Synthesis of $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right]$; its Reactions with $\mathrm{P}(\mathrm{OMe})_{3}$ and with Alkynes*

Andrew J. M. Caffyn, ${ }^{\boldsymbol{a}}$ Martin J. Mays, ${ }^{\boldsymbol{a}}$ Gregory A. Solan, ${ }^{\boldsymbol{a}}$ Gráinne Conole ${ }^{\boldsymbol{b}}$ and
Antonio Tiripicchio ${ }^{c}$
${ }^{a}$ University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK
${ }^{\text {b }}$ School of Chemistry, The University of North London, Holloway Road, London N7 8DB, UK
c Istituto di Chimica Generale ed Inorganica, Università di Parma, Centro di Studio per la Strutturistica Diffrattometrica del C.N.R., Viale delle Scienze, I-43100 Parma, Italy

Abstract

The bis(phosphido)-bridged complex $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{6}\right] 1$ undergoes an insertion reaction of allene into one of the phosphido bridges, to give the new ligand-bridged dinuclear cobalt complex $\left[\mathrm{Co}_{2}(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right] 2$ in high yield. Complex 2 reacts with $\mathrm{P}(\mathrm{OMe})_{3}$ to give the monosubstituted derivative $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{3}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}\right] 3$ in which substitution has occurred at the allyl-co-ordinated cobalt atom. Complex 2 also reacts with alkynes, $\mathrm{RC} \equiv \mathrm{CH}\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{OH}\right.$, Me or H), which insert into the remaining phosphido bridge along with a molecule of CO to give $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}\right)\{\mu-\right.$ $\left.\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CHCR}\right\}(\mathrm{CO})_{3}$] $\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{OH} \mathbf{4 a}, \mathrm{Me} \mathbf{4 b}\right.$ or $\mathrm{H} \mathbf{4 c}$). In the case of $\mathrm{MeC} \equiv \mathrm{CH}$ which gives 4b, a second isomer, $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}\right)\left\{\mu-\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CMeCH}\right\}(\mathrm{CO})_{3}\right] 5$, which differs in the mode of insertion of the alkyne, is also obtained. The isomeric complexes $\left[\mathrm{Co}_{2}\left\{\mu-\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CHCR}\right\}\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right]$ ($\mathrm{R}=$ $\mathrm{CH}_{2} \mathrm{OH} 6 \mathrm{a}$ or Me 6 b) and $\left[\mathrm{Co}_{2}\left\{\mu-\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CRCH}\right\}\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right]\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{OH} 7 \mathrm{7a}\right.$ or Me 7b$)$, which may be regarded respectively as analogues of 4 and 5 but with a phosphido bridge and an additional terminal CO group in place of the $\mu-\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}$ ligand, have been prepared from $\left[\mathrm{Co}_{2}(\mu-\mathrm{RCCH})(\mathrm{CO})_{6}\right]$ $\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{OH}\right.$ or Me$)$ and $\mathrm{P}_{2} \mathrm{Ph}_{4}$. The complexes $\left[\mathrm{Co}_{2}\left\{\mu-\mathrm{PPh}_{2} \mathrm{CHCRC}(\mathrm{O})\right\}\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right]\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{OH}\right.$ $\mathbf{8 a}$ or Me 8 b), which are also isomers of complexes $\mathbf{6 a}, 7 \mathrm{a}$ and $\mathbf{6 b}, 7 \mathrm{~b}$ respectively, have also been obtained in these latter reactions. The complexes 8 contain a bridging ligand which differs from that present in 6 and 7 in that the ordering of the PPh_{2}, alkene and CO components of the bridging ligand is not the same. The crystal structures of the complexes $\mathbf{3}$ and $\mathbf{4 c}$ have been determined by X-ray diffraction studies.

The insertion of alkynes into the metal-phosphorus bonds of phosphido-bridged dinuclear complexes is more common than originally thought and usually gives new dinuclear complexes with a bridging ligand derived from one phosphido group, one molecule of alkyne and sometimes also a CO or $-\mathrm{C} \equiv \mathrm{CR}$ group if these are present in the original complex. ${ }^{1-8}$
Starting from the bis(phosphido)-bridged complex $\left[\mathrm{Co}_{2}-\right.$ $\left.\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{6}\right] 1$, we recently reported the stepwise synthesis of the complexes $\left[\mathrm{Co}_{2}\left\{\mu-\mathrm{PPh}_{2} \mathrm{CR}^{1}=\mathrm{CR}^{2} \mathrm{C}(\mathrm{O}) \mathrm{CR}^{3}=\mathrm{CR}^{4}\right.\right.$ $\left.\left.\mathrm{PPh}_{2}\right\}(\mathrm{CO})_{4}\right]\left(\mathrm{R}=\mathrm{H}\right.$, alkyl, aryl, $\mathrm{CO}_{2} \mathrm{Me}$ or silyl). ${ }^{9}$ These complexes each contain a bridging nine-membered dimetallacyclic ring formed from the coupling of both phosphido groups in 1 with two alkyne molecules and one CO molecule. In the light of this ability of $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{6}\right] 1$ to undergo alkyne insertions to give novel ligand-bridged species we decided to explore its reactivity with allene.

In this paper we present a study of the reaction of 1 with allene and of the reactivity of the product, $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}\right)\right.$ -$\left.\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right]$ 2, towards $\mathrm{P}(\mathrm{OMe})_{3}$ and alkynes (Scheme 1). The reactions of 2 with alkynes, $\mathrm{RC} \equiv \mathrm{CH}$, gives the alkyneinserted products $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}\right)\left\{\mu-\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CHCR}\right\}-\right.$ $\left.(\mathrm{CO})_{3}\right]\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{OH} 4 \mathrm{a}, \mathrm{Me} 4 \mathrm{~b}\right.$ or H 4 c$)$ and $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2}-\right.\right.$ $\left.\left.\mathrm{C}_{3} \mathrm{H}_{4}\right)\left\{\mu-\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CRCH}\right\}(\mathrm{CO})_{3}\right](\mathrm{R}=\mathrm{Me} 5)$. For comparative purposes the five-membered metallacyclic ring-containing complexes $\left[\mathrm{Co}_{2}\left\{\mu-\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CHCR}\right\}\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right] \quad(\mathrm{R}=$ $\mathrm{CH}_{2} \mathrm{OH} 6 \mathrm{a}$ or Me 6 b$)$ and $\left[\mathrm{Co}_{2}\left\{\mu-\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CRCH}\right\}(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right]\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{OH} 7 \mathrm{a}\right.$ or Me 7 b$)$ have also been prepared. These differ from 4 and 5 in that the five-electron

[^0]donating $\mu-\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}$ ligand is replaced in 6 and 7 by a three-electron donating μ-phosphido ligand and a terminal CO group.

Results and Discussion

(a) Reaction of $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{6}\right] 1$ with Allene.-The reaction of a toluene solution of $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{6}\right]$ with allene at room temperature gives the complex $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2^{-}}\right.\right.$ $\left.\left.\mathrm{C}_{3} \mathrm{H}_{4}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right] 2$ in 81% yield. Complex 2 has been characterised spectroscopically (see Table 1 and Experimental section) and its proposed structure is shown in Scheme 1

The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of complex 2 shows a signal at $\delta 62.4$ consistent with the presence of a bridging phosphido group and a signal at $\delta-86.5$ which may be assigned to an allene-inserted phosphido group. In each case the resonance is a doublet with a coupling constant of 102 Hz , indicative of a twobond phosphorus-phosphorus coupling. The ${ }^{1} \mathrm{H}$ NMR displays, in addition to phenyl resonances, two very broad signals centred at $\delta 2.12$ and 1.76 , which may be assigned respectively to the syn and anti protons of an allyl group.

Four separate signals are seen in the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 2 at 293 K in the carbonyl region revealing the absence at this temperature of any fluxional process at either metal centre. The carbon atom of the allyl fragment joined directly to the phosphorus gives a doublet resonance at $\delta 67.4$ [${ }^{1} J(\mathrm{PC}) 38 \mathrm{~Hz}$] and the terminal carbons of the allyl group exhibit separate resonances, one a doublet at $\delta 59.8$ [${ }^{2} J(\mathrm{PC}) 14$ Hz] and the other a singlet at $\delta 44.2$. The inequivalence of the terminal allyl carbon atoms suggests that the $\mu-\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}$ and $\mu-\mathrm{PPh}_{2}$ ligands are not trans to one another and indeed the solid-state structure of the monosubstituted phosphite deriv-

Table 1 Infrared and ${ }^{1} \mathrm{H}$ NMR data for the new complexes

Compound
$2\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right]$
$3\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{3}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}\right]$
4a $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}\right)\left\{\mu-\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CHC}\left(\mathrm{CH}_{2} \mathrm{OH}\right)\right\}(\mathrm{CO})_{3}\right]$

4b $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}\right)\left\{\mu-\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CHCMe}\right\}(\mathrm{CO})_{3}\right]$

4c $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}\right)\left\{\mu-\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CHCH}\right\}(\mathrm{CO})_{3}\right]$
$5\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}\right)\left\{\mu-\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CMeCH}\right\}(\mathrm{CO})_{3}\right]$
6a $\left[\mathrm{Co}_{2}\left\{\mu-\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CHC}\left(\mathrm{CH}_{2} \mathrm{OH}\right)\right\}\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right]$

6b $\left[\mathrm{Co}_{2}\left\{\mu-\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CHCMe}\right\}\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right]$
7a $\left[\mathrm{Co}_{2}\left\{\mu-\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{OH}\right) \mathrm{CH}\right\}\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right]$

7b $\left[\mathrm{Co}_{2}\left\{\mu-\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CMeCH}\right\}\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right]$
$\mathrm{v}(\mathrm{CO})^{a} / \mathrm{cm}^{-1}$
2033s, 1994s, 1961s, 1911s
1985m, 1959vs, 1916s
2008(sh), 1996s, 1962m, 1600w

2012m, 1999vs, 1967s, 1612w

2013m, 2002vs, 1969s, 1622w

2011(sh), 2001s, 1966m, 1611w
2042w, 2015s, 2002(sh), 1975m, 1616w

2042w, 2012s, 2000(sh), 1972s, 1607 w d
2045m, 2015s, 2006(sh), 1975s, $1587 w^{d}$

