Trimethylenemethane Complexes of Ruthenium, Osmium and Rhodium *via* the Compound CH₂=C(CH₂SnMe₃)₂*

Gerhard E. Herberich and Thomas P. Spaniol

Department of Inorganic Chemistry, Technical University of Aachen, Professor-Pirlet-Strasse 1, D-52056 Aachen, Germany

The compound $CH_2=C(CH_2SnMe_3)_2$ 1 was readily made (61% yield) from $K_2(tmm)$ (tmm = trimethylenemethane) and $SnMe_3CI$. It serves as a new and efficient entry to tmm metal complexes. The arene complexes $[{MCl}_2(arene)]_2$ (M = Ru or Os) reacted with 1 to give allylmetal complexes $[MCl{CH}_2C(CH_2SnMe_3)CH_2](arene)]$ 2a-2e and sandwich-like compounds [M(tmm)(arene)] 3a-3e (M = Ru, arene = C_6H_6 a, C_6Me_6 b, or *p*-MeC₆H₄CHMe₂ c; M = Os, arene = C_6H_6 d or *p*-MeC₆H₄CHMe₂ e). The cymene complexes 3c and 3e can also be made using the combination $CH_2=C(CH_2CI)_2-Mg_-$ tetrahydrofuran as tmm source. Treatment of $[{Rhl}_2(C_5Me_5)]_2$ with 1 produced $[Rh(tmm)(C_5Me_5)]$ in high yield, and the carbonyl compounds $[{MCl}_2(CO)_3]_2$ (M = Ru or Os) afforded the tricarbonyl complexes $[M(CO)_3(tmm)]$ (M = Ru or Os) in good yields. X-Ray crystal structure determinations have been made for 2a, 3a and $[Ru(CO)_3(tmm)]$. The data for the last two show the tmm ligand to be more firmly bonded in the arene complexe.

Several main routes to trimethylenemethane (tmm) metal complexes have been described.¹ Most synthetic approaches to this chemistry use 'Y'-shaped C₄ fragments as precursors for the tmm ligand, such as CH₂=C(CH₂Cl)₂,^{2,3} methylenecyclopropane,⁴ functionalized allylsilanes,⁵ and the trimethylenemethane dianion $[C(CH_2)_3]^{2-}$ in Li₂(tmm).^{6,7} The tmm ligand may also form at a metal centre *via* oxidative coupling of allene and methylene ligands.⁸ In a preliminary communication we reported the reaction of $[{RuCl_2(arene)}_2]$ with Li₂(tmm) to give sandwich-like compounds [Ru(tmm)(arene)] (arene = C_6H_6 or C_6Me_6).⁹ We also mentioned the use of CH_2 =C(CH₂SnMe₃)₂ 1 as ligand source. As we shall detail in this paper, this reagent allows improved or altogether new syntheses and promises to have wide applicability.

Results and Discussion

Sandwich-type Complexes.—The tin compound 1 has been made previously from $CH_2=C(CH_2Cl)_2$ and $LiSnMe_3$.¹⁰ It can be obtained more conveniently from $K_2(tmm)$ and $SnMe_3Cl$ in pentane-tetrahydrofuran (thf). When (arene)ruthenium dihalides are treated with 1 mixtures of allyl complexes 2a-2cand trimethylenemethane complexes 3a-3c are formed (Scheme 1) which can be separated by column chromatography. The complexes 2 and 3 can be obtained in *ca*. 50% yield, depending on the reaction conditions. Short reaction times in the solvent CH_2Cl_2 allow 2 to be isolated in good yields. In the case of the osmium complexes, treatment with 1 at room temperature gives the allyl compounds 2d and 2e which only on heating afford the trimethylenemethane complexes 3d and 3e. In the case of the rhodium electrophile [{ $RhI_2(C_5Me_5)$ }] a slow room-temperature reaction with 1 produces the tmm rhodium complex 4 in *ca*. 80% yield.

As the above examples show, the tin reagent 1 can be used with advantage when the reducing power of the reagent $Li_2(tmm)$ turns out to be detrimental. Sometimes the combin-

(i) M = Ru SnMe₂ (i) M = Os SnMe Me₂Sr М arene C_6H_6 C_6Me_6 p-MeC₆H₄CHMe₂ C_6H_6 C_6H_6 Ru Ru 2b 3b 2c 2d 3c 3d Ru Os p-MeC₆H₄CHMe₂ Os

Scheme 1 (i) $[{MCl_2(arene)}_2], (ii)$ slight warming in nitromethane

ation of $CH_2=C(CH_2Cl)_2-Mg$ -thf can also be used as a less strongly reducing source of the tmm ligand.³ Treating this combination with the soluble compounds [{ $MCl_2(p-MeC_6-H_4CHMe_2)$ }_2] (M = Ru or Os) does indeed give good yields of the tmm complexes **3c** and **3e**. Unfortunately, this reagent is not suitable for sparingly soluble precursors such as [{ $RuCl_2(C_6H_6)$ }_2] where it gives only minor yields of **3a**.

The purified compounds 2 exist in only one isomeric form, as shown by NMR spectroscopy. Two isomers might have been expected, an *exo* isomer with the allyl group (or C^2 of the allyl) pointing towards the arene ring and an *endo* isomer pointing away from the arene region.¹¹ According to an X-ray crystal structure determination of **2a**, the energetically favourable *exo*

^{*} Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1993, Issue 1, pp. xxiii-xxviii. Non-S1 unit employed: bar = 10^5 Pa.

