2537

Crystallographic Characterisation of the Lattice Structure C_{60} ·[Fe₄(CO)₄(η^{5} -C₅H₅)₄] as the 1/3 Benzene Solvate

Jonathan D. Crane and Peter B. Hitchcock

School of Chemistry and Molecular Sciences, University of Sussex, Falmer, Brighton, East Sussex BN1 9QJ, UK

Co-crystallisation of C_{60} and $[Fe_4(CO)_4(\eta^5-C_5H_5)_4]$ from benzene solution yields crystals of C_{60} · $[Fe_4(CO)_4(\eta^5-C_5H_5)_4]$ · $3C_6H_6$ containing the ordered lattice structure C_{60} · $[Fe_4(CO)_4(\eta^5-C_5H_5)_4]$ in which the inter- C_{60} contacts are restricted to within parallel double-columnar stacks

Interesting redox and photophysical properties render buckminsterfullerene (C_{60}) appealing as a building block for new materials, either as the neutral molecule or in its reduced forms.¹⁻⁴ In particular Group 1 and 2 metal salts of the reduced anions C_{60}^{n} (n = 3, 10 or 12) have been found to be super-conductors with relatively high transition temperatures ($T_c \le 33$ K).^{5,6} In these compounds close inter-C₆₀ contacts are maintained in three dimensions and the (super)conductivity is isotropic. Restriction of the inter- C_{60} contacts to one or two dimensions will yield anisotropic lattice structures and modify the electrical conduction and/or photoactive properties of these materials. Guest molecules may also be trapped in the interstitial cavities present in a C₆₀-based host lattice. These features can be built into C_{60} compounds through the exploitation of intermolecular forces; notably C_{60} acts as an electron acceptor and forms classical charge-transfer complexes with electron donors through π -stacking interactions. This strategy has been used to stabilise close-packed layers of C_{60} molecules in the ferrocene intercalate $C_{60} \cdot 2[Fe(cp)_2]$ (cp = η^5 -C₅H₅) in which only one of the cp rings of [Fe(cp)₂] is involved in a π -stacking interaction with C₆₀.¹ The first oxidation potential of the tetranuclear cluster $[Fe_4(CO)_4(cp)_4]$ is ≈ 0.08 V more negative than for [Fe(cp)₂] (in CH₂Cl₂ solution),^{7.8} and therefore occurs at $\approx +0.92$ V relative to C₆₀- C_{60} . The co-crystallisation of this complex with C_{60} was therefore investigated as it is more likely to bridge between C_{60} molecules as well as form stronger π -stacking interactions.

The fullerene C_{60} (*ca.* 15 mg) was dissolved in benzene at the reflux temperature to produce a saturated solution (5 cm³) which was filtered hot into a saturated solution of [Fe₄-(CO)₄(cp)₄] (*ca.* 75 mg) in benzene (5 cm³) at room temperature. Upon standing at room temperature for 2–3 d in a sealed flask, black needles of C_{60} ·[Fe₄(CO)₄(cp)₄]·3C₆H₆ (10

Fig. 1 Unit cell of C_{60} [Fe₄(CO)₄(cp)₄]·3C₆H₆ viewed perpendicular to the *bc* plane

mg, $\approx 30\%$) were deposited and the structure was determined by single-crystal X-ray diffraction (Fig. 1).*

At the temperature (173 K) of the structure determination the C_{60} , [Fe₄(CO)₄(cp)₄] and C_6H_6 molecules are all ordered and possess no crystallographically imposed symmetry. The molecular structure of the C_{60} molecule is similar to that found in other single-crystal X-ray structure determinations; the

^{*} Crystal data: $C_{102}H_{38}Fe_4O_4$, M = 1550.8, orthorhombic, space group $P2_12_{12}$, (no. 19), a = 9.944(2), b = 15.922(2), c = 38.368(10) Å, U = 6074.6 Å³, Z = 4, $D_c = 1.70$ g cm⁻³, F(000) = 3144, monochromated Mo-Ka radiation, $\lambda = 0.710$ 69 Å, $\mu = 10.0$ cm⁻¹, T = 173 K. A crystal of size ca. 0.4 × 0.1 X 0.1 mm was used to collect intensities for 5976 unique reflections with $2 < 0 < 25^{\circ}$ on an Enraf-Nonius CAD4 diffractometer. 4388 Reflections with $2 < 0 < 25^{\circ}$ on an Enraf-Nonius CAD4 diffractometer. 4388 Reflections with $2^{-1} > 20(F^2)$ were used in the refinement, where $\sigma(F^2) = [\sigma^2(I) + (0.04I)^2]^4/Lp$. The Fe atoms were located by heavy-atom methods using SHELXS 86° and the rest were located on difference maps. The Fe and C_{60} atoms were refined with anisotropic thermal parameters by full-matrix least-squares analysis using programs from the MOLEN¹⁰ package. The other atoms were refined isotropically and hydrogen atoms were included at fixed calculated positions. Final parameters were: R =0.065, R' = 0.080, S = 2.2, 761 variables, 4388 observed reflections, $(\Delta/\sigma)_{max} =$ 0.2, $(\Delta\rho)_{max,min} = +1.31$, $-0.17 e Å^{-3}$.