2044m, 2012s, 2002(sh), 1970m, 1613w
${ }^{1} \mathrm{HNMR}^{\mathrm{b}}{ }^{6}(\delta)$
$7.8-7.2(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph}), 2.12\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{syn}}\right), 1.76(\mathrm{br}, 2 \mathrm{H}$, $\mathrm{H}_{\text {anti }}$)
7.8-7.1 (m, $20 \mathrm{H}, \mathrm{Ph}), 3.36\left[\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{PH}) 10.0,9 \mathrm{H}\right.$, $\left.\mathrm{P}(\mathrm{OMe})_{3}\right], 2.1-1.4\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{3} \mathrm{H}_{4}\right)$
7.7-6.9 (m, $20 \mathrm{H}, \mathrm{Ph}), 5.01$ [dd, ${ }^{2} J\left(\mathrm{H}_{\mathrm{b}} \mathrm{H}_{\mathrm{a}}\right) 13.0,{ }^{4} \mathrm{~J}(\mathrm{PH})$ $\left.6.0,1 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{OH}\right)\right], 4.96\left[\mathrm{dd},{ }^{3} J(\mathrm{PH}) 34.0,{ }^{3} J\left(\mathrm{P}^{\prime} \mathrm{H}\right)\right.$ $\left.2.0,1 \mathrm{H}, \mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CHC}\left(\mathrm{CH}_{2} \mathrm{OH}\right)\right], 4.84$ [dd, ${ }^{4} J(\mathrm{PH})$ $\left.6.0,1 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{OH}\right)\right], 2.4-1.8\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{3} \mathrm{H}_{4}\right)$
7.9-6.9 (m, $20 \mathrm{H}, \mathrm{Ph}), 4.78\left[\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{PH}) 32.0,1 \mathrm{H}\right.$, $\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CHCMe}$, 2.89 (s, $3 \mathrm{H}, \mathrm{Me}$), 2.3-1.7 (m, 4 H , $\mathrm{C}_{3} \mathrm{H}_{4}$)
$8.78\left[\mathrm{dd},{ }^{3} J(\mathrm{HH}) 5.7,{ }^{3} J(\mathrm{PH}) 1.1,1 \mathrm{H}, \mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CHCH}\right]$, $7.8-6.9(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph}), 4.95$ [ddd, ${ }^{3} J(\mathrm{PH}) 32.5,{ }^{3} J\left(\mathrm{P}^{\prime} \mathrm{H}\right)$ $\left.2.4,1 \mathrm{H}, \mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CHCH}\right], 2.4-1.6\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{3} \mathrm{H}_{4}\right)$ 8.67 [s, $\left.1 \mathrm{H}, \mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CMeCH}\right], 7.8-6.9$ (m, $20 \mathrm{H}, \mathrm{Ph}$), 2.3-1.6(m, $\left.4 \mathrm{H}, \mathrm{C}_{3} \mathrm{H}_{4}\right), 1.96\left[\mathrm{~d},{ }^{4} J(\mathrm{PH}) 2.5,3 \mathrm{H}, \mathrm{Me}{ }^{\mathrm{c}}\right.$ 7.9-7.0 (m, $20 \mathrm{H}, \mathrm{Ph}), 4.52\left[\mathrm{dd},{ }^{3} J(\mathrm{PH}) 41.6,{ }^{3} J\left(\mathrm{P}^{\prime} \mathrm{H}\right) 4.4\right.$, $\left.1 \mathrm{H}, \mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CHC}\left(\mathrm{CH}_{2} \mathrm{OH}\right)\right], 3.85\left[\mathrm{~d}, J\left(\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right) 12.8\right.$, $\left.1 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{OH}\right)\right], 3.74$ [d,1 H, C($\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{OH}\right)$]
7.9-7.1 (m, $20 \mathrm{H}, \mathrm{Ph}), 4.36\left[\mathrm{dd},{ }^{3} J(\mathrm{PH}) 41.8,{ }^{3} J\left(\mathrm{P}^{\prime} \mathrm{H}\right) 3.8\right.$, $1 \mathrm{H}, \mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CHCMe}$, 1.80 (s, $3 \mathrm{H}, \mathrm{Me}$) $8.0-7.1(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph}), 6.0$ [dd, ${ }^{3} J(\mathrm{PH}) 19.8,{ }^{3} J\left(\mathrm{P}^{\prime} \mathrm{H}\right) 1.3$, $\left.1 \mathrm{H}, \mathrm{PPh}_{2} \mathrm{C}(\mathrm{O})\left(\mathrm{CH}_{2} \mathrm{OH}\right) \mathrm{CH}\right], 4.10[\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{OH}\right)\right], 3.98$ [s, br, $\left.1 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{OH}\right)\right]$ $7.9-7.1$ (m, $20 \mathrm{H}, \mathrm{Ph}), 6.0$ [dd, ${ }^{3} J(\mathrm{PH}) 20.8,{ }^{3} J\left(\mathrm{P}^{\prime} \mathrm{H}\right) 2.1$, $\left.1 \mathrm{H}, \mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CMeCH}\right], 1.83\left[\mathrm{~d},{ }^{4} J(\mathrm{PH}) 3.7,3 \mathrm{H}, \mathrm{Me}\right]^{c}$
${ }^{a}$ Infrared spectra recorded in n-hexane solution unless otherwise indicated. ${ }^{b 1} \mathrm{H}$ chemical shifts (δ) relative to $\mathrm{SiMe}_{4}(\delta 0.0$), coupling constants in Hz , measured in CDCl_{3}. ${ }^{c}$ Recorded in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution. ${ }^{d}$ Recorded in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution.

Scheme 1 Products derived from the reaction of $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{6}\right]$ 1 with allene
ative of 2, $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{3}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}\right] 3$ (see below), is consistent with this.

To our knowledge, the only other example of the insertion of allene into a metal-phosphorus bond of a bridging phosphido
group to give a stable complex containing a $\mu-\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}$ lig. and is provided by the preparation of the species $\left[\mathrm{Mn}_{2}(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{7}\right]$ in low yield from the photolytic reaction of $\left[\mathrm{Mn}_{2}\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{8}\right]$ with allene. ${ }^{10}$ This complex differs from 2 most notably in that there is no bond between the metal centres.
(b) Reaction of $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right] 2$ with \mathbf{P} -$(\mathrm{OMe})_{3}$.-The reaction of $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right]$ 2 with $\mathrm{P}(\mathrm{OMe})_{3}$ at 363 K gives a simple monosubstituted trimethyl phosphite derivative $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}\right)\left(\mu-\mathrm{PPh}_{2}\right)\right.$ $\left.(\mathrm{CO})_{3}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}\right] 3$ in 65% yield. Complex 3 has been characterised spectroscopically (see Table 1 and Experimental section) and by X-ray crystal-structure analysis.

The molecular structure of $\mathbf{3}$ is shown in Fig. 1 together with a view in which both the terminal ligands and phenyl groups have been omitted. Selected bond distances and angles are given in Table 2 and atomic coordinates in Table 3. The two cobalt atoms, joined by a single metal-metal bond [2.650(2) \AA] , are bridged by a PPh_{2} ligand and a $\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}$ ligand which is σ bonded to $\mathrm{Co}(1)$ via the phosphorus atom $[\mathrm{Co}(1)-\mathrm{P}(1) 2.167(3)$ \AA] and η^{3}-bonded to $\mathrm{Co}(2)$ via the $\mathrm{C}_{3} \mathrm{H}_{4}$ allyl group. The $\mathrm{Co}(1)$ atom is further bound by two terminal carbonyls and the $\mathrm{Co}(2)$ atom by one terminal carbonyl and by the $\mathrm{P}(3)$ atom of the $\mathrm{P}(\mathrm{OMe})_{3}$ ligand $[\mathrm{Co}(2)-\mathrm{P}(3) 2.152(4) \AA \AA$ residing in a pseudoaxial site $\left[\mathrm{Co}(1)-\mathrm{Co}(2)-\mathrm{P}(3) 153.5(1)^{\circ}\right]$. The phosphido bridge is slightly asymmetric, with the $\operatorname{Co}(2)-\mathrm{P}(2)$ bond $[2.195(3) \AA]$ being longer than $\mathrm{Co}(1)-\mathrm{P}(2)[2.146(3) \AA]$. The three carbonmetal bond lengths of the allyl group co-ordinated to $\mathrm{Co}(2)$ are similar $[\mathrm{Co}(2)-\mathrm{C}(4) 2.026(9), \mathrm{Co}(2)-\mathrm{C}(5) 2.069$ (12) and $\mathrm{Co}(2)-$ $\mathrm{C}(6) 2.137(10) \AA]$ and the $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(6)$ angle of $115.1(10)^{\circ}$ is in the range expected for an allyl group η^{3}-bonded to a metal atom ${ }^{11}$ although slightly less than the corresponding angle of $120.9(4)^{\circ}$ found in the $\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}$ ligand in $\left[\mathrm{Mn}_{2}\left(\mu-\mathrm{PPh}_{2}-\right.\right.$ $\left.\left.\mathrm{C}_{3} \mathrm{H}_{4}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{7}\right] .{ }^{10}$ In addition, the $\mathrm{P}-\mathrm{C}$ bond of the $\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}$ ligand in $3[\mathrm{P}(1)-\mathrm{C}(4) 1.805(11) \AA]$ is shorter than that in $\left[\mathrm{Mn}_{2}\left(\mu-\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{7}\right][1.862(4) \AA]$, perhaps because the ligand bridges metal-metal bonded centres in the former complex $[\mathrm{Co}(1)-\mathrm{Co}(2) 2.650(2) \AA]$ and non-bonded

Fig. 1 Molecular structure of $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{3}-\right.$ $\left\{\mathrm{P}(\mathrm{OMe})_{3}{ }^{\ell}\right] 3$ including the atom numbering scheme and a view of the structure in which the terminal ligands and phenyl groups have been omitted
centres in the latter [Mn \cdots Mn 4.125(1) \AA]. The plane defined by $\mathrm{Co}(1)-\mathrm{Co}(2)-\mathrm{P}(1)$ forms an angle of $154.9(1)^{\circ}$ with the plane passing through $\mathrm{Co}(1)-\mathrm{Co}(2)-\mathrm{P}(2)$. The central allyl carbon $\mathrm{C}(4)$ and $\mathrm{C}(5)$ are to one side of the plane defined by $\mathrm{Co}(1)-$ $\mathrm{Co}(2)-\mathrm{P}(1)$ (maximum deviations from plane 0.513 and $1.695 \AA$ respectively), whereas $\mathrm{C}(6)$ is on the other side of this plane (maximum deviation from plane $0.414 \AA$).

Monosubstitution by $\mathrm{P}(\mathrm{OMe})_{3}$ takes place preferentially at $\mathrm{Co}(2)$. Substitution at $\mathrm{Co}(1)$ was not observed, perhaps because of the steric inhibition resulting from the proximity of four phosphido-phenyl groups to this metal atom, although electronic factors may also play an important role.
The ${ }^{1} \mathrm{H},{ }^{31} \mathrm{P}$ and ${ }^{13} \mathrm{C}$ NMR spectra of complex 3 (see Table 1 and Experimental section) indicate that the solid-state structure determined by X-ray analysis is maintained in solution. In the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 3 at 293 K all three carbonyls give rise to distinct resonances showing that, as with complex 2, there is no carbonyl fluxionality at this temperature. The carbon atom of the allyl fragment joined directly to phosphorus gives a doublet of doublets at $\delta 63.3\left[{ }^{1} J(\mathrm{PC}) 39,{ }^{2} J\left(\mathrm{P}^{\prime} \mathrm{C}\right) 10 \mathrm{~Hz}\right]$. The larger coupling of 39 Hz is assigned, by comparison with the corresponding signal in 2, to a one-bond coupling to phosphorus and the smaller value of 10 Hz to a two-bond coupling to the phosphorus atom of the $\mathrm{P}(\mathrm{OMe})_{3}$ ligand. The two