Fig. 1 An ORTEP plot (30% probability ellipsoids) of complex 2a

isomer is present (Fig. 1). The geometry in the C_4 fragment corresponds to that of the methylallyl ligand in *e.g.* exo-5.¹²

All tmm metal complexes 3a-3e are volatile *in vacuo*; 3aundergoes sublimation at *ca*. 40 °C (10⁻⁶ bar). The ¹³C NMR spectra show the expected resonance due to the central carbon atom at $\delta \approx 105$. For the methylene carbon atoms we observe *cis*- and *trans*-³J(CH) couplings. An X-ray crystal structure determination of 3a shows a sandwich-like complex with an approximately staggered conformation.⁹ The arene ligand is planar within experimental accuracy and no significant alternation of the C-C bond lengths in the ring is observed. The crystal structure of the homologous osmium complex 3d is isotypic to that of 3a. A discussion of the molecular parameters does not seem justified because of the low quality of the structure solution.

Tricarbonyl Complexes.—Until now the higher homologues **6b** and **6c** of the first tmm complex $[Fe(CO)_3(tmm)]^2$ **6a** have remained unknown. They can readily be synthesized from 1 and $[{MCl_2(CO)_3}_2]$ (M = Ru or Os) (Scheme 2). Like **6a** they are rather volatile, boiling at *ca*. 140 °C; decomposition occurs above *ca*. 160 °C. In principle there is a further way to **6b**, starting from the benzene complex **3a** which is susceptible to photochemical decomplexation of its arene ligand. After irradiation of **3a** in thf solution under an atmosphere of carbon monoxide, the characteristic v(CO) bands of **6b** appear in the IR spectrum and a ¹H NMR spectrum of the unpurified product shows the characteristic singlet of **6b**. However, this reaction was not optimized and yields were not determined.

In the ¹³C NMR spectra of the three tricarbonyl compounds **6a–6c** we observe the vicinal coupling constants *cis-* and *trans-*³*J*(CH) for the methylene carbon atoms. The structure of **6b** was determined by X-ray crystallography, and shows a staggered conformation (Fig. 2) like that observed for the iron complex **6a** in an electron diffraction study.¹³ The tmm ligand is less firmly bonded to the central metal atom than it is in the arene complex **3a**; ⁹ the distances M–C_{tmm} are lengthened by *ca.* 0.03 Å (average 2.06 and 2.23 in **6b** compared to 2.03 and 2.19 Å in **3a**). This *trans* effect parallels observations in cyclooctadiene complexes where the ligand is bonded more strongly to the arenemetal fragment Ru(C₆Me₆) than to the Ru(CO)₃ fragment.¹⁴

Experimental

Synthesis.—Experiments were carried out in a dry, oxygenfree nitrogen atmosphere, using solvents which were dried and distilled under nitrogen prior to use. Alumina used for chromatography columns was obtained from Woelm (ICN-Adsorbentien) and deactivated with 7% water. Irradiations were carried out with a high-pressure mercury lamp (TQ 150, Original Hanau, 150 W). The compounds [{RuCl₂(C₆H₆)₂],¹⁵ [{RuCl₂(C₆Me₆)₂],¹⁴ [{RuCl₂(*p*-MeC₆H₄CHMe₂)₂],¹⁵ [{OsCl₂(C₆H₆)₂],¹⁶ [{OsCl₂(*p*-MeC₆H₄CHMe₂)₂],¹⁷ [{Ru-Cl₂(CO)₃₂],¹⁸ [{OsCl₂(CO)₃₂],¹⁹ [{Rhl₂(C₅Me₅)₂]²⁰ and K₂(tmm)²¹ were prepared by methods previously described. The NMR data for the new compounds are given in Table 1.

Fig. 2 An ORTEP plot (30% probability ellipsoids) of complex **6b** [the metal atom is hidden by C(4)]

2-Methylene-1,3-bis(trimethylstannyl)propane 1. The compound SnMe₃Cl (82.4 g, 414 mmol) in hexane (530 cm³) was added dropwise to a stirred suspension of K₂(tmm) (27.4 g, 207 mmol) in hexane (150 cm³). After 1 h thf (10 cm³) was added and stirring was continued for 2 h. The suspension was filtered through Kieselgur, the residue carefully dissolved in ethanol and extracted with hexane. The combined hexane fractions were concentrated under reduced pressure, filtered over alumina (8 × 4 cm) and eluted with hexane (500 cm³). The solvent was removed under reduced pressure and the residue distilled (51 °C, *ca.* 10⁻³ bar) to give compound 1 (48.0 g, 61%) as a spectroscopically pure colourless oil ($d \approx 1.6$ g cm⁻³). Its ¹H NMR data were consistent with the values reported earlier.¹⁰

Reactions of (arene)ruthenium halides with $CH_2=C(CH_2-SnMe_3)_2$. (i) A suspension of $[\{RuCl_2(C_6H_6)\}_2]$ (0.45 g, 0.89 mmol) in thf (50 cm³) was stirred with compound 1 (0.50 cm³, 0.80 g, 2.10 mmol) for 30 h. The solvent was evaporated *in vacuo*, the residue dissolved in toluene and added to a column filled with alumina. Elution with the same solvent gave a light yellow band containing $[Ru(tmm)(C_6H_6)]$ 3a; recrystallization from pentane afforded light yellow needles (0.18 g, 42%). Further elution with thf gave an intense yellow band containing $[RuCl\{CH_2C(CH_2SnMe_3)CH_2\}(C_6H_6)]$ 2a (0.33 g, 42%), obtained as yellow platelets from thf at -78 °C, m.p. of 2a 159 °C (Found: C, 36.1; H, 4.9%; M 434. $C_{13}H_{21}ClRuSn$ requires C, 36.1; H, 4.9%), m.p. of 3a 165–166 °C (Found: C, 51.4; H, 5.2%).

