{8} \mathrm{Os}_{3} \mathrm{P}_{4}$ requires C, 43.2; $\mathrm{H}, 4.8 \% ; M, m / z 1584$ ). A yellow band was characterised as $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{8}\left\{\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}\right.\right.$ $\left.\left.(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}\right\}\left(\mathrm{PBu}_{3}\right)\right] 3 \mathrm{3d}(0.052 \mathrm{~g})$ by IR and NMR spectroscopic data, but an analytically pure sample could not be obtained as it was always contaminated by a small amount of $\mathbf{4 d}$.

Table 7 Fractional atomic coordinates for $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{8}\left\{\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}\left(\mathrm{Ph}^{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right\}\left(\mathrm{PPr}_{3}{ }_{3}\right)\right]$ 3a

| Atom | $x$ | $y$ | $z$ | Atom | $x$ | $y$ | $z$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Os}(1)$ | $0.20086(7)$ | 0.1511 (1) | $0.05036(5)$ | C(116) | 0.235(2) | 0.063(2) | 0.221(1) |
| Os(2) | 0.294 76(8) | 0.337 6(1) | -0.007 88(6) | C(121) | 0.398(2) | $0.195(3)$ | 0.250(2) |
| Os(3) | $0.14145(8)$ | 0.367 6(1) | 0.046 47(6) | C(122) | 0.480(2) | $0.207(3)$ | 0.269(2) |
| $\mathrm{P}(1)$ | 0.260 3(4) | $0.1624(6)$ | 0.163 2(3) | C(123) | 0.534(2) | 0.205(3) | 0.224(2) |
| P (2) | 0.217 6(5) | $0.3862(6)$ | $0.1466(4)$ | C(124) | 0.512(2) | 0.189(3) | 0.i59(2) |
| $\mathrm{P}(3)$ | $0.2462(5)$ | -0.0229(6) | 0.030 O(4) | C(125) | 0.428(2) | 0.179(3) | 0.137(2) |
| $\mathrm{O}(1)$ | 0.045(2) | 0.106(2) | $0.112(1)$ | C(126) | 0.370 (2) | 0.184(2) | $0.184(1)$ |
| $\mathrm{O}(2)$ | $0.105(1)$ | 0.133(2) | $-0.0814(9)$ | C(211) | $0.121(2)$ | 0.463(3) | 0.244(2) |
| $\mathrm{O}(3)$ | 0.216(2) | 0.285(2) | -0.142(1) | C(212) | 0.089(3) | 0.539(3) | 0.287(2) |
| $\mathrm{O}(4)$ | 0.304(2) | 0.566(2) | -0.040(1) | C(213) | $0.116(3)$ | 0.639(4) | 0.277(2) |
| $\mathrm{O}(5)$ | 0.458(2) | 0.268(3) | -0.055(1) | C(214) | $0.175(3)$ | $0.660(4)$ | $0.236(2)$ |
| O(6) | $0.046(1)$ | 0.348(2) | -0.088(1) | C(215) | 0.208(2) | $0.586(3)$ | 0.196(2) |
| $\mathrm{O}(7)$ | -0.016(2) | 0.342(3) | 0.118(1) | C(216) | $0.175(2)$ | 0.486 (2) | $0.201(1)$ |
| $\mathrm{O}(8)$ | 0.138(2) | 0.602(2) | 0.033(1) | C(221) | 0.357(2) | 0.396(2) | 0.080(1) |
| C(1) | 0.107(2) | 0.121(3) | 0.089(2) | C(222) | 0.441(2) | 0.427(3) | 0.081(2) |
| C(2) | 0.139(2) | 0.143(2) | -0.033(1) | C(223) | 0.490(2) | 0.462(3) | $0.137(2)$ |
| C(3) | 0.239(2) | 0.300(2) | -0.091(1) | C(224) | 0.454(3) | 0.468(3) | 0.191(2) |
| C(4) | 0.305(2) | 0.477(3) | -0.029(2) | C(225) | 0.372(2) | $0.446(3)$ | 0.197(2) |
| C(5) | 0.395(3) | 0.296(3) | -0.038(2) | C(226) | 0.324(2) | 0.414(3) | 0.140 (2) |
| C(6) | 0.084(2) | $0.352(3)$ | -0.040(1) | C(316) | 0.171(2) | -0.120(2) | 0.046(1) |
| C(7) | 0.042(2) | 0.346(3) | 0.093(2) | C(317) | $0.145(2)$ | -0.124(3) | 0.116 (2) |
| C(8) | 0.140 (2) | $0.511(3)$ | 0.038(2) | C(318) | 0.092(2) | -0.119(3) | $0.001(2)$ |
| C(9) | $0.215(2)$ | 0.277(2) | $0.201(1)$ | C(326) | $0.256(2)$ | -0.051(3) | -0.060(2) |
| C(111) | 0.154(2) | 0.054(2) | 0.244 (1) | C(327) | 0.279(2) | -0.162(3) | -0.076(2) |
| C(112) | $0.135(2)$ | -0.017(3) | 0.291(2) | C(328) | 0.312(3) | 0.024(4) | -0.091(2) |
| C(113) | 0.193(2) | -0.083(3) | 0.316(2) | C(336) | 0.338(2) | -0.071(2) | $0.077(1)$ |
| C(114) | 0.271(2) | -0.083(3) | 0.294(2) | C(337) | 0.345(3) | -0.188(3) | 0.093(2) |
| C(115) | 0.290(2) | -0.006(2) | 0.247(1) | C(338) | 0.415(2) | -0.035(3) | 0.046(2) |