Table 2 Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for 3

$\mathrm{Co}(1)-\mathrm{Co}(2)$	$2.650(2)$	$\mathrm{P}(1)-\mathrm{C}(4)$	$1.805(11)$
$\mathrm{Co}(1)-\mathrm{P}(1)$	$2.167(3)$	$\mathrm{P}(1)-\mathrm{C}(10)$	$1.825(10)$
$\mathrm{Co}(1)-\mathrm{P}(2)$	$2.146(3)$	$\mathrm{P}(1)-\mathrm{C}(16)$	$1.829(11)$
$\mathrm{Co}(2)-\mathrm{P}(2)$	$2.195(3)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.424(15)$
$\mathrm{Co}(2)-\mathrm{P}(3)$	$2.152(4)$	$\mathrm{C}(4)-\mathrm{C}(6)$	$1.402(17)$
$\mathrm{Co}(1)-\mathrm{C}(1)$	$1.742(12)$	$\mathrm{P}(3)-\mathrm{O}(4)$	$1.540(10)$
$\mathrm{Co}(1)-\mathrm{C}(2)$	$1.738(13)$	$\mathrm{P}(3)-\mathrm{O}(5)$	$1.576(12)$
$\mathrm{Co}(2)-\mathrm{C}(3)$	$1.760(13)$	$\mathrm{P}(3)-\mathrm{O}(6)$	$1.584(11)$
$\mathrm{Co}(2)-\mathrm{C}(4)$	$2.026(9)$	$\mathrm{C}(1)-\mathrm{O}(1)$	$1.163(16)$
$\mathrm{Co}(2)-\mathrm{C}(5)$	$2.069(12)$	$\mathrm{C}(2)-\mathrm{O}(2)$	$1.150(16)$
$\mathrm{Co}(2)-\mathrm{C}(6)$	$2.137(10)$	$\mathrm{C}(3)-\mathrm{O}(3)$	$1.140(15)$
$\mathrm{Co}(2)-\mathrm{Co}(1)-\mathrm{P}(1)$	$73.4(1)$	$\mathrm{P}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	$116.6(8)$
$\mathrm{Co}(2)-\mathrm{Co}(1)-\mathrm{P}(2)$	$53.2(1)$	$\mathrm{P}(1)-\mathrm{C}(4)-\mathrm{C}(6)$	$121.8(8)$
$\mathrm{Co}(1)-\mathrm{Co}(2)-\mathrm{P}(2)$	$51.5(1)$	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(6)$	$115.1(10)$
$\mathrm{Co}(1)-\mathrm{Co}(2)-\mathrm{P}(3)$	$153.5(1)$	$\mathrm{Co}(1)-\mathrm{C}(1)-\mathrm{O}(1)$	$172.1(11)$
$\mathrm{Co}(1)-\mathrm{P}(1)-\mathrm{C}(4)$	$101.5(3)$	$\mathrm{Co}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	$174.5(11)$
$\mathrm{Co}(1)-\mathrm{P}(2)-\mathrm{Co}(2)$	$75.2(1)$	$\mathrm{Co}(2)-\mathrm{C}(3)-\mathrm{O}(3)$	$176.5(10)$

Table 3 Fractional atomic coordinates ($\times 10^{4}$) with estimated standard deviations (e.s.d.s) in parentheses for the non-hydrogen atoms of 3

Atom	X / a	Y / b	Z / c
Co(1)	$1679(1)$	$2556(1)$	$2188(1)$
Co(2)	$2374(1)$	$2022(1)$	$449(1)$
P(1)	$2888(2)$	$2616(2)$	$2904(2)$
P(2)	$1242(1)$	$2545(2)$	$256(2)$
P(3)	$2447(2)$	$1771(2)$	$-1423(3)$
O(1)	$886(5)$	$1506(6)$	$3545(8)$
O(2)	$1191(5)$	$4079(6)$	$2713(8)$
O(3)	$1931(5)$	$534(5)$	$1255(9)$
O(4)	$1881(7)$	$2193(7)$	$-2415(8)$
O(5)	$2244(7)$	$942(7)$	$-1954(9)$
O(6)	$3261(6)$	$1957(8)$	$-1721(9)$
C(1)	$1227(6)$	$1883(7)$	$2970(10)$
C(2)	$1410(6)$	$3488(7)$	$2473(10)$
C(3)	$2083(6)$	$1128(7)$	$940(10)$
C(4)	$3278(5)$	$2529(6)$	$1521(9)$
C(5)	$2983(6)$	$3038(7)$	$547(11)$
C(6)	$3551(6)$	$1827(7)$	$1159(12)$
C(7)	$1644(11)$	$1995(12)$	$-3692(11)$
C(8)	$2610(12)$	$256(9)$	$-1475(17)$
C(9)	$3533(11)$	$1904(15)$	$-2816(14)$
C(10)	$3421(6)$	$1877(6)$	$3863(9)$
C(11)	$3067(8)$	$1207(6)$	$418(10)$
C(12)	$3472(8)$	$614(8)$	$4800(11)$
C(13)	$4247(9)$	$708(9)$	$5202(12)$
C(14)	$4599(8)$	$1369(9)$	$4966(11)$
C(15)	$4192(7)$	$1957(8)$	$4285(10)$
C(16)	$3308(7)$	$3501(6)$	$3617(11)$
C(17)	$3014(9)$	$3818(8)$	$4561(11)$
C(18)	$3314(11)$	$4495(10)$	$5133(16)$
C(19)	$3903(11)$	$4847(11)$	$4693(19)$
C(20)	$4192(10)$	$4535(9)$	$3761(17)$
C(21)	$3893(7)$	$3870(7)$	$3215(14)$
C(22)	$1009(6)$	$3432(6)$	$-596(8)$
C(23)	$1475(7)$	$3777(7)$	$-1286(10)$
C(24)	$1248(9)$	$4465(7)$	$-1928(11)$
C(25)	$564(9)$	$4795(8)$	$-1871(13)$
C(26)	$96(10)$	$4450(9)$	$-1241(14)$
C(27)	$310(7)$	$3775(7)$	$-568(12)$
C(28)	$466(5)$	$1918(6)$	$-469(10)$
C(29)	$130(6)$	$1395(6)$	$214(12)$
C(30)	$-423(7)$	$889(7)$	$-357(14)$
C(31)	$-636(8)$	$897(8)$	$-1604(16)$
C(32)	$-319(9)$	$1403(10)$	$-2278(14)$
C(33)	$221(7)$	$1922(8)$	$-1711(11)$

terminal carbons of the allyl group, as in 2, give rise to separate resonances, with the lower field signal showing a doublet splitting [$\left.{ }^{2} J(\mathrm{PC}) 16 \mathrm{~Hz}\right]$.

Fig. 2 Molecular structure of $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}\right)\left\{\mu-\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CH}-\right.\right.$ $\left.\mathrm{CH}\}(\mathrm{CO})_{3}\right] 4 \mathrm{c}$ including the atom numbering scheme
(c) Reaction of $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right] 2$ with $\mathrm{RC}=\mathrm{CH}\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{OH}\right.$, Me or H$)$.-Reaction of $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2}-\right.\right.$ $\left.\left.\mathrm{C}_{3} \mathrm{H}_{4}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right] 2$ with $\mathrm{RC} \equiv \mathrm{CH}\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{OH}\right.$, Me or $\mathrm{H})$ at 363 K in toluene gives, in addition to unreacted starting material and unidentified decomposition products, the complexes $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}\right)\left\{\mu-\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CHCR}\right\}(\mathrm{CO})_{3}\right](\mathrm{R}=$ $\mathrm{CH}_{2} \mathrm{OH} 4 \mathrm{a}, \mathrm{Me} 4 \mathrm{~b}$ or H 4 c$)$ and $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}\right)\{\mu\right.$ $\left.\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CRCH}\right\}(\mathrm{CO})_{3}$] $(\mathrm{R}=\mathrm{Me} 5)$ in yields ranging from $2-21 \%$). All the complexes $4 a-4 c$ and 5 have been characterised spectroscopically (see Table 1 and Experimental section) and the structure of $4 \mathbf{c}$ has been determined by an X-ray crystalstructure analysis.
The molecular structure of $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}\right)\{\mu-\right.$ $\left.\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CHCH}\right\}(\mathrm{CO})_{3}$] $\mathbf{4 c}$ is illustrated in Fig. 2 together with the atom numbering scheme; Table 4 lists selected bond distances and angles and atomic coordinates are given in Table 5.
The single metal-metal bond in $\mathbf{4 c}$ is bridged by two ligands. The first consists of an allyl group substituted on the central carbon atom by a PPh_{2} group; this ligand bonds through the phosphorus atom to $\mathrm{Co}(1)$ and through all three carbon atoms of the allyl group to $\mathrm{Co}(2)$. The second ligand consists of a $\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CHCH}$ moiety which with $\mathrm{Co}(2)$ forms a fivemembered metallacyclic ring, the unsaturated $\mathrm{C}-\mathrm{C}$ bond of which is η^{2}-co-ordinated to the second cobalt atom, $\mathrm{Co}(1)$. In addition to these bridging ligands, $\mathrm{Co}(1)$ has two terminally coordinated carbonyl groups, and $\mathrm{Co}(2)$ has one.
The metal-metal bond distance in $\mathbf{4 c}[\mathrm{Co}(1)-\mathrm{Co}(2)$ 2.586(2) \AA] is consistent with the presence of a single Co-Co bond as required by the EAN (effective atomic number) rule. The metal-metal bond length lies between those found for single $\mathrm{Co}-\mathrm{Co}$ bonds in two related compounds, viz. $\left[\mathrm{Co}_{2}\left\{\mu-\mathrm{C}\left(\mathrm{CO}_{2}-\right.\right.\right.$ $\left.\left.\mathrm{Me})=\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right] \quad[\mathrm{Co}(1)-\mathrm{Co}(2) \quad 2.458(1)$ $\AA]^{12}$ and $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{3}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}\right] 3$ $[\mathrm{Co}(1)-\mathrm{Co}(2) 2.650(2) \AA]$.

