Five-membered Methanediide Auracycles. Crystal Structure of $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\mathrm{Ph}_{2} \mathrm{PC}\left(\mathrm{AuPPh}_{3}\right)\left(\mathrm{AuC}_{6} \mathrm{~F}_{5}\right) \mathrm{PPh}_{2}\left(\mathrm{CHCO}_{2} \mathrm{Me}\right)\right\}\right] \dagger$

M. Concepción Gimeno, ${ }^{\boldsymbol{a}}$ Peter G. Jones, ${ }^{\boldsymbol{b}}$ Antonio Laguna, ${ }^{, a}$ Mariano Laguna ${ }^{\boldsymbol{a}}$ and Isabel Lázaro ${ }^{\text {a }}$
${ }^{\text {a }}$ Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-C.S.I.C. 50009 Zaragoza, Spain
${ }^{\text {b }}$ Institut für Anorganische und Analytische Chemie der Technischen Universität, Hagenring 30, W-3300 Braunschweig, Germany

Reaction of NaH with $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\mathrm{Ph}_{2} \mathrm{PCH}\left(\mathrm{MPPh}_{3}\right) \mathrm{PPh}_{2}\left(\mathrm{CHCO}_{2} \mathrm{Me}\right)\right\}\right] \mathrm{ClO}_{4}(\mathrm{M}=\mathrm{Au}$ or Ag$)$ results in both deprotonation of the PCHP group and elimination of the anion and leads to the auracycles $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\mathrm{Ph}_{2} \mathrm{PC}\left(\mathrm{MPPh}_{3}\right) \mathrm{PPh}_{2}\left(\mathrm{CHCO}_{2} \mathrm{Me}\right)\right\}\right]$. The methanediide C atom in these neutral complexes is a nucleophile and can function as a donor atom [by reaction with gold(1) or silver(1) complexes] to form neutral or cationic trinuclear complexes: $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\mathrm{Ph}_{2} \mathrm{PC}\left(\mathrm{MPPh}_{3}\right)\left(\mathrm{AuC}_{6} \mathrm{~F}_{5}\right) \mathrm{PPh}_{2}\left(\mathrm{CHCO}_{2} \mathrm{Me}\right)\right\}\right.$] or $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\mathrm{Ph}_{2} \mathrm{PC}\left(\mathrm{MPPh}_{3}\right)\left(\mathrm{M}^{\prime} \mathrm{PPh}_{3}\right) \mathrm{PPh}_{2}\left(\mathrm{CHCO}_{2} \mathrm{Me}\right)\right\}\right] \mathrm{ClO}_{4}$. The structure of $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\mathrm{Ph}_{2} \mathrm{PC}\right.\right.$ $\left.\left.\left(\mathrm{AuPPh} \mathrm{h}_{3}\right)\left(\mathrm{AuC}_{6} \mathrm{~F}_{5}\right) \mathrm{PPh}_{2}\left(\mathrm{CHCO}_{2} \mathrm{Me}\right)\right\}\right]$ was solved by X -ray crystallography. It crystallizes in space group $P \overline{1}$, with $a=14.257(5), \quad b=14.404(5), c=17.756(6) ~ \AA, \alpha=80.15(3), \beta=66.37(3)$, $\gamma=$ $73.84(3)^{\circ}, Z=2$ and $R(F)=0.052$ (at $-100^{\circ} \mathrm{C}$). The configuration at the methanediide carbon is R and at the ester-bearing carbon is S (both enantiomers are present). The $A u^{\prime} \ldots A u^{\prime}$ distance is 2.957 (2) \AA.

The synthesis of gold-(I) and -(iII) methanide complexes from diphosphinomethane derivatives using NaH as deprotonating agent is well documented, ${ }^{1}$ but only single deprotonation of the $\mathrm{PCH}_{2} \mathrm{P}$ group of the diphosphine and formation of complexes with the [PCHP] ligand was observed. Only very few examples of methanediide gold(miI) complexes of the type shown have been recently reported ${ }^{2}$ by reaction of [bis(disphenylphosphino)methanide]gold(iII) complexes with [Au(acac)$\left.\left(\mathrm{PPh}_{3}\right)\right]$ or $\left[\mathrm{Au}(\mathrm{acac})_{2}\right]^{-}(\mathrm{acac}=$ acetylacetonate $)$.
Here we describe the preparation of $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\mathrm{Ph}_{2} \mathrm{PC}\right.\right.$ $\left.\left.\left(\mathrm{MPPh}_{3}\right) \mathrm{PPh}_{2}\left(\mathrm{CHCO}_{2} \mathrm{Me}\right)\right\}\right](\mathrm{M}=\mathrm{Au}$ or Ag$)$ by reaction of $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\mathrm{Ph}_{2} \mathrm{PCH}\left(\mathrm{MPPh}_{3}\right) \mathrm{PPh}_{2}\left(\mathrm{CHCO}_{2} \mathrm{Me}\right)\right\}\right] \mathrm{ClO}_{4}$ and NaH , and their reactions with several gold($\mathbf{1}$) and silver(1) complexes. The structure of the trinuclear complex $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}-\right.$ $\left.\left\{\mathrm{Ph}_{2} \mathrm{PC}\left(\mathrm{AuPPh}_{3}\right)\left(\mathrm{AuC}_{6} \mathrm{~F}_{5}\right) \mathrm{PPh}_{2}\left(\mathrm{CHCO}_{2} \mathrm{Me}\right)\right\}\right]$ has been established by single-crystal X-ray analysis.