(*ii*) A CH₂Cl₂ (200 cm³) solution of $[\{RuCl_2(C_6Me_6)\}_2]$ (0.52 g, 0.77 mmol) was stirred with compound 1 (1.28 g, 3.35 mmol) for 1 h at room temperature. Work-up as described above gave $[Ru(tmm)(C_6Me_6)]$ **3b** (0.14 g, 29%) as light yellow *crystals* and $[RuCl\{CH_2C(CH_2SnMe_3)CH_2\}(C_6Me_6)]$ **2b** (0.43 g, 54%) as intense yellow *microcrystals*. A higher yield of **3b** was obtained by stirring a suspension of $[\{RuCl_2(C_6Me_6)\}_2]$ (1.18 g, 1.76 mmol) in MeCN (60 cm³) with 1 (1.1 cm³, 1.76 g, 4.60 mmol) for 24 h. Work-up as described above gave **3b** (0.61 g, 55%); no **2b** was found. M.p. of **2b** 95 °C (Found: C, 44.3; H, 6.5. C₁₉H₃₃ClRuSn requires C, 44.2; H, 6.4%); of **3b** 183–184 °C (Found: C, 60.5; H, 7.6%; *M* 318. C₁₆H₂₄Ru requires C, 60.5; H, 7.6%).

(*iii*) A CH₂Cl₂ solution (50 cm³) of [{RuCl₂(p-MeC₆H₄CH-Me₂)]₂] (0.31 g, 0.50 mmol) was stirred with compound 1 (0.6 cm³, 0.96 g, 2.52 mmol) for 10 min at room temperature. Workup as described above gave [Ru(tmm)(p-MeC₆H₄CHMe₂)] 3c

2473

Table 1 Hydrogen-1 and carbon-13 NMR data^a for the complexes

Complex $^{1}H(\delta)$

- 0.11 [s, 9 H, Me₃Sn, J(SnH) 52, 54], 1.26 (s, 2 H, CH₂Sn), 2a ^b 2.12 (s, 2 H, 2 CH_{anti}, J(SnH) 8], 3.97 (s, 2 H, 2 CH_{syn}), $5.31 (s, 6 H, C_6 H_6)$
- 0.12[s,9H, Me₃Sn, J(SnH) 52, 54], 1.33(s, 2H, CH₂Sn), 2b^t 2.05 (s, 18 H, C₆Me₆), 2.36 (s, 2 H, 2 CH_{anti}), 2.89 (s, 2 H, 2 CH_{syn})
- 2c b 0.06 [s, 9 H, Me₃Sn, J(SnH) 51, 54], 1.26 (s, 2 H, CH₂Sn), 1.30 [d, 6 H, Me2CH, J(HH) 6], 2.16 [s, 2 H, 2 CHanti, J(SnH) 8], 2.36 (s, 3 H, Me), 2.6–3.0 [m, 1 H, Me₂CH, J(HH) 6], 3.49 (s, 2 H, 2 CH_{syn}), 4.4-4.9 [m, 4 H, (ÅB)₂, C₄H₁
- 2d ^b 0.20 [s, 9 H, Me₃Sn, J(SnH) 52, 54], 1.49 (s, 2 H, CH₂Sn), 2.24 [s, 2 H, 2 CH_{anti}, J(SnH) 9], 4.20 (s, 2 H, 2 CH_{syn}), 5.44 (s, 6 H, C₆H₆)
- $\begin{array}{l} 2 & \text{CH}_{syn}, 5.54 \ (s, 0.11, C_{6116}) \\ 0.14 \ [s, 9 \ H, \ \text{Me}_3\text{Sn}, \ J(\text{SnH}) \ 52, \ 54], \ 1.34 \ [d, 6 \ H, \\ Me_2\text{CH}, \ J(\text{HH}) \ 7], \ 1.41 \ (s, 2 \ H, \ \text{CH}_2\text{Sn}), \ 2.32 \ (s, 2 \ H, 2 \\ \text{CH}_{anti}), \ 2.50 \ (s, 3 \ H, \ \text{Me}), \ 2.7-3.1 \ [m, 1 \ H, \ \text{Me}_2\text{CH}, \ J(\text{HH}) \ 7], \ 1.41 \ (s, 2 \ H, \ CH_2\text{Sn}), \ 2.32 \ (s, 2 \ H, 2 \\ \text{CH}_{anti}), \ 2.50 \ (s, 3 \ H, \ \text{Me}), \ 2.7-3.1 \ [m, 1 \ H, \ \text{Me}_2\text{CH}, \ J(\text{HH}) \ 7], \ 1.41 \ (s, 2 \ H, \ CH_2\text{Sn}), \ 2.32 \ (s, 2 \ H, 2 \\ \text{CH}_{anti}), \ 2.50 \ (s, 3 \ H, \ \text{Me}), \ 2.7-3.1 \ [m, 1 \ H, \ \text{Me}_2\text{CH}, \ J(\text{HH}) \ 7], \ 1.41 \ (s, 2 \ H, \ CH_2\text{Sn}), \ 2.50 \ (s, 3 \ H, \ \text{Me}), \ 2.7-3.1 \ [m, 1 \ H, \ \text{Me}_2\text{CH}, \ Me_2\text{CH}, \$ 2e^b J(HH) 7], 3.69 (s, 2 H, 2 CH_{syn}), 4.6–5.0 [m, 4 H, (AB)₂, C_6H_4]
- **3a** ° 1.51 (s, 6 H, tmm), 4.97 (s, 6 H, C₆H₆)
- **3b** ° 0.95 (s, 6 H, tmm), 2.03 (s, 18 H, C₆Me₆)
- 3c^c 1.01 [d, 6 H, Me2CH, J(HH) 7], 1.36 (s, 6 H, tmm), 1.92 (s, 3 H, Me), 1.9-2.4 [m, 1 H, Me₂CH, J(HH) 7], 4.91-5.16 [m, 4 H, (AB)₂, C₆H₄, J(HH) 6.5, 13]
- 1.55 (s, 6 H, tmm), 4.69 (s, 6 H, C₆H₆) 3d °
- 1.02 [d, 6 H, Me₂CH, J(HH) 7], 1.41 (s, 6 H, tmm), 3e⁴ 2.1–2.4 [m, 1 H, Me_2CH , J(HH) 7], 2.13 (s, 3 H, Me), 4.66–4.90 [m, 4 H, $(AB)_2$, C_6H_4]
- 4° 1.61 [d, 6 H, tmm, J(RhH) 1.5], 2.04 (s, 15 H, C₅Me₅)
- 6a ^e 1.56 (s, tmm)
- 1.66 (s, tmm) 6b °
- 1.65 (s, tmm) 6c °

