Different Co-ordination Modes of the Ligand [SPPh ${ }_{2}{ }^{-}$in Complexes of $\mathrm{Pd}^{\prime \prime}$ and $\mathrm{Pt}^{\prime \prime}$. Crystal Structures of $[\{\mathrm{Pd}(\mu-$ $\left.\left.\left.\mathrm{SPPh}_{2}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)\right\}_{2}\right]$ and $\left[\mathrm{Pd}\left(\mathrm{SPPh}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \dagger$

Juan Forniés,*, ${ }^{\text {a }}$ Francisco Martínez, ${ }^{\boldsymbol{a}}$ Rafael Navarro ${ }^{\boldsymbol{a}}$ Esteban P. Urriolabeitia ${ }^{\text {a }}$ and Alan J. Welch ${ }^{\text {b }}$
${ }^{a}$ Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-Consejo Superior de Investigaciones Científicas, 50009 Zaragoza, Spain
${ }^{\text {b }}$ Department of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, UK

The neutral complexes $\left[\left\{\mathrm{M}\left(\mu-\mathrm{SPPh}_{2}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PR}_{3}\right)\right\}_{2}\right]$ ($\mathrm{M}=\mathrm{Pd}$ or $\mathrm{Pt} ; \mathrm{PR}_{3}=\mathrm{PPh}_{3}$ or $\mathrm{PPh}_{2} E t$) containing the P,S-bridging [SPPh_{2}]- have been synthesised by reaction of the corresponding acetylacetonate (acac) derivatives $\left[\mathrm{M}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\right.\right.$ acac- $\left.0 . \mathrm{O}^{\prime}\right)\left(\mathrm{PR}_{3}\right)$] with $\mathrm{HP}(\mathrm{S}) \mathrm{Ph}_{2}$. However, the reaction of the cationic complexes $\left[\mathrm{M}\left(\mathrm{acac}-\mathrm{O} \mathrm{O}^{\prime}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO} \mathrm{O}_{4}(\mathrm{M}=\mathrm{Pd}$ or Pt$)$ with $\mathrm{HP}(\mathrm{S}) \mathrm{Ph}_{2}$ affords mononuclear [$\left.\mathrm{M}\left(\mathrm{SPPh}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$ in which the $\left[\mathrm{SPPh}_{2}\right]^{-}$ligand is co-ordinated as a P.S-chelate. The anionic complex $\left[\mathrm{NBu}_{4}\right]_{2}\left[\left\{\operatorname{Pd}\left(\mu-\mathrm{SPPh}_{2}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}_{2}\right]$ has also been synthesised. The crystal structures of $[\{\operatorname{Pd}(\mu-$ $\left.\left.\left.\mathrm{SPPh}_{2}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)\right\}_{2}\right]$ and $\left[\mathrm{Pd}\left(\mathrm{SPPh}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ have been determined by X -ray diffraction methods; the former adopts a boat conformation.

The anionic ligand $\left[\mathrm{SPPh}_{2}\right]^{-}$(diphenylthiophosphinite) can be co-ordinated to metal centres as: (a) P-monodentate, ${ }^{1}$ (b) Smonodentate, ${ }^{1 a, 2}$ (c) P,S-chelate ${ }^{1 a, 3 c, 4}$ or (d) di- μ-P,S-bridge, ${ }^{1,3}$ the last representing the most numerous group, probably due to the stability of the six-membered ring generated. ${ }^{1 a}$

In the course of our current research on the reactivity of perhalogenophenyl derivatives of $\mathrm{Pd}^{\mathrm{II}}$ and $\mathrm{Pt}^{\mathrm{II}}$ with polyfunctional anionic ligands such as $\left[\mathrm{Ph}_{2} \mathrm{PCHPPh}_{2}\right]^{-}$or $\left[\mathrm{C}\left(\mathrm{PPh}_{2}\right)_{3}\right]^{-}$we have shown the utility of acetylacetonato (acac) derivatives as starting materials ${ }^{5}$ for the preparation of these type of complexes. This paper deals with the reactions of $\mathrm{HP}(\mathbf{S}) \mathrm{Ph}_{2}$ with neutral or cationic acac- O, O^{\prime} derivatives of $\mathrm{Pd}^{\mathrm{II}}$ or $\mathrm{Pt}^{\mathrm{II}}$ which render di- or mono-nuclear SPPh_{2} complexes depending on the starting materials.

Results and Discussion

Neutral Complexes $\left[\left\{\mathrm{M}\left(\mu-\mathrm{SPPh}_{2}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PR}_{3}\right)\right\}_{2}\right]$.-The reaction of the neutral derivatives $\left[\mathrm{M}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\right.\right.$ acac- $\left.\left.O, O^{\prime}\right)\left(\mathrm{PR}_{3}\right)\right]$ ($\mathrm{M}=\mathrm{Pd}$ or $\mathrm{Pt} ; \mathrm{PR}_{3}=\mathrm{PPh}_{3}$ or $\mathrm{PPh}_{2} \mathrm{Et}$) with $\mathrm{H}(\mathrm{S}) \mathrm{PPh}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution, at room temperature, results in displacement of the acac group as Hacac and co-ordination of the $\left[\mathrm{SPPh}_{2}\right]^{-}$anion as a bridging ligand, yielding the corresponding neutral dinuclear derivatives $\left[\left\{\mathbf{M}\left(\mu-\mathrm{SPPh}_{2}\right)\right.\right.$ $\left.\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PR}_{3}\right)\right\}_{2}\right]\left(\mathrm{M}=\mathrm{Pd}, \mathrm{PR}_{3}=\mathrm{PPh}_{3} 1\right.$ or $\mathrm{PPh}_{2} \mathrm{Et} 2 ; \mathrm{M}=$ $\mathrm{Pt}, \mathrm{PR}_{3}=\mathrm{PPh}_{3} 3$ or $\mathrm{PPh}_{2} \mathrm{Et} 4$) [equation (1)]. Complex 1 can also be obtained, although in lower yields, through two other synthetic procedures (Scheme 1): (a) $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)-\right.$ $\left.\left(\mathrm{Me}_{2} \mathrm{CO}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$ reacts with $\mathrm{H}(\mathrm{S}) \mathrm{PPh}_{2}$ in acetone; (b)

[^0]

Scheme 1 (i) $2 \mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{H}, \mathrm{Me}_{2} \mathrm{CO}$; (ii) thf-toluene, N_{2}; (iii) $2 \mathrm{AgClO}_{4}$, $\mathrm{Me}_{2} \mathrm{CO}$
the reaction between $\left[\mathrm{PdCl}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and LiSPPh_{2} in tetrahydrofuran (thf)-toluene.
$2\left[\mathrm{M}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{acac}-\mathrm{O}, \mathrm{O}^{\prime}\right)\left(\mathrm{PR}_{3}\right)\right]+2 \mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{H} \longrightarrow$

$$
\begin{equation*}
\left[\left\{\mathbf{M}\left(\mu-\mathrm{SPPh}_{2}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PR}_{3}\right)\right\}_{2}\right]+2 \mathrm{Hacac} \tag{1}
\end{equation*}
$$

These complexes gave satisfactory elemental analyses and show a strong IR band in the range $565-570 \mathrm{~cm}^{-1}$ (see Experimental section) which can be assigned to $v(\mathrm{P}=\mathrm{S})$ of the co-ordinated $\left[\mathrm{SPPh}_{2}\right]^{-}$; it appears at lower wavenumbers than for unco-ordinated diphenylphosphine sulfide ($640 \mathrm{~cm}^{-1}$). ${ }^{6}$ Characteristic absorptions assignable to the presence of $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups ${ }^{5,7}$ are observed. The analytical and IR data are not sufficiently informative to infer the structural configuration of these compounds, but the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{19} \mathrm{~F}$ NMR data do (Table 1).

