Five-membered Methanediide Auracycles. Crystal Structure of $[Au(C_6F_5)_2{Ph_2PC(AuPPh_3)(AuC_6F_5)PPh_2(CHCO_2Me)}]^{\dagger}$

M. Concepción Gimeno,^a Peter G. Jones,^b Antonio Laguna,^{*,a} Mariano Laguna^a and Isabel Lázaro^a

^a Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-C.S.I.C. 50009 Zaragoza, Spain

^b Institut für Anorganische und Analytische Chemie der Technischen Universität, Hagenring 30, W-3300 Braunschweig, Germany

Reaction of NaH with $[Au(C_6F_5)_2\{Ph_2PCH(MPPh_3)PPh_2(CHCO_2Me)\}]ClO_4$ (M = Au or Ag) results in both deprotonation of the PCHP group and elimination of the anion and leads to the auracycles $[Au(C_6F_5)_2\{Ph_2PC(MPPh_3)PPh_2(CHCO_2Me)\}]$. The methanediide C atom in these neutral complexes is a nucleophile and can function as a donor atom [by reaction with gold(1) or silver(1) complexes] to form neutral or cationic trinuclear complexes: $[Au(C_6F_5)_2\{Ph_2PC(MPPh_3)(AuC_6F_5)PPh_2(CHCO_2Me)\}]$ or $[Au(C_6F_5)_2\{Ph_2PC(MPPh_3)(M'PPh_3)PPh_2(CHCO_2Me)\}]ClO_4$. The structure of $[Au(C_6F_5)_2\{Ph_2PC(MPPh_3)(AuC_6F_5)PPh_2(CHCO_2Me)\}]$ was solved by X-ray crystallography. It crystallizes in space group P1, with a = 14.257(5), b = 14.404(5), c = 17.756(6) Å, $\alpha = 80.15(3)$, $\beta = 66.37(3)$, $\gamma = 73.84(3)^\circ$, Z = 2 and R(F) = 0.052 (at -100° C). The configuration at the methanediide carbon is R and at the ester-bearing carbon is S (both enantiomers are present). The Au' \cdots Au' distance is 2.957(2) Å.

The synthesis of gold-(1) and -(111) methanide complexes from diphosphinomethane derivatives using NaH as deprotonating agent is well documented,¹ but only single deprotonation of the PCH₂P group of the diphosphine and formation of complexes with the [PCHP]⁻ ligand was observed. Only very few examples of methanediide gold(111) complexes of the type shown have been recently reported² by reaction of [bis(disphenylphosphino)methanide]gold(111) complexes with [Au(acac)-(PPh₃)] or [Au(acac)₂]⁻ (acac = acetylacetonate). Here we describe the preparation of [Au(C₆F₅)₂{Ph₂PC-

Here we describe the preparation of $[Au(C_6F_5)_2\{Ph_2PC-(MPPh_3)PPh_2(CHCO_2Me)\}]$ (M = Au or Ag) by reaction of $[Au(C_6F_5)_2\{Ph_2PCH(MPPh_3)PPh_2(CHCO_2Me)\}]ClO_4$ and NaH, and their reactions with several gold(1) and silver(1) complexes. The structure of the trinuclear complex $[Au(C_6F_5)_2\{Ph_2PC(AuPPh_3)(AuC_6F_5)PPh_2(CHCO_2Me)\}]$ has been established by single-crystal X-ray analysis.

Results and Discussion

The previously described ³ five-membered methanide auracycle $[Au(C_6F_5)_2{Ph_2PCHPPh_2(CHCO_2Me)}]$ possesses an excess of electron density at the PCHP group, causing it to act as a C-donor ligand. Thus, it reacts with $[Au(PPh_3)(tht)]ClO_4$ (tht = tetrahydrothiophene) or $[Ag(OClO_3)(PPh_3)]$ to give the binuclear complexes 1 or the previously reported ³ 2 (see Scheme 1). Complex 1 or 2 reacts with NaH to give the neutral methanediide complex 3 or 4 (see Scheme 1) as the result of the precipitation of the perchlorate anion (as the sodium salt) and the simultaneous deprotonation of the CHMPPh₃ group. The basic nature of the methanediide CMPPh₃ group in complex 3

[†] Supplementary data available: Further details of the structure determination (complete bond lengths and angles, H-atom coordinates, structure factors, thermal parameters) have been deposited at the Fachinformationszentrum Karlsruhe Gesellschaft für Wissenschaftlichtechnische Information mbH, W-7514 Eggenstein-Leopoldshafen 2, Germany. Any request for this material should quote a full literature citation and the reference number CSD 400121.