Atomic coordinates, thermal parameters and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre. See Instructions for Authors, J. Chem. Soc., Dalton Trans., 1993, Issue 1, pp. xxiii-xxviii.

Fig. 2 Space-filling representations of the C_{60} · [Fe₄(CO)₄(cp)₄] lattice structure with the C_6H_6 molecules omitted for clarity. (a) View perpendicular to the *ac* plane with the double-columnar stacks of C_{60} molecules parallel to the *a* axis; (b) view perpendicular to the *bc* plane showing the isolation of each stack from its neighbours by six co-parallel stacks of [Fe₄(CO)₄(cp)₄] molecules

Fig. 3 The [Fe₄(CO)₄(cp)₄] molecule bridges an isosceles triangle of C_{60} molecules (each from different stacks) through C_{60} -cp π -stacking interactions

average centre-to-carbon distance (C_{60} radius) is 3.52(2) Å, and bond length alternation is observed with average intra- and inter-pentagonal C–C distances of 1.46(5) and 1.36(5) Å respectively. The [Fe₄(CO)₄(cp)₄] and C₆H₆ molecules exhibit no unusual structural features.

The structure can be described as a three-dimensional C_{60} [Fe₄(CO)₄(cp)₄] host lattice (Fig. 2) with guest benzene molecules occupying the interstitial cavities. The only inter- C_{60} contacts occur within the parallel double-columnar stacks aligned with the a axis.² The C₆₀ centre-to-centre distances within these stacks are 9.94 (along a axis) and 9.91 Å, and these contacts are between parallel hexagonal rings slipped sideways relative to one another; a similar arrangement is found in the close-packed C_{60} layers in C_{60} ·2[Fe(cp)₂].¹ The shortest centre-to-centre inter-C₆₀ distance between stacks is 14.38 Å, each stack being isolated from its neighbours by six co-parallel stacks of [Fe4(CO)4(cp)4] molecules, which also act as inter- C_{60} bridges through C_{60} -cp π -stacking interactions. Three of the four cp rings are involved in π stacking and the $[Fe_4(CO)_4(cp)_4]$ molecule lies in an isosceles triangle of C₆₀ molecules (Fig. 3), which has two short centre-to-centre

distances of 15.39 Å and one long distance of 15.92 Å (parallel to *b* axis). The closest $C(C_{60}) \cdots C(cp)$ contact distances for cp(1), cp(2) and cp(3) are 3.35(2), 3.30(2) and 3.36(2) Å respectively and all three π -stacking interactions are different and asymmetric; cp(2) is approximately parallel to a hexagonal face of the C₆₀ molecule and cp(1) and cp(3) are approximately parallel to pentagonal faces, similar to the C₆₀-cp interaction found in C₆₀-2[Fe(cp)₂].

The IR spectrum of C_{60} ·[Fe₄(CO)₄(cp)₄] (KBr disc) at room temperature displays a strong carbonyl band at v(CO) = 1640 cm⁻¹, compared to 1626 cm⁻¹ for pure [Fe₄(CO)₄(cp)₄] (KBr disc). This small shift [Δ v(CO) = +14 cm⁻¹] to higher wavenumber is consistent with a weak donor-acceptor interaction between the iron complex and the C₆₀ molecule; electron withdrawal from the Fe₄ cluster weakens the metal-to-carbonyl back bonding and results in a small v(CO) shift to higher energy. The four IR bands for the C₆₀ molecule are not significantly perturbed either in position or intensity, and are found at 1428, 1182, 576 and 527 cm⁻¹.

Acknowledgements

We thank BP, Zeneca and the Royal Society for financially supporting this work and Professor H. W. Kroto and Dr. D. R. M. Walton for helpful discussions.

References

- 1 J. D. Crane, P. B. Hitchcock, H. W. Kroto, R. Taylor and D. R. M. Walton, J. Chem. Soc., Chem. Commun., 1992, 1764.
- 2 A. Izuoka, T. Tachikawa, T. Sugawara, Y. Suzuki, M. Konno, Y. Saito and H. Shinohara, J. Chem. Soc., Chem. Commun., 1992, 1472.
- 3 O. Ermer, Helv. Chim. Acta, 1991, 74, 1339.
- 4 C. Bossard, S. Rigaut, D. Astruc, M.-H. Delville, G. Félix, A. Février-Bouvier, J. Amiell, S. Flandrois and P. Delhaès, J. Chem. Soc., Chem. Commun., 1993, 333.
- 5 R. C. Haddon, Acc. Chem. Res., 1992, 25, 127.
- 6 A. R. Kortan, N. Kopylov, S. Glarum, E. M. Gyorgy, A. P. Ramirez, R. M. Fleming, O. Zhou, F. A. Thiel, P. L. Trevor and R. C. Haddon, *Nature (London)*, 1992, **360**, 566.
- 7 A. J. White, J. Organomet. Chem., 1979, 168, 197.
- 8 J. A. Ferguson and T. J. Meyer, J. Am. Chem. Soc., 1972, 94, 3409.
- 9 SHELXS 86, G. M. Sheldrick, in Crystallographic Computing 3, eds. G. M. Sheldrick, C. Krüger and R. Goddard, Oxford University Press, Oxford, 1985, pp. 175–189.
- 10 MOLEN, X-ray structure determination package, Enraf-Nonius, Delft, 1990.

Received 10th June 1993; Communication 3/03345G