The phosphorus atom of the $\mu-\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}$ ligand in $\mathbf{4 c}$ donates two electrons to $\mathrm{Co}(1)[\mathrm{Co}(1)-\mathrm{P}(2) 2.210(4) \AA]$, and the three-electron donating allyl fragment bonds almost symmetrically to the second cobalt atom $[\mathrm{Co}(2)-\mathrm{C}(1) 2.111(16)$, $\mathrm{Co}(2)-\mathrm{C}(2) 1.942(15)$ and $\mathrm{Co}(2)-\mathrm{C}(3) 2.131(13) \AA]$. These cobalt-carbon distances may be compared with those of the identical bridging ligand in the related complex $3[\mathrm{Co}(1)-\mathrm{P}(1)$ $2.167(3), \mathrm{Co}(2)-\mathrm{C}(4)$ 2.026(9), $\mathrm{Co}(2)-\mathrm{C}(5)$ 2.069(12), $\mathrm{Co}(2)-$ $\mathrm{C}(6) 2.137(10) \AA$]. The other bridging ligand in $\mathbf{4 c}, \mu-$ $\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CHCH}$, is similar to that present in the complex $\left[\mathrm{Co}_{2}\left\{\mu-\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CHCH}\right\}\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)\right]$ which has been previously studied by X-ray analysis. ${ }^{13}$ The bond lengths

Table 4 Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathbf{4 c}$

$\mathrm{Co}(1)-\mathrm{Co}(2)$	$2.586(2)$	$\mathrm{Co}(1)-\mathrm{P}(2)$	$2.210(4)$
$\mathrm{Co}(1)-\mathrm{C}(4)$	$1.939(12)$	$\mathrm{Co}(1)-\mathrm{C}(5)$	$2.083(16)$
$\mathrm{Co}(2)-\mathrm{P}(1)$	$2.174(5)$	$\mathrm{Co}(2)-\mathrm{P}(2)$	$2.777(4)$
$\mathrm{Co}(2)-\mathrm{C}(1)$	$2.111(16)$	$\mathrm{Co}(2)-\mathrm{C}(2)$	$1.942(15)$
$\mathrm{Co}(2)-\mathrm{C}(3)$	$2.131(13)$	$\mathrm{Co}(2)-\mathrm{C}(4)$	$1.887(10)$
$\mathrm{P}(1)-\mathrm{C}(6)$	$1.894(12)$	$\mathrm{P}(2)-\mathrm{C}(2)$	$1.796(13)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.395(19)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.400(18)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.391(22)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.470(22)$
$\mathrm{C}(6)-\mathrm{O}-7)$	$1.242(20)$		
$\mathrm{P}(2)-\mathrm{Co}(1)-\mathrm{Co}(2)$	$70.2(1)$	$\mathrm{C}(5)-\mathrm{Co}(1)-\mathrm{Co}(2)$	$75.3(4)$
$\mathrm{C}(5)-\mathrm{Co}(1)-\mathrm{C}(4)$	$40.3(6)$	$\mathrm{P}(1)-\mathrm{Co}(2)-\mathrm{Co}(1)$	$81.3(1)$
$\mathrm{P}(2)-\mathrm{Co}(2)-\mathrm{Co}(1)$	$48.5(1)$	$\mathrm{P}(2)-\mathrm{Co}(2)-\mathrm{P}(1)$	$104.1(1)$
$\mathrm{C}(1)-\mathrm{Co}(2)-\mathrm{Co}(1)$	$94.3(3)$	$\mathrm{C}(2)-\mathrm{Co}(2)-\mathrm{Co}(1)$	$86.9(4)$
$\mathrm{C}(2)-\mathrm{Co}(2)-\mathrm{P}(1)$	$129.1(4)$	$\mathrm{C}(2)-\mathrm{Co}(2)-\mathrm{P}(2)$	$40.0(4)$
$\mathrm{C}(2)-\mathrm{Co}(2)-\mathrm{C}(1)$	$40.0(5)$	$\mathrm{C}(3)-\mathrm{Co}(2)-\mathrm{Co}(1)$	$115.1(4)$
$\mathrm{C}(3)-\mathrm{Co}(2)-\mathrm{C}(1)$	$68.7(6)$	$\mathrm{C}(3)-\mathrm{Co}(2)-\mathrm{C}(2)$	$39.9(5)$
$\mathrm{C}(4)-\mathrm{Co}(2)-\mathrm{Co}(1)$	$48.3(4)$	$\mathrm{C}(4)-\mathrm{Co}(2)-\mathrm{C}(1)$	$97.7(5)$
$\mathrm{C}(4)-\mathrm{Co}(2)-\mathrm{C}(2)$	$120.0(5)$	$\mathrm{C}(4)-\mathrm{Co}(2)-\mathrm{C}(3)$	$159.3(6)$
$\mathrm{C}(6)-\mathrm{P}(1)-\mathrm{Co}(2)$	$101.9(5)$	$\mathrm{Co}(2)-\mathrm{P}(2)-\mathrm{Co}(1)$	$61.2(1)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Co}(2)$	$63.5(9)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{Co}(2)$	$76.5(9)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{P}(2)$	$115.9(8)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{Co}(2)$	$77.3(9)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{P}(2)$	$122.0(1)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$118.0(1)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{Co}(2)$	$62.8(7)$	$\mathrm{Co}(2)-\mathrm{C}(4)-\mathrm{Co}(1)$	$85.1(5)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{Co}(1)$	$75.5(8)$	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{Co}(2)$	$122.1(9)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{Co}(1)$	$64.3(8)$	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{Co}(1)$	$99.0(9)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$120.0(1)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{P}(1)$	$107.0(1)$
$\mathrm{O}(7)-\mathrm{C}(6)-\mathrm{P}(1)$	$124.0(1)$	$\mathrm{O}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	$129.0(1)$

within the ligand in $4 \mathrm{c}[\mathrm{P}(1)-\mathrm{C}(6) 1.894(12), \mathrm{C}(6)-\mathrm{C}(5)$ $1.470(22), \mathrm{C}(5)-\mathrm{C}(4) \quad 1.391(22) \AA]$ are similar to the corresponding distances in the latter complex [P-C 1.857(7), $\mathrm{C}-\mathrm{C} 1.461$ (11), $\mathrm{C}=\mathrm{C} 1.408(6) \AA]$ as is the $\mathrm{P}(1)-\mathrm{Co}(1)$ distance [2.174(5) vs. 2.209(2) A]. The Co-C bond lengths to the π-bonded carbon atoms are also similar to those in $\left[\mathrm{Co}_{2}\left\{\mu-\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CHCH}\right\}\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)\right][\mathrm{Co}(1)-\mathrm{C}(4)$ $1.939(12), \mathrm{Co}(1)-\mathrm{C}(5) 2.083(16)$ vs. $\mathrm{Co}-\mathrm{C} 1.929(7), \mathrm{Co}-\mathrm{C}$ $2.085(7) \AA]$ whereas the Co-C bond length to the σ-bonded carbon atom in $4 \mathbf{c}$ is considerably shorter $[\mathrm{Co}(2)-\mathrm{C}(4)$ $1.887(10)$ vs. Co-C $1.984(6) \AA$]. The three carbonyl ligands in $\mathbf{4 c}$ are essentially linear [Co-C(carbonyl) distances 1.732(12)$1.755(16) \AA, \mathrm{Co}-\mathrm{C}-\mathrm{O}$ (carbonyl) angles 173(2)-174(1) ${ }^{\circ}$].
The spectroscopic properties of complex 4 c suggest that the solid-state structure is maintained in solution. In the IR spectrum a weak band at $1622 \mathrm{~cm}^{-1}$ is assigned to $v(\mathrm{C}=\mathrm{O})$ of the five-membered metallacyclic ring. In the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum two closely spaced broad upfield singlet resonances centred at $\delta-92.6$ and -95.0 are seen, these being consistent with the presence of a $\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}$ group and a phosphorus atoms which is part of a five-membered metallacyclic ring, ${ }^{2,13}$ although which signal is due to which phosphorus atom is uncertain. In the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, recorded at 293 K , three distinct broad resonances are observed for the terminal CO ligands. The cobalt atom ligated by two CO groups is therefore non-fluxional at this temperature. A sharper doublet carbonyl resonance at higher field is assigned to the phosphorus-bound CO of the metallacyclic ring [${ }^{1} J(\mathrm{PC}) 40$ Hz]. The $\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CHCH}$ carbon appears as a singlet at δ 152.5, whilst the $\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CHCH}$ carbon resonance at $\delta 83.4$ is a doublet of doublets [${ }^{2} J(\mathrm{PC}) 75,{ }^{2} J\left(\mathrm{P}^{\prime} \mathrm{C}\right) 5 \mathrm{~Hz}$. The allyl carbons give rise to three separate resonances with a similar pattern of chemical shifts to that for the allyl complex $\left[\mathrm{Co}_{2}(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right]$ 2. Unlike 2, however, the resonances due to the terminal allyl carbons in $\mathbf{4 c}$ show coupling to the phosphorus atom of the five-membered metallacycle $\{\delta 53.6$ $\left[{ }^{2} J(\mathrm{PC}) 20,{ }^{2} J\left(\mathrm{P}^{\prime} \mathrm{C}\right) 14\right]$ and $46.0\left[{ }^{2} J(\mathrm{PC}) 10 \mathrm{~Hz}\right][\mathrm{P}=$ $\left.\left.\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}, \mathrm{P}^{\prime}=\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CHCH}\right]\right\}$.
The structure of complex 4 c can be compared to that postulated for the related species $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}\right)\left\{\mu-\mathrm{PPh}_{2}-\right.\right.$ $\left.\mathrm{CHCHC}(\mathrm{O})\}(\mathrm{CO})_{3}\right]$ which was proposed as a possible inter-

Table 5 Fractional atomic coordinates with e.s.d.s in parentheses for the non-hydrogen atoms of $\mathbf{4 c}$

Atom	x	y	z
Co(1)	-0.2740(1)	0.0207(2)	0.1002(2)
$\mathrm{Co}(2)$	-0.1239(1)	0.1024(2)	0.2602(2)
$\mathrm{P}(1)$	-0.1295(2)	0.2413(3)	0.1449 (4)
$\mathrm{P}(2)$	-0.2839(2)	0.0958(3)	0.3478(4)
C(11)	$-0.3561(9)$	0.0931(14)	$0.0270(16)$
$\mathrm{O}(11)$	-0.4089(7)	$0.1358(11)$	-0.0351(13)
C(12)	-0.3166(10)	-0.1447(16)	$0.0456(18)$
$\mathrm{O}(12)$	-0.3455(7)	-0.2556(12)	-0.0065(14)
C(21)	-0.0176(9)	0.0810(13)	$0.2686(16)$
$\mathrm{O}(21)$	0.0531(7)	0.0564(10)	$0.2763(13)$
C(1)	-0.1374(8)	-0.0122(12)	$0.3942(15)$
C(2)	-0.1757(8)	0.1070 (13)	0.4366 (14)
C(3)	-0.1222(9)	0.2265(14)	$0.4948(16)$
C(4)	-0.1614(7)	-0.0342(11)	$0.0656(14)$
C(5)	-0.1922(9)	-0.0068(14)	--0.0618(17)
C(6)	-0.1825(8)	$0.1303(13)$	--0.0560(15)
$\mathrm{O}(7)$	-0.2044(6)	0.1718(9)	-0.1590(11)
C(111)	-0.1835(5)	0.3949(9)	0.1987(9)
C(112)	-0.1513(5)	0.4990(9)	0.3379(9)
C(113)	-0.1911(5)	$0.6167(9)$	0.3859(9)
C(114)	-0.2631(5)	0.6303(9)	0.2947 (9)
C(115)	-0.2953(5)	0.5263(9)	0.1555(9)
C(116)	-0.2555(5)	0.4086(9)	0.1075(9)
C(121)	-0.0275(5)	0.3027(9)	0.1141(9)
C(122)	-0.0172(5)	0.3071 (9)	--0.0276(9)
C(123)	0.0602(5)	0.3590 (9)	--0.0474(9)
C(124)	0.1275 (5)	0.4065(9)	0.0746(9)
C(125)	$0.1172(5)$	$0.4021(9)$	0.2163(9)
C(126)	0.0398(5)	0.3502(9)	0.2360(9)
C(211)	-0.3478(6)	-0.0166(9)	0.4020(8)
C(212)	-0.4258(6)	-0.0763(9)	$0.3112(8)$
C(213)	-0.4779(6)	-0.1593(9)	0.3531 (8)
C(214)	-0.4520(6)	-0.1827(9)	$0.4857(8)$
C(215)	-0.3740(6)	-0.1230(9)	0.5766(8)
C(216)	-0.3219(6)	-0.0399(9)	$0.5347(8)$
C(221)	-0.3205(5)	0.2586(8)	$0.4519(10)$
$\mathrm{C}(222)$	-0.3131(5)	$0.3066(8)$	$0.6116(10)$
C(223)	-0.3427 (5)	0.4287(8)	$0.6922(10)$
C(224)	-0.3796(5)	0.5028(8)	$0.6130(10)$
C(225)	-0.3869(5)	0.4548(8)	$0.4533(10)$
C(226)	-0.3573(5)	0.3327(8)	0.3727 (10)