M = Au or Aa

Scheme 1 $R = C_6F_5$ (*i*) [Au(PPh₃)(tht)]ClO₄ or [Ag(OClO₃)-(PPh₃)]; (*ii*) NaH; (*iii*) [AuR(tht)]; (*iv*) [Au(PPh₃)(tht)]ClO₄ or [Ag(OClO₃)(PPh₃)]

Table 1 Analytical data for complexes $(R = C_6F_5)$

	Yield (%)	Analysis (%)*		
Complex		C	Н	$\Lambda_{M}{}^{b}$
1 [AuR ₂ {Ph ₂ PCH(AuPPh ₃)PPh ₂ (CHCO ₂ Me)}]ClO ₄	91	45.2 (45.1)	2.65 (2.6)	128
3 AuR ₂ Ph ₂ PC(AuPPh ₃) Ph ₂ (CHCO ₂ Me)	80	47.8 (48.2)	2.65 (2.7)	8
$4 \left[AuR_{2}\left[Ph_{2}PC(AgPPh_{3})PPh_{2}(CHCO_{2}Me)\right]\right]$	72	51.25 (51.4)	2.85 (2.9)	7
$5[AuR_2(Ph_2PC(AuPPh_3)(AuR)PPh_2(CHCO_2Me))]$	85	42.8 (42.5)	2.35 (2.15)	5
6 [AuR ₂ {Ph ₂ PC(AgPPh ₃)(AuR)PPh ₂ (CHCO ₂ Me){]	80	44.5 (44.7)	2.4 (2.3)	3
7 [AuR ₂ {Ph ₂ PC(AuPPh ₃) ₂ PPh ₂ (CHCO ₂ Me)}]ClO ₄	86	45.5 (45.55)	2.7 (2.7)	120
8 [AuR ₂]Ph ₂ PC(AuPPh ₃)(AgPPh ₃)PPh ₂ (CHCO ₂ Me)]ClO ₄	82	47.45 (47.7)	2.75 (2.85)	116
9 [AuR ₂ {Ph ₂ PC(AgPPh ₃) ₂ PPh ₂ (CHCO ₂ Me)}]ClO ₄	87	49.6 (50.0)	3.35 (3.0)	109

^a Calculated values in parentheses. ^b In acetone, ohm⁻¹ cm² mol⁻¹.

Table 2 NMR data

	¹ H ^a (δ)		³¹ P-{ ¹ H} ^{<i>b</i>} (δ)				
Compound	Ме	СНСО	AuP	СРС	MPPh ₃	M'PPh ₃	
1a	3.55 (s)	4.21 (m)	35.7 (dm)	51.0 (dd) (47.3, 4.7)	40.6 (dd) (9.5, 4.7)		
1b	3.17 (s)	4.11 (m)	35.0 (dm)	49.9 (dd) (52.5, 10.3)	38.0 (m)		
3	3.12 (s)	4.03 (m)	40.7 (dm)	45.3 (dd) (96.0, 11.4)	44.02 (dd) (11.4, 4.4)		
4	3.19 (s)	3.69 (m)	31.7 (dm)	42.6 (d) (96.1)	8.6 (br s)		
5a	3.17 (s)	4.23 (m)	48.8 (dm)	53.9 (dd) (73.5, 8.2)	33.3 ('t') (8.2)		
5b	3.12 (s)	4.45 (m)	41.6 (dm)	54.3 (dd) (62.6, 10.5)	34.7 ('t') (10.5)		
6	3.52 (s)	4.58 (m)	46.5 (dm)	51.6 (dd) (73.2, 14.1)	12.0 (dd) (632.1, 544.4) ^c		
7	3.37 (s)	4.18 (m)	45.5 (dm)	57.1 (dd) (67.4, 4.5)	38.2 (d) (7.3)	35.3 ('t') (4.5)	
8	3.49 (s)	4.13 (m)	43.4 (dm)	53.1 (ddd) (67.6, 8.2, 7.6)	42.5 ('t') (8.2)	11.8 (br dd) (629.0, 544.2) ^c	
9	3.60 (s)	4.60 (m)	44.3 (dm)	53.5 (dm) (62.1)	15.9 (dd) (523.8, 451.9) ^c	13.8 (br dd) (604.9, 524.9)°	

^a Recorded in CDCl₃ at 200 MHz and referenced to internal SiMe₄. Coupling constants in Hz are shown in parentheses; s = singlet, d = doublet, 't' = apparent triplet, m = multiplet, dd = doublet of doublets, dm = doublet of multiplets, ddd = doublet of doublet of doublets. ^b Referred to external H₃PO₄, ^c J(P-¹⁰⁷Ag) and J(P-¹⁰⁹Ag).