 ${}^{13}C(\delta)$

-9.8 [q, Me₃Sn, J(CH) 129], 23.3 [t, CH₂Sn, J(CH) 131], 52.6 [t, CH₂, J(CH) 158], 77.0 [d, C₆H₆, J(CH) 174], 112.7 (s, CC₃)

-9.9 [q, Me₃Sn, J(CH) 129], 15.8 [q, C₆Me₆, J(CH) 128], 21.7 [t, CH₂Sn, J(CH) 131], 49.7 [t, CH₂, J(CH) 154], 94.9 (s, C₆Me₆), 113.0 (s, CC₃)

-9.8 [q, Me₃Sn, J(CH) 129], 19.7 [q, Me, J(CH) 133], 23.7 [q, Me₂CH, J(CH) 127 + t, CH₂Sn, J(CH) 133], 32.0 [d, Me₂CH, J(CH) 130], 54.1 [t, CH₂, J(CH) 159], 83.8 [dm C² or C³ of C₆H₄, J(CH) 171], 84.4 [dm, C² or C^3 of C_6H_4 , J(CH) 169], 103.3 (s, C^1 of C_6H_4), 112.9, 114.0 (s, CC_3 and C^4 of C_6H_4)

-9.6 [q, Me₃Sn, J(CH) 129], 24.5 [t, CH₂Sn, J(CH) 130], 43.5 [t, CH₂, J(CH) 158], 78.6 [d, C₆H₆, J(CH) 176], 107.8 (s, CC₃)

-9.7 [q, Me₃Sn, J(CH) 129], 19.9 [q, Me, J(CH) 128], 23.9 [q, Me₂CH, J(CH) 127], 24.8 [t, CH₂Sn, J(CH) 127], 32.2 [d, Me₂CH, J(CH) 127], 24.8 [t, CH₂Sn, J(CH) 127], 32.2 [d, Me₂CH, J(CH) 129], 45.1 [t, CH₂, J(CH) 153], 75.9 [dm, C² or C³ of C₆H₄, J(CH) 171], 76.4 [dm, C² or G³ of C₆H₄, J(CH) 173], 97.4 (s, C¹ of C₆H₄), 107.1, 107.8 (s, C² or C³ of C₆H₄), 107.1, 107.8 (s, C³ or C³ of C⁴ CC_3 and C^4 of C_6H_4)

40.7 [ttt, C(CH₂)₃, J(CH) 157, 10, 5], 80.8 [d, C₆H₆, J(CH) 172], 103.5 (s, CC₃)

18.4 [q, C₆Me₆, J(CH) 127], 40.2 [ttt, C(CH₂)₃, J(CH) 155, 10, 5], 91.6 (s, $C_6 Me_6$), 105.0 (s, CC_3)

22.0 [q, Me, J(CH) 129], 23.9 [q, Me_2CH , J(CH) 129], 33.1 [d, Me_2CH , J(CH) 128], 40.3 [ttt, $C(CH_2)_3$, J(CH) 157, 10, 5], 80.2 [dm, C^2 or C^3 of C_6H_4 , J(CH) 171], 80.6 [dm, C^2 or C^3 of C_6H_4 , J(CH) 169], 95.2, 103.6, 104.5 (s, CC_3 , C^1 and C^4 of C_6H_4)

 CC_3 , C^1 and C^4 of C_6H_4) 11.8 [q, C₅Me₅, J(CH) 127], 44.3 [td, C(CH₂)₃, J(CH) 158, J(RhC) 14],

- 94.6 [d, C_5 Me₅, J(RhC) 6], 109.1 [d, C(CH₂)₃, J(RhC) 4] 54.5 [ttt, C(CH₂)₃, J(CH) 160.5, 10, 5], 105.5 (s, CC₃), 211.7 [s, Fe(CO)₃] 48.1 [ttt, C(CH₂)₃, J(CH) 158.5, 10, 5], 110.0 (s, CC₃), 197.2 [s, Ru(CO)₃]
- 40.0 [ttt, C(CH₂)₃, J(CH) 157, 10, 5], 107.2 (s, CC₃), 177.0 [s, Os(CO)₃]

^a Chemical shifts (δ) in ppm, measured at room temperature, coupling constants in Hz. ^b Measured in CDCl₃. ^c Measured in C₆D₆. ^d Hydrogen-1 decoupled. ' Redetermined, in C_6D_6 .

(0.03 g, 10%) as a spectroscopically pure, light yellow oil and $[RuCl{CH₂C(CH₂SnMe₃)CH₂}(p-MeC₆H₄CHMe₂)] 2c (0.18)$ g, 37%) as yellow needles. M.p. of 2c 87-89 °C (Found: C, 41.6; H, 5.9%; M 488. C₁₇H₂₉ClRuSn requires C, 41.8; H, 6.0%).