Table 8 Fractional atomic coordinates for $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}(\mathrm{dppm})\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}\right]$ 4a

| Atom | $x$ | $y$ | $z$ | Atom | $x$ | $y$ | $z$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Os(1) | 0.345 35(2) | 0.304 60(6) | 0.384 46(1) | $\mathrm{C}(10)$ | 0.4365 (17) | 0.4761 (39) | 0.2126 (11) |
| $\mathrm{Os}(2)$ | 0.370 40(3) | 0.448 70(6) | 0.322 97(1) | C(11) | $0.5287(12)$ | 0.629 4(29) | $0.2685(7)$ |
| $\mathrm{Os}(3)$ | $0.46129(3)$ | 0.294 82(6) | 0.356 04(2) | C(12) | $0.3818(12)$ | 0.7810 (28) | $0.2746(8)$ |
| $\mathrm{P}(1)$ | 0.495 2(2) | $0.1609(4)$ | 0.4003 (1) | C(13) | $0.2651(17)$ | $0.5077(37)$ | 0.245 6(11) |
| $\mathrm{P}(2)$ | 0.369 6(2) | 0.1525 (4) | 0.426 6(1) | C(14) | $0.1715(16)$ | 0.4142 (33) | $0.3058(9)$ |
| $\mathrm{P}(3)$ | $0.4214(2)$ | 0.537 3(4) | 0.279 8(1) | C(15) | 0.2218 (31) | 0.716 8(65) | 0.337 0(19) |
| $\mathrm{P}(4)$ | 0.279 1(2) | 0.518 4(5) | $0.3111(1)$ | C(16) | 0.3350 (5) | 0.3076 (12) | 0.4816 (3) |
| C(1) | 0.2691 (8) | 0.355 6(18) | 0.395 4(5) | C(17) | 0.3371 (5) | 0.352 3(12) | $0.5155(3)$ |
| C(2) | 0.314 5(8) | 0.173 0(17) | 0.354 3(5) | C(18) | 0.3805 (5) | 0.306 6(12) | $0.5385(3)$ |
| C(3) | $0.3768(9)$ | 0.444 7(19) | 0.4097 (5) | C(19) | $0.4217(5)$ | 0.216 2(12) | 0.527 6(3) |
| C(4) | 0.3858 (7) | 0.6031 (18) | 0.3502 (4) | C(20) | 0.419 5(5) | 0.1715 (12) | 0.4937 (3) |
| C(5) | 0.357 3(7) | 0.2981 (16) | 0.294 6(4) | C(21) | $0.3762(5)$ | 0.217 2(12) | 0.4707 (3) |
| C(6) | 0.4329 (7) | 0.134 2(16) | 0.333 0(4) | C(22) | 0.535 5(4) | -0.0917(10) | 0.380 6(3) |
| C(7) | $0.5269(9)$ | 0.3058 (19) | 0.328 0(5) | C(23) | 0.579 2(4) | -0.1767(10) | $0.3701(3)$ |
| C(8) | 0.4858 (8) | 0.4650 (18) | 0.3731 (5) | C(24) | 0.6361 (4) | -0.130 8(10) | 0.3655 (3) |
| C(9) | 0.4356 (7) | 0.061 6(16) | 0.417 6(5) | C(25) | 0.649 2(4) | 0.000 0(10) | $0.3715(3)$ |