Fig. 1 Structure of complex 5, with the atom numbering scheme. Hydrogen atoms are omitted for clarity; atomic radii are arbitrary

or 4 can be demonstrated through reactions with other neutral centres containing one weakly co-ordinated ligand such as tetrahydrothiophene {e.g. $[Au(C_6F_5)(tht)], [Au(PPh_3)(tht)]$ -ClO₄} or perchlorate {e.g. $[Ag(OClO_3)(PPh_3)]$ } which afford neutral (5 or 6) or cationic (7–9) trinuclear complexes.

Complexes 1 and 5–9 are air and moisture-stable white solids; 3 and 4 are yellow solids, which slowly decompose at room temperature, but remain unchanged for weeks when stored at -20 °C under nitrogen. The cationic derivatives 1 and 7–9 behave as 1:1 electrolytes in acetone solutions (see Table 1), and their IR spectra show bands at 1100s(br) and 620m cm⁻¹, which are characteristic of the ClO_4^- anion.⁴ In contrast, acetone solutions of complexes **5** and **6** are non-conducting. Two strong bands in the 800 cm⁻¹ region confirm that the C_6F_5 groups in complexes **1–9** are mutually *cis.*⁵ The ¹⁹F NMR spectra also confirm the presence of two (**1–4**, **7–9**) or three (**5**, **6**) different C_6F_5 groups (see Experimental section). The v(CO) vibration appears at *ca.* 1690s cm⁻¹ and it is not very sensitive to