mediate in the formation of the nine-membered dimetallacyclic ring-containing complex $\left[\mathrm{Co}_{2}\left\{\mu-\mathrm{PPh}_{2} \mathrm{CHCHC}(\mathrm{O}) \mathrm{CHCMe}-\right.\right.$ $\left.\left.\mathrm{PPh}_{2}\right\}(\mathrm{CO})_{4}\right]$ from the reaction of $\left[\mathrm{Co}_{2}\left\{\mu-\mathrm{PPh}_{2} \mathrm{CHCHC}(\mathrm{O})\right\}-\right.$ $\left.\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right]$ with allene. ${ }^{9}$ The structure of $\mathbf{4 c}$ differs from this proposed intermediate, however, in that the position of the CO in the five-membered metallacyclic ring is not the same. In the proposed mechanism for the reaction of the five-membered ring complex $\left[\mathrm{Co}_{2}\left\{\mu-\mathrm{PPh}_{2} \mathrm{CHCHC}(\mathrm{O})\right\}\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right]$ with allene, the intermediate $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}\right)\left\{\mu-\mathrm{PPh}_{2} \mathrm{CHCH}-\right.\right.$ $\mathrm{C}(\mathrm{O})\}(\mathrm{CO})_{3}$] leads to the nine-membered ring complex via a 1,3-H shift within the $\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}$ ligand. This $1,3-\mathrm{H}$ shift is followed by linking of the two bridging ligands via carboncarbon bond formation. ${ }^{9}$ A similar linking of the two bridging ligands in $4 c$ is presumably inhibited by the alternative positioning of the CO within the five-membered metallacyclic ring.

The proposed structures of the complexes $\mathbf{4 a}, \mathbf{4 b}$ and 5 (Scheme 1) are assigned on the basis of their spectroscopic properties which are closely related to those of $\mathbf{4 c}$ (see Table 1 and Experimental section).

In the reaction of $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right] 2$ with $\mathrm{MeC} \equiv \mathrm{CH}$ an approximately $6: 1$ mixture of the isomeric complexes $4 b$ and 5 is isolated, corresponding to the two alternative modes of insertion of the alkyne. In the reaction of 2 with $\mathrm{HOCH}_{2} \equiv \mathrm{CH}$, however, only one isomer is isolated, $\left[\mathrm{Co}_{2}-\right.$ $\left.\left(\mu-\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}\right)\left\{\mu-\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CHC}\left(\mathrm{CH}_{2} \mathrm{OH}\right)\right\}(\mathrm{CO})_{3}\right]$ 4a. The reason for the absence in this reaction of an isomer of $4 \mathbf{a}$ of

Scheme 2 Some possible pathways for the formation of complexes 4a$4 c$ and 5 from 2
type 5 , containing the ligand $\mu-\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{OH}\right) \mathrm{CH}$, is almost certainly not thermodynamic in origin since the closely related complex 7a (see below) contains a ligand of this type. It should be noted that $\mathbf{4 a}$ itself is only obtained in low yield.

Some possible pathways for the formation of complexes $\mathbf{4 a}$ $4 \mathbf{c}$ and 5 are illustrated in Scheme 2. Initial co-ordination of the alkyne to the allyl-co-ordinated cobalt atom with either conversion of the allyl from an η^{3} to a σ ligand or $C O$ loss to give respectively intermediates \mathbf{A} and B, could be the first step. Intermediate \mathbf{B} is, of course, analogous to 3 with an alkyne in place of the $\mathrm{P}(\mathrm{OMe})_{3}$ group. The complex $\left[\mathrm{Co}_{2}\{\mu-\right.$ $\mathrm{C}(\mathrm{OMe}) \mathrm{C}(\mathrm{Bu}) \mathrm{C}(\mathrm{O})\}(\mathrm{CO})_{6}$] provides an example of a stable dicobalt complex containing a similar type of four-membered metallacycle to that postulated in the intermediates \mathbf{X} and \mathbf{Y}. ${ }^{14}$ The combination of a carbonyl group and the alkyne leading to the formation of \mathbf{X} and Y must be the controlling factor in determining the isomer distribution of the products 4 and 5 . Related intermediates of the type \mathbf{X} / \mathbf{Y} involving a fourmembered $\mathrm{Co}-\mathrm{CH}=\mathrm{CH}-\mathrm{C}(\mathrm{O})$ metallacyclic ring have been previously proposed in the reaction of $\left[\mathrm{Co}_{2}(\mu-\mathrm{HCCH})(\mathrm{CO})_{6}\right]$ with the biphosphine $\mathrm{P}_{2} \mathrm{Ph}_{4}$, which gives as the principal product the complex $\left[\mathrm{Co}_{2}\left\{\mu-\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CHCH}\right\}\left(\mu-\mathrm{PPh}_{2}\right)\right.$ -

Scheme 3 Products from the reaction of $\left[\mathrm{Co}_{2}(\mu-\mathrm{RCCH})(\mathrm{CO})_{6}\right](\mathrm{R}=$ $\mathrm{CH}_{2} \mathrm{OH}$ or Me) with $\mathrm{P}_{2} \mathrm{Ph}_{4}$
$\left.(\mathrm{CO})_{4}\right]^{13}$ We have accordingly investigated the reactions of $\left[\mathrm{Co}_{2}(\mu-\mathrm{RCCH})(\mathrm{CO})_{6}\right]$ ($\mathrm{R}=\mathrm{CH}_{2} \mathrm{OH}$ or Me) with $\mathrm{P}_{2} \mathrm{Ph}_{4}$ to see whether the related intermediates, proposed for this type of reaction, might lead to an isomer distribution for the products similar to that obtained in the reactions of 2 with $\mathrm{RCCH}(\mathrm{R}=$ $\mathrm{CH}_{2} \mathrm{OH}$ or Me).
(d) Reaction of $\left[\mathrm{Co}_{2}(\mu-\mathrm{RCCH})(\mathrm{CO})_{6}\right]\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{OH}\right.$ or Me$)$ with $\mathrm{P}_{2} \mathrm{Ph}_{4}$ - - Reaction of $\left[\mathrm{Co}_{2}(\mu-\mathrm{RCCH})(\mathrm{CO})_{6}\right]\left(\mathrm{R}=\mathrm{CH}_{2}-\right.$ OH or Me) with $\mathrm{P}_{2} \mathrm{Ph}_{4}$ in toluene at 318 K gives $\left[\mathrm{Co}_{2}\{\mu-\right.$ $\left.\left.\mathrm{PPh}_{2} \mathrm{CHCRC}(\mathrm{O})\right\}\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right]\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{OH} 8 \mathrm{a}\right.$ or Me 8 b$)$ in $51-54 \%$ yield, $\left[\mathrm{Co}_{2}\left\{\mu-\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CRCH}\right\}\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right]$ ($\mathrm{R}=\mathrm{CH}_{2} \mathrm{OH} 7 \mathrm{a}$ or Me 7 b) $(8-13 \%)$ and $\left[\mathrm{Co}_{2}\left\{\mu-\mathrm{PPh}_{2}-\right.\right.$ $\left.\mathrm{C}(\mathrm{O}) \mathrm{CHCR}\}\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right]\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{OH} \mathbf{6 a}\right.$ or $\left.\mathrm{Me} \mathbf{6 b}\right)(7-$ 12%). Complexes $8 \mathbf{8 a}$ and $\mathbf{8 b}$ have been previously synthesised from the reaction of $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{6}\right]$ with $\mathrm{HOCH}_{2} \mathrm{C} \equiv \mathrm{CH}$ and $\mathrm{MeC} \equiv \mathrm{CH}$ respectively. ${ }^{9}$ The complexes $\mathbf{6 a}, \mathbf{6 b}$ and $7 \mathbf{7 a}, 7 \mathbf{b}$ have been characterised spectroscopically (see Table 1 and Experimental section) and their structures (Scheme 3) are assigned on the basis of a comparison of these properties with those of the previously reported complex [$\mathrm{Co}_{2}\left\{\mu-\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O})-\right.$ $\left.\mathrm{CHCH}\}\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right] .{ }^{13}$ In no case is the formation of metallacycles containing a $\mathrm{Co}-\mathrm{PPh}_{2}-\mathrm{C}(\mathrm{O})-\mathrm{CR}=\mathrm{CR}^{\prime}(\mathrm{R}=\mathrm{H}$, $\mathrm{R}^{\prime}=\mathrm{Me}$ or $\mathrm{CH}_{2} \mathrm{OH} ; \mathrm{R}=\mathrm{Me}$ or $\mathrm{CH}_{2} \mathrm{OH}, \mathrm{R}^{\prime}=\mathrm{H}$) ring regiospecific. In fact, the yield ratio $\mathbf{6 a}: 7 \mathbf{a}$ and $\mathbf{6 b}: 7 \mathbf{b}$ of these isomeric species is approximately $1: 1$ in each case, contrasting quite significantly with the relative yields of the related isomeric complexes 4 and 5 which indicate that the R substituent on the metallacyclic bridging ligand prefers to be localised on the carbon atom σ-bonded to the cobalt as in 4 . The explanation for this difference is uncertain but it would seem probable that electronic factors play an important role. Interestingly, strict regiospecificity was observed in the reaction of $[(O C))_{4} \mathrm{Ru}(\mu$ -
$\left.\left.\mathrm{PPh}_{2}\right) \mathrm{Co}(\mathrm{CO})_{3}\right]$ with $\mathrm{RC} \equiv \mathrm{CR}^{\prime}$ to give the related ruthenacyclic ring complexes $\left[\mathrm{RuCo}\left\{\mu-\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CRCR}^{\prime}\right\}(\mu-\mathrm{CO})(\mathrm{CO})_{5}\right]$ $\left(\mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{Ph}, \mathrm{Bu}^{\mathrm{t}}\right.$ or $\left.\mathrm{H} ; \mathrm{R}=\mathrm{SiMe}_{3}, \mathrm{R}^{\prime}=\mathrm{H}\right)$. ${ }^{2}$

Experimental

All reactions were carried out under a nitrogen atmosphere using standard Schlenk techniques. Solvents were distilled under nitrogen from appropriate drying agents and degassed prior to use. Preparative thin-layer chromatography (TLC) was carried out on commercial Merck plates with a 0.25 mm layer of silica, or on 1 mm silica plates prepared at the University Chemical Laboratory, Cambridge. Column chromatography was performed on Kieselgel 60 ($70-230$ or $230-400$ mesh). Products are given in order of decreasing R_{f} values.