Results and Discussion

The previously described ${ }^{3}$ five-membered methanide auracycle $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\mathrm{Ph}_{2} \mathrm{PCHPPh}_{2}\left(\mathrm{CHCO}_{2} \mathrm{Me}\right)\right\}\right]$ possesses an excess of electron density at the PCHP group, causing it to act as a Cdonor ligand. Thus, it reacts with $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right.$ (tht) $\left.)\right] \mathrm{ClO}_{4}$ (tht $=$ tetrahydrothiophene) or $\left[\mathrm{Ag}\left(\mathrm{OClO}_{3}\right)\left(\mathrm{PPh}_{3}\right)\right]$ to give the binuclear complexes 1 or the previously reported ${ }^{3} 2$ (see Scheme 1). Complex 1 or 2 reacts with NaH to give the neutral methanediide complex 3 or 4 (see Scheme 1) as the result of the precipitation of the perchlorate anion (as the sodium salt) and the simultaneous deprotonation of the CHMPPh_{3} group. The basic nature of the methanediide CMPPh_{3} group in complex 3
\dagger Supplementary data available: Further details of the structure determination (complete bond lengths and angles, H -atom coordinates, structure factors, thermal parameters) have been deposited at the Fachinformationszentrum Karlsruhe Gesellschaft für Wissenschaftlichtechnische Information $\mathrm{mbH}, \mathrm{W}-7514$ Eggenstein-Leopoldshafen 2, Germany. Any request for this material should quote a full literature citation and the reference number CSD 400121.

Scheme $1 \mathrm{R}=\mathrm{C}_{6} \mathrm{~F}_{5}$ (i) $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)(\right.$ tht $\left.)\right] \mathrm{ClO}_{4}$ or $\left[\mathrm{Ag}\left(\mathrm{OClO}_{3}\right)\right.$ $\left.\left(\mathrm{PPh}_{3}\right)\right]$; (ii) NaH ; (iii) [$\mathrm{AuR}($ (tht $\left.)\right]$; (iv) $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)(\right.$ (tht $\left.)\right] \mathrm{ClO}_{4}$ or $\left[\mathrm{Ag}\left(\mathrm{OClO}_{3}\right)\left(\mathrm{PPh}_{3}\right)\right]$

Table 1 Analytical data for complexes ($R=C_{6} F_{5}$)

Analysis (\%) ${ }^{a}$

Yield (\%)	C	H	$\Lambda_{\mathrm{M}}{ }^{\text {b }}$
91	$45.2(45.1)$	$2.65(2.6)$	128
80	$47.8(48.2)$	$2.65(2.7)$	8
72	$51.25(51.4)$	$2.85(2.9)$	7
85	$42.8(42.5)$	$2.35(2.15)$	5
80	$44.5(44.7)$	$2.4(2.3)$	3
86	$45.5(45.55)$	$2.7(2.7)$	120
82	$47.45(47.7)$	$2.75(2.85)$	116
87	$49.6(50.0)$	$3.35(3.0)$	109

${ }^{a}$ Calculated values in parentheses. ${ }^{b}$ In acetone, $\mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.

Table 2 NMR data

	${ }^{1} \mathrm{H}^{a}(\delta)$		${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}^{b}{ }^{(\delta)}$			
Compound	Me	CHCO	AuP	CPC	MPPh ${ }_{3}$	$\mathbf{M}^{\prime} \mathbf{P P h}_{3}$
1a	3.55 (s)	4.21 (m)	35.7 (dm)	51.0 (dd) (47.3, 4.7)	40.6 (dd) $(9.5,4.7)$	
1 b	3.17 (s)	4.11 (m)	35.0 (dm)	49.9 (dd) ($52.5,10.3$)	38.0 (m)	
3	3.12 (s)	4.03 (m)	40.7 (dm)	45.3 (dd) (96.0, 11.4)	44.02 (dd) (11.4, 4.4)	
4	3.19 (s)	3.69 (m)	31.7 (dm)	42.6 (d) (96.1)	8.6 (br s)	
5a	3.17 (s)	4.23 (m)	48.8 (dm)	53.9 (dd) (73.5, 8.2)	33.3 ('t') (8.2)	
5b	3.12 (s)	4.45 (m)	41.6 (dm)	54.3 (dd) (62.6, 10.5)	34.7 ('t') (10.5)	
6	3.52 (s)	4.58 (m)	46.5 (dm)	51.6 (dd) (73.2, 14.1)	12.0 (dd) (632.1, 544.4) ${ }^{\text {c }}$	
7	3.37 (s)	4.18 (m)	45.5 (dm)	57.1 (dd) (67.4, 4.5)	38.2 (d) (7.3)	35.3 ('t') (4.5)
8	3.49 (s)	4.13 (m)	43.4 (dm)	53.1 (ddd) (67.6, 8.2, 7.6)	42.5 ('t') (8.2)	11.8 (br dd) (629.0, 544.2) ${ }^{\text {c }}$
9	3.60 (s)	4.60 (m)	44.3 (dm)	53.5 (dm) (62.1)	15.9 (dd) (523.8, 451.9) ${ }^{\text {c }}$	13.8 (br dd) (604.9, 524.9) ${ }^{\text {c }}$

${ }^{a}$ Recorded in CDCl_{3} at 200 MHz and referenced to internal SiMe_{4}. Coupling constants in Hz are shown in parentheses; $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $' t$ ' = apparent triplet, $m=$ multiplet, $d d=$ doublet of doublets, $d m=$ doublet of multiplets, ddd $=$ doublet of doublet of doublets. ${ }^{b}$ Referred to external $\mathrm{H}_{3} \mathrm{PO}_{4} \cdot{ }^{c} J\left(\mathrm{P}^{-107} \mathrm{Ag}\right)$ and $J\left(\mathrm{P}-{ }^{109} \mathrm{Ag}\right)$.

Fig. 1 Structure of complex 5, with the atom numbering scheme. Hydrogen atoms are omitted for clarity; atomic radii are arbitrary
or 4 can be demonstrated through reactions with other neutral centres containing one weakly co-ordinated ligand such as tetrahydrothiophene $\left\{\right.$ e.g. $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\right.$ tht $\left.)\right]$, $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)(\right.$ tht $\left.)\right]$ $\left.\mathrm{ClO}_{4}\right\}$ or perchlorate $\left\{\right.$ e.g. $\left.\left[\mathrm{Ag}\left(\mathrm{OClO}_{3}\right)\left(\mathrm{PPh}_{3}\right)\right]\right\}$ which afford neutral (5 or 6) or cationic ($7-9$) trinuclear complexes.