The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathbf{H}\right\}$ NMR spectra of complexes $1-4$ show a pattern which can be analysed as an $\mathbf{A A}^{\prime} \mathbf{B B}^{\prime}$ spin system (Fig. 1). This indicates the dinuclear nature of the complexes, since for a mononuclear compound (P, S-chelate co-ordination) a spectrum corresponding to an AB system should be obtained. In principle, two different geometries are possible (Scheme 2), but the large value of ${ }^{2} J\left(\mathrm{P}_{\mathrm{a}}-\mathrm{P}_{\mathrm{b}}\right)(488-460 \mathrm{~Hz})$ precludes configuration \mathbf{A}, in which the two P donor atoms are mutually cis, and is in agreement with configuration B, with two P donor atoms mutually trans. The X-ray diffraction study of $\left(\left\{\operatorname{Pd}\left(\mu-\mathrm{SPPh}_{2}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)\right\}_{2}\right] 1$ confirms geometry \mathbf{B}, and shows that the central portion of the molecule adopts a boat conformation.

Table 1 Fluorine-19 and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}^{a}$ data for complexes 1-7

	$\delta\left(\mathrm{F}_{o}\right)$	$\delta\left(\mathrm{F}_{m}\right)$	$\delta\left(\mathrm{F}_{p}\right)$	${ }^{3} J\left(\mathrm{Pt}-\mathrm{F}_{o}\right)$	$\delta\left(\mathrm{P}_{\mathrm{a}}\right)$	$\delta\left(\mathrm{P}_{\mathrm{b}, \mathrm{x}}\right)$	$\delta\left(\mathrm{P}_{\mathrm{m}}\right)$	${ }^{2} J\left(\mathrm{P}_{\mathrm{a}}-\mathrm{P}_{\mathrm{b}, \mathrm{x}}\right)$	${ }^{3} J\left(\mathrm{P}_{\mathrm{a}}-\mathrm{P}_{\mathrm{b}^{\prime}}\right)$	${ }^{3} J\left(\mathrm{P}_{\mathrm{a}}-\mathrm{P}_{\mathrm{a}^{\prime}}\right)$	${ }^{1} J\left(\mathrm{Pt}-\mathrm{P}_{\mathrm{a}}\right)$	${ }^{1} J\left(\mathrm{Pt}-\mathrm{P}_{\mathrm{b}, \mathrm{x}}\right)$
$1^{\text {b }}$	-116.15				51.54	24.69		488	1.0	67.8		
$1{ }^{\text {c }}$	$\begin{aligned} & -113.51 \\ & -113.96 \end{aligned}$	$\begin{aligned} & -161.65 \\ & -162.39 \end{aligned}$	-162.09									
$2^{\text {d }}$	-115.13		. 96		50.54	19.20		489	0.6	71.1		
$3^{\text {b }}$	-117.81		. 94	363.5	36.22	21.15		473	4.0	53.4	2821	2496
$3{ }^{\text {c }}$	$\begin{aligned} & -115.62 \\ & -118.78 \end{aligned}$	$\begin{aligned} & -160.89 \\ & -161.65 \end{aligned}$	-161.24	$\begin{aligned} & 246.5 \\ & 281.1 \end{aligned}$								
$4^{\text {d }}$	-116.43		10	376.8	37.35	9.70		460	3.5	48.3	2695	2459
5	$\begin{aligned} & -113.44 \\ & -114.13 \end{aligned}$	-166.8	$\begin{aligned} & -165.42 \\ & -167.73 \end{aligned}$		46.08							
6^{e}					67.41	24.07	26.55	283				
$7{ }^{\text {f }}$					53.33	19.05	16.70	288			1823	3123

${ }^{a} J$ in Hz. ${ }^{b}{ }^{19} \mathrm{~F}$ NMR spectrum measured at room temperature in $\mathrm{CDCl}_{3} \cdot{ }^{c}{ }^{19} \mathrm{~F}$ NMR spectrum measured at $-80{ }^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. ${ }^{d}$ Signals due to F_{o} and F_{m} do not split at $-80^{\circ} \mathrm{C}$ (see text). ${ }^{e} J\left(\mathrm{P}_{\mathrm{m}}-\mathrm{P}_{\mathrm{x}}\right) 36 \mathrm{~Hz} .{ }^{{ }^{2} J} J\left(\mathrm{P}_{\mathrm{a}}-\mathrm{P}_{\mathrm{m}}\right)={ }^{2} J\left(\mathrm{P}_{\mathrm{m}}-\mathrm{P}_{\mathrm{x}}\right)=17,{ }^{1} J\left(\mathrm{Pt}-\mathrm{P}_{\mathrm{m}}\right) 4098 \mathrm{~Hz}$.

Fig. $1 \quad{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of complex 1

A

B

Scheme 2
(signals due to m - and $p-\mathrm{F}$ overlap), revealing: (a) that both $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups are equivalent (from the geometry of the molecule, point group C_{2}), and (b) that both halves of each $\mathrm{C}_{6} \mathrm{~F}_{5}$ group are equivalent. The last fact seems to indicate a dynamic process in solution. At low temperature $\left(-80^{\circ} \mathrm{C}\right)$ the spectra of 1 and 3 show that F_{o} (and F_{m} as well) are inequivalent, although the spectra of 2 and 4 at this temperature do not show split signals for F_{o} and F_{m}. A mechanism which could explain this equivalence is a rapid interconversion between the boat and chair conformations.

