Preparation and Characterisation of $(SeNSNS)_n(AsF_6)_2$ containing the 'Electron-rich Aromatic' 6π SeNSNS²⁺ (n = 1) and 7π SeNSNS⁺⁺ (n = 2)[‡]

Edward G. Awere,^a Wendell V. F. Brooks,^a Jack Passmore,^{*,a} Peter S. White,^{*,†,a} Xiaoping Sun^a and T. Stanley Cameron^{*,b}

^a Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick E3B 6E2, Canada ^b Department of Chemistry, Dalhouise University, Halifax, Nova Scotia B3H 4J3, Canada

Attempted syntheses of SeNSAsF₆ from the reactions of SNAsF₆ with Se₈(AsF₆)₂ (4:1) or Se (1:1) gave (SeNSNS)_n(AsF₆)₂ (*n* = 1 and 2), Se₄(AsF₆)₂ and trace amounts of SeNSNSe(AsF₆)₂ and (Se/SNSNSe)₂(AsF₆)₂. The formation of (SeNSNS)_n(AsF₆)₂ (*n* = 1 and 2) as the major product is consistent with generation of a SeNS⁺ intermediate which undergoes a concerted symmetry-allowed cycloaddition reaction with SN⁺ to give SeNSNS²⁺. The crystal structure of SeNSNS(AsF₆)₂ consists of disordered SeNSNS²⁺ cations and AsF₆⁻ anions, that of (SeNSNS)₂(AsF₆)₂ consists of AsF₆⁻ anions and two independent disordered SeNSNS⁺⁺ radical cations weakly linked into a non-centrosymmetric dimer by two long Se···S bonds [3.12(4), 3.09(2); 3.32(5), 3.16(6) Å]. The structure of (Se/SNSNSe)₂(AsF₆)₂ contains a 50:50 mixture of disordered SeNSNS⁺⁺ and SeNSN⁺⁺ radical cations joined by two long Se/S···Se bonds [3.077(3), 3.138(3) Å]. There are significant interionic interactions in all the salts. The "Se [-60 °C, δ (Me₂Se) = 2422.4, *v*_i = 10.4 Hz] and ¹⁴N NMR [room temperature (r.t.), δ (MeNO₂) = 68.9, *v*_i = 446 Hz] spectra of SeNSNS²⁺ are consistent with a delocalised 6 π ring structure. The SeNSNS²⁺ cation readily reacts with CCl₃F to give CISeNSNSAsF₆ the identity of which was confirmed by the determination of its crystal structure. The ESR spectrum of SeNSNS⁺⁺ in SO₂ solution at r.t. (*g* = 2.026, broad) and the spectrum of powdered SeNSNS⁺⁺ in dicative of a planar 7 π system.

We have recently reported ¹ an efficient high-yield synthesis of $SNSAsF_6$ by the reactions described by equations (1) and (2) and shown that the compound has an extensive chemistry.² An alternative but lower-yield route is described by equation (3).¹ These results motivated us to attempt the synthesis of the related SeNSAsF₆ by the analogous routes described by equations (4)–(6), and by the reaction of SNAsF₆ with Se₈(AsF₆)₂ (4:1 ratio) as shown in equation (7). The results are reported below.

$$\frac{1}{2}S_8 + S_4N_4 + 6AsF_5 \xrightarrow{\text{trace }Br_2} 4SNSAsF_6 + 2AsF_3 \quad (1)$$

$$SNAsF_6 + \frac{1}{8}S_8 \longrightarrow SNSAsF_6$$
 (2)

$$2S_4(AsF_6)_2 + S_4N_4 \longrightarrow 4SNSAsF_6 + \frac{1}{2}S_8$$
(3)

$$4Se + S_4N_4 + 6AsF_5 \xrightarrow{\text{trace Br}_2} 4SeNSAsF_6 + 2AsF_3 \quad (4)$$

 $SNAsF_6 + Se \longrightarrow SeNSAsF_6$ (5)

$$2Se_4(AsF_6)_2 + S_4N_4 \longrightarrow 4SeNSAsF_6 + 4Se$$
(6)

 $4SNAsF_6 + Se_8(AsF_6)_2 \longrightarrow 4SeNSAsF_6 + Se_4(AsF_6)_2 \quad (7)$

Experimental

General Procedures and Reagents.—The apparatus, chemicals, general techniques and spectrometers used in this work were the same as described in refs. 1 and 3. Raman, IR, MS, ESR, ¹⁴N and ⁷⁷Se NMR samples were prepared and spectra recorded as described in ref. 3. The NMR acquisition parameters were the same as previously reported.^{1,3} Chemical shifts were externally referenced at room temperature (r.t.) to neat MeNO₂ (¹⁴N) or neat Me₂Se (⁷⁷Se) with the highfrequency direction positive.

Selenium (BDH, 99%) was vacuum dried. The compounds $SNA_{56,4}^{4}$ Se₄(AsF₆)₂,^{5,6} Se₈(AsF₆)₂,⁷ S₄N₄,⁸ AgAsF₆⁴ and Cl₂SeNSNS⁹ were prepared by published methods. Known compounds in the product were identified as follows: SN⁺ (¹⁴N NMR),¹ Se₄²⁺ (⁷⁷Se NMR,^{5a} Raman ^{5b}) and Se₈²⁺ (⁷⁷Se NMR spectroscopy).^{5c}

Attempted Preparations of SeNSAsF₆ leading to (SeNSNS)₂-(AsF₆)₂ (n = 1 and 2).—Reaction of SNAsF₆ with selenium (1:1 ratio). Selenium (0.293 g, 3.71 mmol) and SNAsF₆ (0.880 g, 3.75 mmol) were stirred in SO₂ (10.54 g) in a two-bulb vessel to produce a green solution at r.t. and a red-brown solution over a yellow solid after 6 h. After 4 d the solution was filtered into the second bulb and the yellow solid was washed three times with SO₂ ($ca. 1 \text{ cm}^3$). The solvent was then slowly condensed into the first bulb which was cooled with dripping cold tap-water (ca. 10 °C). After 3 d the solvent was removed giving a yellow powder, Se₄(AsF₆)₂ (0.354 g; Raman, ⁷⁷Se NMR spectra), as the

[†] Present address: Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA.

[‡] Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1993, Issue 1, pp. xxiii-xxviii.

Fig. 1 Infrared spectrum of $(SeNSNS)_2(AsF_6)_2$. Nujol peaks indicated by asterisks

Fig. 2 Infrared spectrum of SeNSNS(AsF₆)₂. Nujol peaks indicated by asterisks, $\overline{SeNSNSe}(AsF_6)_2$ peaks by a dagger

less-soluble product and black crystals (0.791 g) containing small amounts of yellow microcrystalline crystals [SeNSNS-(AsF₆)₂; IR spectrum, see below] as the more soluble fraction. Several of the black crystals were mechanically selected under the microscope and were identified as (SeNSNS)₂(AsF₆)₂ by X-ray analysis (see below). The IR spectrum of (SeNSNS)₂-(AsF₆)₂ in Nujol is shown in Fig. 1: 989 (sh), 982 (sh), 963s, 713vs (AsF₆⁻), 687 (sh) (AsF₆⁻), 665s, 634s, 585w, 558 (sh), 547s, 395s (AsF₆⁻) and 365m (AsF₆⁻) cm⁻¹.

Reaction of SNAsF₆ with selenium followed by oxidation by AsF₅ with a trace of Br₂. Selenium (0.990 g, 12.53 mmol) and a 10% deficit of SNAsF₆ (2.614 g, 11.12 mmol) (relative to a 1:1 ratio) were stirred in SO₂ (11.52 g) in a two-bulb vessel to give a red-brown solution over a yellow solid after 1 week. The lesssoluble yellow solid [1.04 g, Se₄(AsF₆)₂; Raman spectrum] was separated from the red-brown solution into which AsF₅ (6.61 g, 38.9 mmol) and a trace of Br₂ were successively condensed; the solution changed to transparent yellow after 2 h. Crystals were grown over a period of 3 d as described above and volatile materials were removed to give yellow crystals (3.08 g) containing small amounts of yellow powder. The yellow crystals were identified as SeNSNS(AsF₆)₂ by X-ray analysis (see below). The IR spectrum of SeNSNS(AsF₆)₂ is shown in Fig. 2, the FT Raman spectrum in liquid AsF₃ in Fig. 3 and the vibrational data are listed in Table 1.

In a similar reaction, $SNAsF_6$ (0.265 g, 1.13 mmol) and Se (0.089 g, 1.13 mmol) were allowed to react in SO₂ (3.56 g) in a 10 mm thick-walled NMR tube. After 8 d the ¹⁴N NMR spectrum

Fig. 3 Fourier-transform Raman spectrum at r.t. of $SeNSNS(AsF_6)_2$ in liquid AsF₃ (*a*), neat liquid AsF₃ (*b*), and $SeNSNS(AsF_6)_2$ after subtraction of the peaks due to the solvent AsF₃ (*c*)

showed unreacted SN^+ (ca. 10 mmol%). The solution was heated at 40 °C for 5 additional days but the amount of unreacted SN⁺ was essentially the same after this period (¹⁴N NMR). Arsenic pentafluoride (0.95 g, 5.6 mmol) and a trace of Br_2 were successively added giving a transparent yellow solution without any solid materials. The ⁷⁷Se NMR spectrum (r.t.) acquired after 18 h showed a weak peak at δ 2421.0, v_{\pm} = 41.7 Hz and a peak attributable to Se₄²⁺. At -60 °C a strong peak at δ 2422.4, $v_{\pm} = 10.4$ Hz and peaks attributable to Se₄²⁴ and $\overline{\text{SeNSNSe}^{2+3}}$ (trace) were observed in the integration ratio ca. 14:34:1. We have assigned the peak at δ 2422.4 (-60 °C) [2421.0(r.t.)] to SeNSNS²⁺. We estimated from the ⁷⁷Se NMR $(-60 \,^{\circ}\text{C})$ and weight data that the original product contained ca. 40% Se₄²⁺, 30% SeNSNS²⁺ and 30% SeNSNS⁺⁺ (in mmol%). The trace amount of SeNSNSe²⁺ was ignored in the estimate. Volatile materials were removed and the resulting yellow solid was subjected to dynamic vacuum (ca. 4 h) until constant weight (0.384 g).