| $\mathrm{O}(1)$ | 0.2235 (7) | 0.394 0(20) | $0.4038(4)$ | C(26) | 0.605 5(4) | 0.0850 (10) | 0.3821 (3) |
| $\mathrm{O}(2)$ | 0.293 3(7) | 0.089 8(15) | 0.3387 (4) | C(27) | 0.548 6(4) | 0.039 1(10) | 0.3866 (3) |
| $\mathrm{O}(3)$ | 0.3963 (8) | $0.5308(14)$ | 0.427 2(3) | C(28) | 0.525 7(5) | $0.3500(9)$ | $0.4505(3)$ |
| $\mathrm{O}(4)$ | $0.3954(7)$ | 0.7010 (13) | $0.3648(4)$ | C(29) | 0.5520 (5) | 0.3920 (9) | 0.4813 3) |
| $\mathrm{O}(5)$ | 0.346 2(7) | $0.2165(13)$ | 0.2750 (4) | C(30) | 0.584 2(5) | 0.3048 (9) | 0.5018 (3) |
| $\mathrm{O}(6)$ | 0.420 7(7) | 0.0467 (13) | 0.320 4(4) | C(31) | 0.5901 (5) | 0.175 5(9) | 0.4915 (3) |
| $\mathrm{O}(7)$ | 0.5671 (6) | 0.307 9(16) | 0.310 2(5) | C(32) | 0.563 7(5) | 0.133 4(9) | 0.4607 (3) |
| $\mathrm{O}(8)$ | 0.505 2(8) | 0.559 3(14) | 0.384 6(4) | C(33) | $0.5315(5)$ | 0.220 6(9) | 0.4402 2 3 ) |
| $\mathrm{O}(10)$ | 0.4834 (7) | 0.586 0(18) | 0.2920 (4) | C(34) | $0.2619(6)$ | 0.052 9(11) | 0.447 5(4) |
| $\mathrm{O}(11)$ | 0.433 9(9) | 0.443 3(13) | 0.249 9(4) | C(35) | 0.220 4(6) | -0.043 8(11) | $0.4533(4)$ |
| $\mathrm{O}(12)$ | 0.398 7(7) | 0.659 3(15) | 0.2581 (4) | C(36) | 0.2321 (6) | -0.172 6(11) | 0.444 5(4) |
| $\mathrm{O}(13)$ | $0.2319(6)$ | $0.4082(16)$ | $0.3157(4)$ | C(37) | 0.2853 (6) | -0.204 8(11) | $0.4298(4)$ |
| $\mathrm{O}(14)$ | $0.2595(7)$ | 0.580 0(16) | 0.2751 (5) | C(38) | $0.3268(6)$ | -0.108 1(11) | $0.4239(4)$ |
| $\mathrm{O}(15)$ | 0.260 8(12) | 0.634 2(28) | $0.3355(9)$ | C(39) | 0.315 2(6) | $0.0207(11)$ | $0.4328(4)$ |

With $\mathrm{PEt}_{3}$. This reaction was carried out in the same way as for $\mathrm{PBu}_{3}$ above to give $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{8}\left\{\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{Ph})\right.\right.$ $\left.\left.\mathrm{C}_{6} \mathrm{H}_{4}\right\}\left(\mathrm{PEt}_{3}\right)\right] 3 \mathrm{e}(30 \%)$ and $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}(\mathrm{dppm})\left(\mathrm{PEt}_{3}\right)_{2}\right] \mathbf{4 e}$ ( $33 \%$ ).