Structure of $\left[\left\{\operatorname{Pd}\left(\mu-\mathrm{SPPh}_{2}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)\right\}_{2}\right]$ 1.-The structure of complex 1 is depicted in Fig. 2. Selected bond distances and angles are presented in Table 2, atomic coordinates in Table 3. The complex consists of two $\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)$ moieties connected by two bridging $\left[\mathrm{SPPh}_{2}\right]^{-}$ligands. The palladium(II) centres, related by a two-fold axis, display a slightly distorted square-planar environment with the two \mathbf{P} donor atoms on each centre mutually trans. The six-membered ring $\mathrm{Pd}(1)-\mathrm{S}-\mathrm{P}\left(1^{\prime}\right)-\mathrm{Pd}\left(1^{\prime}\right)-\mathrm{S}^{\prime}-\mathrm{P}(1)$ displays a boat conformation. A similar conformation has been observed in $\left[\mathrm{Pt}_{2} \mathrm{H}_{2}\left(\mathrm{PBu}_{3}{ }_{3}\right)_{2}\left(\mu-\mathrm{SPPh}_{2}\right)_{2}\right],{ }^{1 b}$ but in $\left[\left\{\mathrm{Pt}\left(\mathrm{S}_{2} \mathrm{CNPr}^{\mathrm{i}}{ }_{2}\right)(\mu-\right.\right.$

Table 2 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $[\{\mathrm{Pd}-$ $\left.\left.\left(\mu-\mathrm{SPPh}_{2}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)\right\}_{2}\right]$

$P(1)-P d(1)$	$2.312(2)$	$P(2)-P d(1)$	$2.361(2)$
$S-P d(1)$	$2.359(2)$	$C(31)-P d(1)$	$2.027(7)$
$P(1)-S^{\prime}$			
$P(2)-P d(1)-P(1)$	$175.3(1)$	$S-P d(1)-P(1)$	$93.2(1)$
$S-P d(1)-P(2)$	$86.9(1)$	$C(31)-P d(1)-P(1)$	$90.2(2)$
$P d(1)-S-P\left(1^{\prime}\right)$	$15.3(1)$	$P d(1)-P(1)-S^{\prime}$	$118.7(1)$
$C(31)-P d(1)-P(2)$	$89.5(2)$	$C(31)-P d(1)-S$	$175.9(2)$

$\left.\left.\left.\operatorname{SPPh}_{2}\right)\right\}_{2}\right]^{10 a}$ and $\left[\mathrm{Pd}_{2}\left(\mu-\mathrm{SPBu}_{2}\right)_{2}\left(\mathrm{SPBu}_{2}\right)_{2}\right]^{3 c}$ the $\mathrm{M}_{2}(\mu-$ $\left.\mathrm{SPR}_{2}\right)_{2}$ fragment adopts a chair conformation. This suggests that if monodentate ligands are present the boat conformation is preferred, whereas if a bidentate chelate ligand is linked to each metal(II) centre the chair conformation appears. ${ }^{1 a}$

The $\mathrm{Pd}-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right), \mathrm{Pd}-\mathrm{P}\left(\mathrm{PPh}_{3}\right), \mathrm{Pd}-\mathrm{P}\left(\mathrm{SPPh}_{2}\right), \mathrm{Pd}-\mathbf{S}\left(\mathrm{SPPh}_{2}\right)$ and $\mathrm{P}-\mathrm{S}\left(\mathrm{SPPh}_{2}\right)$ distances are similar to related values found in the literature ${ }^{3,8}$ The $\mathrm{P}-\mathrm{S}$ distance $[2.048(4) \AA$] is longer than that corresponding to a $\mathrm{P}=\mathrm{S}$ double bond (1.926-1.966 $\AA)^{9-11}$ but shorter than that of a $\mathrm{P}-\mathrm{S}$ single bond $(2.122 \AA) .{ }^{9}$ The dihedral angle formed by the best least-squares planes through $\mathrm{Pd}(1), \mathrm{C}(31), \mathrm{P}(1), \mathrm{P}(2), \mathrm{S}$ and through $\mathrm{Pd}\left(1^{\prime}\right), \mathrm{C}\left(31^{\prime}\right), \mathrm{P}\left(1^{\prime}\right)$, $P\left(2^{\prime}\right), \mathrm{S}^{\prime}$ is 85.9°, i.e. both co-ordination planes are almost mutually perpendicular. The torsion angle $\mathrm{Pd}(1)-\mathrm{P}(1)-\mathrm{S}^{\prime}-$ $\operatorname{Pd}\left(1^{\prime}\right)$ is 16.9°. The two P atoms and the two S atoms of the ($\mu-$ $\left.\mathrm{SPPh}_{2}\right)_{2}$ groups are not coplanar with the S atoms lying $0.17 \AA$ to one side of the best least-squares plane through $\mathrm{P}(1)-$ $S-P\left(1^{\prime}\right)-S^{\prime}$ and the P atoms lying $0.04 \AA$ to the other side of the same plane.
$\left[\mathrm{NBu}_{4}\right]_{2}\left[\left\{\mathrm{Pd}\left(\mu-\mathrm{SPPh}_{2}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}_{2}\right]$ 5.- The reactions of $\left[\mathrm{NBu}_{4}\right]_{2}\left[\left\{\mathrm{Pd}(\mu-\mathrm{X})\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}_{2}\right]$ with $\mathrm{HP}(\mathrm{S}) \mathrm{Ph}_{2}\left[\mathrm{X}=\mathrm{C}_{6} \mathrm{~F}_{5}, \mathrm{Cl}\right.$ (in the presence of $\left.\mathrm{NEt}_{3}\right)$] or with $\operatorname{LiSPPh}_{2}(\mathrm{X}=\mathrm{Cl})($ Scheme 3) allow the synthesis of the anionic dinuclear derivative $\left[\mathrm{NBu}_{4}\right]_{2}\left[\left\{\operatorname{Pd}\left(\mu-\mathrm{SPPh}_{2}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}_{2}\right] 5$. However, when similar reactions are carried out with the analogous platinum derivatives $\left[\mathrm{NBu}_{4}\right]_{2}\left[\left\{\operatorname{Pt}(\mu-X)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}_{2}\right]\left(X=\mathrm{C}_{6} \mathrm{~F}_{5}\right.$ or Cl$)$ a mixture of complexes that we have not been able to separate is obtained. Complex 5 gave satisfactory elemental analyses and shows in the IR spectrum a strong absorption at $566 \mathrm{~cm}^{-1}$ assignable to $v(P=S)$. Two bands with similar intensity (778s and $765 \mathrm{~s} \mathrm{~cm}^{-1}$) indicate the presence of two $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups disposed mutually cis. ${ }^{12}$

The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (Table 1) shows only a broad singlet at δ 46.08. The ${ }^{19} \mathrm{~F}$ NMR spectrum, at room temperature, shows two signals in the o - and $p-\mathrm{F}$ region ($m-\mathrm{F}$ signals are partially overlapped), again indicating the presence of two types of inequivalent $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups. Both halves of each

Fig. 2 Molecular structure of the complex $\left[\left\{\operatorname{Pd}\left(\mu-\mathrm{SPPh}_{2}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)\right\}_{2}\right]$ I

Table 3 Fractional atomic coordinates $\left(\times 10^{4}\right)$ for $\left[\left\{\operatorname{Pd}\left(\mu-\mathrm{SPPh}_{2}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)\right\}_{2}\right]$