In an attempt to isolate pure $SeNSNS(AsF_6)_2$, slightly impure $(\dot{S}eNSN\dot{S})_2(AsF_6)_2$ (0.855 g) was oxidised by AsF₅ (2.45 g, 14.4 mmol) with a trace of Br_2 in SO_2 (7.84 g) in a two-bulb vessel. The more-soluble product (0.549 g) was separated from the purer less-soluble fraction (0.567 g) and the latter was washed three times with the solvent (ca. 2 cm^3) after which volatile materials were removed. The ⁷⁷Se NMR spectrum (-60 °C) of the purer (less-soluble) fraction in SO_2 -AsF₅ showed mainly the presence of SeNSNS²⁺, small amounts of $\dot{S}eNSN\dot{S}e^{2+3}$ and a peak attributable to Se_4^{2+} in the integration ratio of 63:9:5. The ¹⁴N NMR spectrum (r.t.) showed a broad peak at δ 68.9, v_{\star} = 446 Hz (SeNSNS²⁺), SN⁺ and SNS⁺ in the integration ratio of 64:7:1. The more (less-pure)-soluble fraction contained the same species but in a different distribution [⁷⁷Se NMR (-60 °C) SeNSNS²⁺: Se₄²⁺: SeNSNSe²⁺ = 40:29:4; ¹⁴N NMR (r.t.) $sensitive{Sensit$ 46:35:2].

Reaction of SNAsF₆ with Se₈(AsF₆)₂ (4:1 ratio). The compounds SNAsF₆ (0.725 g, 3.08 mmol) and Se₈(AsF₆)₂ (0.768 g, 0.761 mmol) were stirred in SO₂ (7.26 g) in a two-bulb vessel. The colour changes, method of crystal growth and product work-up were as described above. The yellow powder in the less-pure fraction was identified as Se₄(AsF₆)₂ (0.454 g; Raman, ⁷⁷Se NMR spectra) and the more-soluble fraction (0.986 g) contained a mixture of yellow and black crystals which were identified as SeNSNS(AsF₆)₂ and (SeNSNS)₂(AsF₆)₂, respectively from their IR spectra. The black crystals were further characterised as SeNSNS⁺⁺ by a detailed analysis of the powder ESR spectrum in frozen SO₂.¹¹ We independently obtained an ESR spectrum of (SeNSNS)₂(AsF₆)₂ (ca. 4.8 × 10⁻³ mol dm⁻³) in SO₂ at r.t. (g = 2.026, broad) and a

powder ESR spectrum in frozen SO₂ at -160 °C which were identical to those obtained in ref. 10. A trace of SNSNS'+ (quintet, g = 2.011) was also observed in some of the ESR spectra obtained in SO₂ solution at r.t. One yellow and one black crystal were characterised by X-ray crystallography as $\dot{S}eNSN\dot{S}e(AsF_6)_2^3$ and $(Se/\dot{S}NSN\dot{S}e)_2(AsF_6)_2$, respectively, although both compounds were formed in trace amounts (77Se NMR spectroscopy, see below).

A similar reaction of SNAsF₆ (0.115 g, 0.488 mmol) with $Se_8(AsF_6)_2$ (0.123 g, 0.122 mmol) in SO₂ (3.40 g) in a 10 mm NMR tube followed by oxidation by $AsF_5(1.3 g, 7.6 mmol)$ with traces of Br₂ was carried out as described for the reaction of $SNAsF_6$ with Se. After 8 d the amount of unreacted SN^+ was estimated as ca. 15 mmol% (14N NMR spectroscopy). The ⁷⁷Se NMR (-60 °C) and weight data gave the original distribution of products as ca. 60% Se_4^{2+} , 20% SeNSNS^{2+} and 20% sensns⁺ (in mmol%). A trace of sensns²⁺ was ignored in the estimate. Volatile materials were removed and the resulting yellow solid (0.284 g) contained mainly $\dot{S}eNSNS(AsF_6)_2$ (IR), $Se_4(AsF_6)_2$ (⁷⁷Se NMR spectroscopy) and a weak band at 962 cm^{-1} attributable to SeNSNSe(AsF₆)₂.³

Reaction of Se, S_4N_4 and AsF_5 with a trace of Br_2 . Arsenic pentafluoride (1.186 g, 6.98 mmol) and a trace of Br₂ were successively condensed at -196 °C onto a mixture of S₄N₄ (0.188 g, 1.03 mmol) and Se (0.322 g, 4.08 mmol) in SO₂ (3.63 g) in a 10 mm thick-walled NMR tube. An intense green solution formed at r.t. which became transparent yellow-brown after 25 min. The ⁷⁷Se NMR spectrum at r.t. showed a Se₄²⁺ peak, and at -70 °C a precipitate formed and only a weak peak attributable to $SeNSNSe^{2+3}$ was observed. Volatile materials were removed and the resulting yellow solid (1.66 g) was partially redissolved in fresh SO₂ (3.97 g) allowing separation of the less-soluble product $Se_4(AsF_6)_2$. The more-soluble fraction contained Se4²⁺(⁷⁷Se NMR), SeNSNSe²⁺³ and SeNSNS²⁺ (IR, ⁷⁷Se NMR spectra), and trace amounts of SN⁺ (¹⁴N NMR), $SNSAsF_6$, $SNSNS(AsF_6)_2$ and $FSNSNSAsF_6$ (IR spectra). On removal of volatile materials $SNAsF_6$ and $SNSAsF_6$ give $SNSNS(AsF_6)_2$ which on grinding abstracts a

fluoride ion from AsF_6^- to give $FSNSNSAsF_6$ and AsF_5 . Reaction of $Se_4(AsF_6)_2$ with S_4N_4 (2:1 ratio). The com-pounds $Se_4(AsF_6)_2$ (0.787 g, 1.13 mmol) and S_4N_4 (0.101 g, 0.55 mmol) were stirred in SO₂ (6.04 g) in a two-bulb vessel to produce an intense green solution with a yellow tint at r.t., and a brown solid after 6 h. The solution was filtered into the empty bulb after 18 h and the brown solid was washed once with solvent (ca. 1 cm³). The less-soluble brown solid (0.182 g) contained (SeNSNSe)2(AsF6)2 (IR spectrum) and the moresoluble product consisted of a mixture of yellow and greenish black solids containing $Se_n(AsF_6)_2$ [n = 4 or 8; ⁷⁷Se NMR (-70 °C)], SN⁺ (¹⁴N NMR) and SeNSNS⁺⁺ (ESR spectrum).

Some Properties of $(\dot{S}eNSN\dot{S})_n(AsF_6)_2$ (n = 1 and 2). Crystals of $\dot{S}eNSN\dot{S}(AsF_6)_2$ are yellow and moderately soluble in liquid SO₂ but dissolve readily in a mixture of SO₂-AsF₅ at ca. -40 °C, increasing in solubility as the temperature is lowered. It is soluble in liquid AsF₃, very sensitive to traces of moist air, and rapidly acquires a brown coating. The ⁷⁷Se NMR spectrum of a fresh solution of $\dot{S}eNSN\dot{S}(AsF_6)_2$ prepared in situ with an excess of AsF₅ showed a broad weak peak at r.t. (δ 2421.0, cf 2422.4 at -70 °C). If the compound is manipulated inside the dry-box and then redissolved in SO₂ a peak is observed only at low temperature (e.g. -70 °C) which shows that it is very hygroscopic. The $\dot{S}eNSN\dot{S}(AsF_6)_2$ does not readily abstract a fluoride ion from AsF_6^- to form $FSeNSNS^+$ on grinding or on prolonged subjection to dynamic vacuum (IR

spectrum) in contrast to $SNSNS^{2+}$ in $SNSNS(AsF_6)_2$.¹² It readily reacts with CCl₃F to give ClSeNSNSAsF₆ and the volatile AsF₅ and CCl_2F_2 (IR spectra, see below), and its mass spectrum shows peaks attributable to fragmentation of AsF₅ (*i.e.* AsF_4^+ to As^+) as the most abundant species. This shows that the first process involved the transfer of a fluoride ion from AsF_6^- to SeNSNS²⁺ to form the solid FSeNSNSAsF₆ and the volatile AsF₅.

Crystals of $(SeNSNS)_2(AsF_6)_2$ are black in the crystalline state and brown in the powdered form. The compound is moderately soluble in liquid SO₂ and dissociates in solution to give SeNSNS'+ radicals (ESR)¹¹ which do not react with CCl₃F (IR spectrum).

Preparation of ClSeNSNSAsF₆.—The compound Cl- $\frac{1}{2}$ SeNSNSAsF₆ was formed in an attempt to separate Se₄(AsF₆)₂ from the products of the reaction of SNAsF₆ (1.515 g, 6.45 mmol) and $Se_8(AsF_6)_2$ (1.63 g, 1.61 mmol) in SO₂ (9.56 g). When the reaction was complete CCl₃F (total 4.2 g) was added in aliquots to the solution until a small amount of black crystals formed on the yellow solid. The solution was then filtered into the second bulb, the yellow solid was washed twice with solvent $(ca. 1 \text{ cm}^3)$ and crystals were grown as described above over a period of 3 d. The solvent was removed to give a yellow solid [2.0 g, $Se_4(AsF_6)_2$ (Raman, ⁷⁷Se NMR spectra)] as the less-soluble product, and a mixture (1.095 g) of yellow and black $[(\dot{S}eNSN\dot{S})_2(AsF_6)_2, IR spectrum]$ crystals as the more-soluble portion. The yellow crystals were identified as ClSeNSNSAsF₆ by a complete determination of the crystal structure (see below). IR (Nujolmull) data for ClSeNSNSAsF₆:918vs, 813vw (AsF₆⁻), 746 (sh), 698vs (AsF₆⁻), 677 (sh), 648 (sh), 628w (sh), 568m, 548m, 395s (AsF₆⁻), 361m and 348m cm⁻¹.

Normal Coordinate Analyses.-We hoped that a determination of force constants from IR and Raman spectra would provide additional information about bond strengths. The seven in-plane vibrational modes are insufficient to determine the diagonal force constants (five stretching and five bending) so we tried to use stretching force constants from SNSNS²⁺ and SeNSNSe²⁺ adjusted according to Badger's rule.¹³ This gave very unsatisfactory results because of the short N-S distance (1.457 Å) which calls for a large force constant (>6.0 N m⁻¹) giving one vibrational mode at a much higher wavenumber $(> 1200 \text{ cm}^{-1})$ than observed. For vibrational calculations, we therefore used a structure estimated from those of SNSNS²⁺,¹² SeNSNSe²⁺³ and SeNSeNSe^{2+,14} Some assumptions were made to reduce the number of variables. The results are given in Tables 2 and 3. The stretching constants are comparable to those of the three related species. The force constants (and assumed bond strengths) can account for the observed frequencies.