Table 3 Atomic coordinates ($\times 10^4$) for complex 5

Atom	x	у	Z	Atom	x	у	Ζ
Au(1)	5 619.4(5)	3 491.4(5)	2 613.4(4)	C(56)	11 264(11)	1 144(10)	2 160(11)
Au(2)	6 223.8(5)	5 325.2(5)	2 517.0(4)	F(6)	9 218(7)	-138(7)	2 876(7)
Au(3)	8 927.8(5)	2 118.5(4)	2 943.8(4)	F (7)	10 914(10)	-1 584(7)	2 254(7)
P(1)	4 143(3)	3 242(3)	2 570(3)	F(8)	12 866(8)	-1 242(8)	1 557(8)
P(2)	7 406(3)	3 389(3)	3 392(3)	F(9)	13 110(7)	592(10)	1 457(8)
P(3)	8 035(3)	3 446(3)	1 642(3)	F(10)	11 437(7)	2 033(7)	2 105(7)
Cú	6 999(11)	3 854(10)	2 550(9)	C(61)	9 271(10)	2 046(7)	3 983(9)
C(2)	8 635(14)	2 184(12)	1 843(11)	C(62)	9 067(10)	1 338(9)	4 619(7)
C(3)	7 971(25)	1 496(22)	1 960(20)	C(63)	9 338(11)	1 279(10)	5 305(8)
C(4)	6 507(30)	588(27)	2 948(24)	C(64)	9 840(12)	1 944(8)	5 339(10)
oàí	7 173(18)	1 442(16)	2 685(15)	C(65)	10 051(12)	2 669(10)	4 732(8)
$\dot{O(2)}$	8 325(26)	814(24)	1 439(22)	C(66)	9 781(11)	2 698(10)	4 051(8)
C(II)	3 545(9)	2 361(7)	3 366(6)	F(11)	8 618(7)	638(6)	4 586(6)
C(12)	3 579(9)	2 357(8)	4 138(7)	F(12)	9 141(7)	565(7)	5 892(5)
C(13)	3 108(10)	1 733(9)	4 780(6)	F(13)	10 104(8)	1 901(7)	5 996(6)
C(14)	2 603(9)	1 112(8)	4 650(6)	F(14)	10 545(8)	3 314(7)	4 766(6)
C(15)	2 569(9)	1 116(8)	3 879(7)	F(15)	10 034(7)	3 401(6)	3 445(5)
C(16)	3 040(10)	1 740(9)	3 236(6)	C(71)	7 680(8)	4 318(7)	3 818(6)
C(21)	3 092(7)	4 343(6)	2 719(7)	C(72)	7 564(9)	4 212(7)	4 642(6)
C(22)	2 051(8)	4 291(6)	2 963(7)	C(73)	7 836(9)	4 872(8)	4 958(5)
C(23)	1 259(6)	5 136(8)	3 072(8)	C(74)	8 224(9)	5 637(7)	4 451(7)
C(24)	1 509(7)	6 032(6)	2 936(8)	C(75)	8 340(9)	5 743(7)	3 628(6)
C(25)	2 550(8)	6 084(5)	2 693(7)	C(76)	8 068(9)	5 083(7)	3 312(5)
C(26)	3 342(6)	5 239(7)	2 584(7)	C(81)	6 323(7)	3 007(7)	4 253(6)
C(31)	4 375(10)	2 821(9)	1 586(7)	C(82)	6 396(7)	2 040(6)	4 542(7)
C(32)	5 219(9)	2 043(9)	1 281(8)	C(83)	5 573(9)	1 771(6)	5 217(7)
C(33)	5 411(10)	1 685(9)	541(9)	C(84)	4 677(8)	2 469(8)	5 604(6)
C(34)	4 757(12)	2 105(10)	107(7)	C(85)	4 604(7)	3 436(7)	5 315(7)
C(35)	3 912(11)	2 882(10)	412(8)	C(86)	5 427(8)	3 705(5)	4 639(6)
C(36)	3 721(9)	3 240(8)	1 152(8)	CÔIÍ	9 049(8)	4 145(7)	1 302(7)
C(41)	5 498(9)	6 768(12)	2 458(7)	C(92)	9 993(9)	3 763(7)	1 421(8)
C(42)	5 982(12)	7 420(10)	1 908(10)	C(93)	10 680(8)	4 351(9)	1 277(9)
C(43)	5 548(15)	8 424(13)	1 888(13)	C(94)	10 424(9)	5 321(9)	1 015(9)
C(44)	4 577(12)	8 768(17)	2 441(10)	C(95)	9 481(10)	5 703(6)	896(8)
C(45)	4 047(15)	8 147(13)	3 001(13)	C(96)	8 794(7)	5 115(7)	1 039(8)
C(46)	4 524(12)	7 1 53(10)	2 986(10)	C(101)	7 604(9)	3 558(8)	790(6)
F(1)	6 962(9)	7 125(8)	1 332(8)	C(102)	6 824(9)	4 342(7)	691(7)
F(2)	6 073(13)	9 027(8)	1 318(10)	C(103)	6 487(9)	4 395(8)	48(8)
F(3)	4 147(10)	9 720(9)	2 452(8)	C(104)	6 930(11)	3 665(10)	- 498(7)
F(4)	3 076(9)	8 480(9)	3 540(8)	C(105)	7 710(11)	2 881(9)	-399(7)
F(5)	3 948(8)	6 571(7)	3 569(7)	C(106)	8 047(9)	2 827(7)	244(8)
C(51)	10 280(10)	988(9)	2 513(9)	Cl(1)	1 298(12)	1 559(11)	56(10)
C(52)	10 175(11)	76(10)	2 542(9)	$\vec{C}(\vec{1})$	2 274(26)	1 850(24)	-2507(21)
C(53)	11 048(12)	-708(12)	2 226(11)	C(2')	640(34)	1 702(30)	-1.310(28)
C(54)	12 006(14)	-497(13)	1 894(13)	Cl(2")	2 005(23)	-381(20)	-88(18)
C(55)	12 173(13)	395(11)	1 828(13)			()	
,							

the different environments in complexes 1–9, which is in agreement⁶ with the fact that deprotonation and subsequent addition of $Au(C_6F_5)$ or $M(PPh_3)^+$ (M = Au or Ag) fragments occurs at the carbon of the PCP group.

Compounds 5, 7 and 8 were also characterized by fast atom bombardment (FAB) mass spectrometry. The highest peaks at m/z = 1808 (5), 1903 (7) and 1815 (8) correspond to the cations $[Au(C_6F_5)_2\{Ph_2PC(AuPPh_3)(AuC_6F_5)PPh_2(CH-CO_2Me)\}]^+$, $[Au(C_6F_5)_2\{Ph_2PC(AuPPh_3)_2PPh_2(CHCO_2-Me)\}]^+$ and $[Au(C_6F_5)_2\{Ph_2PC(AuPPh_3)(AgPPh_3)PPh_2(CH-CO_2Me)\}]^+$, respectively. A common feature is the presence of peaks at m/z = 913 assigned to the fragment $[Au(C_6F_5)_2-(Ph_2PCPPh_2)]^+$ and at 459 assigned to $[Au(PPh_3)]^+$.