Atom	X / a	Y / b	Z / c	Atom	X / a	Y / b	Z / c
Pd(1)	$5283(1)$	$5617(1)$	$1704(1)$	$\mathrm{C}(20)$	5056	2896	1444
$\mathrm{P}(1)$	$4424(1)$	$4583(2)$	$1925(1)$	$\mathrm{C}(21)$	5190	1811	1341
$\mathrm{P}(2)$	$6179(1)$	$6564(2)$	$1425(1)$	$\mathrm{C}(22)$	4878	993	1611
S	$5943(1)$	$4758(2)$	$2336(1)$	$\mathrm{C}(23)$	4431	1261	1985
$\mathrm{C}(1)$	$6763(2)$	$5671(5)$	$1142(2)$	$\mathrm{C}(24)$	4296	2346	2088
$\mathrm{C}(2)$	7269	6097	868	$\mathrm{C}(25)$	$3714(2)$	$4772(5)$	$1517(2)$
$\mathrm{C}(3)$	7694	5403	629	$\mathrm{C}(26)$	3540	4053	1113
$\mathrm{C}(4)$	7615	4283	664	$\mathrm{C}(27)$	3018	4273	791
$\mathrm{C}(5)$	7110	3857	937	$\mathrm{C}(28)$	2669	5213	872
$\mathrm{C}(6)$	6684	4551	1176	$\mathrm{C}(29)$	2842	5931	1276
$\mathrm{C}(7)$	$6550(2)$	$7360(5)$	$1949(2)$	$\mathrm{C}(30)$	3364	5711	1598
$\mathrm{C}(8)$	7192	7573	1961	$\mathrm{C}(31)$	$4770(3)$	$6366(6)$	$1127(3)$
$\mathrm{C}(9)$	7447	8258	2348	$\mathrm{C}(32)$	$4605(3)$	$7429(6)$	$1171(3)$
$\mathrm{C}(10)$	7061	8730	2723	$\mathrm{C}(33)$	$4278(4)$	$7986(7)$	$786(3)$
$\mathrm{C}(11)$	6420	8516	2711	$\mathrm{C}(34)$	$4098(4)$	$7466(7)$	$3313)$
$\mathrm{C}(12)$	6164	7831	2324	$\mathrm{C}(35)$	$4243(4)$	$6388(7)$	$268(3)$
$\mathrm{C}(13)$	$6049(2)$	$7524(4)$	$882(2)$	$\mathrm{C}(36)$	$4580(3)$	$5872(7)$	$662(3)$
$\mathrm{C}(14)$	6059	8642	964	$\mathrm{~F}(1)$	$4783(2)$	$8004(3)$	$1610(2)$
$\mathrm{C}(15)$	5907	9344	547	$\mathrm{~F}(2)$	$4136(3)$	$9043(4)$	$8529(2)$
$\mathrm{C}(16)$	5744	8927	49	$\mathrm{~F}(3)$	$3783(3)$	$8008(5)$	$-56(2)$
$\mathrm{C}(17)$	5734	7809	-32	$\mathrm{~F}(4)$	$4068(3)$	$5883(5)$	$-180(2)$
$\mathrm{C}(18)$	5887	7107	384	$\mathrm{~F}(5)$	$4724(2)$	$4823(4)$	$566(2)$
$\mathrm{C}(19)$	$4608(3)$	$3164(3)$	$1818(2)$				

$\mathrm{C}_{6} \mathrm{~F}_{5}$ group behave as equivalent which can be explained by assuming the existence of a dynamic process similar to that displayed by the neutral complexes.

Cationic Complexes $\left[\mathrm{M}\left(\mathrm{SPPh}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$.-The reaction between $\left[\mathrm{M}\left(\mathrm{acac}-O, O^{\prime}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4}(\mathrm{M}=\mathrm{Pd}$ or Pt$)$ and $\mathrm{HP}(\mathrm{S}) \mathrm{Ph}_{2}$ renders complexes with the stoichiometry $\left[\mathrm{M}\left(\mathrm{SPPh}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4}(\mathrm{M}=\mathrm{Pd} 6$ or Pt 7$)$. Complexes 6 and 7 give satisfactory elemental analyses and show the IR absorption due to $\mathrm{v}(\mathrm{P}=\mathrm{S})$ at higher frequencies than those for
the dinuclear complexes $1-5$ (see Experimental section). The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathbf{H}\right\}$ NMR spectra (Table 1) of complexes 6 and 7 show a pattern which can be analysed as an AMX spin system (with ${ }^{195} \mathrm{Pt}$ satellites for 7), pointing to a mononuclear structure C (Scheme 4). A dinuclear system should present, in the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, an $\mathrm{AA}^{\prime} \mathbf{M M}^{\prime} \mathbf{X X '}^{\prime}$ spin system, as can be seen from D.

The equivalent conductivities (Λ_{e}) in nitromethane solutions of these cationic complexes at different concentrations give values of A in Onsager's equation $\Lambda_{e}=\Lambda_{o}-A c^{\frac{1}{2}}$ of 153 (6)

Scheme 3 (i) $2 \mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (ii) $2 \mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{H}, \mathrm{NEt}_{3}$; (iii) thf, N_{2}, $2 \mathrm{LiSPPh}_{2}$

C

D
Scheme 4

Table 4 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for [Pd$\left.\left(\mathrm{SPPh}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$

$\mathrm{P}(1)-\mathrm{Pd}$	$2.377(2)$	$\mathbf{P}(2)-\mathrm{Pd}$	$2.292(2)$
$\mathrm{P}(3)-\mathrm{Pd}$	$2.245(2)$	$\mathrm{S}-\mathrm{Pd}$	$2.387(2)$
$\mathrm{S}-\mathrm{P}(3)$	$2.004(3)$		
$\mathrm{P}(2)-\mathrm{Pd}-\mathrm{P}(1)$	$104.2(1)$	$\mathrm{P}(3)-\mathrm{Pd}-\mathrm{P}(1)$	$150.1(1)$
$\mathrm{P}(3)-\mathrm{Pd}-\mathrm{P}(2)$	$104.5(1)$	$\mathrm{S}-\mathrm{Pd}-\mathrm{P}(1)$	$99.4(1)$
$\mathrm{S}-\mathrm{Pd}-\mathrm{P}(2)$	$155.1(1)$	$\mathrm{S}-\mathrm{Pd}-\mathrm{P}(3)$	$51.2(1)$
$\mathrm{S}-\mathrm{P}(3)-\mathrm{Pd}$	$68.1(1)$	$\mathrm{P}(3)-\mathrm{S}-\mathrm{Pd}$	$60.8(1)$

and $138 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ (7), that is in agreement with a mononuclear nature ($1: 1$ electrolytes). ${ }^{13}$ The X-ray diffraction study of complex 6 confirms the proposed structure.