X-Ray Crystallographic Analyses.— $(\dot{S}eNSN\dot{S})_2(AsF_6)_2$. The data were collected at 291 K using a CAD-4 four-circle diffractometer with an ω -2 θ scan. After reduction to a standard scale¹⁵ and application of Lorentz polarisation and absorption¹⁶ corrections, the positions of the As, S and Se atoms were determined with the use of SHELXS¹⁷ and those of the remaining atoms from subsequent Fourier syntheses. The structure was refined by large-block least squares which converged at R = 0.0457 with anisotropic thermal parameters for all atoms. In the structure both cations are disordered with the -N-Se-S-N- fragment in the alternative -N-S-Se-Nposition (i.e. the ring can be flipped over with just the Se and S atoms changing places). The structure was refined (SHELX 76)¹⁸ with the N-S, N-Se and Se-S distances in this fragment each constrained to be equal in both rings and in both

disordered arrangements. The occupation of the two disordered arrangements was also refined and this converged to a value of 0.69:0.31 for ring 1 and 0.65:0.35 for ring 2. These values are close to a ratio of 2:1 and leave a suspicion that the disorder may be derived from a multiple of one of the cell length(s). A detailed photographic study failed to find any convincing evidence of such a multiple but, given the structure, the evidence could be very faint. One of the AsF_6^- anions [As(1)] shows considerable thermal motion. Attempts were made to fit a disordered model to this motion but invariably produced unreasonable thermal parameters. It seems likely that the ion is librating strongly. This is not an unexpected behaviour and no attempt was made to analyse the motion.

 $SeNSNS(AsF_6)_2$. The data were collected as described above. After reduction to a standard scale¹⁵ and application of Lorentz and absorption¹⁶ corrections, the positions of all the atoms were derived by comparison with the structure of $SNSNS(AsF_6)_2^{12}$ which is isomorphous. The structure was refined initially with SHELX 76¹⁸ and finally with CRYSTALS.¹⁹ Large-block least squares was used in the refinement which converged at R = 0.0404 with anisotropic thermal parameters for all atoms (there are no hydrogen atoms in the structure). The structure belongs to the space group C2 where the origin along y is not fixed by symmetry. In the final stages of the refinement the origin was fixed by requiring the sum of all yshifts to be equal to zero. The enantiomer was checked by refining the structure in both possible 'hands' and the parameters reported here gave a drop in R of nearly 2% from 0.065. As in the case of the monocation, the ring is disordered with both the -N-Se-S-N- and -N-S-Se-N- arrangements of the ring present. The S and Se atoms were resolved in the last refinement by refining only the Se-S fragment of the structure with both arrangements of the Se–S fragment present. The two S–Se, N–S and N–Se distances were each restrained 20 to be equal, and although the initial values were set at 2.2, 1.5 and 1.9 Å, respectively, the distances were also allowed to refine. The occupation factors for both arrangements were allowed to refine subject only to the condition that the total occupation sum should be 1.0. The refinement converged with the S and Se atoms on each site clearly resolved and with the occupation for each arrangement in the ratio of 0.51:0.49, essentially equally occupied. There are three unique As atoms in the structure, belonging to an AsF_6^- anion and two As atoms on two-fold axes, which contribute half an AsF_6^- anion each.

While the refinement appears to be successful one concern remains. Clearly the bulk of all the reflections belong to the system cited in the crystal data (see Table 4). However, there are a small number of additional X-ray reflections with small intensities which do not fit this system. These would fit a cell of dimensions a = 25.12, b = 17.12, c = 10.616 Å, $\beta = 93.3^{\circ}$. There are not enough of them to establish this larger cell firmly, yet there are too many to be lightly ignored. The corresponding $\dot{S}NSN\dot{S}(SbF_6)_{2}$ salt has a similar cell with a = 25.90, b = 17.56and c = 10.54 Å. This is apparently in space group C222₁, but it too has a prominent sub-cell with a and b halved. The structure of the SbF_6^- salt has not yet been properly determined. These structures may be just two examples of polytypism, which is not unexpected since they are, after all, just simple binary compounds which often display polytypism (e.g. ZnS).²¹ The possible lattice ambiguity for the monocation has already been noted which may also be the start of another polytypical family. The possible resolution of the disorder in these AsF_6^- salts will be pursued when the details of the structure of the $SbF_6^$ salt have been determined. Crystal data and final atomic coordinates for $(\dot{S}eNSN\dot{S})_2(AsF_6)_2$ and $\dot{S}eNSN\dot{S}(AsF_6)_2$ are presented in Tables 4 and 5, respectively.

 $(Se/SNSNSe)_2(AsF_6)_2$ and $CISeNSNSAsF_6$. Diffraction intensities were measured at 293 K on an Enraf-Nonius CAD-4 diffractometer equipped with graphite-monochromated Mo-K α radiation ($\lambda = 0.71073$ Å) using the NRCCAD²² control program. An ω -2 θ scan was used and backgrounds were estimated by extending the scan by 25% on either side of the scan limits. The limits of the peak were then ascertained by profile analysis to provide an improved background correction. Unit-cell parameters for (Se/SNSNSe)₂(AsF₆)₂ and CISENSNSAsF₆ were obtained by least-squares refinement using the coordinates of 25 (2 θ 30–40) and 26 (2 θ 30–36°) reflections, respectively, centred using the TRUANG option of NRCCAD, thereby minimising the effects of instrumental and crystal-alignment errors. Lorentz and polarisation factors were applied and absorption corrections for CISENSNSAsF₆ were made using the empirical routine of Walker and Stuart.¹⁶ No correction was made for absorption of (Se/SNSNSe)₂(AsF₆)₂.

The structures were solved by direct methods and subsequent difference syntheses. Crystal data are summarised in Table 4. Refinement was by full-matrix least squares with weights based on counter statistics. All atoms were refined with anisotropic thermal parameters. Computations were performed using the NRCVAX suite of crystal structure programs.²³ Scattering factors were taken from ref. 24 and were corrected for anomalous dispersion. The final atomic coordinates are given in Table 6.

Additional material available from the Cambridge Crystallographic Data Centre comprises thermal parameters and remaining bond lengths and angles.

Results and Discussion

Attempted Preparations of SeNSAsF₆ leading to (SeNSNS)_n- $(AsF_6)_2$ (n = 1 and 2).—Reaction of $SNAsF_6$ with Se (1:1 ratio) or $Se_8(AsF_6)_2$ (4:1 *ratio*). The reactions of $SNAsF_6$ with Se (1:1 ratio) or $Se_8(AsF_6)_2$ (4:1 ratio) which were designed to give $SeNSAsF_6$ did not proceed as envisaged in equations (5) and (7) but instead gave $(SeNSNS)_n(AsF_6)_2$ (n = 1 and 2) as major products, as well as $Se_4(AsF_6)_2$ (Raman, ⁷⁷Se NMR spectra) and a trace amount of SeNSNSe(AsF₆)₂³ (IR, ⁷⁷Se NMR spectra). The colour changes of the two reactions were identical and there was no evidence for nitrogen elimination. The ¹⁴N NMR spectra of the bulk products of both reactions acquired after 3 d to 1 week showed unreacted SN⁺. In two separate experiments the amount of unreacted SN⁺ was estimated as ca. 10 and 15 mol%, respectively for reactions (5) and (7) (¹⁴N NMR spectrum). The amount of unreacted SN⁺ was essentially the same (14N NMR spectrum) after heating the solutions at 40 °C for 5 additional days which indicated that the reactions were complete after 1 week.

The reactions may be described by equations (8) and (9) to

$$8SN^{+} + 2Se_{8}^{2+} \longrightarrow \\ 3Se_{4}^{2+} + 2SeNSNS^{2+} + 2SeNSNS^{*+}$$
(8)

 $8SN^+ + 8Se \longrightarrow$

$$\operatorname{Se_4}^{2^+} + 2 \operatorname{SeNSNS}^{2^+} + 2 \operatorname{SeNSNS}^{*^+}$$
 (9)

account for the observed products. However, these equations do not represent the distribution of products as estimated from the ⁷⁷Se NMR (-60 °C) and weight data acquired after reaction of the bulk products with AsF₅. The reaction of SNAsF₆ with Se gave the original distribution of products as *ca*. 30% (SeNSNS)₂(AsF₆)₂, 30% SeNSNS(AsF₆)₂ and 40% Se₄(AsF₆)₂ (in mmol%), while that of SNAsF₆ with Se₈(AsF₆)₂ gave *ca*. 20% (SeNSNS)₂(AsF₆)₂, 20% SeNSNS(AsF₆)₂ and 60% Se₄(AsF₆)₂. The trace amount of SeNSNSe(AsF₆)₂ was ignored in both cases for the purpose of estimation. These reactions give predominantly one selenium-containing salt [*i.e.* (SeNSNS)_n-

Table 1 Vibrational data (cm^{-1}) for SeNSNS(AsF₆)₂ and assignments⁴

	Raman		
IR [®] (Nujol)	Solid ^{<i>c</i>,<i>d</i>} – 196 °C, 5145 Å	AsF ₃ Solution ^{<i>e,d</i>} Fourier-transform	Tentative assignment
1015s	1020vw 941vw	1020vw	v (ring) ^f ?
915w	922vw 724s	718s	$v (ring)^{f}$ $v (ring)^{f}$
700vs	681s (br)	681vs	$v_3 (AsF_6^-)^g$ $v_1 (AsF_6^-)^g$
674 (sh) 582 (sh)	0015(01)	671s (sh)	?
562m	560s		$v_2 (AsF_6^-)^g$
545m	543s	545w 500w	v (ring) ^f h
430 (sh)	440	440-	?
	440w 424w	440s 425 (sh)	$v (ring)^{f}$ v (ring) ^f
390s	• (0		$v_4 (AsF_6)^g$
	368w 324vs	371w 320w	$v_5 (AsF_6)^{g}$ v (ring) ^f
		208w 207w 175w	n ? ?

v = Very, s = strong, m = medium, w = weak, sh = shoulder, br = broad.

^a The assignments given are based on a normal coordinate analysis of SeNSNS²⁺ (see Tables 2 and 3). ^b Crystals were selected under the microscope from the reaction of SNAsF₆ with Se₈(AsF₆)₂ (4:1 ratio). The IR spectrum obtained was identical to those from the reaction of SNAsF₆ with Se (1:1) and from the oxidation of ClSeNSNSAsF₆ with an excess of AsF₅. ^c The sample decomposes in the Raman beam (5145 Å) at r.t. ^d From the oxidation of ClSeNSNSAsF₆ with an excess of AsF₅. Similar to Fourier-transform Raman spectrum of the product made by the reaction of SNAsF₆ with elemental selenium [giving (SeNSNS)₂(AsF₆)₂] followed by oxidation with AsF₅, except that the latter material also contained some SeNSNSe(AsF₆)₂. ^e Peaks due to AsF₃ are not included. ^f Exact description of the vibrations are given in Tables 2 and 3. ^g By comparison with AsF₆⁻ salts, ref. 10. ^h SeNSNSe²⁺³ impurity.

 $(AsF_6)_2$, n = 1 or 2]* which suggests that they proceed by a simple mechanism (see below). In contrast, the reaction of S_4N_4 with $Se_4(AsF_6)_2$ (1:1 ratio) gives mainly a mixture of $(SeNSNS)_2(AsF_6)_2$ (ca. 30 mmol%) and $(SeNSNSe)_2(AsF_6)_2$ (ca. 60 mmol%)³ which indicates that the reaction pathway may be more complex than those described above.