With $\mathrm{P}(\mathrm{OMe})_{3}$. An excess of $\mathrm{P}(\mathrm{OMe})_{3}(0.0605 \mathrm{~g}, 0.49 \mathrm{mmol})$ was added to a toluene solution $\left(20 \mathrm{~cm}^{3}\right)$ of $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{8}{ }^{-}\right.$
$\left.\left\{\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}\right\}\right] \quad(0.043 \mathrm{~g}, 0.037 \mathrm{mmol})$ at room temperature. An instantaneous colour change from green to yellow occurred. The solution was evaporated to dryness and TLC gave four bands. A yellow band was characterised as $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{dppm})\right](0.008 \mathrm{~g}, 17 \%)$. A second yellow band was characterised as $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{8}\left\{\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}\right\}-\right.$

Table 9 Fractional atomic coordinates for $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}(\mathrm{dppm})\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathbf{4 c}$

| Atom | $x$ | $y$ | $z$ | Atom | $x$ | $y$ | $z$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Os(1) | 0.233 78(2) | $0.08076(3)$ | $0.17682(3)$ | C(221) | $0.1057(4)$ | -0.1329(4) | $0.1967(5)$ |
| Os(2) | 0.185 46(2) | 0.175 46(2) | $0.11022(3)$ | C(222) | 0.070 4(4) | -0.1599(4) | 0.2337 (5) |
| $\mathrm{Os}(3)$ | 0.140 23(2) | 0.059 31(3) | $0.11244(3)$ | C(223) | 0.026 3(4) | -0.130 6(4) | 0.249 6(5) |
| P(1) | 0.2383 (2) | -0.015 0(2) | 0.2100 (2) | C(224) | 0.017 5(4) | -0.074 3(4) | 0.228 5(5) |
| $\mathrm{P}(2)$ | 0.144 2(2) | -0.041 1(2) | 0.1275 (2) | C(225) | 0.052 9(4) | -0.047 3(4) | 0.1915 (5) |
| P(3) | $0.3051(2)$ | 0.132 3(2) | $0.2114(2)$ | C(226) | $0.0969(4)$ | -0.076 6(4) | 0.175 6(5) |
| $\mathbf{P}(4)$ | 0.129 2(2) | 0.2220 (2) | 0.044 0(2) | C(311) | 0.330 6(3) | $0.0667(5)$ | 0.3101 (5) |
| $\mathrm{C}(1)$ | 0.1977 (6) | 0.099 7(7) | 0.249 5(8) | C(312) | 0.3628 (3) | 0.039 9(5) | 0.3510 (5) |
| $\mathrm{C}(2)$ | $0.2659(6)$ | $0.0537(6)$ | 0.105 3(8) | C(313) | 0.4147 (3) | 0.0397 (5) | 0.3410 (5) |
| C(3) | 0.223 8(6) | 0.2430 (7) | $0.1254(7)$ | C(314) | 0.434 4(3) | 0.066 2(5) | 0.290 0(5) |
| C(4) | $0.1447(6)$ | 0.190 8(7) | $0.1788(8)$ | C(315) | 0.4023 (3) | 0.0931 (5) | 0.2491 (5) |
| C(5) | 0.2328 (6) | $0.1566(6)$ | 0.048 3(7) | C(316) | 0.3503 (3) | 0.093 3(5) | 0.2591 (5) |
| C(6) | $0.1058(6)$ | 0.078 4(7) | 0.1870 (9) | C(321) | 0.3370 (3) | 0.2182 (5) | 0.2940 (6) |
| C(7) | 0.175 2(6) | 0.048 1(7) | $0.0388(8)$ | C(322) | 0.329 6(3) | $0.2627(5)$ | 0.335 6(6) |
| C(8) | 0.0775 (7) | 0.0627 (7) | 0.070 6(8) | C(323) | 0.2813 (3) | 0.284 9(5) | 0.345 4(6) |