Structure of $\left[\mathrm{Pd}\left(\mathrm{SPPh}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$.-The structure of the cation $\left[\mathrm{Pd}\left(\mathrm{SPPh}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$is presented in Fig. 3. Selected bond distances and angles are in Table 4, atomic coordinates in Table 5. The palladium atom has a distorted square-planar environment formed by two \mathbf{P} atoms $\left(\mathrm{PPh}_{3}\right.$ ligands) and the \mathbf{P} and S atoms of the SPPh_{2} chelating group. The very small $\mathrm{P}(3)-\mathrm{Pd}-\mathrm{S}$ angle $\left[51.2(1)^{\circ}\right]$ is a consequence of the chelating nature of the diphenylthiophosphinite, which results in the formation of a three-membered ring. The large $\mathrm{P}(1)-\mathrm{Pd}-\mathrm{P}(2)$ angle $\left[104.2(1)^{\circ}\right]$ is obviously related to that. The four atoms linked to the Pd are coplanar and the Pd atom lies $0.132 \AA$ out of this plane.

The $\mathrm{Pd}-\mathrm{P}$ and $\mathrm{Pd}-\mathrm{S}$ distances are in the usual ranges for palladium(II) complexes with P or S donor ligands. ${ }^{8 b}$ The rather different $\mathrm{Pd}-\mathrm{P}\left(\mathrm{PPh}_{3}\right)$ distances [2.245(2) and 2.377(2) \AA] point to the different trans influences of the P and S atoms of the SPPh_{2} group. Finally, the $\mathrm{P}-\mathrm{S}$ distance $[2.004(3) \AA]$ is shorter than that in complex 1 [2.048(4) \AA] with a $\mu-\mathrm{SPPh}_{2}$ co-ordination mode. This feature is similar to that observed in $\left[\mathrm{Pd}_{2}(\mu-\right.$ $\left.\left.\mathrm{SPBu}^{\mathrm{t}}\right)_{2}\left(\mathrm{SPBu}^{\mathrm{t}}\right)_{2}\right]^{3 c}$

Experimental

Materials.-Solvents were dried and distilled before use by standard methods. Infrared spectra were recorded with a Perkin Elmer 883 spectrophotometer and NMR spectra $\left(\mathrm{CDCl}_{3}\right.$ solvent) with a Varian XL-200 spectrometer. Elemental analyses were carried out with a Perkin Elmer 240-B microanalyser. The starting compounds [$\mathrm{M}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)$ (acac-

Fig. 3 Molecular structure of $\left[\operatorname{Pd}\left(\mathrm{SPPh}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$
$\left.\left.O, O^{\prime}\right)\left(\mathrm{PR}_{3}\right)\right],{ }^{5} \quad\left[\mathrm{PdCl}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right],{ }^{14} \quad\left[\mathrm{NBu}_{4}\right]_{2}[\mathrm{Pd}(\mu-\mathrm{Cl})-$ $\left.\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}_{2}\right]^{15}$ and $\left[\mathrm{NBu}_{4}\right]_{2}\left[\left\{\operatorname{Pd}\left(\mu-\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}_{2}\right]^{16}$ were prepared following the previously reported methods. The complexes [M(acac- $\left.O, O^{\prime}\right)\left(\mathrm{PPh}_{3}\right)_{2}$] $\mathrm{ClO}_{4}(\mathrm{M}=\mathrm{Pd}$ or Pt$)$ were prepared by adding Tl (acac) to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ suspension of the corresponding dinuclear complex $\left[\left\{\mathrm{M}(\mu-\mathrm{Cl})\left(\mathrm{PPh}_{3}\right)_{2}\right\}_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2}$ ($\mathbf{M}=\mathbf{P d}$ or $\mathbf{P t}$).

Preparations.- $\left[\left\{\mathrm{Pd}\left(\mu-\mathrm{SPPh}_{2}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)\right\}_{2}\right]$ 1. (a) From $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{acac}-\mathrm{O}, \mathrm{O}^{\prime}\right)\left(\mathrm{PPh}_{3}\right)\right]$. To a colourless solution of $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{acac}-O, O^{\prime}\right)\left(\mathrm{PPh}_{3}\right)\right] \quad(0.086 \mathrm{~g}, \quad 0.135 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ at room temperature was added $\mathrm{HP}(\mathrm{S}) \mathrm{Ph}_{2}$ $(0.029 \mathrm{~g}, 0.135 \mathrm{mmol})$. The resulting deep yellow solution was stirred for 1.5 h and evaporated to small volume ($c a .2 \mathrm{~cm}^{3}$). Addition of hexane ($20 \mathrm{~cm}^{3}$) gave a yellow precipitate of complex 1. Yield: $0.080 \mathrm{~g}(80 \%)$ (Found: C, $57.75 ; \mathrm{H}, 3.85$. $\mathrm{C}_{72} \mathrm{H}_{50} \mathrm{~F}_{10} \mathrm{P}_{4} \mathrm{Pd}_{2} \mathrm{~S}_{2}$ requires $\left.\mathrm{C}, 57.40 ; \mathrm{H}, 3.55 \%\right) . v(\mathrm{P}=\mathrm{S}) 565$ cm^{-1}.
(b) From $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{Me}_{2} \mathrm{CO}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$. To an acetone solution $\left(20 \mathrm{~cm}^{3}\right)$ of $\left[\mathrm{PdCl}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right](0.300 \mathrm{~g}, 0.360$ $\mathrm{mmol})$ at room temperature, $\mathrm{AgClO}_{4}(0.074 \mathrm{~g}, 0.360 \mathrm{mmol})$ was added. After stirring for 30 min , the resulting solution was filtered through Celite to remove the AgCl precipitated and the filtrate was used as a $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{Me}_{2} \mathrm{CO}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$ solution. Diphenylthiophosphinic acid $(0.078 \mathrm{~g}, 0.360 \mathrm{mmol})$ was added and the solution stirred at room temperature for 16 h. Yellow solid complex $10.080 \mathrm{~g}(30 \%$ yield) was obtained.
(c) From $\left[\mathrm{PdCl}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$. To a solution of $\mathrm{HP}(\mathrm{S}) \mathrm{Ph}_{2}$ $(0.081 \mathrm{~g}, 0.371 \mathrm{mmol})$ in toluene $\left(5 \mathrm{~cm}^{3}\right)$ at room temperature were added $\mathrm{LiBu}^{\mathrm{n}}$ ($0.82 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in hexane, $0.5 \mathrm{~cm}^{3}, 0.410$ $\mathrm{mmol}, 10 \%$ excess $)$ and thf $\left(15 \mathrm{~cm}^{3}\right)$. To the resulting pale yellow solution was added $\left[\mathrm{PdCl}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right](0.310 \mathrm{~g}, 0.371$ mmol). The mixture was stirred for 1 h at room temperature and then evaporated to dryness. Benzene ($15 \mathrm{~cm}^{3}$) was added to the residue and the resulting suspension was filtered through Celite to remove the precipitated LiCl . The resulting solution was evaporated to dryness. Addition of $\mathrm{Et}_{2} \mathrm{O}\left(20 \mathrm{~cm}^{3}\right)$ rendered complex 1. Yield: $0.140 \mathrm{~g}(50 \%)$.