Complexes 1 and 5-9 are air and moisture-stable white solids; 3 and 4 are yellow solids, which slowly decompose at room temperature, but remain unchanged for weeks when stored at $-20^{\circ} \mathrm{C}$ under nitrogen. The cationic derivatives 1 and 7-9
behave as $1: 1$ electrolytes in acetone solutions (see Table 1), and their IR spectra show bands at $1100 \mathrm{~s}(\mathrm{br})$ and $620 \mathrm{~m} \mathrm{~cm}^{-1}$, which are characteristic of the $\mathrm{ClO}_{4}{ }^{-}$anion. ${ }^{4}$ In contrast, acetone solutions of complexes 5 and 6 are non-conducting. Two strong bands in the $800 \mathrm{~cm}^{-1}$ region confirm that the $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups in complexes 1-9 are mutually cis. ${ }^{5}$ The ${ }^{19} \mathrm{~F}$ NMR spectra also confirm the presence of two (1-4, 7-9) or three (5, 6) different $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups (see Experimental section). The $v(\mathrm{CO})$ vibration appears at $c a .1690 \mathrm{~s} \mathrm{~cm}^{-1}$ and it is not very sensitive to

Table 3 Atomic coordinates ($\times 10^{4}$) for complex 5

Atom	x	y	z
$\mathrm{Au}(1)$	5 619.4(5)	3 491.4(5)	2 613.4(4)
Au(2)	6 223.8(5)	$5325.2(5)$	2 517.0(4)
$\mathrm{Au}(3)$	8927.8(5)	$2118.5(4)$	2 943.8(4)
$\mathrm{P}(1)$	4143 (3)	3 242(3)	2 570(3)
$\mathrm{P}(2)$	7406 (3)	3 389(3)	3 392(3)
$\mathbf{P}(3)$	$8035(3)$	3 446(3)	1 642(3)
C(1)	6 999(11)	$3854(10)$	$2550(9)$
C(2)	8635(14)	2 184(12)	1 843(11)
C(3)	$7971(25)$	1 496(22)	1960 (20)
C(4)	$6507(30)$	588(27)	$2948(24)$
$\mathrm{O}(1)$	7173 (18)	1 442(16)	2 685(15)
$\mathrm{O}(2)$	8325 (26)	814(24)	$1439(22)$
C(11)	3 545(9)	$2361(7)$	3 366(6)
C(12)	3 579(9)	$2357(8)$	4 138(7)
C(13)	3 108(10)	$1733(9)$	$4780(6)$
C(14)	2 603(9)	$1112(8)$	4 650(6)
C(15)	2 569(9)	$1116(8)$	$3879(7)$
C(16)	3 040(10)	1740 (9)	3 236(6)
C(21)	3 092(7)	4343 (6)	$2719(7)$
C(22)	$2051(8)$	4 291(6)	2963 (7)
C(23)	$1259(6)$	$5136(8)$	3 072(8)
C(24)	1 509(7)	6 032(6)	$2936(8)$
C(25)	2 550(8)	6084(5)	2 693(7)
C (26)	3 342(6)	5 239(7)	2 584(7)
C(31)	4375 (10)	2821 (9)	$1586(7)$
C(32)	5 219(9)	2043(9)	$1281(8)$
C(33)	5411(10)	1 685(9)	$541(9)$
C(34)	$4757(12)$	2 105(10)	107(7)
C(35)	3 912(11)	2882 (10)	412(8)
C(36)	3 721(9)	3 240(8)	$1152(8)$
C(4)	$5498(9)$	6768 (12)	2 458(7)
C(42)	5 982(12)	7420 (10)	$1908(10)$
C(43)	5 548(15)	$8424(13)$	$1888(13)$
C(44)	4 577(12)	8 768(17)	2441 (10)
C(45)	4 047(15)	8 147(13)	$3001(13)$
$\mathrm{C}(46)$	4 524(12)	$7153(10)$	2986 (10)
$\mathrm{F}(1)$	6 962(9)	7 125(8)	$1332(8)$
$F(2)$	6073(13)	$9027(8)$	$1318(10)$
F(3)	4 147(10)	9 720(9)	$2452(8)$
F(4)	3 076(9)	8 480(9)	3 540(8)
F (5)	3 948(8)	6 571(7)	3 569(7)
C(51)	10280 (10)	988(9)	2 513(9)
C(52)	$10175(11)$	76(10)	2 542(9)
C(53)	$11048(12)$	-708(12)	2 226(11)
C(54)	12 006(14)	-497(13)	$1894(13)$
C(55)	$12173(13)$	395(11)	$1828(13)$

Atom	x	y	z
C(56)	11 264(11)	$1144(10)$	2160 (11)
F(6)	$9218(7)$	-138(7)	$2876(7)$
F(7)	$10914(10)$	- 1 584(7)	2 254(7)
F(8)	12 866(8)	- $1242(8)$	$1557(8)$
F(9)	$13110(7)$	592(10)	$1457(8)$
F(10)	11 437(7)	2 033(7)	2 105(7)
C(61)	9 271(10)	2046 (7)	3 983(9)
C(62)	$9067(10)$	$1338(9)$	4 619(7)
C(63)	$9338(11)$	1279 (10)	5 305(8)
C(64)	9840 (12)	1 944(8)	5339 (10)
C(65)	10 051(12)	2 669(10)	4 732(8)
C(66)	9781 (11)	2 698(10)	$4051(8)$
F(11)	8 618(7)	638(6)	4 586(6)
F(12)	$9141(7)$	565(7)	5 892(5)
F(13)	10 104(8)	$1901(7)$	5 996(6)
F(14)	10 545(8)	3 314(7)	4 766(6)
F(15)	10 034(7)	3 401(6)	3 445(5)
C(71)	7 680(8)	4 318(7)	3 818(6)
C(72)	7 564(9)	4 212(7)	4 642(6)
C(73)	7836 (9)	$4872(8)$	4 958(5)
C(74)	8 224(9)	5 637(7)	4 451(7)
C(75)	8340 (9)	5 743(7)	$3628(6)$
C(76)	8 068(9)	$5083(7)$	3 312(5)
C(81)	$6323(7)$	$3007(7)$	4 253(6)
C(82)	6 396(7)	2 040(6)	4 542(7)
C(83)	5 573(9)	$1771(6)$	5 217(7)
C(84)	4 677(8)	2 469(8)	5 604(6)
C(85)	4 604(7)	3 436(7)	5 315(7)
C(86)	$5427(8)$	3 705(5)	4 639(6)
C(91)	$9049(8)$	$4145(7)$	$1302(7)$
C(92)	9 993(9)	3 763(7)	$1421(8)$
C(93)	10 680(8)	4 351(9)	1 277(9)
C(94)	10 424(9)	$5321(9)$	$1015(9)$
C(95)	9481 (10)	$5703(6)$	896(8)
C(96)	8 794(7)	$5115(7)$	$1039(8)$
C(101)	7 604(9)	3 558(8)	790(6)
C(102)	$6824(9)$	4 342(7)	691(7)
C(103)	$6487(9)$	4 395(8)	48(8)
C(104)	6 930(11)	3 665(10)	-498(7)
C(105)	7710 (11)	$2881(9)$	- 399(7)
C(106)	8 047(9)	2827 (7)	244(8)
$\mathrm{Cl}(1)$	1 298(12)	$1559(11)$	56(10)
$\mathrm{Cl}\left(1^{\prime}\right)$	2 274(26)	1850 (24)	-2 507(21)
$\mathrm{Cl}\left(2^{\prime}\right)$	640(34)	$1702(30)$	-1310(28)
$\mathrm{Cl}\left(2^{\prime \prime}\right)$	$2005(23)$	-381(20)	-88(18)