| $\mathrm{O}(1)$ | 0.177 8(4) | 0.1078 (5) | 0.293 5(5) | C(324) | 0.240 4(3) | 0.2626 (5) | 0.313 6(6) |
| $\mathrm{O}(2)$ | $0.2859(4)$ | 0.0330 (5) | 0.064 9(5) | C(325) | 0.2478 (3) | 0.2181 (5) | $0.2719(6)$ |
| $\mathrm{O}(3)$ | 0.247 2(4) | $0.2839(5)$ | $0.1347(5)$ | C(326) | 0.2961 (3) | 0.195 9(5) | 0.262 2(6) |
| O(4) | $0.1235(4)$ | 0.2068 (5) | 0.220 3(5) | C(331) | 0.3527 (4) | 0.2215 (5) | 0.145 4(5) |
| $\mathrm{O}(5)$ | $0.2628(4)$ | 0.149 6(5) | 0.010 5(5) | C(332) | 0.3803 (4) | 0.242 6(5) | 0.0970 (5) |
| O(6) | 0.0829 9(5) | 0.0870 (6) | $0.2269(6)$ | C(333) | 0.4015 (4) | 0.2038 (5) | 0.056 0(5) |
| O(7) | 0.1919 9(5) | 0.038 0(5) | -0.0075(6) | C(334) | 0.3950 (4) | 0.143 9(5) | 0.063 5(5) |
| $\mathrm{O}(8)$ | $0.0398(5)$ | $0.0605(5)$ | 0.047 1(7) | C(335) | 0.367 4(4) | $0.122 .8(5)$ | 0.1119 (5) |
| C(9) | $0.2064(5)$ | -0.065 6(6) | 0.1571 (7) | C(336) | 0.346 3(4) | 0.1616 (5) | 0.1529 (5) |
| C(111) | 0.243 2(3) | -0.043 5(5) | 0.332 2(5) | C(411) | 0.0417 (4) | $0.2067(4)$ | 0.113 2(5) |
| C(112) | 0.2220 (3) | -0.055 1(5) | 0.3880 (5) | C(412) | -0.006 4(4) | 0.221 6(4) | 0.1334 (5) |
| C(113) | 0.1697 (3) | -0.053 8(5) | 0.395 2(5) | C(413) | -0.0281(4) | 0.274 4(4) | $0.1162(5)$ |
| C(114) | 0.1387 (3) | -0.040 9(5) | 0.346 6(5) | C(414) | -0.001 6(4) | 0.312 3(4) | 0.078 8(5) |
| C(115) | 0.1600 (3) | -0.029 3(5) | 0.2908 (5) | C(415) | 0.046 4(4) | 0.297 3(4) | 0.058 6(5) |
| $\mathrm{C}(116)$ | 0.212 2(3) | -0.030 6(5) | 0.283 6(5) | C(416) | 0.0681 (4) | 0.244 5(4) | 0.0758 (5) |
| C(121) | 0.299 6(3) | -0.1140(4) | 0.2287 (5) | C(421) | 0.159 6(4) | 0.337 4(5) | 0.054 8(4) |
| C(122) | 0.344 0(3) | -0.146 2(4) | 0.224 5(5) | C(422) | 0.1800 (4) | 0.390 2(5) | $0.0355(4)$ |
| C(123) | 0.387 7(3) | -0.1203 (4) | 0.2019 (5) | C(423) | 0.1963 (4) | $0.3962(5)$ | -0.023 5(4) |
| C(124) | 0.3868 8(3) | -0.062 2(4) | 0.1835 (5) | C(424) | 0.192 2(4) | 0.349 5(5) | -0.063 1(4) |
| C(125) | 0.342 3(3) | -0.030 0(4) | 0.1877 (5) | C(425) | 0.1719 (4) | $0.2967(5)$ | -0.043 7(4) |
| C(126) | 0.2987 (3) | -0.055 9(4) | 0.2103 (5) | C(426) | 0.155 6(4) | 0.2906 (5) | 0.015 2(4) |
| C(211) | $0.1762(3)$ | -0.116 3(5) | 0.0337 (5) | C(431) | 0.058 4(4) | 0.178 8(5) | -0.040 1(5) |
| C(212) | 0.1675 (3) | -0.149 4(5) | -0.017 7(5) | C(432) | 0.0450 (4) | 0.149 6(5) | -0.092 4(5) |
| C(213) | 0.119 2(3) | -0.1520(5) | -0.042 2(5) | C(433) | 0.0821 (4) | 0.124 4(5) | -0.128 2(5) |
| C(214) | 0.079 6(3) | -0.121 7(5) | -0.015 5(5) | C(434) | $0.1327(4)$ | 0.128 4(5) | -0.1117(5) |
| C(215) | 0.088 3(3) | -0.088 6(5) | 0.0358 (5) | C(435) | $0.1462(4)$ | 0.157 6(5) | -0.059 4(5) |
| C(216) | 0.136 6(3) | -0.085 9(5) | 0.060 4(5) | C(436) | 0.1091 (4) | $0.1828(5)$ | -0.023 6(5) |