The instrumentation used to obtain spectroscopic data has been described previously. ${ }^{15}$ Phosphorus-31 NMR chemical shifts are given relative to $\mathrm{P}(\mathrm{OMe})_{3}$ with upfield shifts negative. Unless otherwise stated all reagents were obtained from commercial suppliers and used without further purification. The compounds $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{6}\right] \quad 1,{ }^{9,16} \quad\left[\mathrm{Co}_{2}(\mu-\mathrm{RCCH})-\right.$ $\left.(\mathrm{CO})_{6}\right]\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{OH} \text { or } \mathrm{Me}\right)^{17.18}$ and $\mathrm{P}_{2} \mathrm{Ph}_{4}{ }^{19}$ were prepared by literature methods.
(i) Reaction of $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{6}\right] 1$ with Allene.-Complex $1(0.80 \mathrm{~g}, 1.22 \mathrm{mmol})$ was dissolved in toluene $\left(50 \mathrm{~cm}^{3}\right)$ and allene was slowly purged through the solution for 0.75 h . After stirring the solution for 15 h at room temperature, the solvent was removed on a rotary evaporator. The residue was taken up in the minimum amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, adsorbed onto silica, pumped dry and added to the top of a chromatography column. Elution with hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)$ gave one redbrown crystalline complex $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right]$ $2\left(0.63 \mathrm{~g}, 81 \%\right.$) (Found: C, 58.2; H, 3.8; P, 9.6. $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{Co}_{2} \mathrm{O}_{4} \mathrm{P}_{2}$ requires $\mathrm{C}, 58.2 ; \mathrm{H}, 3.8 ; \mathrm{P}, 9.7 \%$); fast atom bombardment (FAB) mass spectrum, $m / z 640\left(M^{+}\right)$and $M^{+}-n \mathrm{CO}(n=1-$ 4); NMR (CDCl_{3}): ${ }^{13} \mathrm{C}$ (${ }^{1} \mathrm{H}$ composite pulse decoupled), δ 208.7 ($\mathrm{s}, 1 \mathrm{CO}$), 207.2 (s , 1 CO), 203.7 ($\mathrm{s}, 1 \mathrm{CO}$), 203.0 ($\mathrm{s}, 1 \mathrm{CO}$), $142-128(\mathrm{~m}, \mathrm{Ph}), 67.4\left[\mathrm{~d},{ }^{1} J(\mathrm{PC}) 38, \mathrm{PPh}_{2} C\left(\mathrm{CH}_{2}\right)\left(\mathrm{CH}_{2}\right)\right], 59.8$ $\left[\mathrm{d},{ }^{2} J(\mathrm{PC}) 14, \mathrm{PPh}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right)\left(\mathrm{CH}_{2}\right)\right]$ and $44.2\left[\mathrm{~s}, \mathrm{PPh}_{2} \mathrm{C}-\right.$ $\left.\left(\mathrm{CH}_{2}\right)\left(\mathrm{CH}_{2}\right)\right] ;{ }^{3} \mathrm{P}\left({ }^{1} \mathrm{H}\right.$ gated decoupled $), \delta 62.4\left[\mathrm{~d},{ }^{2} J(\mathrm{PP}) 102\right.$ $\mathrm{Hz}, \mu-\mathrm{PPh}_{2}$] and $-86.5\left(\mathrm{~d}, \mu-\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}\right)$.
(ii) Reaction of $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right] 2$ with $\mathrm{P}(\mathrm{OMe})_{3}$.-Complex $2(0.20 \mathrm{~g}, 0.313 \mathrm{mmol})$ was dissolved in toluene ($30 \mathrm{~cm}^{3}$) and $\mathrm{P}(\mathrm{OMe})_{3}\left(0.038 \mathrm{~cm}^{3}, 0.313 \mathrm{mmol}\right)$ added dropwise. After heating the solution at 363 K for 1.5 h the solvent was removed in vacuo. The residue was dissolved in the minimum quantity of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and applied to the base of TLC plates. Elution with hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($1: 4$) gave green crystalline $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{3}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}\right] 3(0.15 \mathrm{~g}$, 65%) and traces of other uncharacterised compounds. Complex 3: FAB mass spectrum, $m / z 736\left(M^{+}\right)$and $M^{+}-n \mathrm{CO}(n=1-$ 3). NMR (CDCl_{3}): ${ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right.$ composite pulse decoupled), $\delta 211.8$ (s, 1 CO), 208.0 (s, 1 CO), 206.5 (s, 1 CO), 144-127 (m, Ph), 63.3 [dd, $\left.{ }^{1} J(\mathrm{PC}) 39,{ }^{2} J\left(\mathrm{P}^{\prime} \mathrm{C}\right) 10, \mathrm{PPh}_{2} C\left(\mathrm{CH}_{2}\right)\left(\mathrm{CH}_{2}\right)\right], 56.1$ [d, $\left.{ }^{2} J(\mathrm{PC}) 16, \mathrm{PPh}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right)\left(\mathrm{CH}_{2}\right)\right], 51.9\left[\mathrm{~d},{ }^{2} J(\mathrm{PC}) 6 \mathrm{~Hz}, \mathrm{P}-\right.$ $\left.(\mathrm{OMe})_{3}\right]$ and $45.4\left[\mathrm{~s}, \mathrm{PPh}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right)\left(\mathrm{CH}_{2}\right)\right] ;{ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right.$ gated decoupled), $\delta 48.7$ ($\mathrm{s}, \mu-\mathrm{PPh}_{2}$), $19.7\left[\mathrm{~s}, \mathrm{br}, \mathrm{P}(\mathrm{OMe})_{3}\right]$ and -89.5 (s, $\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}$).
(iii) Reaction of $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right] 2$ with $\mathrm{RC} \equiv \mathrm{CH}\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{OH}, \mathrm{Me}\right.$ or H$)$.-(a) Complex $2(0.40 \mathrm{~g}, 1.81$ mmol) was dissolved in toluene ($40 \mathrm{~cm}^{3}$) and a five-fold excess of prop-2-yn-1-ol added. After heating the solution to 363 K for 1 h the solvent was removed on the rotary evaporator. The residue was taken up in the minimum amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, adsorbed onto silica, pumped dry and added to the top of a chromatography column. Elution with hexane-ethyl acetate (4:1) gave unreacted $2(0.100 \mathrm{~g}, 25 \%)$ and the green crystalline complex $\quad\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}\right)\left\{\mu-\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CHC}\left(\mathrm{CH}_{2} \mathrm{OH}\right)\right\}-\right.$
$\left.(\mathrm{CO})_{3}\right] 4 \mathrm{a}(0.061 \mathrm{~g}, 14 \%)$ along with some unidentified decomposition products. Complex $4 \mathbf{a}$ (Found: $\mathrm{C}, 58.4 ; \mathrm{H}, 4.0$. $\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{Co}_{2} \mathrm{O}_{5} \mathrm{P}_{2}$ requires $\mathrm{C}, 58.6 ; \mathrm{H}, 4.0 \%$): FAB mass spectrum, $m / z 696\left(M^{+}\right)$and $M^{+}-n C O(n=1-4)$. NMR $\left(\mathrm{CDCl}_{3}\right):{ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right.$ composite pulse decoupled), $\delta 208.7$ (s, 1 CO), 203.7 (s, 1 CO), 202.6 (s, 1 CO), 189.4 [d, ${ }^{1} J(\mathrm{PC}) 42$, $\left.\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CHC}\left(\mathrm{CH}_{2} \mathrm{OH}\right)\right], \quad 179.9 \quad\left[\mathrm{~s}, \quad \mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CHC}-\right.$ $\left.\left(\mathrm{CH}_{2} \mathrm{OH}\right)\right], 139-128(\mathrm{~m}, \mathrm{Ph}), 80.4\left[\mathrm{~d},{ }^{2} J(\mathrm{PC}) 73, \mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CH}-\right.$ $\left.\mathrm{C}\left(\mathrm{CH}_{2} \mathrm{OH}\right)\right], 74.3\left[\mathrm{~s}, \mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CHC}\left(\mathrm{CH}_{2} \mathrm{OH}\right)\right], 64.3[\mathrm{~d}$, $\left.{ }^{1} J(\mathrm{PC}) 38, \mathrm{PPh}_{2} C\left(\mathrm{CH}_{2}\right)\left(\mathrm{CH}_{2}\right)\right], 52.2\left[\mathrm{dd},{ }^{2} J(\mathrm{PC}) 10,{ }^{2} J\left(\mathrm{P}^{\prime} \mathrm{C}\right)\right.$ $\left.10, \mathrm{PPh}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right)\left(\mathrm{CH}_{2}\right)\right]$ and 46.7 [d, ${ }^{2} J(\mathrm{PC}) 10 \mathrm{~Hz}$, $\left.\mathrm{PPh}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right)\left(\mathrm{CH}_{2}\right)\right] ;{ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right.$ gated decoupled), $\delta-91.6$ and $-92.9\left[\mathrm{~s}, \mu-\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CHC}\left(\mathrm{CH}_{2} \mathrm{OH}\right)\right.$ and $\left.\mu-\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}\right]$.
(b) Complex $2(0.30 \mathrm{~g}, 0.47 \mathrm{mmol})$ was dissolved in toluene ($40 \mathrm{~cm}^{3}$) and the solution purged with methylacetylene. After heating the solution at 363 K for 1 h the solvent was removed on the rotary evaporator. Column chromatographic separation eluting with hexane-ethyl acetate ($4: 1$) gave unreacted $2(0.085$ $\mathrm{g}, 21 \%$) and a mixture of the green crystalline complexes $\left[\mathrm{CO}_{2}-\right.$ $\left.\left(\mu-\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}\right)\left\{\mu-\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CHCMe}\right\}(\mathrm{CO})_{3}\right] 4 \mathrm{~b}$ and $\left[\mathrm{Co}_{2}(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}\right)\left\{\mu-\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CMeCH}\right\}(\mathrm{CO})_{3}\right] 5$ along with unidentified decomposition products. Complexes 4 b and 5 were dissolved in the minimum of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and applied to the base of TLC plates and repeatedly eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give $\left[\mathrm{Co}_{2}(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}\right)\left\{\mu-\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CMeCH}\right\}(\mathrm{CO})_{3}\right] 5(0.006 \mathrm{~g}, 2 \%)$ and $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}\right)\left\{\mu-\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CHCMe}\right\}(\mathrm{CO})_{3}\right] 4 \mathrm{~b}(0.038 \mathrm{~g}$, 12%). Complex 5: FAB mass spectrum, $m / z 680\left(M^{+}\right)$and M^{+} $-n \mathrm{CO}(n=1-4) .{ }^{31} \mathrm{P}$ NMR ($\mathrm{CDCl}_{3},{ }^{1} \mathrm{H}$ gated decoupled), δ $-91.6\left[\mathrm{~s}, \mu-\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}\right.$ and $\left.\mu-\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CMeCH}\right]$. Complex $4 b$ (Found: $\mathrm{C}, 59.7 ; \mathrm{H}, 4.3 . \mathrm{C}_{34} \mathrm{H}_{28} \mathrm{Co}_{2} \mathrm{O}_{4} \mathrm{P}_{2}$ requires $\mathrm{C}, 60.0 ; \mathrm{H}$, $4.2 \%)$: FAB mass spectrum, $m / z 680\left(M^{+}\right)$and $M^{+}-n \mathrm{CO}$ ($n=1-4$). NMR (CDCl_{3}): ${ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right.$ composite pulse decoupled), $\delta 209.3$ (s, 1 CO), 204.1 (s, 1 CO), 202.5 (s, 1 CO), 187.9 [d, $\left.{ }^{1} J(\mathrm{PC}) 37, \mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CHCMe}\right], 180.3\left[\mathrm{~s}, \mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CHCMe}\right]$, $137-128(\mathrm{~m}, \mathrm{Ph}), 85.0$ [d, ${ }^{2} J(\mathrm{PC}) 76, \mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CHCMe}$, 64.5 $\left[\mathrm{d},{ }^{1} J(\mathrm{PC}) 37, \mathrm{PPh}_{2} C\left(\mathrm{CH}_{2}\right)\left(\mathrm{CH}_{2}\right)\right], 53.9\left[\mathrm{dd},{ }^{2} J(\mathrm{PC}) 10\right.$, $\left.{ }^{2} J\left(\mathrm{P}^{\prime} \mathrm{C}\right) 10, \mathrm{PPh}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right)\left(\mathrm{CH}_{2}\right)\right], 45.4\left[\mathrm{~d},{ }^{2} J(\mathrm{PC}) 10 \mathrm{~Hz}\right.$, $\mathrm{PPh}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right)\left(\mathrm{CH}_{2}\right)$] and 36.4 (s, Me); ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right.$ gated decoupled), $\delta-91.5\left[\mathrm{~s}, \mu-\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}\right.$ and $\left.\mu-\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CHCMe}\right]$.
(c) Complex $2(0.40 \mathrm{~g}, 1.81 \mathrm{mmol})$ was dissolved in toluene (40 cm^{3}) and the solution purged with acetylene. After heating the solution to 363 K for 1 h the solvent was removed on the rotary evaporator. Column chromatographic separation eluting with hexane-ethyl acetate ($4: 1$) gave unreacted $2(0.088 \mathrm{~g}, 22 \%)$ and the green crystalline complex $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}\right)\left\{\mu-\mathrm{PPh}_{2^{-}}\right.\right.$ $\left.\mathrm{C}(\mathrm{O}) \mathrm{CHCH}\}(\mathrm{CO})_{3}\right] 4 \mathrm{c}(0.087 \mathrm{~g}, 21 \%)$. Complex 4c: FAB mass spectrum, $m / z 666\left(M^{+}\right)$and $M^{+}-n C O(n=1-4)$. NMR $\left(\mathrm{CDCl}_{3}\right):{ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right.$ composite pulse decoupled), $\delta 208.7$ (s, 1 $\mathrm{CO}), 202.8(\mathrm{~s}, 1 \mathrm{CO}), 202.0(\mathrm{~s}, 1 \mathrm{CO}), 190.3$ [d, ${ }^{1} J(\mathrm{PC}) 40$, $\left.\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CHCH}\right], 152.5$ [s, $\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CHCH}, 140-128(\mathrm{~m}$, $\mathrm{Ph}), 83.4$ [dd, $\left.{ }^{2} J(\mathrm{PC}) 75,{ }^{2} J\left(\mathrm{P}^{\prime} \mathrm{C}\right) 5, \mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) C \mathrm{HCH}\right], 64.8$ [d, $\left.{ }^{1} J(\mathrm{PC}) 37, \mathrm{PPh}_{2} C\left(\mathrm{CH}_{2}\right)\left(\mathrm{CH}_{2}\right)\right], 53.6\left[\mathrm{dd},{ }^{2} J(\mathrm{PC}) 20,{ }^{2} J\left(\mathrm{P}^{\prime} \mathrm{C}\right)\right.$ 14, $\left.\mathrm{PPh}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right)\left(\mathrm{CH}_{2}\right)\right]$ and $46.0 \quad\left[\mathrm{~d},{ }^{2} J(\mathrm{PC}) 10 \mathrm{~Hz}\right.$, $\left.\mathrm{PPh}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right)\left(\mathrm{CH}_{2}\right)\right] .{ }^{31} \mathrm{P}$ (${ }^{1} \mathrm{H}$ gated decoupled), $\delta-92.6$ and $-95.0\left[\mathrm{~s}, \mu-\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CHCH}\right.$ and $\left.\mu-\mathrm{PPh}_{2} \mathrm{C}_{3} \mathrm{H}_{4}\right]$.
(iv) Reaction of $\left[\mathrm{Co}_{2}(\mu-\mathrm{RCCH})(\mathrm{CO})_{6}\right]\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{OH}\right.$ or Me$)$ with $\mathrm{P}_{2} \mathrm{Ph}_{4}$--(a) Complex $\left[\mathrm{Co}_{2}\left\{\mu-\left(\mathrm{HOCH}_{2}\right) \mathrm{CCH}\right\}(\mathrm{CO})_{6}\right](0.57$ $\mathrm{g}, 1.67 \mathrm{mmol}$) was dissolved in a toluene solution $\left(75 \mathrm{~cm}^{3}\right)$ containing $\mathrm{P}_{2} \mathrm{Ph}_{4}(0.62 \mathrm{~g}, 1.67 \mathrm{mmol})$ and heated to 318 K for 15 h. After removal of the solvent on the rotary evaporator, the residue was redissolved in the minimum of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and added to the top of a chromatography column. Elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave red crystalline $\left[\mathrm{Co}_{2}\left\{\mu-\mathrm{PPh}_{2} \mathrm{CHC}\left(\mathrm{CH}_{2} \mathrm{OH}\right) \mathrm{C}(\mathrm{O})\right\}(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right] 8 \mathrm{a}\left(0.58 \mathrm{~g}, 51 \%\right.$), purple crystalline $\left[\mathrm{Co}_{2}\{\mu-\right.$ $\left.\left.\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{OH}\right) \mathrm{CH}\right\}\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right] 7 \mathrm{a}(0.150 \mathrm{~g}, 13 \%)$ and green-brown $\left[\mathrm{Co}_{2}\left\{\mu-\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CHC}\left(\mathrm{CH}_{2} \mathrm{OH}\right)\right\}\left(\mu-\mathrm{PPh}_{2}\right)\right.$ $\left.(\mathrm{CO})_{4}\right] 6 \mathrm{a}(0.148 \mathrm{~g}, 12 \%)$. Complex 7a (Found: C, 56.8 ; H, 3.9. $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{Co}_{2} \mathrm{O}_{6} \mathrm{P}_{2}$ requires $\mathrm{C}, 56.2 ; \mathrm{H}, 3.5 \%$): FAB mass spectrum, $m / z 684\left(M^{+}\right)$and $M^{+}-n \mathrm{CO}(n=1-5)$. NMR $\left(\mathrm{CDCl}_{3}\right):{ }^{13} \mathrm{C}$ (${ }^{1} \mathrm{H}$ composite pulse decoupled), $\delta 206.1(\mathrm{~s}, 1 \mathrm{CO}), 204.0$ (s,
$1 \mathrm{CO}), 203.1$ (s, 1 CO), 200.6 (s, 1 CO), 188.2 [s, br, $\mathrm{PPh}_{2^{-}}$ $\left.C(\mathrm{O}) \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{OH}\right) \mathrm{CH}\right], 141-128(\mathrm{~m}, \mathrm{Ph}), 123.5$ [dd, ${ }^{2} J(\mathrm{PC}) 30$, $\left.{ }^{3} J\left(\mathrm{P}^{\prime} \mathrm{C}\right) 12, \mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{OH}\right) \mathrm{CH}\right], 93.9$ [d, ${ }^{2} J(\mathrm{PC}) 82$, $\left.\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{OH}\right) \mathrm{CH}\right]$ and 65.3 [d, ${ }^{3} J(\mathrm{PC}) 8 \mathrm{~Hz}, \mathrm{PPh}_{2}-$ $\left.\mathrm{C}(\mathrm{O}) \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{OH}\right) \mathrm{CH}\right] ;{ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right.$ gated decoupled), $\delta 30.6(\mathrm{~s}, \mu-$ PPh_{2}) and -76.7 [s, $\left.\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{OH}\right) \mathrm{CH}\right]$. Complex 6a: FAB mass spectrum, $m / z 684\left(M^{+}\right)$and $M^{+}-n \mathrm{CO}(n=1-5)$. NMR (CDCl_{3}): ${ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right.$ composite pulse decoupled), $\delta 205.2$ (s, 1 CO), 204.4 (s, 1 CO), 204.0 (s, 1 CO), 201.4 (s, 1 CO), 193.0 [d, $\left.{ }^{1} J(\mathrm{PC}) 32, \mathrm{PPh}_{2} C(\mathrm{O}) \mathrm{CHC}\left(\mathrm{CH}_{2} \mathrm{OH}\right)\right], 149.6\left[\mathrm{~d},{ }^{2} J(\mathrm{PC}) 31\right.$, $\left.\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CHC}\left(\mathrm{CH}_{2} \mathrm{OH}\right)\right], 143-127(\mathrm{~m}, \mathrm{Ph}), 69.9\left[\mathrm{~s}, \mathrm{PPh}_{2}-\right.$ $\left.\mathrm{C}(\mathrm{O}) \mathrm{CHC}\left(\mathrm{CH}_{2} \mathrm{OH}\right)\right]$ and $69.8\left[\mathrm{~d},{ }^{2} J(\mathrm{PC}) 90 \mathrm{~Hz}, \mathrm{PPh}_{2}\right.$ $\left.\mathrm{C}(\mathrm{O}) \mathrm{CHC}\left(\mathrm{CH}_{2} \mathrm{OH}\right)\right] ;{ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right.$ gated decoupled), $\delta 43.3$ [d, $\left.{ }^{2} J(\mathrm{PP}) 137, \mu-\mathrm{PPh}_{2}\right]$ and -76.7 [d, $\left.\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CHC}\left(\mathrm{CH}_{2} \mathrm{OH}\right)\right]$.
(b) The complex $\left[\mathrm{Co}_{2}(\mu-\mathrm{MeCCH})(\mathrm{CO})_{6}\right](0.43 \mathrm{~g}, 1.32 \mathrm{mmol})$ was added to a solution of $\mathrm{P}_{2} \mathrm{Ph}_{4}(0.49 \mathrm{~g}, 1.32 \mathrm{mmol})$ in toluene ($75 \mathrm{~cm}^{3}$). The solution was heated at 318 K for 21 h . The solvent was then removed on the rotary evaporator and the residue dissolved in the minimum amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and applied to the base of preparative TLC plates. Elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave red crystalline $\left[\mathrm{Co}_{2}\left\{\mu-\mathrm{PPh}_{2} \mathrm{CHCMeC}(\mathrm{O})\right\}\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right] \mathbf{8 b}$ $(0.48 \mathrm{~g}, 54 \%)$, purple crystalline $\left[\mathrm{Co}_{2}\left\{\mu-\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CMeCH}\right\}-\right.$ $\left.\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right] 7 \mathrm{bb}(0.070 \mathrm{~g}, 8 \%)$ and green-brown $\left[\mathrm{Co}_{2}\{\mu-\right.$ $\left.\left.\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CHCMe}\right\}\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right] \mathbf{6 b}(0.062 \mathrm{~g}, 7 \%)$. Complex 7b (Found: C, $57.3 ; \mathrm{H}, 3.6 ; \mathrm{P}, 9.3 . \mathrm{C}_{32} \mathrm{H}_{24} \mathrm{Co}_{2} \mathrm{O}_{5} \mathrm{P}_{2}$ requires C , $57.5 ; \mathrm{H}, 3.6 ; \mathrm{P}, 9.3 \%$): FAB mass spectrum, $m / z 668\left(M^{+}\right)$and $M^{+}-n \mathrm{CO}(n=1-5)$. NMR $\left(\mathrm{CDCl}_{3}\right):{ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right.$ composite pulse decoupled), $\delta 207.0$ (s, 1 CO), 206.7 (s, 1 CO), 204.3 (s, 1 CO), 203.7 (s, 1 CO), 185.3 [d, $\left.{ }^{1} J(\mathrm{PC}) 41, \mathrm{PPh}_{2} C(\mathrm{O}) \mathrm{CMeCH}\right]$, $141-128(\mathrm{~m}, \mathrm{Ph}), 125.3$ [dd, ${ }^{2} J(\mathrm{PC}) 30,{ }^{3} J\left(\mathrm{P}^{\prime} \mathrm{C}\right) 15, \mathrm{PPh}_{2^{-}}$ $\mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{Me}) \mathrm{CH}], 90.7$ [d, $\left.{ }^{2} J(\mathrm{PC}) 87, \mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CMeCH}\right]$ and 21.6 [d, $\left.{ }^{3} J(\mathrm{PC}) 9 \mathrm{~Hz}, \mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CMeCH}\right] ;{ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right.$ gated decoupled), $\delta 29.0$ [d, ${ }^{2} J(\mathrm{PP}) 101 \mathrm{~Hz}, \mu-\mathrm{PPh}_{2}$] and -78.8 [d, $\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CMeCH}$. Complex 6b (Found: C, $57.2 ; \mathrm{H}, 3.7$. $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{Co}_{2} \mathrm{O}_{5} \mathrm{P}_{2}$ requires $\mathrm{C}, 57.5 ; \mathrm{H}, 3.6 \%$): FAB mass spectrum, $m / z 668\left(M^{+}\right)$and $M^{+}-n \mathrm{CO}(n=1-5)$. NMR $\left(\mathrm{CDCl}_{3}\right):{ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right.$ composite pulse decoupled), $\delta 205.0$ (s, 1 CO), 204.3 (s, 2 CO), 202.1 (s, 1 CO), 191.2 [d, ${ }^{1} J(\mathrm{PC}) 32$, $\mathrm{PPh}_{2} C(\mathrm{O}) \mathrm{CHCMe}$] 147.8 [dd, ${ }^{2} J(\mathrm{PC}) 27,{ }^{3} J(\mathrm{PC}) 15, \mathrm{PPh}_{2} \mathrm{C}-$ (O)CHCMe], 143-128(m, Ph), 74.1 [d, ${ }^{2} J(\mathrm{PC}) 87, \mathrm{PPh}_{2} \mathrm{C}(\mathrm{O})-$ $C \mathrm{HCMe}$] and 31.5 [d, $\left.{ }^{3} J(\mathrm{PC}) 4 \mathrm{~Hz}, \mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CHCMe}\right] ;{ }^{13} \mathrm{P}$ (${ }^{1} \mathrm{H}$ gated decoupled), $\delta 43.8\left[\mathrm{~d},{ }^{2} J(\mathrm{PP}) 100 \mathrm{~Hz}, \mu-\mathrm{PPh}_{2}\right]$ and -76.5 [d, $\left.\mathrm{PPh}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CHCMe}\right]$.
(v) Crystal-structure Determinations.-Crystal data for 3. $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{Co}_{2} \mathrm{O}_{6} \mathrm{P}_{3}, M=736.41$, monoclinic, space group $P 2_{1} / c$, $a=17.889(8), b=17.411(7), c=11.111(5) A, \beta=100.53(1)^{\circ}$, $U=3402(3) \AA^{3}, Z=4, D_{\mathrm{c}}=1.438 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=1512$, $\mu(\mathrm{Mo}-\mathrm{K} \alpha)=11.52 \mathrm{~cm}^{-1}$. A crystal of size $0.20 \times 0.22 \times 0.28$ mm , grown by diffusion of hexane into a dichloromethane solution, was used in the data collection.