Complexes 1, 5, 6 and 8 have two chiral carbon centres and the ¹H and ³¹P NMR spectra show the presence of the two diastereomers for 1 (a, 77; b, 23%) and 5 (a, 56; b, 44%), but only one is observed for 6 and 8. The methanide PCHP of complex 1 appears in the ¹H NMR spectrum as a multiplet at δ 4.85 (1a) or 4.82 (1b). Table 2 presents ¹H NMR data for the complexes (the phenyl protons, which appear as multiplets between δ 7 and 8, are omitted. The resonances due to the Me or CHCO groups appear as singlets or multiplets, respectively. The ³¹P-{¹H} NMR spectra show two coupled P atoms of the diphosphine in all cases. The P atom bonded to gold gives rise to a doublet of multiplets as a result of coupling with the fluorine nuclei of the *trans* C_6F_5 and the P atoms of PPh₃, and the CPC group appears as a doublet of doublets (complexes 1, 3-6), a doublet of doublet of doublets (8, coupled to two different PPh₃), or a doublet of multiplets (7 and 9, probably a poorly resolved doublet of doublets of doublets). Other resonances corresponding to AuPPh₃ or AgPPh₃ are presented in Table 2. The P atom of AgPPh₃ appears coupled to both ¹⁰⁷Ag and ¹⁰⁹Ag nuclei, but the coupling constants with the other P atoms are not well resolved.

The structure of complex **5** was determined by X-ray diffraction and is shown in Fig. 1. The Au(3) atom displays *cis*-square-planar co-ordination. The 'bite' of the ligand, $87.5(5)^{\circ}$, is much less narrow than that $[71.5(2)^{\circ}]$ in $[Au(C_6F_5)_2(dppm)]$ - ClO_4^{-7} (dppm = Ph₂PCH₂PPh₂), and the geometry around the gold(III) centre is therefore close to ideal (mean deviation 2.6°). The Au(3)- $C(C_6F_5)$ distances 2.110(15) and 2.069(16) Å are similar to those found in other $[Au(C_6F_5)_2(L-L)]^+$ complexes.^{2.7-10} The bond from the gold(III) centre to the methanide carbon, Au(3)-C(2) 2.139(17) Å, is insignificantly

Au(1)-C(1)	2.127(14)	Au(1) - P(1)	2.265(4)
$Au(1) \cdots Au(2)$	2.957(2)	Au(2)-C(41)	2.053(17)
Au(2)-C(1)	2.103(14)	Au(3) - C(61)	2.069(16)
Au(3)-C(51)	2.110(15)	Au(3)-C(2)	2.139(17)
Au(3) - P(2)	2.365(4)	P(1)-C(31)	1.820(10)
P(1) - C(21)	1.825(8)	P(1) - C(11)	1.832(9)
P(2)-C(1)	1.777(15)	P(2)-C(81)	1.821(9)
P(2)-C(71)	1.841(8)	P(3)-C(1)	1.749(15)
P(3)-C(101)	1.817(10)	P(3) - C(2)	1.823(17)
P(3)-C(91)	1.836(9)	C(2)-C(3)	1.488(33)
		-(-) -(-)	
C(1)-Au(1)-P(1)	173.5(4)	C(1)-Au(1)-Au(2)	45.3(4)
P(1)-Au(1)-Au(2)	129.84(11)	C(41)-Au(2)-C(1)	178.6(4)
C(41)-Au(2)-Au(1)	134.8(4)	C(1)-Au(2)-Au(1)	46.0(4)
C(61)-Au(3)-C(51)	87.4(5)	C(61)-Au(3)-C(2)	177.9(6)
C(51)-Au(3)-C(2)	90.9(6)	C(61)-Au(3)-P(2)	94.2(4)
C(51)-Au(3)-P(2)	178.4(4)	C(2) - Au(3) - P(2)	87.5(5)
C(31)-P(1)-C(21)	106.4(6)	C(31)-P(1)-C(11)	106.3(6)
C(21)-P(1)-C(11)	104.2(5)	C(31) - P(1) - Au(1)	112.2(4)
C(21)-P(1)-Au(1)	112.3(4)	C(11)-P(1)-Au(1)	114.7(4)
C(1)-P(2)-C(81)	109.3(6)	C(1)-P(2)-C(71)	112.9(6)
C(81)-P(2)-C(71)	103.2(5)	C(1)-P(2)-Au(3)	108.5(5)
C(81) - P(2) - Au(3)	113.0(4)	C(71)-P(2)-Au(3)	109.9(4)
C(1)-P(3)-C(101)	112.4(6)	C(1)-P(3)-C(2)	108.2(8)
C(101)-P(3)-C(2)	110.0(7)	C(1)-P(3)-C(91)	111.7(6)
C(101)-P(3)-C(91)	106.1(6)	C(2)-P(3)-C(91)	108.3(7)
P(3)-C(1)-P(2)	108.5(8)	P(3)-C(1)-Au(2)	116.3(8)
P(2)-C(1)-Au(2)	117.5(7)	P(3)-C(1)-Au(1)	108.9(7)
P(2)-C(1)-Au(1)	115.7(8)	Au(2)-C(1)-Au(1)	88.7(5)
C(3)-C(2)-P(3)	114.4(16)	C(3)-C(2)-Au(3)	108.8(16)
P(3)-C(2)-Au(3)	106.5(8)	C(46)-C(41)-C(42)	114.3(17)
C(52)-C(51)-C(56)	117.7(16)	C(62)-C(61)-C(66)	116.1(15)
			. ,