the different environments in complexes 1-9, which is in agreement ${ }^{6}$ with the fact that deprotonation and subsequent addition of $\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)$ or $\mathrm{M}\left(\mathrm{PPh}_{3}\right)^{+}(\mathrm{M}=\mathrm{Au}$ or Ag$)$ fragments occurs at the carbon of the PCP group.

Compounds 5, 7 and 8 were also characterized by fast atom bombardment (FAB) mass spectrometry. The highest peaks at $m / z=1808$ (5), 1903 (7) and 1815 (8) correspond to the cations $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\mathrm{Ph}_{2} \mathrm{PC}\left(\mathrm{AuPPh}_{3}\right)\left(\mathrm{AuC}_{6} \mathrm{~F}_{5}\right) \mathrm{PPh}_{2}(\mathrm{CH}-\right.\right.$ $\left.\left.\left.\mathrm{CO}_{2} \mathrm{Me}\right)\right\}\right]^{+}, \quad\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\mathrm{Ph}_{2} \mathrm{PC}\left(\mathrm{AuPPh}_{3}\right)_{2} \mathrm{PPh}_{2}\left(\mathrm{CHCO}_{2}-\right.\right.\right.$ $\mathrm{Me})\}]^{+}$and $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\mathrm{Ph}_{2} \mathrm{PC}\left(\mathrm{AuPPh}_{3}\right)\left(\mathrm{AgPPh}_{3}\right) \mathrm{PPh}_{2}(\mathrm{CH}-\right.\right.$ $\left.\left.\left.\mathrm{CO}_{2} \mathrm{Me}\right)\right\}\right]^{+}$, respectively. A common feature is the presence of peaks at $m / z=913$ assigned to the fragment $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2^{-}}\right.$ $\left.\left(\mathrm{Ph}_{2} \mathrm{PCPPh}_{2}\right)\right]^{+}$and at 459 assigned to $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right]^{+}$.

Complexes 1, 5, 6 and 8 have two chiral carbon centres and the ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectra show the presence of the two diastereomers for $1(a, 77 ; b, 23 \%)$ and $5(a, 56 ; b, 44 \%)$, but only one is observed for 6 and 8. The methanide PCHP of complex 1 appears in the ${ }^{1} \mathrm{H}$ NMR spectrum as a multiplet at $\delta 4.85$ (1a) or 4.82 (1b). Table 2 presents ${ }^{1} \mathrm{H}$ NMR data for the complexes (the phenyl protons, which appear as multiplets between $\delta 7$ and 8 , are omitted. The resonances due to the Me or CHCO groups appear as singlets or multiplets, respectively. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$

NMR spectra show two coupled P atoms of the diphosphine in all cases. The \mathbf{P} atom bonded to gold gives rise to a doublet of multiplets as a result of coupling with the fluorine nuclei of the trans $\mathrm{C}_{6} \mathrm{~F}_{5}$ and the P atoms of PPh_{3}, and the CPC group appears as a doublet of doublets (complexes 1, 3-6), a doublet of doublet of doublets (8 , coupled to two different PPh_{3}), or a doublet of multiplets (7 and 9, probably a poorly resolved doublet of doublets of doublets). Other resonances corresponding to AuPPh_{3} or AgPPh_{3} are presented in Table 2. The P atom of AgPPh_{3} appears coupled to both ${ }^{107} \mathrm{Ag}$ and ${ }^{109} \mathrm{Ag}$ nuclei, but the coupling constants with the other P atoms are not well resolved.

The structure of complex 5 was determined by X-ray diffraction and is shown in Fig. 1. The $\mathrm{Au}(3)$ atom displays cis-square-planar co-ordination. The 'bite' of the ligand, $87.5(5)^{\circ}$, is much less narrow than that $\left[71.5(2)^{\circ}\right]$ in $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{dppm})\right]-$ $\mathrm{ClO}_{4}{ }^{7}$ (dppm $=\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}$), and the geometry around the gold(III) centre is therefore close to ideal (mean deviation $\left.2.6^{\circ}\right)$. The $\mathrm{Au}(3)-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)$ distances $2.110(15)$ and $2.069(16) \AA$ are similar to those found in other $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{~L}-\mathrm{L})\right]^{+}$ complexes. ${ }^{2,7-10}$ The bond from the gold(iII) centre to the methanide carbon, $\mathrm{Au}(3)-\mathrm{C}(2) 2.139(17) \AA$, is insignificantly