Reactions of (arene)osmium halides with $CH_2=C(CH_2-SnMe_3)_2$. (i) a MeCN suspension (50 cm³) of [{ $OsCl_2(C_6H_6)$ }_2] (0.66 g, 0.98 mmol) was stirred with compound 1 $(1.0 \text{ cm}^3, 1.6 \text{ g}, 1.6 \text{ g})$ 4.19 mmol) for 24 h. Work-up as described above gave $[OsCl{CH_2C(CH_2SnMe_3)CH_2}(C_6H_6)]$ 2d (0.50 g, 49%) as yellow *microcrystals*, m.p. 169–170 °C (Found: C, 30.05; H, 4.05%; M 522. C₁₃H₂₁ClOsSn requires C, 29.9; H, 4.1%). A MeNO₂ solution (10 cm³) of 2d (0.19 g, 0.36 mmol) was heated in the dark at 50-55 °C for 3 d. After evaporation of the solvent in vacuo the residue was extracted with pentane. Filtration over alumina and recrystallization from pentane gave [Os(tmm)- (C_6H_6)] 3d (0.03 g, 26%) as white crystals.

(ii) A CH₂Cl₂ (25 cm³) solution of $[OsCl_2(p-MeC_6H_4CH Me_2$] [0.18 g, 0.23 mmol) was stirred with compound 1 (0.4 , 0.64 g, 1.68 mmol) for 3 h at room temperature. After cm³ evaporation of the solvent, extraction with hexane (150 cm³), filtration and cooling to $-78 \text{ }^\circ\text{C}$, [OsCl{CH₂C(CH₂SnMe₃)- CH_2 (*p*-MeC₆H₄CHMe₂)] **2e** (0.20 g, 73%) was obtained as yellow needles, m.p. 101.5–102.5 °C (Found: C, 35.6; H, 5.0%; *M* 578. C₁₇H₂₉ClOsSn requires C, 35.3; H, 5.1%). A CD₃NO₂ solution of 2e was warmed to ca. 35 °C, and after 6 h the ¹H NMR spectrum showed resonances for the starting material 2e, $[Os(tmm)(p-MeC_6H_4CHMe_2)]$ 3e and SnMe₃Cl.

Reactions with $CH_2=C(CH_2Cl)_2$ and Mg. (i) To a thf suspension (15 cm³) of [{RuCl₂(p-MeC₆H₄CHMe₂)}₂] (0.30 g,

0.49 mmol) and Mg (0.10 g, 3.99 mmol) a thf solution (6 cm³) of $CH_2=C(CH_2Cl)_2$ (0.139 cm³, 0.15 g, 1.20 mmol) was added dropwise. After stirring at room temperature until the solution had turned deep brown (1-2 h), methanol (0.5 cm³) was added to stop the reaction. Evaporation of the solvent in vacuo and purification by column chromatography over alumina with pentane as eluent gave a yellowish band containing [Ru(tmm)- $(p-MeC_6H_4CHMe_2)$] 3c (0.13 g, 47%) as a light yellow, spectroscopically pure oil.

(ii) A thf suspension (5 cm³) of $[{OsCl_2(p-MeC_6H_4CH Me_2$]₂] (0.16 g, 0.21 mmol) and Mg (0.05 g, 2.18 mmol) was treated with CH₂=C(CH₂Cl₂) (0.055 cm³, 0.09 g, 0.70 mmol) and stirred for 7 h at room temperature. Purification by column chromatography with pentane as described above gave a nearly colourless eluate which afforded [Os(tmm)(p-MeC₆H₄-CHMe₂)] 3e (0.09 g, 55%) as a nearly colourless, spectroscopically pure oil.

Reaction of $[{RhI_2(C_5Me_5)}_2]$ with $CH_2=C(CH_2SnMe_3)_2$. A thf suspension (20 cm³) of $[{RhI_2(C_5Me_5)}_2]$ (0.27 g, 0.27 mmol) was stirred with compound 1 (0.2 cm³, 0.32 g, 0.84 mmol) for 5 d at room temperature. After evaporation of the solvent in vacuo, the product was extracted with toluene and filtered over alumina; repeated purification by column chromatography over alumina with pentane as eluent gave a light yellow band containing [Rh(tmm)(C_5Me_5)] 4 (0.13 g, 82%). Recrystal-lization from pentane at -78 °C afforded analytically pure yellow crystals, m.p. 93–94 °C (Found: C, 57.4; H, 7.1%; M 292. $C_{14}H_{21}Rh$ requires C, 57.5; H, 7.2%).

Reactions of $[{MCl_2(CO)_3}_2]$ (M = Ru or Os) with

CH₂=C(CH₂SnMe₃)₂. (*i*) The compound [{RuCl₂(CO)₃}₂] (1.81 g, 3.53 mmol) was dissolved in thf (30 cm³) with stirring (10 min), then added to a thf solution (2 cm³) of 1 (2.69 g, 7.05 mmol). After stirring for 20 min, the solvent was evaporated *in* vacuo (ca. 0.05 bar), the residue extracted with pentane and added to a column filled with alumina (10 × 3 cm). Elution with the same solvent (ca. 200 cm³) and removal of the solvent under reduced pressure (ca. 0.13 bar) gave [Ru(CO)₃(tmm)] **6b** (1.04 g, 61%) as a colourless oil. Two-fold recrystallization from pentane at - 78 °C afforded a spectroscopically pure oil (0.82 g), m.p. 20-22 °C, M 240.