longer than the corresponding Au^I-C(methanediide) distances [Au(1)–C(1) 2.127(14), Au(2)–C(1) 2.103(14) Å]. Similarly, the bond length Au(3)–P(2) 2.365(4) Å is longer than Au(1)–P(1) 2.265(4) Å, although these values are in the normal range for Au^{III}–P and Au^I–P distances.^{2.7.8} The Au(3) atom lies 0.0133 Å out of the plane formed by P(2), C(2) and C(51) and C(61) of the two pentafluorophenyl groups.

The compound contains a triangular Au_2C unit of the type that has been already observed in other ylide or methanediide complexes, and has been interpreted in terms of a closed three-centre two-electron bond.^{2,6,11} The Au···Au contact is 2.957(2) Å, slightly longer than that found in $[Au(C_6F_5)_2\{(Ph_2P)_2C(AuPPh_3)_2\}]ClO_4$, 2.826(2) Å,² where both gold fragments are the same; this fact and the Au(1)-C(1)-Au(2) angle of 88.7(5)° [again greater than in ref. 2, 85.4(7)°] suggest that the three-centre bonding contributes less to the overall bonding scheme in our compound. The geometry at the gold(1) centre Au(1) is distorted from linearity with P-Au-C 173.5(4)°, but is almost linear at Au(2) with C-Au-C 178.6(4)°. The atoms C(1) and C(2) are chiral and the coordinates correspond to the R/S diastereomer, but both enantiomers are present in the crystal.

Experimental

Instrumentation and general experimental techniques were as described earlier.³ Mass spectra were recorded on a VG Autospec with the FAB technique, using 3-nitrobenzyl alcohol as matrix. The yields, C and H analyses, and conductivities of the new complexes are listed in Table 1. Proton and ³¹P-{¹H} NMR data are listed in Table 2. All the reactions were performed at room temperature, under a nitrogen atmosphere and using freshly distilled solvents. Complex 2 was prepared as reported.³

Syntheses.— $[Au(C_6F_5)_2{Ph_2PCH(AuPPh_3)PPh_2(CHCO_2-Me)}]ClO_4$ 1. To a solution of $[Au(C_6F_5)_2{Ph_2PCHPPh_2-Merce}]$

(CHCO₂Me)}]³ (0.197 g, 0.2 mmol) in dichloromethane (20 cm³) was added [Au(PPh₃)(tht)]ClO₄¹² (0.129 g, 0.2 mmol). The mixture was stirred for 2 h and then concentrated to *ca*. 5 cm³. Addition of diethyl ether (10 cm³) afforded complex 1 as a white solid. ¹⁹F NMR (CDCl₃): δ –120.7 (m), –121.3(m) and –122.9(m) (*o*-F); –155.9 [t, *J*(F–F) 19.3] and –156.0 [t, *J*(F–F) 18.7 Hz] (*p*-F, isomer 1a); –156.1 (t) and –156.4 (t) (*p*-F, isomer 1b); and –160.1 (m) and –160.9 (m) (*m*-F).