Crystal data for $4 \mathrm{c} . \mathrm{C}_{33} \mathrm{H}_{26} \mathrm{Co}_{2} \mathrm{O}_{4} \mathrm{P}_{2}, M=666.05$, triclinic, space group $P T$ (no.2), $a=15.888(3), b=10.868(2), c=$ 9.506(2) $\AA, \alpha=112.12(3), \beta=97.13(2), \gamma=92.47(1)^{\circ}, U=$ $1501.56 \AA^{3}, Z=2, D_{\mathrm{c}}=1.47 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=680, \mu(\mathrm{Mo}-$ $\mathrm{K} \alpha)=11.77 \mathrm{~cm}^{-1}$. A black crystal of size $0.32 \times 0.16 \times 0.10$ mm , grown by diffusion of hexane into dichloromethane solution, was used in the data collection.
Data collection. Data for complex 3 were collected at room temperature on a Philips PW 1100 single-crystal diffractometer using the graphite-monochromated Mo-K α radiation ($\lambda=$ $0.71073 \AA$) and the $\theta-2 \theta$ scan mode in the θ range $3-23^{\circ}$. For $4 \mathbf{c}$, data were collected in the θ range $3-23^{\circ}$, with a scan width of 0.80° using the technique described previously. ${ }^{20}$ Equivalent reflections were merged to give 2219 data for 3 with $I / \sigma(I)>2.0$ and 1809 data for $4 c$ with $I / \sigma(I)>3.0$. No correction for absorption was applied for 3 , whereas for $4 c$ absorption corrections were applied after initial refinement with isotropic thermal parameters for all atoms. ${ }^{21}$