The reaction of SN^+ with selenium (1:1 ratio) or with Se_8^{2+} (4:1 ratio) may proceed by abstraction of a selenium atom to give SeNS⁺ [equation (10)] by a route similar to that proposed

$$4SN^{+} + Se_8^{2+} \longrightarrow 4SeNS^{+} + Se_4^{2+}$$
(10)

$$4SeNS^{+} + 4SN^{+} \longrightarrow 4\dot{S}eNSN\dot{S}^{2+}$$
(11)

$$2\overline{\text{SeNSNS}^{2+}} + Se_8^{2+} \longrightarrow 2Se_4^{2+} + 2\overline{\text{SeNSNS}^{+}} \quad (12)$$

for the reaction of SN^+ and S_8 .¹ The SeNS⁺ may then be trapped by SN^+ to give $SNSNSe^{2+}$ [equation (11)] in a symmetry-allowed concerted cycloaddition reaction, with the

Table 2 Assumed structure and calculated force constants of $SenSNS^{2+}$

Coordinate	Distance (Å) or angle (°)	Force constant/ N m ⁻¹
S ³ -N ^{1 a}	1.59	363
S ³ -N ²	1.59	363
N^1-Se^{1b}	1.70	288
N ² -S ²	1.53	416
Se ¹ -S ^{2 d}	2.20	212
N ¹ -S ³ -N ^{2 d}	104.75	110
S ³ -N ¹ -Se ¹	122.2	-25
$S^{3}-N^{2}-S^{2}$	121.3	2
N ¹ -Se ¹ -S ²	90.8	64
N ² -S ² -Se ¹	100.8	51

^a Assumed equal, average from SNSNS²⁺ and SeNSNSe²⁺, ^b From SeNSNSe²⁺, ref. 3.^c From SNSNS²⁺, ref. 12.^d Average from SNSNS²⁺ and SeNSNSe²⁺.

Table 3 Observed and calculated in-plane wavenumbers (cm^{-1}) of SeNSNS²⁺ and percentage potential-energy distribution (p.e.d.)

		p.e.d.				
Obs.	Calc.	$\overline{S^3-N^2}$	N ¹ -Se ¹	N ² -S ³	Se ¹ -S ²	Bend
1020	1022	30		50		15
922	928	65	25			10
718	709	55		20		25
545	548	35	40	15		10
440	450	10	20		30	35
425	419		20		40	30
300	317			10	15	75

major interaction in the transition state being between the highest occupied molecular orbital (HOMO) of SeNS⁺ and the lowest unoccupied orbital (LUMO) of SN⁺, *i.e.* SeNS⁺ is acting as a donor towards the more electrophilic SN⁺ (*cf.* the related cycloaddition of SNS⁺ and SN⁺¹²). The ion SeNSNS²⁺ may then oxidise Se₈²⁺ (or selenium) to give the observed Se₄²⁺ with the formation of SeNSNS⁺ [equation (12)] and thereby compete with the reaction of SN⁺ with Se or Se₈²⁺ [equation (10)] and this may account for unreacted SN⁺. The direct reduction of SN⁺ gives S₄N₄²⁺ which was not

observed in the IR spectra of the products which shows that the direct oxidation of Se or Se₈²⁺ by SN⁺ did not occur, *e.g.* SN⁺ is reduced by I₂ to give S₄N₄²⁺ and I₅⁺ [see ref. 25(*a*)]. We note that the related SeNSNSe²⁺³ is a powerful oxidising agent, and in fact difficult to prepare completely free of SeNSNSe⁺. We found that a large excess of SN⁺ produced $SeNSNS^{2+}$ and Se_4^{2+} but not $SeNSNS^{*+}$, whereas an excess of Se or Se_8^{2+} gave SeNSNS⁺⁺ but not the dication. These results are consistent with the proposed reaction pathways [see equations (10)-(12)] and also indicate that SeNSNS²⁺ retains its ring structure in solution. The reaction of SN⁺ with Se or Se_8^{2+} can be contrasted to that of S_8 , S_4N_4 and AsF_5 with a trace of Br₂ which gives SNS⁺ via the SNSNS²⁺ intermediate which completely dissociates into SN⁺ and SNS⁺.¹ Chivers and co-workers^{25b} have reported the preparation of ClSeNSNS-AlCl₄ from the reaction of SNAlCl₄ with C₂H₅SeCl or with selenium in CH₂Cl₂. The authors proposed that the SeNS⁺ cation was generated as an intermediate which reacted with NSCl to give the observed product. However, in the light of our results it is also possible that SeNS⁺ reacted with SN⁺ to give SeNSNS²⁺ which abstracted a chloride ion from the $AlCl_4^-$, CH₂Cl₂ or C₂H₅SeCl starting material. The high chloride-ion

^{*} SeNSNS(AsF₆)₂ was also identified [IR, Raman and NMR spectra (⁷⁷Se, ¹⁴N)] as a product formed on oxidation of ClSeNSNSAsF₆ with an excess of AsF₅. However, on reduction with CsN₃ some ClSeNSNSAsF₆ was regenerated (IR spectrum). Clearly, further investigations are needed to solve the puzzle. Also see foonote *d* in Table 1.

affinity of SeNSNS²⁺ implies that the Cl⁻ salt is not isolable and the AlCl₄⁻ salt may not be also.

At the early stage of this work crystals of $\dot{S}eNSN\dot{S}e(AsF_6)_2$ and $(Se/SNSNSe)_2(AsF_6)_2$ were selected under the microscope from the reaction of SNAsF₆ with Se₈(AsF₆)₂ and characterised by X-ray analysis and were erroneously ascribed to be the main products.¹¹ However, in this work we show that these compounds were formed in trace amounts (see below) which shows that selected crystals may not be representative of the bulk products which can only be reliably characterised unambiguously by a combination of various spectroscopic techniques (X-ray, IR, ¹⁴N, ⁷⁷Se NMR and ESR spectroscopy).

The compound $(SeNSNS)_2(AsF_6)_2$ was identified by IR spectroscopy and a detailed analysis of the g and hyperfine tensors from its powder ESR spectrum in frozen SO₂ at -196 °C¹¹ and confirmed by its crystal structure. Its identity was also inferred from the ⁷⁷Se NMR and IR spectra of the product given on oxidation by AsF₅ which showed mainly SeNSNS(AsF₆)₂, Se₄(AsF₆)₂ and trace amounts of SeNSNSe-(AsF₆)₂.³ The ESR spectrum of SeNSNS⁺ in SO₂ at r.t. (g = 2.026, broad) and the powder spectrum in frozen SO₂ at -160 °C are similar to but not identical with those of the related 7π radicals, SeNSNSe⁺⁺³ and SeNSeNSe⁺⁺.¹⁴

The compound $\overline{SeNSNS}(AsF_6)_2$ was identified by IR and Raman spectroscopy with assignments supported by normal coordinate analysis (see Tables 1–3), and its identity was confirmed by its crystal structure (see below). The attempt to separate $Se_4(AsF_6)_2$ from the more-soluble products of the reaction of SNAsF₆ with $Se_8(AsF_6)_2$ using a mixture of SO₂ and CCl₃F surprisingly led to the formation of ClSeNSNSAsF₆ (X-ray, IR spectrum). This implied that the SeNSNS²⁺ cation was present in solution and reacted with CCl₃F. The high halide-ion affinity of SeNSNS²⁺ may be due to the localisation of a positive charge on selenium.

We were not able to isolate pure samples of (SeNSNS),- $(AsF_6)_2$ (n = 1 or 2) as their solubilities are similar to that of $Se_4(AsF_6)_2$ in liquid SO₂ and to the presence of small amounts of unreacted $SNAsF_6$ (see Experimental section). The reaction of $Se_8(AsF_6)_2$ or Se with a deficit of $SNAsF_6$ (ca. 10%) gives $(SeNSNS)_2(AsF_6)_2$ and $Se_4(AsF_6)_2$ but not $SeNSNS(AsF_6)_2$ and when an excess of $SNAsF_6$ (ca. 10%) is used the last two compounds are formed. Attempts to separate pure samples of $(\dot{S}eNSNS)_n(AsF_6)_2$ (n = 1 or 2) using these reaction conditions have so far been unsuccessful. We also observed that large crystals of $(SeNSNS)_2(AsF_6)_2$ were formed by slow recrystallisation in liquid SO₂ for ca. 5-7 d. It is therefore possible that pure $(\dot{S}eNSN\dot{S})_2(AsF_6)_2$ might be isolated by washing the noncrystalline $Se_4(AsF_6)_2$ with SO_2 and then subliming out any unreacted SNAsF₆ by pumping under dynamic vacuum. Although the reactions of $SNAsF_6$ with $Se_8(AsF_6)_2$ or Se are both convenient routes to $(\dot{S}eNSN\dot{S})_n(AsF_6)_2$ (n = 1 or 2), we recommend the use of Se since $Se_8(AsF_6)_2$ must be prepared and purified. The compounds $(\dot{S}eNSN\dot{S})_2(AsF_6)_2$ and $\dot{S}eNSN\dot{S}$ - $(AsF_6)_2$ form black and yellow crystals, respectively while $Se_4(AsF_6)_2$ is a yellow non-crystalline solid. These differences enabled us to select crystals of the first two compounds under the microscope and to obtain their IR and Raman (n = 2)spectra.

Nature of the $SeNSNS^{2+}$ Cation in Solution.—We have shown that the $SNSNS^{2+}$ cation completely dissociates in solution to give SN^+ and $SNS^{+12.26}$ [see equations (13)] and that this process is one of the key steps in the formation of SNS^+ from the reaction of S_8 , S_4N_4 and AsF_5 with a trace of Br_2 .¹ This motivated us to investigate the nature of the related SeNSNSe²⁺³ and SeNSeNSe²⁺¹⁴ in solution and to explore the possibility of preparing simple Se-N cations from them. However, we found that the last two cations retain their ring structures in solution. We therefore envisaged that SeNSNS²⁺ (cf. $SNSNS^{2+}$) would be more likely to dissociate in solution than $SeNSNSe^{2+3}$ and $SeNSeNSe^{2+14}$ [see equations (14)– (16)]. The ⁷⁷Se NMR chemical shift of $SeNSNS^{2+}$ at -60 °C

$$\dot{S}NSN\dot{S}^{2+} \longrightarrow SNS^{+} + SN^{+}$$
 (13)

 $\dot{S}eNSN\dot{S}e^{2+} \longrightarrow SeN^{+} + SeNS^{+}$ (14)

$$\overline{\text{SeNSeNSe}^{2+}} \longrightarrow \text{SeN}^{+} + \text{SeNSe}^{+}$$
(15)

$$\overrightarrow{SeNSNS^{2+}} \xrightarrow{?} SeNS^{+} + SN^{+}, \text{ or } SNS^{+} + SeN^{+} \quad (16)$$

(δ 2422.4, $v_{\frac{1}{2}} = 10.4$ Hz) was essentially the same as that at r.t. (δ 2421, $v_{\frac{1}{2}} = 41.7$ Hz) which implies that the cation is not in equilibrium with other species in solution. The appearance of the resonance due to SeNSNS²⁺ at a high frequency is consistent with the dipositive charge and a delocalised 6π system, and the shift to a higher frequency relative to that of SeNSNSe²⁺ (δ 2411.7, $v_{\frac{1}{2}} = 10.2$ Hz)³ is consistent with the replacement of selenium in SeNSNSe²⁺ by the more electronegative sulfur. The related 6π SeNSeNSe²⁺ (δ 2434.0, $v_{\frac{1}{2}} = 9.2$ Hz)¹⁴ as its AsF₆⁻ salt also gave a peak at high frequency.