Table 4 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complex 5

$\mathrm{Au}(1)-\mathrm{C}(1)$	$2.127(14)$	$\mathrm{Au}(1)-\mathrm{P}(1)$	$2.265(4)$
$\mathrm{Au}(1) \cdots \mathrm{Au}(2)$	$2.957(2)$	$\mathrm{Au}(2)-\mathrm{C}(41)$	$2.053(17)$
$\mathrm{Au}(2)-\mathrm{C}(1)$	$2.103(14)$	$\mathrm{Au}(3)-\mathrm{C}(61)$	$2.069(16)$
$\mathrm{Au}(3)-\mathrm{C}(51)$	$2.110(15)$	$\mathrm{Au}(3)-\mathrm{C}(2)$	$2.139(17)$
$\mathrm{Au}(3)-\mathrm{P}(2)$	$2.365(4)$	$\mathrm{P}(1)-\mathrm{C}(31)$	$1.820(10)$
$\mathrm{P}(1)-\mathrm{C}(21)$	$1.825(8)$	$\mathrm{P}(1)-\mathrm{C}(11)$	$1.832(9)$
$\mathrm{P}(2)-\mathrm{C}(1)$	$1.777(15)$	$\mathrm{P}(2)-\mathrm{C}(81)$	$1.821(9)$
$\mathrm{P}(2)-\mathrm{C}(71)$	$1.841(8)$	$\mathrm{P}(3)-\mathrm{C}(1)$	$1.749(15)$
$\mathrm{P}(3)-\mathrm{C}(101)$	$1.817(10)$	$\mathrm{P}(3)-\mathrm{C}(2)$	$1.823(17)$
$\mathrm{P}(3)-\mathrm{C}(91)$	$1.836(9)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.488(33)$
$\mathrm{C}(1)-\mathrm{Au}(1)-\mathrm{P}(1)$	$173.5(4)$	$\mathrm{C}(1)-\mathrm{Au}(1)-\mathrm{Au}(2)$	$45.3(4)$
$\mathrm{P}(1)-\mathrm{Au}(1)-\mathrm{Au}(2)$	$129.84(11)$	$\mathrm{C}(41)-\mathrm{Au}(2)-\mathrm{C}(1)$	$178.6(4)$
$\mathrm{C}(41)-\mathrm{Au}(2)-\mathrm{Au}(1)$	$134.8(4)$	$\mathrm{C}(1)-\mathrm{Au}(2)-\mathrm{Au}(1)$	$46.0(4)$
$\mathrm{C}(61)-\mathrm{Au}(3)-\mathrm{C}(51)$	$87.4(5)$	$\mathrm{C}(61)-\mathrm{Au}(3)-\mathrm{C}(2)$	$177.9(6)$
$\mathrm{C}(51)-\mathrm{Au}(3)-\mathrm{C}(2)$	$90.9(6)$	$\mathrm{C}(61)-\mathrm{Au}(3)-\mathrm{P}(2)$	$94.2(4)$
$\mathrm{C}(51)-\mathrm{Au}(3)-\mathrm{P}(2)$	$178.4(4)$	$\mathrm{C}(2)-\mathrm{Au}(1)-\mathrm{P}(2)$	$87.5(5)$
$\mathrm{C}(31)-\mathrm{P}(1)-\mathrm{C}(21)$	$106.4(6)$	$\mathrm{C}(31)-\mathrm{P}(1)-\mathrm{C}(11)$	$106.3(6)$
$\mathrm{C}(21)-\mathrm{P}(1)-\mathrm{C}(11)$	$104.2(5)$	$\mathrm{C}(31)-\mathrm{P}(1)-\mathrm{Au}(1)$	$112.2(4)$
$\mathrm{C}(21)-\mathrm{P}(1)-\mathrm{Au}(1)$	$112.3(4)$	$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{Au}(1)$	$114.7(4)$
$\mathrm{C}(1)-\mathrm{P}(2)-\mathrm{C}(81)$	$109.3(6)$	$\mathrm{C}(1)-\mathrm{P}(2)-\mathrm{C}(71)$	$112.9(6)$
$\mathrm{C}(81)-\mathrm{P}(2)-\mathrm{C}(71)$	$103.2(5)$	$\mathrm{C}(1)-\mathrm{P}(2)-\mathrm{Au}(3)$	$108.5(5)$
$\mathrm{C}(81)-\mathrm{P}(2)-\mathrm{Au}(3)$	$113.0(4)$	$\mathrm{C}(71)-\mathrm{P}(2)-\mathrm{Au}(3)$	$109.9(4)$
$\mathrm{C}(1)-\mathrm{P}(3)-\mathrm{C}(101)$	$112.4(6)$	$\mathrm{C}(1)-\mathrm{P}(3)-\mathrm{C}(2)$	$108.2(8)$
$\mathrm{C}(101)-\mathrm{P}(3)-\mathrm{C}(2)$	$110.0(7)$	$\mathrm{C}(1)-\mathrm{P}(3)-\mathrm{C}(91)$	$111.7(6)$
$\mathrm{C}(101)-\mathrm{P}(3)-\mathrm{C}(91)$	$106.1(6)$	$\mathrm{C}(2)-\mathrm{P}(3)-\mathrm{C}(91)$	$108.3(7)$
$\mathrm{P}(3)-\mathrm{C}(1)-\mathrm{P}(2)$	$108.5(8)$	$\mathrm{P}(3)-\mathrm{C}(1)-\mathrm{Au}(2)$	$116.3(8)$
$\mathrm{P}(2)-\mathrm{C}(1)-\mathrm{Au}(2)$	$117.5(7)$	$\mathrm{P}(3)-\mathrm{C}(1)-\mathrm{Au}(1)$	$108.9(7)$
$\mathrm{P}(2)-\mathrm{C}(1)-\mathrm{Au}(1)$	$115.7(8)$	$\mathrm{Au}(2)-\mathrm{C}(1)-\mathrm{Au}(1)$	$88.7(5)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{P}(3)$	$114.4(16)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{Au}(3)$	$108.8(16)$
$\mathrm{P}(3)-\mathrm{C}(2)-\mathrm{Au}(3)$	$106.5(8)$	$\mathrm{C}(46)-\mathrm{C}(41)-\mathrm{C}(42)$	$114.3(17)$
$\mathrm{C}(52)-\mathrm{C}(51)-\mathrm{C}(56)$	$117.7(16)$	$\mathrm{C}(62)-\mathrm{C}(61)-\mathrm{C}(66)$	$116.1(15)$