[Au(C₆F₅)₂{Ph₂PC(MPPh₃)PPh₂(CHCO₂Me)}] (M = Au 3 or Ag 4). To a suspension of complex 1 (0.313 g, 0.2 mmol) or 2 (0.292, 0.2 mmol) in diethyl ether (50 cm³) was added NaH (0.3 g, 12.5 mmol). The mixture was stirred for 2 h, during which time evolution of H₂ was observed. The resulting suspension was filtered under N₂ and the yellow solution evaporated to dryness. Addition of hexane (20 cm³) gave complex 3 or 4 as a yellow solid. ¹⁹F NMR: 3, δ – 120.3 (m) and – 122.4 (m) (o-F); –159.2 [t, J(F-F) 19.8] and –160.2 [t, J(F-F) 19.8] (p-F); and –161.8 (m, br) (m-F); 4, –120.6 (m) and –122.7 (m) (o-F); –158.2 [t, J(F-F) 19.3] and –158.7 [t, J(F-F) 19.3 Hz] (p-F); and –162.0 (br m) (m-F).

 $\begin{bmatrix} Au(C_6F_5)_2[Ph_2PC(MPPh_3)(AuC_6F_5)PPh_2(CHCO_2Me) \} \\ (M = Au 5 or Ag 6). To a solution of complex 3 (0.147 g, 0.1 mmol) or 4 (0.138 g, 0.1 mmol) in diethyl ether (20 cm³) was added <math display="block"> \begin{bmatrix} Au(C_6F_5)(tht) \end{bmatrix}^{13} (0.045, 0.1 mmol). After 1 h the colourless solution was concentrated to ca. 5 cm³ and addition of diethyl ether (20 cm³) gave complex 5 or 6, respectively. ¹⁹F NMR: 5, <math>\delta - 116.5$ (m, o-F, Au¹-C₆F₅, isomer 5a), -116.9 (m, o-F, Au¹-C₆F₅, isomer 5b); -120.3 (m), -120.9 (m), -121.8 (m) and -122.7 (m) (o-F, Au^{III}-C₆F₅); -162.0 [t, J(F-F) 20.6, p-F, Au¹-C₆F₅, isomer 5a], -161.9 [t, J(F-F) 19.3, p-F, Au¹-C₆F₅, isomer 5b]; -157.6 [t, J(F-F) 20.6], -158.1 [t, J(F-F) 19.3] and -158.4 [t, J(F-F) 19.3 Hz] (p-F, Au^{III}-C₆F₅); -163.8 [m, m-F, Au^{II}-C₆F₅]; and -161.0 (m) and -161.5 (m) (m-F, Au^{III}-C₆F₅).

[Au(C₆F₅)₂{Ph₂PC(MPPh₃)(M'PPh₃)PPh₂(CHCO₂Me)}] ClO₄ (M = M' = Au 7; M = Au, M' = Ag 8; M = M' = Ag 9). To a solution of complex 3 (0.147 g, 0.1 mmol) or 4 (0.138 g, 0.1 mmol) in dichloromethane (20 cm³) was added [Au(PPh₃)(tht)]ClO₄¹² (0.065 g, 0.1 mmol) or [Ag(OClO₃)-(PPh₃)]¹⁴ (0.047 g, 0.1 mmol) and then stirred for 1 h. The solution was concentrated to *ca*. 5 cm³ and addition of diethyl ether led to complex 7, 8 or 9 as a white solid. ¹⁹F NMR: 7, δ -120.6 (m), -121.2 (m), -122.2 (m) and -122.4 (m) (*o*-F); -156.6 [t, J(F-F) 19.8] and -156.9 [t, J(F-F) 20.1] (*p*-F) and -160.8 (br, m) (*m*-F); 8, -120.9 (m), -121.4 (m), -122.2 (m) and -123.1 (m) (*o*-F); -156.9 [t, J(F-F) 19.6] and 157.2 [t, J(F-F) 19.3 Hz] (*p*-F); and -160.8 (m) and -161.1 (m) (*m*-F).

Crystal Structure Determination of Compound 5.—Crystal data. $C_{65}H_{41}Au_3Cl_2F_{15}O_2P_3$, $M_r = 1893.7$, triclinic, space group PI, a = 14.257(5), b = 14.404(5), c = 17.756(6) Å, $\alpha = 80.15(3)$, $\beta = 66.37(3)$, $\gamma = 73.84(3)^\circ$, U = 3201.3(19) Å³, Z = 2, $D_c = 1.96$ Mg m⁻³, F(000) = 1796, λ (Mo-K α) = 0.710 73 Å, $\mu = 7.1$ mm⁻¹, T = -100 °C.