(*ii*) During 1.5 h a solution of compound 1 (2 cm³, 3.2 g, 8.38 mmol) in CH₂Cl₂ (50 cm³) was added dropwise to a suspension of $[{OsCl_2(CO)_3}_2]$ (2.99 g, 4.34 mmol) in CH₂Cl₂ (150 cm³) giving a slightly yellow solution. After evaporation of the

Table 2 Selected bond lengths (Å) and angles (°) for [RuCl-{CH₂C(CH₂SnMe₃)CH₂}(C₆H₆)] 2a

Ru–C(0)	2.205(7)	C(0)-C(3)	1.423(9)
Ru-C(2)	2.196(7)	Sn-C(1)	2.175(8)
Ru–C(3)	2.201(7)	Sn-C(10)	2.06(1)
Ru–C(4)	2.234(8)	Sn-C(11)	2.17(1)
Ru-C(5)	2.240(8)	Sn-C(12)	2.12(1)
Ru–C(6)	2.252(7)	C(4)-C(5)	1.43(1)
Ru–C(7)	2.151(8)	C(4)-C(9)	1.40(1)
Ru-C(8)	2.185(8)	C(5)-C(6)	1.41(1)
Ru–C(9)	2.243(8)	C(6)-C(7)	1.42(1)
Ru–Cl	2.446(2)	C(7)-C(8)	1.40(1)
C(0)-C(1)	1.50(1)	C(8)-C(9)	1.43(1)
C(0)-C(2)	1.43(1)		
C(1)-C(0)-C(2)	122.9(6)	C(3)–Ru–Cl	84.8(2)
C(1)-C(0)-C(3)	120.1(7)	C(4)-Ru-Cl	90.0(2)
C(2)-C(0)-C(3)	116.5(6)	Cl-Ru-C(5)	89.0(3)
C(0)-Ru- $C(2)$	37.8(3)	Cl-Ru-C(6)	114.8(3)
C(0)-Ru-C(3)	37.7(2)	Cl-Ru-C(7)	152.1(3)
C(2)-Ru-C(3)	66.8(3)	Cl-Ru-C(8)	154.9(2)
C(0)-Ru-Cl	103.2(2)	Cl-Ru-C(9)	117.1(3)
C(2)-Ru-Cl	86.1(2)		

solvent at a bath temperature of *ca*. 50 °C and drying at room temperature (*ca*. 0.13 bar) the product was extracted with pentane and filtered over alumina (10×3 cm). Elution with pentane (150 cm³) and removal of the solvent at *ca*. 0.13 bar gave [Os(CO)₃(tmm)] **6c** (1.38 g, 48%) as a colourless oil. Two-fold recrystallization from pentane left 1.01 g of analytically pure *microcrystals*, m.p. 42.5–44 °C (Found: C, 25.5; H, 1.9%; *M* 330. C₇H₆O₃Os requires C, 25.6; H, 1.8%).

Arene-displacement Reaction.—A thf solution (50 cm^3) of $[\text{Ru}(\text{tmm})(\text{C}_6\text{H}_6)]$ **3a** (0.09 g) was saturated with carbon monoxide and irradiated for 36 h under an atmosphere of CO. The slightly yellow solution turned white and dark insoluble material formed. After removal of the solvent *in vacuo* and filtration over alumina in pentane, the IR spectrum of the

	- · · · · · · · · · · · · · · · · · · ·
Table 3	Selected bond lengths (A) and angles (°) for [Ru(CO) ₃ (tmm)]
6b	

RuC(1)	1.915(5)	C(4)-C(5)	1.436(8)
Ru-C(2)	1.937(6)	C(4) - C(7)	1.380(9)
Ru-C(3)	1.920(6)	O(1)-C(1)	1.134(6)
Ru-C(4)	2.055(5)	O(2) - C(2)	1.121(6)
Ru-C(5)	2.221(5)	O(3) - C(3)	1.148(7)
Ru-C(6)	2.230(6)	C(4) - C(6)	1.413(9)
Ru-C(7)	2.225(6)		
C(1)-Ru- $C(2)$	96.9(2)	C(3)-Ru- $C(7)$	100.7(2)
C(1)-Ru- $C(3)$	97.1(2)	C(4)-Ru- $C(5)$	39.0(2)
C(1)-Ru- $C(4)$	120.3(2)	C(4)-Ru- $C(6)$	38.2(2)
C(1)-Ru- $C(5)$	96.8(2)	C(4)-Ru- $C(7)$	37.3(2)
C(1)-Ru- $C(6)$	158.6(2)	C(5)-Ru-C(6)	65.3(2)
C(1)-Ru- $C(7)$	98.2(2)	C(5)-Ru-C(7)	64.8(2)
C(2)-Ru- $C(3)$	94.8(2)	C(6)-Ru-C(7)	64.2(2)
C(2)-Ru- $C(4)$	119.4(2)	Ru-C(1)-O(1)	178.3(5)
C(2)-Ru-C(5)	96.0(2)	Ru-C(2)-O(2)	176.8(5)
C(2)-Ru- $C(6)$	96.7(2)	Ru-C(3)-O(3)	178.3(5)
C(2)-Ru- $C(7)$	156.8(2)	C(5)-C(4)-C(6)	114.7(5)
C(3)-Ru- $C(4)$	122.3(2)	C(5)-C(4)-C(7)	115.6(5)
C(3)-Ru- $C(5)$	161.2(2)	C(6)-C(4)-C(7)	116.0(5)
C(3)-Ru-C(6)	98.3(2)		