longer than the corresponding $\mathrm{Au}^{\mathrm{I}}-\mathrm{C}$ (methanediide) distances [$\mathrm{Au}(1)-\mathrm{C}(1) 2.127(14), \mathrm{Au}(2)-\mathrm{C}(1) 2.103(14) \AA$]. Similarly, the bond length $\mathrm{Au}(3)-\mathrm{P}(2) 2.365(4) \AA$ is longer than $\mathrm{Au}(1)-\mathrm{P}(1)$ $2.265(4) \AA$, although these values are in the normal range for $\mathrm{Au}^{\text {III }}-\mathrm{P}$ and $\mathrm{Au}^{1}-\mathrm{P}$ distances. ${ }^{2,7,8} \mathrm{The} \mathrm{Au}(3)$ atom lies $0.0133 \AA$ out of the plane formed by $P(2), C(2)$ and $C(51)$ and $C(61)$ of the two pentafluorophenyl groups.
The compound contains a triangular $\mathrm{Au}_{2} \mathrm{C}$ unit of the type that has been already observed in other ylide or methanediide complexes, and has been interpreted in terms of a closed three-centre two-electron bond. ${ }^{2,6,11}$ The $\mathrm{Au} \cdots \mathrm{Au}$ contact is $2.957(2) \AA$, slightly longer than that found in $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}\left(\mathrm{AuPPh}_{3}\right)_{2}\right\}\right] \mathrm{ClO}_{4}, 2.826(2) \AA,{ }^{2}$ where both gold fragments are the same; this fact and the $\mathrm{Au}(1)-\mathrm{C}(1)-\mathrm{Au}(2)$ angle of $88.7(5)^{\circ}$ [again greater than in ref. 2, $\left.85.4(7)^{\circ}\right]$ suggest that the three-centre bonding contributes less to the overall bonding scheme in our compound. The geometry at the gold(1) centre $\mathrm{Au}(1)$ is distorted from linearity with $\mathrm{P}-\mathrm{Au}-\mathrm{C} 173.5(4)^{\circ}$, but is almost linear at $\mathrm{Au}(2)$ with $\mathrm{C}-\mathrm{Au}-\mathrm{C}$ 178.6(4) ${ }^{\circ}$. The atoms $\mathrm{C}(1)$ and $\mathrm{C}(2)$ are chiral and the coordinates correspond to the R / S diastereomer, but both enantiomers are present in the crystal.

Experimental

Instrumentation and general experimental techniques were as described earlier. ${ }^{3}$ Mass spectra were recorded on a VG Autospec with the FAB technique, using 3-nitrobenzyl alcohol as matrix. The yields, C and H analyses, and conductivities of the new complexes are listed in Table 1. Proton and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR data are listed in Table 2. All the reactions were performed at room temperature, under a nitrogen atmosphere and using freshly distilled solvents. Complex 2 was prepared as reported. ${ }^{3}$