P(OMe) $\left.\left.{ }_{3}\right\}\right]$ 3b (0.012 g, 24\%) (Found: C, 33.9; H, 2.4\%; $M^{+}$, $m / z 1303 . \mathrm{C}_{36} \mathrm{H}_{31} \mathrm{O}_{11} \mathrm{Os}_{3} \mathrm{P}_{3}$ requires $\mathrm{C}, 33.2 ; \mathrm{H}, 2.4 \% ; \mathrm{M}^{+}, \mathrm{m} / \mathrm{z}$ 1303). An orange band was characterised as $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}(\mathrm{dppm})\right.$ $\left.\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}\right] \mathbf{4 a}(0.0105 \mathrm{~g}, 22 \%)$ (Found: C, $33.2 ; \mathrm{H}, 3.2 \% ; M^{+}$, $m / z 1427 . \mathrm{C}_{39} \mathrm{H}_{40} \mathrm{O}_{14} \mathrm{Os}_{3} \mathrm{P}_{4}$ requires $\mathrm{C}, 32.8 ; \mathrm{H}, 2.8 \% ; \mathrm{M}^{+}, m / z$ 1427). A third yellow band was characterised by ${ }^{31} \mathrm{P}$ NMR spectroscopy as $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}(\mathrm{dppm})\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}\right] \mathbf{4 b}(0.0075 \mathrm{~g}$, $16 \%$ (Found: C, 33.9; H, 3.2\%).

With $\mathrm{P}\left(\mathrm{OPr}^{\mathrm{i}}\right)_{3}$. This reaction was carried out as for that with $\mathrm{P}(\mathrm{OMe})_{3}$ above to give a mixture of $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{8^{-}}\right.$ $\left.\left\{\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}\right\}\left\{\mathrm{P}\left(\mathrm{OPr}^{\mathrm{i}}\right)_{3}\right\}\right]$ 3f and $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}(\mathrm{dppm})-\right.$ $\left.\left\{\mathrm{P}\left(\mathrm{OPr}^{\mathrm{i}}\right)_{3}\right\}_{2}\right]$ 4f which could not be completely separated by TLC.