Data collection and reduction. Single crystals of compound 5 in the form of colourless needles were obtained by slow evaporation of diethyl ether into a dichloromethane solution. The crystals lose solvent in air and were mounted in inert oil and transferred to the cold gas stream of the diffractometer. A needle $0.6 \times 0.15 \times 0.05$ mm was used to collect 10 739 intensities to $2\theta_{max}$ 45° (Siemens R3 diffractometer, monochromated Mo-Ka radiation). An absorption correction based on ψ scans was applied, with transmission factors 0.62-1.00. Merging equivalents gave 8408 independent reflections (R_{int} 0.041), of which all were used for all calculations (program system SHELXL 92).¹⁵ Cell constants were refined from setting angles of 50 reflections in the range 20 20-23°.

Structure solution and refinement. The structure was solved by the heavy-atom method, and subjected to full-matrix leastsquares refinement on F^2 ; Au, P and F atoms were refined anisotropically, other atoms were refined isotropically, phenyl rings as idealized hexagons. Hydrogen atoms were included using a riding model. An ill defined region of residual electron density was interpreted as disordered dichloromethane. The weighting scheme was of the form $w^{-1} = \sigma^2(F^2) + (aP)^2 + bP$, where $P = (F_o^2 + 2F_c)^2/3$, a = 0.0499 and b = 77.3519. Refinement proceeded to $R'(F^2)$ 0.151, with a conventional R(F) of 0.052, for 386 parameters and 214 restraints; S 1.08, maximum Δp 2.9 e Å⁻³.

Final atomic coordinates are given in Table 3, selected bond lengths and angles in Table 4.

Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom coordinates, thermal parameters and remaining bond lengths and angles.

Acknowledgements

We thank the Dirección General de Investigación Cientifica y Técnica (no. PB91-0122) and the Fonds der Chemischen Industrie for financial support.

References

- 1 A. Laguna and M. Laguna, J. Organomet. Chem., 1990, 394, 743 and refs. therein.
- 2 E. J. Fernandez, M. C. Gimeno, P. G. Jones, A. Laguna, M. Laguna and J. M. Lopez de Luzuriaga, J. Chem. Soc., Dalton Trans., 1992, 3365.

- 3 R. Usón, A. Laguna, M. Laguna and I. Lázaro, Organometallics, 1987, 6, 2326.
- 4 B. J. Hathaway and A. E. Underhill, J. Chem. Soc., 1961, 3091.
- 5 R. Usón, A. Laguna, J. García and M. Laguna, *Inorg. Chim. Acta*, 1979, 37, 201.
- 6 J. Vicente, M. T. Chicote, J. A. Cayuelas, J. Fernandez-Baeza, P. G. Jones, G. M. Sheldrick and P. Espinet, J. Chem. Soc., Dalton Trans., 1985, 1163.
- 7 R. Usón, A. Laguna, M. Laguna, E. Fernandez, M. D. Villacampa, P. G. Jones and G. M. Sheldrick, J. Chem. Soc., Dalton Trans., 1983, 1679.
- 8 R. Usón, A. Laguna, M. Laguna, B. R. Manzano, P. G. Jones and G. M. Sheldrick, J. Chem. Soc., Dalton Trans., 1984, 839.
- 9 R. Usón, A. Laguna, M. D. Villacampa, P. G. Jones and G. M. Sheldrick, J. Chem. Soc., Dalton Trans., 1984, 2035.
- 10 R. Usón, A. Laguna, M. Laguna, M. N. Fraile, P. G. Jones and C. F. Erdbrügger, J. Chem. Soc., Dalton Trans., 1989, 73.
- 11 J. Vicente, M. T. Chicote, M. C. Lagunas and P. G. Jones, J. Chem. Soc., Dalton Trans., 1991, 2579.
- 12 R. Usón, A. Laguna, M. Laguna, J. Jimenez, M. P. Gómez, A. Sainz and P. G. Jones, J. Chem. Soc., Dalton Trans., 1990, 3457.
- 13 R. Usón, A. Laguna and J. Vicente, J. Organomet. Chem., 1977, 131, 471.
- 14 F. A. Cotton, L. R. Falvello, R. Usón, J. Forniés, M. Tomás, J. M. Casas and I. Ara, *Inorg. Chem.*, 1987, 26, 1366.
- 15 G. M. Sheldrick, SHELXL 92, University of Göttingen, 1992.

Received 3rd March 1993; Paper 3/01249B