Syntheses.- $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\mathrm{Ph}_{2} \mathrm{PCH}\left(\mathrm{AuPPh}_{3}\right) \mathrm{PPh}_{2}\left(\mathrm{CHCO}_{2}-\right.\right.\right.$ $\mathrm{Me})\}] \mathrm{ClO}_{4}$ 1. To a solution of $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\mathrm{Ph}_{2} \mathrm{PCHPPh}_{2}-\right.\right.$
$\left.\left.\left(\mathrm{CHCO}_{2} \mathrm{Me}\right)\right\}\right]^{3}(0.197 \mathrm{~g}, 0.2 \mathrm{mmol})$ in dichloromethane (20 cm^{3}) was added $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)(\mathrm{tht})\right] \mathrm{ClO}_{4}{ }^{12}(0.129 \mathrm{~g}, 0.2 \mathrm{mmol})$. The mixture was stirred for 2 h and then concentrated to $c a .5$ cm^{3}. Addition of diethyl ether $\left(10 \mathrm{~cm}^{3}\right)$ afforded complex 1 as a white solid. ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-120.7(\mathrm{~m}),-121.3(\mathrm{~m})$ and $-122.9(\mathrm{~m})(o-\mathrm{F}) ;-155.9[\mathrm{t}, J(\mathrm{~F}-\mathrm{F}) 19.3]$ and $-156.0[\mathrm{t}$, $J(\mathrm{~F}-\mathrm{F}) 18.7 \mathrm{~Hz}$ ($p-\mathrm{F}$, isomer 1a); -156.1 (t$)$ and -156.4 (t$)$ ($p-\mathrm{F}$, isomer 1b); and $-160.1(\mathrm{~m})$ and $-160.9(\mathrm{~m})(m-\mathrm{F})$.
$\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\mathrm{Ph}_{2} \mathrm{PC}\left(\mathrm{MPPh}_{3}\right) \mathrm{PPh}_{2}\left(\mathrm{CHCO}_{2} \mathrm{Me}\right)\right\}\right] \quad(\mathrm{M}=\mathrm{Au}$ 3 or Ag 4$)$. To a suspension of complex $1(0.313 \mathrm{~g}, 0.2 \mathrm{mmol})$ or $2(0.292,0.2 \mathrm{mmol})$ in diethyl ether $\left(50 \mathrm{~cm}^{3}\right)$ was added NaH $(0.3 \mathrm{~g}, 12.5 \mathrm{mmol})$. The mixture was stirred for 2 h , during which time evolution of H_{2} was observed. The resulting suspension was filtered under N_{2} and the yellow solution evaporated to dryness. Addition of hexane ($20 \mathrm{~cm}^{3}$) gave complex 3 or 4 as a yellow solid. ${ }^{19} \mathrm{~F}$ NMR: 3, $\delta-120.3(\mathrm{~m})$ and $-122.4(\mathrm{~m})(o-\mathrm{F})$; $-159.2[\mathrm{t}, J(\mathrm{~F}-\mathrm{F}) 19.8]$ and $-160.2[\mathrm{t}, J(\mathrm{~F}-\mathrm{F}) 19.8](p-\mathrm{F})$; and $-161.8(\mathrm{~m}, \mathrm{br})(\mathrm{m}-\mathrm{F}) ; 4,-120.6(\mathrm{~m})$ and $-122.7(\mathrm{~m})$ $(o-\mathrm{F}) ;-158.2[\mathrm{t}, J(\mathrm{~F}-\mathrm{F}) 19.3]$ and $-158.7[\mathrm{t}, J(\mathrm{~F}-\mathrm{F}) 19.3 \mathrm{~Hz}]$ ($p-\mathrm{F}$); and - 162.0 (br m) (m-F).
$\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left[\mathrm{Ph}_{2} \mathrm{PC}\left(\mathrm{MPPh}_{3}\right)\left(\mathrm{AuC}_{6} \mathrm{~F}_{5}\right) \mathrm{PPh}_{2}\left(\mathrm{CHCO}_{2} \mathrm{Me}\right)\right\}\right]$ ($\mathrm{M}=\mathrm{Au} 5$ or $\mathrm{Ag} \mathbf{6}$). To a solution of complex $3(0.147 \mathrm{~g}, 0.1$ $\mathrm{mmol})$ or $4(0.138 \mathrm{~g}, 0.1 \mathrm{mmol})$ in diethyl ether $\left(20 \mathrm{~cm}^{3}\right)$ was added $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\text { tht })\right]^{13}(0.045,0.1 \mathrm{mmol})$. After 1 h the colourless solution was concentrated to $c a .5 \mathrm{~cm}^{3}$ and addition of diethyl ether ($20 \mathrm{~cm}^{3}$) gave complex 5 or 6 , respectively. ${ }^{19} \mathrm{~F}$ NMR: 5, $\delta-116.5\left(\mathrm{~m}, o-\mathrm{F}, \mathrm{Au}^{1}-\mathrm{C}_{6} \mathrm{~F}_{5}\right.$, isomer 5 a$),-116.9(\mathrm{~m}$, $o-\mathrm{F}, \mathrm{Au}^{1}-\mathrm{C}_{6} \mathrm{~F}_{5}$, isomer 5 b$) ;-120.3(\mathrm{~m}),-120.9(\mathrm{~m}),-121.8$ (m) and $-122.7(\mathrm{~m})\left(o-\mathrm{F}, \mathrm{Au}^{\text {III }}-\mathrm{C}_{6} \mathrm{~F}_{5}\right) ;-162.0[\mathrm{t}, J(\mathrm{~F}-\mathrm{F}) 20.6$, $p-\mathrm{F}, \mathrm{Au}^{\mathrm{t}}-\mathrm{C}_{6} \mathrm{~F}_{5}$, isomer 5a], $-161.9[\mathrm{t}, J(\mathrm{~F}-\mathrm{F})$ 19.3, $p-\mathrm{F}$, $\mathrm{Au}^{\mathrm{I}} \mathrm{C}_{6} \mathrm{~F}_{5}$, isomer 5b]; $-157.6[\mathrm{t}, J(\mathrm{~F}-\mathrm{F})$ 20.6], $-158.1[\mathrm{t}$, $J(\mathrm{~F}-\mathrm{F}) 19.3]$ and $-158.4[\mathrm{t}, J(\mathrm{~F}-\mathrm{F}) 19.3 \mathrm{~Hz}]\left(p-\mathrm{F}, \mathrm{Au}^{\mathrm{III}}-\mathrm{C}_{6} \mathrm{~F}_{5}\right)$; $-163.8\left[\mathrm{~m}, m-\mathrm{F}, \mathrm{Au}^{1}-\mathrm{C}_{6} \mathrm{~F}_{5}\right]$; and $-161.0(\mathrm{~m})$ and $-161.5(\mathrm{~m})$ $\left(m-F, \mathrm{Au}^{\mathrm{III}}-\mathrm{C}_{6} \mathrm{~F}_{5}\right.$).
$\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\mathrm{Ph}_{2} \mathrm{PC}\left(\mathrm{MPPh}_{3}\right)\left(\mathrm{M}^{\prime} \mathrm{PPh}_{3}\right) \mathrm{PPh}_{2}\left(\mathrm{CHCO}_{2} \mathrm{Me}\right)\right\}\right]$ $\mathrm{ClO}_{4}\left(\mathrm{M}=\mathrm{M}^{\prime}=\mathrm{Au} 7 ; \mathrm{M}=\mathrm{Au}, \mathrm{M}^{\prime}=\mathrm{Ag} 8 ; \mathrm{M}=\mathrm{M}^{\prime}=\mathrm{Ag}\right.$ 9). To a solution of complex $3(0.147 \mathrm{~g}, 0.1 \mathrm{mmol})$ or 4 $(0.138 \mathrm{~g}, 0.1 \mathrm{mmol})$ in dichloromethane ($20 \mathrm{~cm}^{3}$) was added $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)(\mathrm{tht})\right] \mathrm{ClO}_{4}{ }^{12}(0.065 \mathrm{~g}, 0.1 \mathrm{mmol})$ or $\left[\mathrm{Ag}\left(\mathrm{OClO}_{3}\right)\right.$ $\left.\left(\mathrm{PPh}_{3}\right)\right]^{14}(0.047 \mathrm{~g}, 0.1 \mathrm{mmol})$ and then stirred for 1 h . The solution was concentrated to $c a .5 \mathrm{~cm}^{3}$ and addition of diethyl ether led to complex $\mathbf{7 , 8}$ or 9 as a white solid. ${ }^{19}$ F NMR: 7, δ $-120.6(\mathrm{~m}),-121.2(\mathrm{~m}),-122.2(\mathrm{~m})$ and $-122.4(\mathrm{~m})(o-\mathrm{F})$; $-156.6[\mathrm{t}, J(\mathrm{~F}-\mathrm{F}) 19.8]$ and $-156.9[\mathrm{t}, J(\mathrm{~F}-\mathrm{F}) 20.1](p-\mathrm{F})$ and $-160.8(\mathrm{br}, \mathrm{m})(\mathrm{m}-\mathrm{F}) ; 8,-120.9(\mathrm{~m}),-121.4(\mathrm{~m}),-122.2(\mathrm{~m})$ and $-123.1(\mathrm{~m})(o-\mathrm{F}) ;-156.9[\mathrm{t}, J(\mathrm{~F}-\mathrm{F}) 19.6]$ and $157.2[\mathrm{t}$, $J(\mathrm{~F}-\mathrm{F}) 19.3 \mathrm{~Hz}](p-\mathrm{F})$; and $-160.8(\mathrm{~m})$ and $-161.1(\mathrm{~m})(m-\mathrm{F})$.