Table 4 Data for crystal-structure analyses

^a $\Sigma(|F_{o}| -$

	2a	3a	3d	6b
Empirical formula	C ₁₃ H ₂₁ ClRuSn	$C_{10}H_{12}Ru$	$C_{10}H_{12}Os$	C ₇ H ₆ O ₃ Rı
Μ	432.53	233.28	322.41	239.19
Crystal system	Orthorhombic	Orthorhombic	Orthorhombic	Triclinic
Space group	<i>Pbca</i> (no. 61)	<i>Pna</i> 2 ₁ (no. 33)		P1 (no. 2)
a/Å	12.567(5)	17.686(4)	17.561(4)	5.765(4)
b/Å	11.863(5)	8.012(2)	8.005(1)	7.096(3)
c/Å	20.657(13)	6.119(1)	6.106(1)	10.323(3)
α/°				81.89(3)
β/°				84.46(4)
γ/°				82.03(4)
Z	8	4		2
$U/Å^3$	3080(4)	867.1(4)		412.7(5)
T/K	248	293	293	203
$D_{\rm c}/{\rm g}~{\rm cm}^{-3}$	1.87	1.79		1.92
λ/Å	0.7107	0.7093	0.5609	1.5406
	(Mo-Kα)	(Μο-Κα)	(Ag-Ka)	(Cu-Ka)
µ/cm ⁻¹	27.44	17.05		154.20
Approximate crystal size/mm	$0.1 \times 0.1 \times 0.4$	$0.2 \times 0.2 \times 0.5$	$0.1 \times 0.1 \times 0.2$	
20 range/°	6-48	6-60		16-130
F(000)	1680.0	464.0		232.0
No. of data collected	2962	1964		1386
No. of unique data	2699	1291		1233
No. with $I > n\sigma(I)$, N_{o}	1675	1199		1173
n	3	1		1
No. of variables, N _v	146	100		101
R ^a	0.044	0.019		0.043
P'b	0.056	0.026		0.059
A				

Table 5Fractional atomic coordinates ($\times 10^4$) for the non-hydrogenatoms in [RuCl{CH2C(CH2SnMe3)CH2}(C_6H6)] 2a

Atom	x	у	Z
Sn	5619.2(7)	321.0(7)	7030.9(4)
Ru	8054.9(6)	1296.6(6)	5099.7(3)
Cl	9529(2)	2532(2)	5407(1)
C(0)	7112(7)	1174(7)	5997(4)
C(1)	6086(8)	528(9)	6024(5)
C(2)	8126(8)	661(8)	6097(4)
C(3)	7118(7)	2315(7)	5785(4)
C(4)	8340(10)	1701(9)	4058(5)
C(5)	8990(9)	760(10)	4230(5)
C(6)	8525(9)	-214(8)	4504(5)
C(7)	7427(9)	-204(8)	4658(4)
C(8)	6777(9)	700(9)	4469(5)
C(9)	7240(10)	1663(9)	4157(5)
C(10)	6290(10)	-1180(10)	7321(7)
C(11)	3900(10)	290(10)	7103(6)
C(12)	6220(10)	1690(10)	7586(7)

Table 6 Fractional atomic coordinates ($\times 10^4$) for the non-hydrogen atoms in [Ru(tmm)(C₆H₆)] 3a

Atom	x	У	Z
Ru	6249.8(1)	3239.5(2)	2500
C(0)	7085(2)	4858(4)	1675(6)
C(1)	6522(2)	5898(4)	2640(10)
C(2)	7440(2)	3724(6)	3126(8)
C(3)	6867(2)	4133(5)	-390(7)
C(4)	5063(2)	3116(4)	3550(10)
C(5)	5506(2)	2639(5)	5313(7)
C(6)	6025(2)	1390(5)	5085(8)
C(7)	6094(2)	563(4)	3115(9)
C(8)	5651(2)	1003(5)	1340(8)
C(9)	5115(2)	2310(7)	1571(7)

pentane solution was identical with that of $[Ru(CO)_3(tmm)]$ 6b in the same solvent.

Instrumentation.—Proton NMR spectra were recorded on a Bruker WP-80 PET spectrometer at 80 MHz, ¹³C NMR spectra on a Bruker WH-270 spectrometer at 67.88 MHz, infrared spectra on a Perkin Elmer 1720 X FTIR spectrometer and mass spectra on a MAT CH 5-DF (Varian) spectrometer at 70 eV (*ca.* 1.12×10^{-17} J). Melting points were measured under nitrogen and are uncorrected. Elemental analyses were carried out by Analytische Laboratorien Engelskirchen.

X-Ray Crystallography.—Details of the structure analyses are in Table 4.

(i) Crystals of compound 2a were grown from thf at -78 °C, of 3a by slow evaporation of the solvent toluene, and of 6b by sublimation on the diffractometer in a sealed capillary under reduced pressure. Diffracted intensities (Wyckoff ω scans) were collected on an Enraf-Nonius CAD4 diffractometer. Three check reflections showed no crystal decay. Corrections for Lorentz, polarization, and absorption effects were applied. The latter correction was based on a semiempirical method using azimuthal scan data for 2a and 3a,²² or the program DIFABS for 6b.²³ The structures of the complexes were solved by conventional heavy-atom methods, and successive Fourierdifference syntheses were used to locate all non-hydrogen atoms. All hydrogen atoms on the C₄H₆ ligand in 2a and 6b were located in a single Fourier-difference map and idealized to C-H 0.98 Å with $B_{\rm H} = 1.3B_{\rm C}$ in 2a and 3.0 Å² in 6b. All other hydrogen atoms were included with calculated positions (C-H 0.98 Å) and fixed thermal parameters ($B_{\rm H} = 1.3B_{\rm C}$). Refinements were carried out by full-matrix least squares with anisotropic thermal parameters for the non-hydrogen atoms, while the