The ¹⁴N NMR spectrum of slightly impure $\dot{S}eNSNS(AsF_6)_2$ in SO₂-AsF₅ solution showed a broad peak at δ 68.9, v_{\pm} = 446 Hz ($\overline{SeNSNS^{2+}}$) and weak peaks attributable to SN^+ and SNS⁺. The broad ¹⁴N NMR resonance is consistent with a ring structure which precludes extensive dissociation to small cations such as SeN⁺ or SeNS⁺ which would be expected to have relatively sharp peaks. However, it does not rule out the possibility of slight dissociation (ca. 5%) to polymeric species $[e.g. \frac{1}{x}(SeN^+)_x]$ which would have broad peaks. The ¹⁴N NMR results should be interpreted with caution since we could not isolate very pure $\dot{S}eNSN\dot{S}(AsF_6)_2$ for the NMR study and the sample contained some SN⁺ and SNS⁺. The Raman spectrum of $SenSNS(AsF_6)_2$ in $AsF_3(l)$ did not show the presence of detectable amount of SN^+ or SNS^+ , and no peaks were observed in the region predicted for SeN^+ or $SeNS^+$ (see Fig. 3). Thus the ⁷⁷Se and ¹⁴N NMR data of SeNSNS²⁺ and its Raman spectrum in liquid AsF₃ are all consistent with retention of the ring structure in solution. This retention was also inferred from the formation of SeNSNS'+ as a product, the presence of unreacted SN⁺ [see equations (10)-(12) above], and the rapid formation of ClSeNSNS⁺ on addition of CCl₃F to a solution containing the dication (see above). The enthalpy change for the dissociation of $\overline{\text{SNSNS}^{2+}}$ to SN^+ and SNS^+ in solution has been estimated at *ca*. -6 kJ which indicates that the process is only marginally favourable.¹² The retention of the Se_{3-x}S_xN₂²⁺ (x = 0-2) ring structures in solution is therefore consistent with this result since the enthalpy change is expected to be less favourable with successive replacement of sulfur by selenium.

Reaction of Se, S_4N_4 and AsF_5 with a Trace of Br_2 .—The attempt to prepare SeNSAsF₆ according to equation (4) led to the formation of SeNSNSe(AsF₆)₂,³ Se₄(AsF₆)₂ and smaller amounts of SNAsF₆, FSNSNSAsF₆ and SeNSNS(AsF₆)₂.¹² The distribution of these products could not be determined from the ⁷⁷Se NMR spectrum because a precipitate formed at -70 °C. The analogous sulfur reaction [see equation (1)] proceeds quantitatively to give SNSAsF₆.¹ The observed products indicate that the first step of this reaction involves a rapid oxidation ⁶ of Se by AsF₅ to form Se₄(AsF₆)₂ which then

Fig. 4 An ORTEP plot of the disordered $(Se/SNSNS/Se^{+})_2$

Fig. 5 Bond distances (Å) and calculated bond orders (italics underlined) in the two independent molecules of $(Se/SNSNS/Se^{+})_2$. Occupancy factors: S(11), Se(1) 0.70; Se(1'), S(11') 0.30; Se(2), S(21) 0.65; S(21'), Se(2') 0.35

reacts with S_4N_4 to give $(Se_{3-x}S_xN_2)_2(AsF_6)_2$ (x = 1-3 but largely x = 1 is the key reaction) and Se followed by oxidation with AsF₅ to give $Se_{3-x}S_xN_2(AsF_6)_2$.

Reaction of $Se_4(AsF_6)_2$ with S_4N_4 (2:1 ratio).—We have described the 1:1 ratio reaction elsewhere.³ The reaction in a 2:1 ratio was carried out by analogy to the sulfur reaction which gives $SNSAsF_6$ [see equations (3) and (6)]. However, the reaction did not proceed as indicated by equation (6) but instead gave (SeNSNSe)₂(AsF_6)₂, $^3Se_8(AsF_6)_2$ and (SeNSNS)₂(AsF_6)₂ which indicates that $Se_4(AsF_6)_2$ first reacted with S_4N_4 in a 1:1 ratio to give mainly (SeNSNSe)₂(AsF_6)₂ and selenium and a small amount of (SeNSNS)₂(AsF_6)₂. The selenium then reacted with $Se_4(AsF_6)_2$ to give $Se_8(AsF_6)_2$.

Crystal Structures of $(Se/SNSNS/Se)_2(AsF_6)_2$, $Se/SNSNS/Se)_2(AsF_6)_2$, $Se/SNSNS/Se(AsF_6)_2$ and $(Se/SNSNSe)_2(AsF_6)_2$.—The crystal structures are disordered therefore the estimated standard deviations may not represent the actual errors in the bond lengths. That of $(SeNSNS)_2(AsF_6)_2$ consists of two independent disordered

SeNSNS'+ cations loosely joined into a dimer by two long Se $\cdot \cdot \cdot$ S bonds, and AsF₆⁻ anions with significant cation-anion interactions. The structure is more correctly formulated as $(Se/SNSNS/Se)_2(AsF_6)_2$. The disorder was modelled by the superimposition of two independent SNSNSe'+ and SeNSNS'+ radical cations. The NSN fragment was made to be the same in both arrangements and the two nitrogen atoms and the apical sulfur all have occupancy factors of one. An ORTEP plot²⁷ of the disordered dimer showing atom numbering is illustrated in Fig. 4. The cations with high Se and S occupancy factors (0.70 and 0.65) form a dimer via overlap of their π^* singly occupied molecular orbital (SOMO), reminiscent of the dimerisation of related 7π radical cations (see below). Their disordered pairs with low Se and S occupancy factors (0.30 and 0.35) also dimerise in the same way. Thus two independent noncentrosymmetric (with respect to occupancy factors of Se and S) $(SeNSNS^{*+})_2$ and $(SNSNSe^{*+})_2$ dimers with separate but similar bond distances and angles were obtained. These are shown in Fig. 5 together with their corresponding bond distances and calculated bond orders.* Bond distances within the AsF_6^- anions and the angles within the two dimeric cations are also listed in Table 7.

The structure of $(Se/SNSNS/Se^{+})_2$ is isomorphous (space group $P2_1/n$) with those of $(Se/SNSNSe^{+})_2$ (see below), $(SeNSNSe^{+})_2^{29}$ and $(SNSNS^{+})_2(AsF_6)_2^{30}$ (space group $P2_1/c$) but not with $(SeNSeNSe^{+})_2(AsF_6)_2^{14}$ (space group P1). The trans geometry of $(Se/SNSNS/Se^{+})_2$ and the Se \cdots S distances [3.12(4), 3.09(2), 3.32 (5) and 3.16(6) Å] are similar to those observed in related ring systems which form $\pi^* - \pi^*$ bonds [e.g. $(SNSNS^{++})_2(AsF_6)_2$,³⁰ S \cdots S 2.994(3); $(SeNSNSe^{++})_2$ - $(AsF_6)_2$,²⁹ Se \cdots Se 3.159(2), 3.111(2); $(SeNSeNSe^{++})_2$ - $(AsF_6)_2$,¹⁴ Se \cdots Se $2 \times 3.123(3), 2 \times 3.149(3)$; and $(Se/SNSeNSe^{++})_2(AsF_6)_2$ (see below), Se/S \cdots Se 3.138(3), 3.077(3)Å], $(C_6H_4Se_3^{++})_2^{-31}$ [average Se \cdots Se 3.226(4)] and $(Ph_2C_2N_3Se)_2^{-32}$ [Se \cdots Se 2.792(3) Å]. This suggests that the lengths of these weak bonds are independent of the chalcogen.

The crystal structure of SeNSNS(AsF₆)₂ consists of disordered SeNSNS²⁺ cations and AsF₆⁻ ions with significant interionic interactions. The model used to fit the disorder in SeNSNS²⁺ was the same as that described above for the monocation. Both NSeSN and NSSeN arrangements of the ring are present in different unit cells with essentially equal occupancy factors (0.51 and 0.49), but the NSN moiety is the same for both rings. An ORTEP plot of the disordered SeNSNS²⁺ (formulated as Se/SNSNS/Se²⁺) cation is depicted in Fig. 6, the two independent SeNSNS²⁺ cations are shown in Fig. 7, and bond distances and angles are listed in Table 8. The structures of Se/SNSNS/Se(AsF₆)₂ and Se_{3-x}S_xN₂²⁺ (x = 0, 1 or 3) are isomorphous (space group C2) and isostructural.

The bonding in the formally $6\pi \text{ SeNSNS}^{2+}$ and $7\pi \text{ SeNSNS}^{*+}$ may be described by a simple MO model derived from that of SNSNS²⁺¹² according to which all the bonds in these cations are expected to have some π -bonding character. The π -bond orders estimated from the bond distances in SeNSNS²⁺ (see Table 8) and SeNSNS^{*+} (see Fig. 5) indicate the presence of thermodynamically stable delocalised $3p_{\pi}(S)-2p_{\pi}(N)$ and $4p_{\pi}(Se)-2p_{\pi}(N)$ bonds. However, the calculated Se-S bond orders are very much lower than expected on the basis of the MO treatment which indicates a substantial $4p_{\pi}(Se)-3p_{\pi}(S)$

^{*} The bond order (N) was calculated by the Pauling equation: $N = 10^{(D-R)/0.71}$, where R is the observed bond length (Å) and D the sum of the appropriate covalent radii (Å) for a single bond; D = 2.21, 1.87 and 1.74 for Se–S, Se–N and S–N, respectively (see ref. 28).