Structure solution and refinement 3. 22.23 The structure was solved by direct and Fourier methods and refined by full-matrix
least squares first with isotropic and then with anisotropic thermal parameters in the last cycles for all the non-hydrogen atoms. Four hydrogen atoms (of the allyl group) of 3 were clearly localised in the final ΔF map and refined isotropically, the remaining were placed at their geometrically calculated positions and refined 'riding' on the corresponding carbon atoms. In the last cycles of refinement the weighting scheme $w=\left[\sigma^{2}\left(F_{\mathrm{o}}\right)+g F_{\mathrm{o}}{ }^{2}\right]^{-1}$ was employed with $g=0.0035$ at convergence. Final R and R^{\prime} values were 0.0349 and 0.0437 . Atomic scattering factors, corrected for anomalous dispersion, were taken from ref. 24. Final atomic coordinates for the nonhydrogen atoms are given in Table 3.

Structure solution and refinement $\mathbf{4 c} .^{22}$ The coordinates of the two cobalt atoms were deduced from a Patterson synthesis, and the remaining non-hydrogen atoms were located from subsequent Fourier-difference syntheses. The hydrogen atoms attached to the allyl fragment $[\mathrm{C}(1)-\mathrm{C}(3)]$ and to the $\mathrm{C}=\mathrm{C}$ section of the metallacyclic ring, $\mathrm{C}(4)$ and $\mathrm{C}(5)$, were located in a Fourier-difference synthesis calculated using data with $\sin \theta<$ 0.35 . These were included in the structure-factor calculations with fixed thermal parameters of $0.08 \AA^{2}$ but their parameters were not refined. The remaining hydrogen atoms of the four phenyl groups were included in geometrically idealised positions and were constrained to 'ride' on the relevant carbon atoms with fixed thermal parameters of $0.08 \AA^{2}$. The two cobalt atoms and both phosphorus atoms were assigned anisotropic thermal parameters in the final cycles of full-matrix refinement which converged at $R=0.0660$ and $R^{\prime}=0.0635$ with weights of $w=1 / \sigma^{2} F_{0}$ assigned to the individual reflections. Fractional atomic coordinates for the non-hydrogen atoms are given in Table 5.

Additional data available from the Cambridge Crystallographic Data Centre comprises H -atom coordinates, thermal parameters and remaining bond lengths and angles.

Acknowledgements

We thank the SERC (G. A. S.) for financial support.

References

1 K. Yasufuku, K. Aoki and H. Yamazaki, J. Organomet. Chem., 1975, 84, C28; B. L. Barnett and C. Kruger, Cryst. Struct. Commun., 1973, 2, 347.

2 R. Regragui, P. H. Dixneuf, N. J. Taylor and A. J. Carty, Organometallics, 1984, 3, 814; 1990, 9, 2234.
3 A. J. Edwards, A. Martín, M. J. Mays, D. Nazar, P. R. Raithby and G. A. Solan, J. Chem. Soc., Dalton Trans., 1993, 355.

4 R. Zolk and H. Werner, J. Organomet. Chem., 1983, 252, C53; 1987, 331, 95.
5 H. Werner and R. Zolk, Chem. Ber., 1987, 120, 1003.
6 W. F. Smith, N. J. Taylor and A. J. Carty, J. Chem. Soc., Chem. Commun., 1976, 896; A. J. Carty, Adv. Chem. Ser., 1982, 196, 163.
7 B. Klingert, A. L. Rheingold and H. Werner, Inorg. Chem., 1988, 27, 1354.

8 D. Braga, A. J. M. Caffyn, M. C. Jennings, M. J. Mays, L. ManojlovicMuir, P. R. Raithby, P. Sabatino and K. W. Woulfe, J. Chem. Soc., Chem. Commun., 1989, 1401.
9 A. J. M. Caffyn, M. J. Mays, G. A. Solan, D. Braga, P. Sabatino, A. Tiripicchio and M. Tiripicchio-Camellini, Organometallics, 1993, 12, 1876.
10 L. Manojlovic-Muir, M. J. Mays, K. Muir and K. W. Woulfe, J. Chem. Soc., Dalton Trans., 1992, 1531.

11 H. L. Clarke, J. Organomet. Chem., 1974, 80, 155.
12 A. J. M. Caffyn, M. J. Mays, G. Conole, M. McPartlin and H. R. Powell, J. Organomet. Chem., 1992, 436, 83.
13 A. J. M. Caffyn, M. J. Mays, G. A. Solan, D. Braga, P. Sabatino, G. Conole, M. McPartlin and H. Powell, J. Chem. Soc., Dalton Trans., 1991, 3103.
14 See for example, G. Pályi, G. Váradi and L. Markó, in Stereochemistry of Organometallic and Inorganic Compounds, ed. I. Bernal, Elsevier, Amsterdam, 1986, vol. 1, p. 382.
15 A. J. M. Caffyn, M. J. Mays and P. R. Raithby, J. Chem. Soc., Dalton Trans., 1991, 2349.
16 A. D. Harley, G. J. Guskey and G. L. Geoffroy, Organometallics, 1983, 2, 53.
17 H. W. Sternberg, H. Greenfield, R. A. Friedel, J. H. Wotiz, R. Markby and I. Wender, J. Am. Chem. Soc., 1954, 76, 1457.
18 H. Greenfield, H. W. Sternberg, R. A. Friedel, J. H. Wotiz, R. Markby and I. Wender, J. Am. Chem. Soc., 1956, 78, 120.
19 W. Kuchen and H. Buchwald, Chem. Ber., 1958, 91, 2871.
20 M. K. Cooper, H. J. Goodwin, P. J. Guerney and M. McPartlin, J. Chem. Soc., Dalton Trans., 1982, 757.

21 N. Walker and D. Stuart, Acta Crystallogr., Sect. A, 1983, 39, 158.
22 G. M. Sheldrick, SHELX 76 program for crystal structure determination, University of Cambridge, 1976.
23 G. M. Sheldrick, SHELXS 86 program for the solution of crystal structures, University of Göttingen, 1986.
24 International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4.

Received 28th January 1993; Paper 3/00550J

[^0]: * Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1993, Issue 1, pp. xxiii-xxviii.