With $\mathrm{P}(\mathrm{OBu})_{3}$. This reaction was carried out in the same way as for $\mathrm{P}(\mathrm{OMe})_{3}$ above to give a mixture of $\left[\mathrm{Os}_{3} \mathrm{H}\right.$ $\left.(\mathrm{CO})_{8}\left\{\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}\right\}\left\{\mathrm{P}(\mathrm{OBu})_{3}\right\}\right] 3 \mathrm{~g}$ and $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8^{-}}\right.$ $\left.(\mathrm{dppm})\left\{\mathrm{P}(\mathrm{OBu})_{3}\right\}_{2}\right] \mathbf{4 g}$ which could not be separated by TLC.

With $\mathrm{P}(\mathrm{OPh})_{3}$. This reaction was carried out in the same way as for $\mathrm{P}(\mathrm{OMe})_{3}$ above to give $\left[\mathrm{Os}(\mathrm{CO})_{10}(\mathrm{dppm})\right]$, and a mixture of $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{8}\left\{\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}\right\}\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}\right]$ 3h and $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}(\mathrm{dppm})\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}_{2}\right]$ 4h which could not be separated by TLC.

Attempted Isomerisation of Compound $\mathbf{4 b}$.-The complex 4b $\left(0.050 \mathrm{~g}, 3.5 \times 10^{-5} \mathrm{~mol}\right)$ in toluene $\left(15 \mathrm{~cm}^{3}\right)$ was heated to
$50^{\circ} \mathrm{C}$ for a total of 12 h . Phosphorus-31 NMR spectroscopy showed that no reaction had occurred.

Treatment of Compound 3f with $\mathrm{P}\left(\mathrm{OPr}^{\mathrm{i}}\right)_{3}$.-An excess of $\mathrm{P}\left(\mathrm{OPr}^{\mathrm{i}}\right)_{3}(0.422 \mathrm{~g}, 2 \mathrm{mmol})$ was added to a toluene solution (20 $\mathrm{cm}^{3}$ ) of $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{8}\left\{\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}\right\}\left\{\mathrm{P}\left(\mathrm{OPr}^{\mathrm{i}}\right)_{3}\right\}\right]$ 3f $\left(0.0215 \mathrm{~g}, 1.5 \times 10^{-5} \mathrm{~mol}\right)$. The solution was stirred for 18 h at room temperature. Phosphorus-31 NMR spectroscopy showed that no reaction had occurred.

X-Ray Crystallography.-Crystals of compounds 3a, 4a and $4 \mathbf{c}$ were mounted on glass fibres. Cell dimensions for 3a and $4 c$ were obtained by least-squares refinement of 19 reflections using Mo-K $\alpha$ radiation, $\lambda=0.71069 \AA$, those for $4 \mathbf{a}$ were obtained by least-squares refinement of 25 reflections. Crystal data and experimental details are given in Table 6.

Structure analysis and refinement. Compound 3a. The Os and $P$ atoms were located by direct methods and the remaining non-hydrogen atoms by Fourier methods. The TEXSAN ${ }^{18}$ structure analysis package was used. The Os, $\mathbf{P}$ and O atoms were refined anisotropically. Hydrogen atoms were placed in calculated positions and allowed to ride on their respective C atoms. The bridging hydride was not located. The final electron-density map showed residual peaks of 1.1 (maximum) and -1.25 (minimum) e $\AA^{-3}$. Atom
scattering factors were taken from ref. 19. Diagrams were produced using PLUTO. ${ }^{20}$ A list of fractional atomic coordinates is given in Table 7.

Compound 4a. The Os atoms were located by heavy-atom methods and the remaining non-hydrogen atoms by Fourier techniques (SHELX $76^{21}$ ). Blocked least-squares refinement with $\mathrm{Os}, \mathrm{P}$ and O atoms anisotropic. The phenyl groups were refined as regular hexagons with individual isotropic vibration parameters assigned to each C atom, and with H atoms in calculated positions. The final electron-density map showed a residual peak of 3 e $\AA^{-3}$, unconnected to the molecule, probably due to disordered solvent. A list of fractional atomic coordinates is given in Table 8.