Compound	1	2	3	4
Formula	As ₂ F ₁₂ N ₂ S ₂ Se	As ₂ F ₁₂ N ₄ S ₄ Se ₂	As_F_NAS_Se_	AsCIE ₂ S ₂ Se
М	548.85	719.89	766.91	395.32
Crystal size/mm	$0.20 \times 0.20 \times 0.30$	$0.15 \times 0.20 \times 0.25$	$0.44 \times 0.30 \times 0.30$	$0.52 \times 0.37 \times 0.18$
System	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	C2	$P2_1/n$	P2,/n	P2./n
aÌÅ	12.616(2)	9.768(1)	10.252(1)	9.211(1)
b/Å	8.581(2)	16.022(3)	15.995(2)	19.563(2)
c/Å	10.616(2)	10.269(1)	9.759(1)	10,600(2)
β/°	93.33(1)	97.77(1)	97.81(8)	104.93(1)
$U/Å^3$	1147.3(2)	1592.4(3)	1585.5(3)	1045 59
Z (molecules per cell)	4	4	4	8
$D_{\rm c}/{\rm Mg}{\rm m}^{-3}$	3.177	3.003	3.21	2.85
F(000)	1016.0	1336.0	1408	1472
$\mu(Mo-K\alpha)/mm^{-1}$	944.5	933.6	11 53	8 36
No. of reflections	1150	2962	2781	4887
No. of unique reflections	1002	2210	2781	2387
Observed reflections	940 ^d	14594	2143°	1589 "
$R_{\rm c}^{f}$ obs.	0.041	0.046	0.062	0.043
(all)		0.0.10	0.086	0.080
R'^{g} obs.	0.046	0.0519	0.087	0.080
(all)			0.090	0.055

Table 4 Crystallographic data for SeNSNS(AsF₆)₂^a 1, (SeNSNS)₂(AsF₆)₂^b 2, (Se/SNSNSe)₂(AsF₆)₂^c 3 and CiSeNSNSAsF₆ 4

^a Occupancy factors: S, 0.51; Se, 0.49. ^b Occupancy factors: Se(1) 0.70, S(11') 0.30, S(11) 0.70, Se(1') 0.30, S(21) 0.65, Se(2') 0.35, Se(2) 0.65, S(21') 0.35. ^c Occupancy factors: S 0.50, Se 0.50. ^d $I_{net} > 3\sigma I_{net}$. ^e $I_{net} > 2.5\sigma I_{net}$. ^f $R_f = \Sigma ||F_o| - |F_c||/\Sigma |F_o|$. ^g $R' = [\Sigma w(|F_o| - |F_c|)^2 / \Sigma w|F_o|]^{\frac{1}{2}}$, where $w = 1/\sigma^2 I$.

Table 5 Fractional atomic coordinates with estimated standard	deviations	(e.s.d.s)	in parentheses
--	------------	-----------	----------------

Atom	X/a	Y/b	Z/c	Atom	X/a	Y/b	Z/c
(Se/SNSN	$(AsF_6)_2$			Se/SNSN	$S/Se(AsF_6)_2$		
As(1)	0.2482(1)	0.1539(1)	0.1367(1)	Se(1)	-0.2083(4)	-0.9718(4)	-0.1481(5)
F(11)	0.1654(9)	0.0942(5)	0.0113(8)	S(2)	-0.211(1)	-0.948(1)	-0.359(1)
F(12)	0.3194(9)	0.2170(5)	0.2643(7)	S(1')	-0.200(1)	-0.943(1)	-0.145(1)
F(13)	0.093(1)	0.176(1)	0.180(1)	Se(2')	-0.2156(5)	-0.9780(4)	-0.3542(5)
F(14)	0.400(1)	0.137(1)	0.091(2)	S(3)	-0.1486(2)	-0.6769(3)	-0.2569(3)
F(15)	0.210(2)	0.2380(6)	0.039(1)	N(1)	-0.1688(8)	-0.779(1)	-0.1354(9)
F(16)	0.265(1)	0.0736(5)	0.243(1)	N(2)	-0.1769(7)	-0.786(1)	-0.3730(8)
As(2)	0.2644(1)	-0.0586(9)	0.6926(1)	As(1)	-0.8646(1)	-0.8497(0)	-0.2514(1)
F(21)	0.245(1)	0.0107(6)	0.5647(8)	F(11)	-0.8062(7)	-0.967(1)	-0.1372(7)
F(22)	0.2851(8)	-0.1278(5)	0.8223(7)	F(12)	-0.9172(8)	-0.722(1)	-0.3639(9)
F(23)	0.1333(9)	-0.0147(6)	0.7589(9)	F(13)	-0.9766(7)	-0.951(1)	-0.257(1)
F(24)	0.3917(8)	-0.1067(6)	0.6293(9)	F(14)	-0.8118(7)	-0.970(1)	-0.3596(8)
F(25)	0.1538(8)	-0.1266(5)	0.6090(8)	F(15)	-0.7497(9)	-0.742(1)	-0.247(1)
F(26)	0.375(1)	0.0077(6)	0.780(1)	F(16)	-0.912(1)	-0.735(1)	-0.137(1)
Se(1)	0.3622(7)	0.2047(6)	0.5358(6)	As(2)	0.0000(0)	-0.3330(2)	-0.5000(0)
S(11)	0.131(3)	0.195(2)	0.472(2)	F(21)	-0.0781(8)	-0.474(1)	-0.4447(9)
S(11')	0.355(5)	0.197(2)	0.538(3)	F(22)	-0.0794(8)	-0.191(1)	-0.4428(9)
Se(1')	0.125(3)	0.1966(1)	0.468(2)	F(23)	0.0772(7)	-0.333(1)	-0.3627(7)
S(12)	0.1977(3)	0.1905(2)	0.7449(3)	As(3)	0.000(0)	-0.3269(2)	-0.0000(0)
N(11)	0.345(1)	0.1991(6)	0.7010(9)	F(31)	-0.056(1)	-0.460(1)	-0.097(1)
N(12)	0.087(1)	0.1886(7)	0.625(1)	F(32)	0.1100(8)	-0.316(1)	-0.082(1)
Se(2)	0.6230(8)	0.1154(2)	0.9025(7)	F(33)	-0.0529(9)	-0.187(1)	-0.096(1)
S(21)	0.853(2)	0.1073(1)	0.967(2)				
S(21')	0.625(4)	0.1008(1)	0.898(3)				
Se(2')	0.856(1)	0.1106(8)	0.967(1)				
S(22)	0.7852(3)	0.1010(2)	0.6920(3)				
N(21)	0.637(1)	0.1062(6)	0.734(1)				
N(22)	0.901(1)	0.1017(6)	0.816(1)				

contribution from the totally symmetric bonding MO in the Se-S region. Similar unexpected long chalcogen-chalcogen bonds are also observed in the related $Se_{3-x}S_xN_2^{n+}$ (x = 0, 1 or 3; n = 1 or 2).^{3,12,14}

The error in the structural determination is illustrated by the high estimated standard deviations particularly in the NSeNS moiety and by the fact that the S–N bond [1.77(4) Å] adjacent to the Se–S bond in the bottom ring of dimer 2 (see Fig. 5) is longer than the Se–N bond [1.66(2) Å]. In addition, the vibrational frequencies of SeNSNS(AsF₆)₂ which were calculated from the average of the bond distances of

 $SNSNS^{2+}$, ¹² SeNSNSe²⁺³ and SeNSeNSe²⁺¹⁴ agreed better with the observed values than those calculated from the bond lengths obtained from the crystal structures (see Experimental section and Tables 2 and 3). Nevertheless the crystal structures of (Se/SNSNS/Se⁺⁺)₂ and Se/SNSNS/Se²⁺ establish the identities of the compounds. The Se–S and the adjacent S–N bonds in SeNSNS²⁺ are shorter than those in SeNSNS⁺⁺ whereas the Se–N and the S–N (of the NSN fragment) bonds in the two cations are essentially the same (see Figs. 5 and 7). The changes in the bond distances which accompany the oxidation

Table 6 Fractional atomic and positional parameters with e.s.d.s in parentheses

		****	-	•		3 213	-
Atom	X/a	Y/b	Z/c	Atom	X/a	Y/b	Z/c
(Se/SNSNSe	$_{2}(AsF_{6})_{2}$			CISeNSNSA	sF ₆		
Se(11)	0.401 8(2)	0.112 6(1)	0.623 1(2)	Se(1)	0.366 6(1)	0.221 41(7)	0.971 3(1)
S/S(12)	0.467 6(2)	0.108 8(1)	0.855 1(2)	Cl(1)	0.570 8(4)	0.161 0(2)	1.040 7(4)
N(13)	0.314(1)	0.1016(7)	0.899(1)	S(11)	0.367 6(4)	0.234 8(2)	0.758 6(3)
S(14)	0.192 9(4)	0.1011(2)	0.785 9(4)	S(12)	0.463 7(4)	0.351 1(2)	0.901 3(4)
N(15)	0.235(1)	0.107(7)	0.640(1)	N(11)	0.432(1)	0.310 8(6)	0.773(1)
Se(21)	0.5357(2)	0.2963(1)	0.861 3(2)	N(12)	0.423(1)	0.306 3(5)	1.010 1(9)
Se/S(22)	0.469 8(2)	0.3040(2)	0.628 0(2)	Se(2)	0.185 1(1)	0.516 36(7)	0.323 5(1)
N(23)	0.622(1)	0.3113(7)	0.586(1)	Cl(2)	0.372 9(4)	0.585 5(2)	0.401 4(3)
S(24)	0.744 7(4)	0.309 4(2)	0.697 8(4)	S(21)	0.196 8(4)	0.507 9(2)	0.112 4(3)
N(25)	0.703(1)	0.302.7(7)	0.844(1)	S(22)	0.321 4(4)	0.395 8(2)	0.253 9(4)
As(1)	0.136 5(1)	0.346 16(8)	0.748 2(2)	N(21)	0.282(1)	0.436 5(6)	0.126(1)
F(11)	0.012 5(9)	0.406 8(6)	0.669(1)	N(22)	0.260(1)	0.433 0(5)	0.361 5(9)
F(12)	0.263 8(9)	0.282 7(6)	0.820(1)	As(1)	0.4313(1)	0.208 03(7)	0.399 3(1)
F(13)	0.086(2)	0.360(1)	0.898(1)	F(11)	0.422(1)	0.285 5(5)	0.464(1)
F(14)	0.041(1)	0.262 8(8)	0.716(3)	F(12)	0.288(1)	0.182 9(6)	0.458(1)
F(15)	0.186(1)	0.324(1)	0.594(1)	F(13)	0.550(1)	0.184 3(5)	0.539(1)
F(16)	0.243(1)	0.426 6(6)	0.763(2)	F(14)	0.313(1)	0.230 4(5)	0.257 8(9)
As(2)	0.1924(1)	0.941 45(9)	0.264 3(2)	F(15)	0.573(1)	0.231 8(7)	0.342(1)
F(21)	0.325 7(8)	0.871 8(5)	0.286 9(9)	F(16)	0.437(1)	0.130 5(5)	0.335(1)
F(22)	0.283(1)	1.007 7(7)	0.376(1)	As(2)	0.749 1(1)	0.965 41(6)	0.248 2(1)
F(23)	0.129(1)	0.893 0(7)	0.394(1)	F(21)	0.902 3(9)	0.998 2(5)	0.216 1(9)
F(24)	0.066(1)	1.011 2(7)	0.244(1)	F(22)	0.645 6(9)	0.984 8(5)	0.096 8(7)
F(25)	0.108 8(9)	0.872 1(6)	0.150 7(9)	F(23)	0.788(1)	0.889 3(4)	0.193 0(9)
F(26)	0.259(1)	0.988 1(7)	0.135(1)	F(24)	0.702(1)	1.040 0(5)	0.303 2(9)
. ,			()	F(25)	0.848 5(9)	0.943 8(6)	0.399 1(7)
				F(26)	0.592 7(8)	0.932 3(5)	0.278 0(9)