Complexes $\left[\left\{\mathrm{M}\left(\mu-\mathrm{SPPh}_{2}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PR}_{3}\right)\right\}_{2}\right] 2\left(\mathrm{M}=\mathrm{Pd}, \mathrm{PR}_{3}\right.$ $\left.=\mathrm{PPh}_{2} \mathrm{Et}\right), \quad 3 \quad\left(\mathrm{M}=\mathrm{Pt}, \quad \mathrm{PR}_{3}=\mathrm{PPh}_{3}\right)$ and $4(\mathrm{M}=\mathrm{Pt}$, $\left.\mathrm{PR}_{3}=\mathrm{PPh}_{2} \mathrm{Et}\right)$ were prepared as for 1 following method (a). Preparative details: 2; $\left[\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{acac}-O, O^{\prime}\right)\left(\mathrm{PPh}_{2} \mathrm{Et}\right)\right](0.139$ $\mathrm{g}, 0.236 \mathrm{mmol}), \mathrm{HP}(\mathrm{S}) \mathrm{Ph}_{2}(0.052 \mathrm{~g}, 0.236 \mathrm{mmol})$, yield 0.103 g (62%) (Found: C, $53.55 ; \mathrm{H}, 3.45 . \mathrm{C}_{64} \mathrm{H}_{50} \mathrm{~F}_{10} \mathrm{P}_{4} \mathrm{Pd}_{2} \mathrm{~S}_{2}$ requires

Table 5 Fractional atomic coordinates $\left(\times 10^{4}\right)$ for $\left[\mathrm{Pd}\left(\mathrm{SPPh}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$

Atom	X / a	Y / b	Z / c	Atom	X / a	Y / b	Z / c
Pd	$8055(1)$	$349(1)$	$3196(1)$	$\mathrm{C}(27)$	6258	3044	3167
$\mathrm{P}(1)$	$6754(1)$	$193(1)$	$3845(1)$	$\mathrm{C}(28)$	6755	3124	3891
$\mathrm{P}(2)$	$7618(1)$	$1311(1)$	$2441(1)$	$\mathrm{C}(29)$	7509	2664	4162
$\mathrm{P}(3)$	$9583(1)$	$136(1)$	$3086(1)$	$\mathrm{C}(30)$	7766	2125	3709
S	$9153(2)$	$-492(1)$	$3852(1)$	$\mathrm{C}(31)$	$5540(3)$	$434(3)$	$3408(3)$
$\mathrm{C}(1)$	$9928(4)$	$-352(3)$	$2346(3)$	$\mathrm{C}(32)$	5252	1146	3371
$\mathrm{C}(2)$	10889	-459	2297	$\mathrm{C}(33)$	4333	1329	3015
$\mathrm{C}(3)$	11133	-899	1743	$\mathrm{C}(34)$	3701	800	2696
$\mathrm{C}(4)$	10416	-1230	1237	$\mathrm{C}(35)$	3988	88	2733
$\mathrm{C}(5)$	9455	-1122	1286	$\mathrm{C}(36)$	4908	-95	3089
$\mathrm{C}(6)$	9211	-683	1840	$\mathrm{C}(37)$	$6977(3)$	$666(3)$	$4734(2)$
$\mathrm{C}(7)$	$10447(3)$	$794(3)$	$3419(3)$	$\mathrm{C}(38)$	6236	922	5074
$\mathrm{C}(8)$	10878	1189	2921	$\mathrm{C}(39)$	6444	1263	5761
$\mathrm{C}(9)$	11474	1762	3174	$\mathrm{C}(40)$	7394	1347	6109
$\mathrm{C}(10)$	11638	1940	3926	$\mathrm{C}(41)$	8136	1092	5770
$\mathrm{C}(11)$	11207	1545	4425	$\mathrm{C}(42)$	7927	751	5082
$\mathrm{C}(12)$	10612	972	4172	$\mathrm{C}(43)$	$6648(4)$	$-733(2)$	$4110(3)$
$\mathrm{C}(13)$	$6666(3)$	$1182(3)$	$1666(3)$	$\mathrm{C}(44)$	6812	-1261	3609
$\mathrm{C}(14)$	6460	1694	1108	$\mathrm{C}(45)$	6673	-1976	3768
$\mathrm{C}(15)$	5710	1584	516	$\mathrm{C}(46)$	6370	-2165	4428
$\mathrm{C}(16)$	5167	961	481	$\mathrm{C}(47)$	6207	-1637	4930
$\mathrm{C}(17)$	5374	448	1038	$\mathrm{C}(48)$	6346	-922	4771
$\mathrm{C}(18)$	6123	558	1630	$\mathrm{C}(49)$	$2689(10)$	$752(12)$	$507(12)$
$\mathrm{C}(19)$	$8559(3)$	$1691(3)$	$1992(3)$	$\mathrm{Cl}(1)$	$1868(4)$	$1130(3)$	$865(3)$
$\mathrm{C}(20)$	9029	2324	2234	$\mathrm{Cl}(2)$	$2513(6)$	$-156(3)$	$287(4)$
$\mathrm{C}(21)$	9739	2593	1868	$\mathrm{Cl}(3)$	$6464(2)$	$-1576(1)$	$1473(1)$
$\mathrm{C}(22)$	9978	2228	1260	$\mathrm{O}(1)$	$7006(7)$	$-1993(5)$	$1997(4)$
$\mathrm{C}(23)$	9508	1596	1019	$\mathrm{O}(2)$	$5819(6)$	$-1150(4)$	$1754(6)$
$\mathrm{C}(24)$	8798	1327	1385	$\mathrm{O}(3)$	$5939(10)$	$-1995(8)$	$983(7)$
$\mathrm{C}(25)$	$7270(4)$	$2045(3)$	$2985(3)$	$\mathrm{O}(4)$	$6936(8)$	$-1264(9)$	$981(9)$
$\mathrm{C}(26)$	6516	2505	2714				