Crystal Structure Determination of Compound 5.-Crystal data. $\mathrm{C}_{65} \mathrm{H}_{41} \mathrm{Au}_{3} \mathrm{Cl}_{2} \mathrm{~F}_{15} \mathrm{O}_{2} \mathrm{P}_{3}, M_{\mathrm{r}}=1893.7$, triclinic, space group $P \mathrm{I}, a=14.257(5), b=14.404(5), c=17.756(6) \AA, \alpha=$ 80.15(3), $\beta=66.37(3), \gamma=73.84(3)^{\circ}, U=3201.3(19) \AA^{3}, Z=$ $2, D_{\mathrm{c}}=1.96 \mathrm{Mg} \mathrm{m}^{-3}, F(000)=1796, \lambda(\mathrm{Mo}-\mathrm{K} \alpha)=0.71073 \AA$, $\mu=7.1 \mathrm{~mm}^{-1}, T=-100^{\circ} \mathrm{C}$.
Data collection and reduction. Single crystals of compound 5 in the form of colourless needles were obtained by slow evaporation of diethyl ether into a dichloromethane solution. The crystals lose solvent in air and were mounted in inert oil and transferred to the cold gas stream of the diffractometer. A needle $0.6 \times 0.15 \times 0.05 \mathrm{~mm}$ was used to collect 10739 intensities to $2 \theta_{\text {max }} 45^{\circ}$ (Siemens R3 diffractometer, monochromated Mo-K α radiation). An absorption correction based on ψ scans was applied, with transmission factors $0.62-1.00$. Merging equivalents gave 8408 independent reflections ($R_{\text {int }}$ 0.041), of which all were used for all calculations (program system SHELXL 92). ${ }^{15}$ Cell constants were refined from setting angles of 50 reflections in the range $2 \theta 20-23^{\circ}$.
Structure solution and refinement. The structure was solved by the heavy-atom method, and subjected to full-matrix leastsquares refinement on $F^{2} ; \mathrm{Au}, \mathrm{P}$ and F atoms were refined anisotropically, other atoms were refined isotropically, phenyl
rings as idealized hexagons. Hydrogen atoms were included using a riding model. An ill defined region of residual electron density was interpreted as disordered dichloromethane. The weighting scheme was of the form $w^{-1}=\sigma^{2}\left(F^{2}\right)+(a P)^{2}+b P$, where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}\right)^{2} / 3, \quad a=0.0499$ and $b=77.3519$. Refinement proceeded to $R^{\prime}\left(F^{2}\right) 0.151$, with a conventional $R(F)$ of 0.052 , for 386 parameters and 214 restraints; $S 1.08$, maximum $\Delta \rho 2.9$ e \AA^{-3}.

Final atomic coordinates are given in Table 3, selected bond lengths and angles in Table 4.

Additional material available from the Cambridge Crystallographic Data Centre comprises H -atom coordinates, thermal parameters and remaining bond lengths and angles.

Acknowledgements

We thank the Dirección General de Investigación Cientifica y Técnica (no. PB91-0122) and the Fonds der Chemischen Industrie for financial support.

References

1 A. Laguna and M. Laguna, J. Organomet. Chem., 1990, 394, 743 and refs. therein.
2 E. J. Fernandez, M. C. Gimeno, P. G. Jones, A. Laguna, M. Laguna and J. M. Lopez de Luzuriaga, J. Chem. Soc., Dalton Trans., 1992, 3365.

3 R. Usón, A. Laguna, M. Laguna and I. Lázaro, Organometallics, 1987, 6, 2326.
4 B. J. Hathaway and A. E. Underhill, J. Chem. Soc., 1961, 3091.
5 R. Usón, A. Laguna, J. García and M. Laguna, Inorg. Chim. Acta, 1979, 37, 201.
6 J. Vicente, M. T. Chicote, J. A. Cayuelas, J. Fernandez-Baeza, P. G. Jones, G. M. Sheldrick and P. Espinet, J. Chem. Soc., Dalton Trans., 1985, 1163.
7 R. Usón, A. Laguna, M. Laguna, E. Fernandez, M. D. Villacampa, P. G. Jones and G. M. Sheldrick, J. Chem. Soc., Dalton Trans., 1983, 1679.

8 R. Usón, A. Laguna, M. Laguna, B. R. Manzano, P. G. Jones and G. M. Sheldrick, J. Chem. Soc., Dalton Trans., 1984, 839.

9 R. Usón, A. Laguna, M. D. Villacampa, P. G. Jones and G. M. Sheldrick, J. Chem. Soc., Dalton Trans., 1984, 2035
10 R. Usón, A. Laguna, M. Laguna, M. N. Fraile, P. G. Jones and C. F Erdbrügger, J. Chem. Soc., Dalton Trans., 1989, 73.
11 J. Vicente, M. T. Chicote, M. C. Lagunas and P. G. Jones, J. Chem. Soc., Dalton Trans., 1991, 2579.
12 R. Usón, A. Laguna, M. Laguna, J. Jimenez, M. P. Gómez, A. Sainz and P. G. Jones, J. Chem. Soc., Dalton Trans., 1990, 3457.
13 R. Usón, A. Laguna and J. Vicente, J. Organomet. Chem., 1977, 131, 471.

14 F. A. Cotton, L. R. Falvello, R. Usón, J. Forniés, M. Tomás, J. M. Casas and I. Ara, Inorg. Chem., 1987, 26, 1366.
15 G. M. Sheldrick, SHELXL 92, University of Göttingen, 1992.

Received 3rd March 1993; Paper 3/01249B