Table 7 Bond distances $(Å)^*$ in the AsF₆⁻ and angles (°) in (Se/SNSNS/Se^{*+})₂ with e.s.d.s in parentheses

$A_{s(1)} = F(11)$	1 700(8)	$A_{s}(2) = F(21)$	1 720(9)
$A_{-}(1) = (12)$	1.705(0)	$A_{-}(2) = \Gamma(21)$	1.720(7)
As(1) - F(12)	1.725(8)	As(2)-F(22)	1./33(/)
As(1)-F(13)	1.66(1)	As(2)–F(23)	1.687(9)
As(1)-F(14)	1.61(2)	As(2)-F(24)	1.671(9)
As(1)-F(15)	1.66(1)	As(2)-F(25)	1.699(8)
As(1)-F(16)	1.67(1)	As(2)-F(26)	1.69(1)
S(11)-Se(1)-N(11)	93.3(7)	N(21)-S(22)-N(22)	111.2(5)
Se(1)-S(11)-N(12)	96(1)	Se(1)-N(11)-S(12)	119.0(6)
Se(1')-S(11')-N(11)	97(2)	S(11')-N(11)-S(12)	117(1)
S(11')-Se(1')-N(12)	93(1)	S(11)-N(12)-S(12)	120(1)
N(11)-S(12)-N(12)	110.6(5)	Se(1')-N(12)-S(12)	121(1)
S(21)-Se(2)-N(21)	95.2(7)	Se(2)-N(21)-S(22)	118.3(7)
Se(2)-S(21)-N(22)	95.9(9)	S(21')-N(21)-S(22)	117.2(2)
Se(2')-S(21')-N(21)	94(2)	S(21)-N(22)-S(22)	119.4(9)
S(21)-Se(2')-N(22)	95(1)	Se(2')-N(22)-S(22)	121.2(8)

* Bond distances within the $(Se/SNSNS/Se^{+})_2$ cation are included in Fig. 5. Occupancy factors of the disordered atoms are: Se(1) 0.70, S(11') 0.30, S(11) 0.70, Se(1') 0.30, S(21) 0.65, Se(2') 0.35, Se(2) 0.65, S(21') 0.35.

of SeNSNS^{*+} to SeNSNS²⁺ are therefore somewhat consistent with the nature of the SOMO of SeNSNS^{*+} assuming it is the same as that of SNSNS^{*+}. Similar changes in bond distances are observed in the related Se_{3-x}S_xN₂^{*+}-Se_{3-x}S_xN₂²⁺ (x = 0, 1 or 3)^{3,12,14} monocation-dication systems. The Se-S bonds in both (Se/SNSNS/Se^{*+})₂ and Se/SNSNS/Se²⁺ are intermediate between the corresponding S-S and Se-Se distances in SNSNS^{n+12,30} and SeNSNSe^{n+3,29} (n = 1 or 2) as expected.

The crystal structure of $(Se/SNSNSe)_2(AsF_6)_2$ consists of disordered SeNSNSe⁺⁺ and SeNSNS⁺⁺ radical cations joined by two long Se/S··· Se bonds [3.077(3), 3.138(3) Å] as shown in Fig. 8. In this structure one atomic position was fitted by 50% sulfur and 50% selenium and no attempt was made to unravel the disorder. The structure is centrosymmetric with a geometry similar to those of related dimers (see above). The bond

Fig. 6 An ORTEP plot of the disordered Se/SNSNS/Se²⁺. Occupancy factors: Se(1), S(2) 0.51; S(1'), Se(2') 0.49

Fig. 7 Bond distances (Å) and calculated bond orders (italics underlined) in the two independent \overline{SeNSNS}^{2+} cations

distances and angles in $(Se/SNSNSe^{+})_2$ are essentially the same as those in $(SeNSNSe^{+})_2^{29}$ (see Tables 9 and 10; angles in the latter cation are not included). The Se/S–Se and Se/S–N bonds in $(Se/SNSNSe^{+})_2$ have values expected upon superimposition **Table 8** Bond distances $(Å)^*$ and angles (°) for Se/SNSNS/Se(AsF₆)₂ with e.s.d.s in parentheses

$\begin{array}{l} Se(1)-S(2)\\ Se(1)-N(1)\\ S(2)-N(2)\\ S(1')-Se(2')\\ S(1')-N(1)\\ Se(2')-N(2)\\ S(3)-N(1)\\ S(3)-N(2)\\ \end{array}$	2.25(1) 1.74(1) 1.47(1) 2.24(1) 1.47(1) 1.74(1) 1.59(1) 1.57(9)	$\begin{array}{l} S(2)-Se(1)-N(1)\\ Se(1)-S(2)-N(2)\\ Se(2')-S(1')-N(1)\\ S(1')-Se(2')-N(2)\\ N(1)-S(3)-N(2)\\ Se(1)-N(1)-S(3)\\ Se(1')-N(1)-S(3)\\ S(2)-N(2)-S(3)\\ S(2')-N(2)-S(3)\\ S(2')-N(2)-S(3)\\ \end{array}$	88.9(5) 101.2(6) 102.1(7) 88.6(4) 105.7(5) 121.3(6) 121.6(8) 122.8(7) 121.8(6)
As(1)-F(11)	1.709(9)	As(2)-F(21)	1.69(1)
As(1)-F(12)	1.72(1)	As(2)-F(22)	1.71(1)
As(1)-F(13)	1.66(1)	As(2)-F(23)	1.705(9)
As(1)-F(14)	1.705(9)	As(3)-F(31)	1.67(1)
As(1)-F(15)	1.72(1)	As(3)-F(32)	1.69(1)
As(1)-F(16)	1.70(1)	As(3)-F(33)	1.69(1)

* Atoms S(1') and Se(2') are the disordered pair of Se(1) and S(2); they have an occupancy factor of 0.490(4).

Table 9. Comparison of bond distances (Å) in the $(Se/SNSNSe^{+})_2$ and $(SeNSNSe^{+})_2$ cations with e.s.d.s in parentheses

(Se/SNSNSe ⁺) ₂ ^a		(SeNSNSe ⁺) ₂ ^b	
S e / S(22) - Se(21)	2.288(3)	Se(1)-Se(2)	2.358(2)
Se(11) - Se/S(12)	2.274(3)	Se(3)-Se(4)	2.345(2)
Se(21)-N(25)	1.75(1)	Se(1) - N(1)	1.75(1)
Se/S(22)-N(23)	1.67(1)	Se(2) - N(2)	1.75(1)
Se(11)-N(15)	1.74(1)	Se(3)-N(3)	1.76(1)
Se/S(12)-N(13)	1.69(1)	Se(4) - N(4)	1.76(1)
S(24)-N(25)	1.55(1)	S(1) - N(1)	1.55(1)
S(24)–N(23)	1.55(1)	S(1) - N(2)	1.57(1)
S(14)–N(13)	1.54(1)	S(2)-N(4)	1.54(1)
S(14)–N(15)	1.55(1)	S(2) - N(3)	1.58(1)
$Se(21) \cdots Se/S(12)$	3.077(3)	$Se(1) \cdots Se(4)$	3.159(2)
$Se/S(22) \cdots Se(11)$	3.138(3)	$Se(2) \cdots Se(3)$	3.111(2)
AsF_6^- in (Se/SNSN	Se' ⁺) ₂		
As(1)-F(11)	1.700(8)	As(2) - F(21)	1.753(8)
As(1) - F(12)	1.725(9)	As(2) - F(22)	1.704(9)
As(1) - F(13)	1.63(1)	As(2) - F(23)	1.684(9)
As(1)-F(14)	1.66(1)	As(2) - F(24)	1.702(9)
As(1) - F(15)	1.69(1)	As(2)–F(25)	1.714(8)
As(1)-F(16)	1.68(1)	As(2)-F(26)	1.685(9)

" This work; Se/S denotes 50% occupancy by S and Se. ^b Ref. 29.

Fig. 8 An ORTEP plot of the disordered $(Se/SNSNSe^{+})_2$ with bond distances (Å). Se/S denotes 50% occupancy by S and Se

of the Se–Se (or Se–N) bond in $(SeNSNSe^{+})_2^{29}$ and the S–S (or S–N) bond in $(SNSNS^{+})_2^{30}$

Crystal Structure of ClseNSNSAsF₆.—The X-ray crystal structure of ClseNSNSAsF₆ consists of two independent ClseNSNS⁺ cations and AsF_6^- anions. The five-membered

Table 10 Bond angles (°) in $(Se/SNSNSe)_2(AsF_6)_2$ with e.s.d.s in parentheses

N(25)-Se(21)-Se/S(22)	93.6(4)	S(14)-N(13)-Se/S(12)	120.4(7)
N(23)-Se/S(22)-Se(21)	95.0(4)	Se/S(12)-Se(21)-Se/S(22)	89.83(9)
N(25)-S(24)-N(23)	110.5(6)	N(25)-Se(21)-Se/S(12)	106.1(4)
S(24) - N(25) - Se(21)	119.3(7)	Se(21)-Se/S(22)-Se(11)	89.89(9)
S(24)-N(23)-Se/S(22)	121.6(7)	N(23)-Se/S(22)-Se(11)	106.1(4)
N(15)-Se(11)-Se/S(12)	93.8(4)	Se/S(12)-Se(11)-Se/S(22)	88.57(9)
N(13)-Se/S(12)-Se(11)	95.3(4)	N(15)-Se(11)-Se/S(22)	105.5(4)
N(15)-S(14)-N(13)	111.1(6)	Se(11)-Se/S(12)-Se(21)	91.7(9)
S(14) - N(15) - Se(11)	119.4(7)	N(13)-Se/S(12)-Se(21)	106.1(4)