C, $54.50 ; \mathrm{H}, 3.55 \%), v(\mathrm{P}=\mathrm{S}) 565 \mathrm{~cm}^{-1} ; 3\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{acac}-\right.$ $\left.\left.O, O^{\prime}\right)\left(\mathrm{PPh}_{3}\right)\right](0.150 \mathrm{~g}, 0.207 \mathrm{mmol}), \mathrm{HP}(\mathrm{S}) \mathrm{Ph}_{2}(0.045 \mathrm{~g}, 0.207$ mmol), yield 0.055 g (30%) (Found: C, 50.45 ; H, 3.00 . $\mathrm{C}_{72} \mathrm{H}_{50} \mathrm{~F}_{10} \mathrm{P}_{4} \mathrm{Pt}_{2} \mathrm{~S}_{2}$ requires $\left.\mathrm{C}, 51.35 ; \mathrm{H}, 3.00 \%\right), v(\mathrm{P}=\mathrm{S}) 570$ $\mathrm{cm}^{-1} ; 4,\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\right.\right.$ acac- $\left.\left.O, O^{\prime}\right)\left(\mathrm{PPh}_{2} \mathrm{Et}\right)\right](0.200 \mathrm{~g}, 0.296 \mathrm{mmol})$, $\mathrm{HP}(\mathrm{S}) \mathrm{Ph}_{2}(0.065 \mathrm{~g}, 0.296 \mathrm{mmol})$, yield $0.12 \mathrm{~g}(51 \%)$ (Found: C, $44.00 ; \mathrm{H}, 3.50 . \mathrm{C}_{64} \mathrm{H}_{50} \mathrm{~F}_{10} \mathrm{P}_{4} \mathrm{Pt}_{2} \mathrm{~S}_{2} \cdot 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ requires $\mathrm{C}, 43.70$; $\mathrm{H}, 3.05 \%$), v(P=S) $569 \mathrm{~cm}^{-1}$.
$\left[\mathrm{NBu}_{4}\right]_{2}\left[\left\{\mathrm{Pd}\left(\mu-\mathrm{SPPh}_{2}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}_{2}\right]$ 5. (a) From $\left[\mathrm{NBu}_{4}\right]_{2}-$ $\left[\left\{\operatorname{Pd}\left(\mu-\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}_{2}\right]$. To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ solution of $\left[\mathrm{NBu}_{4}\right]_{2}\left[\left\{\mathrm{Pd}\left(\mu-\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}_{2}\right](0.170 \mathrm{~g}, 0.100 \mathrm{mmol})$ under nitrogen was added $\mathrm{HP}(\mathrm{S}) \mathrm{Ph}_{2}(0.044 \mathrm{~g}, 0.200 \mathrm{mmol})$ and the mixture was stirred at room temperature for 14 h and then evaporated to dryness. Addition of hexane ($25 \mathrm{~cm}^{3}$) gave a pale yellow solid. Yield: $0.130 \mathrm{~g}(73 \%)$ (Found: C, 53.15; H, 5.35; N, 1.45: $\mathrm{C}_{80} \mathrm{H}_{92} \mathrm{~F}_{10} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Pd}_{2} \mathrm{~S}_{2}$ requires C, $53.35 ; \mathrm{H}, 5.15 ; \mathrm{N}$, $1.55 \%), v(\mathrm{P}=\mathrm{S}) 566 \mathrm{~cm}^{-1}$.
(b) From $\left[\mathrm{NBu}_{4}\right]_{2}\left[\left\{\mathrm{Pd}(\mu-\mathrm{Cl})\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}_{2}\right]$. To a solution of $\mathrm{LiSPP}_{2}(0.358 \mathrm{mmol})$ in thf-toluene $\left(3: 1,20 \mathrm{~cm}^{3}\right)$ at room temperature under nitrogen, was added $\left[\mathrm{NBu}_{4}\right]_{2}[\{\mathrm{Pd}(\mu-$ $\left.\mathrm{Cl})\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}_{2}$] ($\left.0.258 \mathrm{~g}, 0.179 \mathrm{mmol}\right)$. After 3 h of stirring the solution was evaporated almost to dryness ($c a .2 \mathrm{~cm}^{3}$); the addition of $\mathrm{Pr}^{\mathrm{O}} \mathrm{OH}\left(20 \mathrm{~cm}^{3}\right)$ gave a pale yellow solid. Yield: $0.172 \mathrm{~g}(53 \%)$. Alternatively to a thf solution ($25 \mathrm{~cm}^{3}$) of $\left[\mathrm{NBu}_{4}\right]_{2}\left[\left\{\mathrm{Pd}(\mu-\mathrm{Cl})\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}_{2}\right] \quad(0.400 \mathrm{~g}, 0.278 \mathrm{mmol})$ were added $\mathrm{NEt}_{3}\left(0.1 \mathrm{~cm}^{3}, 0.723 \mathrm{mmol}\right)$ and $\mathrm{HP}(\mathrm{S}) \mathrm{Ph}_{2}(0.121 \mathrm{~g}$, 0.556 mmol). The mixture was stirred for 14 h at room temperature and then evaporated almost to dryness $\left(c a .2 \mathrm{~cm}^{3}\right)$; the addition of $\mathrm{Pr}^{\mathrm{O}} \mathrm{OH}\left(15 \mathrm{~cm}^{3}\right)$ rendered complex 5. Yield: $0.220 \mathrm{~g}(44 \%)$.
$\left[\mathrm{Pd}\left(\mathrm{SPPh}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$ 6. To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution ($20 \mathrm{~cm}^{3}$) of $\left[\mathrm{Pd}\left(\mathrm{acac}-O, O^{\prime}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4}(0.155 \mathrm{~g}, 0.187 \mathrm{mmol})$ was added $\mathrm{HP}(\mathrm{S}) \mathrm{Ph}_{2}(0.041 \mathrm{~g}, 0.187 \mathrm{mmol})$. The mixture was stirred at room temperature for 5 h ; afterwards the solution was evaporated to dryness and the addition of $\mathrm{Et}_{2} \mathrm{O}$ gave a deep yellow solid. Yield: $0.162 \mathrm{~g}(91 \%)$ (Found: C, 60.00 ; H, 4.30 .
$\mathrm{C}_{48} \mathrm{H}_{40} \mathrm{ClO}_{4} \mathrm{P}_{3} \mathrm{PdS}$ requires $\mathrm{C}, 60.85 ; \mathrm{H}, 4.25 \%$), $v(\mathrm{P}=\mathrm{S}) 598$ cm^{-1}.
$\left[\mathrm{Pt}\left(\mathrm{SPPh}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$. Complex 7 was prepared in a similar way from [$\left.\mathrm{Pt}\left(\mathrm{acac}-O, O^{\prime}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4}(0.200 \mathrm{~g}, 0.218$ $\mathrm{mmol})$ and $\mathrm{HP}(\mathrm{S}) \mathrm{Ph}_{2}(0.048 \mathrm{~g}, 0.218 \mathrm{mmol})$. Yield: 0.180 g (80%) (Found: C, $55.90 ; \mathrm{H}, 4.00 . \mathrm{C}_{48} \mathrm{H}_{40} \mathrm{ClO}_{4} \mathrm{P}_{3} \mathrm{PtS}$ requires C, $55.65 ; \mathrm{H}, 3.90 \%) v(\mathrm{P}=\mathrm{S}) 593 \mathrm{~cm}^{-1}$.

Crystal Structure Determinations.-Suitable crystals of compounds $\mathbf{1}$ and 6 were obtained by slow diffusion of hexane into a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of the corresponding crude products. Intensity data were recorded at room temperature using graphite-monochromated $\mathrm{Mo}-\mathrm{K} \alpha \mathrm{X}$-radiation. For 1 data were collected on a Siemens STOE/AED-2 four-circle diffractometer $\left(4 \leqslant 2 \theta \leqslant 50^{\circ}\right)$. Accurate lattice parameters were determined from accurate positions of 25 reflections ($10 \leqslant 2 \theta \leqslant 25^{\circ}$). Intensity data were corrected for Lorentz and polarization effects. For compound $6 \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, an Enraf-Nonius CAD4 diffractometer was employed $\left(2 \leqslant 2 \theta \leqslant 44^{\circ}\right.$). Accurate lattice parameters determined from the positions of 25 reflections ($26 \leqslant 2 \theta \leqslant 28^{\circ}$). Intensity data were corrected for Lorentz and polarization effects.