Table 7	Fractional atomic coordinates $(\times 10^4)$ for the non-hydrogen
atoms in	[Ru(CO) ₃ (tmm)] 6b

Atom	x	у	Z
Ru	2 093.5(9)	1 919.3(7)	2 344.7(4)
O(1)	5 250(10)	2 577(9)	-180(6)
O(2)	-970(10)	-721(8)	1 397(6)
O (3)	5 360(10)	-1284(9)	3 816(6)
CìÚ	4 080(10)	2 300(10)	760(7)
C(2)	210(10)	200(10)	1 749(7)
Cà	4 150(10)	-100(10)	3 247(8)
C(4)	460(10)	4 230(10)	3 222(8)
CÌSÍ	-430(10)	4 560(10)	1 946(8)
C(6)	- 340(20)	2 660(10)	4 062(8)
C(7)	2 800(20)	4 430(10)	3 246(9)

hydrogen atoms were allowed to ride on their carbon atoms. A weighting scheme of the form $w = 1/\sigma^2(F)$ was used.

(*ii*) Crystals of compound **3d** were grown from hexane by slow evaporation of the solvent. The cell parameters were similar to those of **3a** and should be sufficient to establish an isostructural relationship between **3a** and **3d**. During data collection three check reflections showed more than 50% intensity loss in the first 12 h. As a consequence of the combined effects of radiation-induced decay and X-ray absorption a satisfactory solution of the structure was not obtained.

Calculations were performed using the SDP system of programs 24 and the ORTEP program 25 was used to obtain the drawings. Tables 5–7 report the positional parameters for the non-hydrogen atoms. Selected bond distances and angles are listed in Tables 2 and 3.

Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom coordinates, thermal parameters, and remaining bond lengths and angles.

Acknowledgements

We are indebted to Dr. U. Englert for helpful discussions. Support of this work by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is gratefully acknowledged.

References

- 1 M. D. Jones and R. D. W. Kemmitt, Adv. Organomet. Chem., 1987, 27, 279.
- 2 G. F. Emerson, K. Ehrlich, W. P. Giering and P. C. Lauterbur, J. Am. Chem. Soc., 1966, 88, 3172; K. Ehrlich and G. F. Emerson, J. Am. Chem. Soc., 1972, 94, 2464.
- 3 J. M. Grosselin, H. Le Bozec, C. Moinet, L. Toupet, F. H. Köhler and P. H. Dixneuf, *Organometallics*, 1988, 7, 88.
 4 R. Noyori, T. Nishimura and H. Takaya, J. Chem. Soc., Chem.
- 4 R. Noyori, T. Nishimura and H. Takaya, J. Chem. Soc., Chem. Commun., 1969, 89.
- 5 M. D. Jones, R. D. W. Kemmitt and A. W. G. Platt, J. Chem. Soc., Dalton Trans., 1986, 1411.
- 6 R. S. Lokey, N. S. Mills and A. L. Rheingold, *Organometallics*, 1989, **8**, 1803.
- 7 G. E. Herberich, U. Englert, L. Wesemann and P. Hofmann, Angew. Chem., Int. Ed. Engl., 1991, **30**, 313.
- 8 M. J. Fildes, S. A. R. Knox, A. G. Orpen, M. L. Turner and M. I. Yates, J. Chem. Soc., Chem. Commun., 1989, 1680.
- 9 G. E. Herberich and T. P. Spaniol, J. Chem. Soc., Chem. Commun., 1991, 1457.
- 10 S. Chandrasekhar, S. Latour, J. D. Wuest and B. Zacharie, J. Org. Chem., 1983, 48, 3810.
- 11 R. W. Fish, W. P. Giering, D. Marten and M. Rosenblum, J. Organomet. Chem., 1976, 105, 101.
- 12 L. Y. Hsu, C. E. Nordman, D. H. Gibson and W. L. Hsu, Organometallics, 1989, 8, 241.
- 13 A. Almenningen, A. Haaland and K. Wahl, Acta Chem. Scand., 1969, 23, 1145.
- 14 M. A. Bennett, T. W. Matheson, G. B. Robertson, A. K. Smith and P. A. Tucker, *Inorg. Chem.*, 1980, **19**, 1014.

- 15 M. A. Bennett and A. K. Smith, J. Chem. Soc., Dalton Trans., 1974, 233. 16 T. Arthur and T. A. Stephenson, J. Organomet. Chem., 1981, **208**, 369. 17 J. A. Cabeza and P. M. Maitlis, J. Chem. Soc., Dalton Trans., 1985, 573.

- 18 M. J. Cleare and W. P. Griffith, J. Chem. Soc. A, 1969, 372.
- L. A. W. Hales and R. J. Irving, J. Chem. Soc. A, 1967, 1932.
 J. W. Kang, K. Moseley and P. M. Maitlis, J. Am. Chem. Soc., 1969,
- 91, 5970. 21 J. Klein, A. Medlik-Balan, A. Y. Meyer and M. Chorev, Tetrahedron,
- 1976, **32**, 1839. 22 A. C. T. North, D. C. Phillips and F. S. Mathews, *Acta Crystallogr.*, Sect. A, 1968, 24, 351.
- 23 N. Walker and D. Stuart, Acta Crystallogr., Sect. A, 1983, 39, 158.
- 24 B. A. Frenz, in *Computing in Crystallography*, eds. H. Schenk, R. Olthof Hazekamp, H. van Koningsveld and G. C. Bassi, Delft University Press, Delft, 1978; SDP-Plus, Version 1.1, Enraf-Nonius, Delft, 1984; VAXSDP, Version 2.2, Enraf-Nonius Delft, 1985.
- 25 C. K. Johnson, ORTEP, Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, TN, 1965.

Received 22nd February 1993; Paper 3/01033C