Table 11 Comparison of bond lengths (Å) and angles (°) in ClSeNSNSX

	х			
	AsF_6^{-a}		AlCl ₄ ^{- b}	Cl ^{-c}
Se(1)-S(11)	2.272(4)	[2.273(3)] ^d	2.293(1)	2.277(2)
S(11) - N(11)	1.59(1)	[1.59(1)]	1.630(4)	1.653(7)
N(11)-S(12)	1.53(1)	[1.54(1)]	1.545(4)	1.569(8)
S(12)-N(12)	1.57(1)	[1.58(1)]	1.578(4)	1.561(6)
N(12)-Se(1)	1.76(1)	[1.78(1)]	1.741(4)	1.788(7)
Se(1)-Cl(1)	2.182(4)	[2.183(3)]	2.191(1)	2.249(3)
As(1)-F(11)	1.676(9)			
As(1)-F(12)	1.675(9)			
As(1)-F(13)	1.661(9)			
As(1)-F(14)	1.668(8)			
As(1)-F(15)	1.647(9)			
As(1)-F(16)	1.670(9)			
As(2)-F(21)	1.664(8)			
As(2)-F(22)	1.686(7)			
As(2)–F(23)	1.671(8)			
As(2)-F(24)	1.669(9)			
As(2)-F(25)	1.680(7)			
As(2)-F(26)	1.682(8)			
S(11)-Se(1)-Cl(1)	100.0(2)	[100.5(1)] ^d	101.46(5)	98.29(9)
N(12)-Se(1)-Cl(1)	104.8(3)	[105.1(3)]	103.7(1)	100.4(2)
N(12)-Se(1)-S(11)	92.7(3)	[92.5(3)]	92.7(1)	92.9(2)
Se(1)-S(11)-N(11)	96.2(4)	[97.1(4)]	96.1(1)	97.2(2)
S(11)-N(11)-S(12)	123.3(7)	[122.1(7)]	121.6(2)	120.4(4)
N(11)-S(12)-N(12)	109.6(6)	[108.8(6)]	110.2(2)	110.0(4)
S(12) - N(12) - Se(1)	118.0(6)	[116.7(6)]	118.6(2)	118.3(4)
This work Dof 25	(Def 0	d The second	volue aiven	n aaah aaa

^a This work. ^b Ref. 25. ^c Ref. 9. ^a The second value given in each case corresponds to that for the other independent cation.

rings are almost planar and the Se atoms in the two independent cations deviate from the planes formed by the S_2N_2 moiety by 0.12(1) and 0.19(1) Å. The bond distances in the two cations are similar to those in CISeNSNS⁺X⁻ (X = Cl⁹ or AlCl₄^{25b}) with some differences in the Se–S bond in the AlCl₄⁻ and the Se–Cl bond in the Cl⁻ salts, both of which are significantly longer than the corresponding distances in the other two salts (see Table 11). The structures of CISeNSNS⁺X⁻ (X = Cl or AlCl₄) have already been discussed in detail, therefore a discussion of that in CISeNSNSAsF₆ is not warranted.

Conclusion

Our attempts to prepare SeNSAsF₆ led instead to the synthesis of SeNSNS(AsF₆)₂ and (SeNSNS)₂(AsF₆)₂ and the completion of the preparation and characterisation of all possible 7π Se_{3-x}-S_xN₂⁺⁺ and 6π Se_{3-x}S_xN₂²⁺ (x = 1-3) ring systems in solution and the solid state. The first cation of this class SNSNS⁺⁺ was first identified in 1974 by Banister *et al.*³³ in their seminal paper on (SNSNS)₂(S₂O₆Cl)₂. Later Gillespie *et al.*²⁹ characterised SeNSNSe⁺⁺ in (SeNSNSe)₂(AsF₆)₂ and since then we have prepared and structurally characterised SeNSNSe(AsF₆)₂,^{3,34} $SNSNS(AsF_6)_2$,¹² (SeNSeNSe)_n(AsF₆)₂ (n = 1 or 2)¹⁴ and $(\dot{S}NSN\dot{S}e)_n(AsF_6)_2$ (n = 1 or 2; this report). However, the isomers $SNSeNS^{n+}$ and $SeNSeNS^{n+}$ (n = 1 or 2) have not been identified. Although SNSe⁺ has not been isolated, it is proposed as a reaction intermediate. In contrast to SNSNS²⁺, which completely dissociates to SNS⁺ and SN⁺ in SO₂ and AsF₃

solution, all the selenium-containing analogues retain their ring structures in solution.

Acknowledgements

We thank Dr. J. L. Howe (Bruker Canada Ltd.) for Fourier-Transform Raman spectra and Dr. L. Calhoun (University of New Brunswick) for assistance in obtaining multinuclear NMR spectra. We also thank Natural Sciences and Engineering Research Council (Canada) and the University of New Brunswick (E. G. A. and X. S.) for financial support.

References

- 1 E.G. Awere and J. Passmore, J. Chem. Soc., Dalton Trans., 1992, 1343. 2 W. V. F. Brooks, G. K. MacLean, J. Passmore, P. S. White, and C.-M. Wong, J. Chem. Soc., Dalton Trans., 1983, 1961; G. K. McLean, J. Passmore and P. S. White, J. Chem. Soc., Dalton Trans., 1984, 211; G. K. MacLean, J. Passmore, M. N. S. Rao, M. J. Schriver and P. S. White, J. Chem. Soc., Dalton Trans., 1985, 1405; E. G. Awere, N. Burford, C. Mailer, J. Passmore, M. J. Schriver, P. S. White, A. J. Banister, H. Oberhammer and L. H. Sutcliffe, J. Chem. Soc., Chem. Commun., 1987, 66; N. Burford, J. Passmore and M. J. Schriver, J. Chem. Soc., Chem. Commun., 1986, 140; N. Burford, J. P. Johnson, J. Passmore, M. J. Schriver and P. S. White, J. Chem. Soc., Chem. Commun., 1986, 966; M. J. Schriver, Ph.D. Thesis, University of New Brunswick, 1988; S. Parsons, J. Passmore, M. J. Schriver and P. S. White, J. Chem. Soc., Chem. Commun., 1991, 369; S. Parsons, J. Passmore, M. J. Schriver and X. Sun, Inorg. Chem., 1991, 30, 3342; A. J. Banister, J. M. Rawson, W. Clegg and S. L. Birkby, J. Chem. Soc., Dalton Trans., 1991, 1099.
- 3 E. G. Awere, J. Passmore and P. S. White, J. Chem. Soc., Dalton Trans., 1992, 1267.
- 4 A. Apblett, A. J. Banister, D. Biron, A. G. Kendrick, J. Passmore, M. J. Schriver and M. Stojanac, *Inorg. Chem.*, 1986, **25**, 4451. 5 (a) M. J. Collins, R. J. Gillespie, J. F. Sawyer and G. J. Schrobilgen,
- Inorg. Chem., 1986, 25, 2053; (b) R. C. Burns and R. J. Gillespie, Inorg. Chem., 1982, 21, 3877; (c) R. C. Burns, M. J. Collins, R. J. Gillespie
- and G. J. Schrobilgen, *Inorg. Chem.*, 1986, **25**, 4465. 6 M. P. Murchie, J. Passmore, G. W. Sutherland and R. Kapoor, J. Chem. Soc., Dalton Trans., 1992, 503 and refs. therein.
- 7 W. A. S. Nandana, J. Passmore, P. S. White and C.-M. Wong, Inorg. Chem., 1989, 28, 3320.
- 8 P. A. G. O'Hare, E. G. Awere, S. Parsons and J. Passmore, J. Chem. Thermodyn., 1989, 21, 153.

- 9 R. J. Gillespie, J. P. Kent and J. F. Sawyer, Inorg. Chem., 1990, 29, 1251
- 10 G. M. Begum and A. C. Rutenberg, Inorg. Chem., 1967, 6, 2212.
- 11 E. Awere, J. Passmore, K. F. Preston and L. H. Sutcliffe, Can. J. Chem., 1988, 66, 1776.
- 12 W. V. F. Brooks, T. S. Cameron, F. Grein, S. Parsons, J. Passmore and M. J. Schriver, J. Chem. Soc., Chem. Commun., 1991, 1079; Inorg. Chem., submitted for publication.
- 13 R. M. Badger, J. Chem. Phys., 1934, 2, 128.
- 14 E. G. Awere, J. Passmore, P. S. White and T. Klapötke, J. Chem. Soc., Chem. Commun., 1989, 1415; E. G. Awere, J. Passmore and P. S. White, J. Chem. Soc., Dalton Trans., 1993, 299. 15 T. S. Cameron and R. E. Cordes, Acta Crystallogr., Sect. B, 1979, 35,
- 748
- 16 N. Walker and D. Stuart, Acta Crystallogr., Sect. A, 1983, 39, 158.
- 17 G. M. Sheldrick, in Crystallographic Computing 3, eds. G. M. Sheldrick, C. Kruger and R. Goddard, Oxford University Press, 1985, p. 175.
- 18 G. M. Sheldrick, SHELX 76, A system of computer programs for X-ray structure determination as locally implemented at Dalhousie and Cambridge Universities, 1976.
- 19 J. R. Carruthers and D. J. Watkin, CRYSTALS, Issue 8, Chemical Crystallography Laboratory, Oxford, 1989.
- 20 D. J. Watkin, Crystallographic Computing 4, eds. N. W. Isaacs and M. R. Taylor, Oxford University Press, 1983, pp. 113-125 and refs. therein.
- 21 V. Medizadeh and S. Mardix, Acta Crystallogr., Sect. C, 1986, 42, 518.
- 22 Y. Le Page, P. S. White and E. J. Gabe, NRCCAD, An Enhanced CAD-4 Control Program, Annual Meeting of American Crystallographic Association, Hamilton, Ontario, 1986.
- 23 E. J. Gabe, Y. Le Page, J.-P. Charland and F. L. Lee, J. Appl. Crystallogr., 1989, 22, 384.
- 24 International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4.
- 25 (a) A. Apblett, F. Grein, J. P. Johnson, J. Passmore and P. S. White, Inorg. Chem., 1986, 25, 422; (b) A. Apblett, T. Chivers and J. F. Fait, Inorg. Chem., 1990, 29, 1643.
- 26 J. Passmore and M. J. Schriver, Inorg. Chem., 1988, 27, 2749.
- 27 C. K. Johnson, ORTEP, A Fortran Thermal Ellipsoid Plot Program, Technical Report, ORNL-5138, Oak Ridge, TN, 1976.
- 28 L. Pauling, The Nature of the Chemical Bond, 3rd edn., Cornell University, Ithaca, NY, 1960.
- 29 R. J. Gillespie, J. P. Kent and J. F. Sawyer, Inorg. Chem., 1981, 20, 4053.
- 30 R. J. Gillespie, J. P. Kent and J. F. Sawyer, Inorg. Chem., 1981, 20, 3784.
- 31 G. Wolmershauser and G. Heckmann, Angew. Chem., Int. Ed. Engl., 1992, 31, 779.
- 32 R. T. Oakley, R. W. Reed, A. Wallace Cordes, S. L. Craig and J. B. Graham, J. Am. Chem. Soc., 1987, 109, 7745.
- 33 A. J. Banister, H. G. Clarke, I. Rayment and H. M. M. Shearer, Inorg. Nucl. Chem. Lett., 1974, 10, 647.
- 34 See also A. Haas, J. Kasprowski, K. Angermund, P. Betz, Y.-H. Tsay and S. Werner, Chem. Ber., 1991, 124, 1895.

Received 30th December 1992; Paper 2/06870B