Crystal data. $\mathrm{C}_{72} \mathrm{H}_{50} \mathrm{~F}_{10} \mathrm{P}_{4} \mathrm{Pd}_{2} \mathrm{~S}_{2}, \mathbf{1} M=1505.89$, monoclinic, space group $C 2 / c, a=21.361(2), b=12.336(1), c=$ 25.234(2) $\AA, \quad \beta=91.14(1)^{\circ}, \quad U=6648.1 \quad \AA^{3}, \quad Z=4 \quad\left(C_{2}\right.$ symmetry imposed), $D_{\mathrm{c}}=1.50 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=3024, \mu=$ $7.57 \mathrm{~cm}^{-1}$, 5204 unique data, 3434 observed data $[F>5 \sigma(F)]$ for the refinement of 346 parameters, scan method $2 \theta-\omega, w=$ $1.2344 /\left[\sigma^{2}(F)+0.00132 F^{2}\right], R=0.048, R^{\prime}=0.048, \Delta / \sigma=$ 0.001 , largest difference peaks $0.68,-0.48$ e \AA^{3}.
$\mathrm{C}_{49} \mathrm{H}_{42} \mathrm{Cl}_{3} \mathrm{P}_{3} \mathrm{PdSO}_{4}, 6 \mathrm{G}=1032.62$, monoclinic, space group $P 2_{1} / c, a=14.173(5), b=18.758(6), c=18.280(9) \AA$, $\beta=99.99(3)^{\circ}, U=4786.2 \AA^{3}, Z=4, \quad D_{\mathrm{c}}=1.43 \mathrm{~g} \mathrm{~cm}^{-3}$, $F(000)=2104, \mu=7.33 \mathrm{~cm}^{-1}, 5851$ unique data, 4583 observed data $[F>4 \sigma(F)]$ for the refinement of 454 parameters, scan method $2 \theta-\omega, w=1.8525 /\left[\sigma^{2}(F)+0.00147 F^{2}\right], R=0.055$,
$R^{\prime}=0.062, \Delta / \sigma=0.002$, largest difference peaks $0.95,-0.72 \mathrm{e}$ \AA^{-3}.

Structure solution and refinement. The structures were solved by the use of Patterson and Fourier methods. All calculations were carried out with SHELX $76{ }^{17}$ and $86 .{ }^{18}$ All non-hydrogen atoms were refined with anisotropic thermal parameters. The carbon atoms of the Ph groups were refined as rigid rings. Hydrogen atoms were omitted. Calculations by full-matrix least squares were performed on a Micro-VAX 8300 computer.
Additional material available from the Cambridge Crystallographic Data Centre comprises thermal parameters and remaining bond lengths and angles.

Acknowledgements

We thank the Dirección General de Investigación Cientifica y Técnica (Spain) for financial support (Project PB89-0057) and the British Council and the Spanish Ministry of Education and Science for an Acciones Integradas grant. E. P. U. thanks the Diputación General de Aragón (D. G. A.) for a grant.

References

1 (a) B. Walther, Coord. Chem. Rev., 1984, 60, 67; (b) A. F. M. M. Rahman, C. Ceccarelli, J. P. Oliver, B. Messbauer, H. Meyer and B. Walther, Inorg. Chem., 1985, 24, 2355; (c) M. T. Pinillos, M. P. Jarauta, D. Carmona, L. A. Oro, M. C. Apreda, C. Foces-Foces and F. H. Cano, J. Chem. Soc., Dalton Trans., 1989, 1987
2 L. Gelmini and D. W. Stephan, Organometallics, 1987, 6, 1515.
3 (a) J. D. Fotheringham and T. A. Stephenson, J. Organomet. Chem., 1985, 284, C12; (b) M. T. Pinillos, M. P. Jarauta, L. A. Oro, A. Tiripicchio and M. Tiripicchio-Camellini, J. Organomet. Chem., 1988, 339, 181; (c) B. Walther, H. Hartung, B. Messbauer, V.

Banmeister, M. Maschmeir, D. Dargatz and I. Hetzke, Inorg. Chim. Acta, 1990, 171, 171; (d) K. P. Wagner, R. W. Hess, P. M. Treiche and J. C. Calabrese, Inorg. Chem., 1975, 14, 1121; (e) B. Walther, B. Messbauer, and H. Meyer, Inorg. Chim. Acta, 1979, 37, L525
4 D. H. M. W. Thewissen, J. Organomet. Chem., 1980, 192, 115
5 J. Forniés, R. Navarro and E. P. Urriolabeitia, J. Organomet. Chem., 1990, 390, 257; J. Forniés, F. Martínez, R. Navarro and E. P. Urriolabeitia, Polyhedron, 1990, 9, 2181
6 G. Peters, J. Am. Chem. Soc., 1960, 82, 4751.
7 E. Maslowsky, jun. (Editor), Vibrational Spectra of Organometallic Compounds, Wiley, New York, 1977, p. 437 and refs therein
8 (a) D. M. Anderson, E. A. V. Ebswoth, T. A. Stephenson and M. D Walkinshaw, J. Chem. Soc., Dalton Trans., 1982, 2343; (b) A. G Orpen, L. Brammer, F. H. Allen, O. Kennard, D. G. Watson and R. Taylor, J. Chem. Soc. Dalton Trans., 1989, S1
9 E. Fluck, G. González, K. Peters and G. H. Shnerring, Z. Anorg. Allg. Chem., 1980, 473, 25
10 A. K. Kerr, P. M. Boorman, B. S. Misener and G. A. van Roode, Can. J. Chem., 1977, 55, 3081
11 V. I. Nefedov, Y. V. Salyn, B. Walther, B. Messbauer and R. Schops, Inorg. Chim. Acta, 1980, 45, L103.
12 R. Usón, J. Forniés, M. Tomás and B. Menjón, Organometallics, 1986, 5, 1581.
13 R. D. Feltham and R. G. Hayter, J. Chem. Soc., 1964, 4587
14 R. Usón, P. Royo, J. Forniés and F. Martínez, J. Organomet. Chem., 1975, 90, 367.
15 R. Usón, J. Forniés, F. Martínez and M. Tomás, J. Chem. Soc., Dalton Trans., 1980, 888.
16 R. Usón, J. Forniés, M. Tomás, J. M. Casas and R. Navarro, J. Chem. Soc., Dalton Trans., 1989, 169
17 G. M. Sheldrick, University of Cambridge, 1976
18 G. M. Sheldrick, University of Göttingen, 1986.

Received 24th December 1992; Paper 2/06839G

[^0]: \dagger Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1993, Issue 1, pp. xxiii-xxviii.