Compound 4 c . The Os atoms were located by the Patterson method (SHELX $86^{22}$ ). The Os, P, O and the non-phenyl C atoms were treated anisotropically. The phenyl rings were constrained to regular hexagons with H atoms in calculated positions. The final electron-density map showed several peaks of approximately 1 e $\AA^{-3}$ which are thought to be due to the presence of disordered dichloromethane with a low siteoccupancy factor. A list of fractional atomic coordinates is given in Table 9.
Additional material available from the Cambridge Crystallographic Data Centre comprises $\mathbf{H}$-atom coordinates, thermal parameters and remaining bond lengths and angles.

## Acknowledgements

We thank the SERC for studentships (P. A. D. and A. J. M.) and Professor M. B. Hursthouse (QMC, London) for the X-ray data collection for compound 4a (SERC X-ray crystallography service).

## References

1 J. A. Clucas, D. F. Foster, M. M. Harding and A. K. Smith, J. Chem. Soc., Chem. Commun., 1984, 949.

2 J. A. Clucas, M. M. Harding, B. S. Nicholls and A. K. Smith, J. Chem. Soc., Dalton Trans., 1985, 1835.
3 M. P. Brown, P. A. Dolby, M. M. Harding, A. J. Mathews, A. K. Smith, D. Osella, M. Arbrun, R. Gobetto, P. R. Raithby and P. Zanello, J. Chem. Soc., Dalton Trans., 1993, 827.

4 S. R. Hodge, B. F. G. Johnson, J. Lewis and P. R. Raithby, J. Chem. Soc., Dalton Trans., 1987, 931.
5 N. Lugan, J. J. Bonnet and J. A. Ibers, J. Am. Chem. Soc., 1985, 107, 4484.

6 M. I. Bruce, O. B. Shawkatally and M. L. Williams, J. Organomet. Chem., 1985, 287, 127.
7 S. B. Colbran, P. T. Irele, B. F. G. Johnson, F. J. Lahoz, J. Lewis and P. R. Raithby, J. Chem. Soc., Dalton Trans., 1989, 2023.

8 J. A. Clucas, M. M. Harding and A. K. Smith, J. Chem. Soc., Chem. Commun., 1985, 2080.
9 R. A. Bartlett, C. J. Cardin, D. J. Cardin, G. A. Lawless, J. M. Power and P. P. Power, J. Chem. Soc., Chem. Commun., 1988, 312.
10 J. A. Clucas, P. A. Dolby, M. M. Harding and A. K. Smith, J. Chem. Soc., Chem. Commun., 1987, 1829.
11 C. C. Yin and A. J. Deeming, J. Chem. Soc., Dalton Trans., 1974, 1013.
12 M. I. Bruce and M. L. Williams, J. Organomet. Chem., 1986, 314, 323.
13 E. J. Ditzel, B. E. Hanson, B. F. G. Johnson and J. Lewis, J. Chem. Soc., Dalton Trans., 1987, 1285.
14 P. A. Dolby, M. M. Harding and A. K. Smith, unpublished work.
15 C. A. Tolman, Chem. Rev., 1977, 77, 313.
16 I. J. Colquhoun and W. McFarlane, J. Chem. Soc., Dalton Trans., 1982, 1915.
17 N. P. C. Walker and D. Stuart, Acta Crystallogr., Sect. A, 1987, 39, 1980.

18 TEXSAN Structure Analysis Package, Molecular Structure Corporation, Houston, TX, 1985.
19 International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4.
20 W. D. S. Motherwell, PLUTO, program for plotting molecular and crystal structures, University of Cambridge, 1976
21 G. M. Sheldrick, SHELX 76, program for crystal structure determination, University of Cambridge, 1976.
22 G. M. Sheldrick, SHELX 86, program for crystal structure determination, University of Göttingen, 1986.

Received 30th December 1992; Paper 2/06875C


[^0]:    $\dagger$ Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1993, Issue 1, pp. xxiii-xxviii.

