Heteronuclear Complexes of Platinum(II) and Copper(I) bridged by Alkynyl Ligands \dagger

Shinsaku Yamazaki ${ }^{*, a}$ and Antony J. Deeming *,b
${ }^{a}$ Chemistry Laboratory, Kochi Gakuen College, 292 Asahi Tenjin-Cho, Kochi 780, Japan
${ }^{b}$ Department of Chemistry, University College London, 20 Gordon Street, London WC1H OAJ, UK

Abstract

Reactions of cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ with terminal alkynes $\mathrm{RC}_{2} \mathrm{H}\left(\mathrm{R}=\mathrm{Ph}\right.$ or $\left.\mathrm{Bu}^{\mathrm{t}}\right)$ and diethylamine in the presence of CuCl (up to 0.35 mol per mol Pt) yielded the complexes cis $-\left[\mathrm{PtCuCl}\left(\mathrm{C}_{2} \mathrm{R}\right)_{2}\left(\mathrm{PMe} \mathrm{P}_{2} \mathrm{Ph}\right)_{2}\right]$. The crystal structure for $R=B u^{t}$ showed that both alkynyl ligands are σ bonded to Pt and η^{2} co-ordinated to the Cu which has an approximately trigonal-planar geometry. The $\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{R}\right)_{2} \mathrm{CuCl}$ system is distorted from planarity. Similar reactions, but with more $\mathrm{CuCl}(1 \mathrm{~mol}$ per mol Pt$)$, led to trans$\left[\mathrm{PtCu}_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{2} \mathrm{R}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right] \quad\left(\mathrm{R}=\mathrm{Bu}^{\mathrm{t}}\right)$. Treatment of the compound $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{Ph}\right)_{2}(\mathrm{dppe})\right]$ (dppe = $\left.\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)$ with $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right]\left[\mathrm{BF}_{4}\right]$ gave $\left[\mathrm{PtCu}(\mathrm{MeCN})\left(\mathrm{C}_{2} \mathrm{Ph}\right)_{2}(\mathrm{dppe})\right]\left[\mathrm{BF}_{4}\right]$ which is believed to be structurally analogous to the neutral chloro complex. An acetone-acetonitrile solution of this complex deposited crystals of $\left[\mathrm{Pt}_{2} \mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{Ph}\right)_{4}(\text { dppe })_{2}\right]\left[B F_{4}\right]$. The crystal structure of the latter contains orthogonal platinum co-ordination planes and each of the four alkynyl ligands is η^{2} coordinated to a Cu atom in an approximately tetrahedral environment involving only carbon.

Alkynyl ligands can bridge metal centres in many ways. ${ }^{1}$ Even bridging between two metal atoms occurs in three distinct modes, $\mathbf{A}-\mathbf{C}$. There are many examples of mode \mathbf{A}, which can be regarded as the standard form when both metal atoms are transition metals. Mode B is much less common; it has been found for aluminium systems ${ }^{2,3}$ and we have identified an example recently in a triosmium cluster. ${ }^{4,5}$ The symmetrical form C is also fairly uncommon; the cluster $\left[\mathrm{Ru}_{3}\left(\mu-\mathrm{C}_{2} \mathrm{Bu}^{\mathrm{l}}\right)\right.$ -$\left.\left(\mu-\eta^{2}-\mathrm{C}_{2} \mathrm{Bu}^{1}\right)\left(\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{5}\left(\mathrm{PPh}_{2} \mathrm{C}_{2} \mathrm{Bu}^{\prime}\right)\right]$ contains alkynyl bridges of both types \mathbf{A} and $\mathbf{C} .{ }^{6}$ When bonded to three or more metal atoms an even greater variety of co-ordination is found.
Organocopper compounds are widely used in organic synthesis, ${ }^{7}$ although the nature of the reactive species is not always clear. Alkynylcopper systems have been studied for many years. The structure of the parent material $\left[\left\{\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{R}\right)\right\}_{n}\right]$ remains unknown, although a polymeric structure with alkynyl bridges is probable. Some clue about the potential complexity in alkynylcopper systems comes from the structure of $\left[\left\{\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{Ph}\right)\left(\mathrm{PMe}_{3}\right)\right\}_{4}\right]$, in which two Cu atoms are coordinated differently to the other two; the copper atoms are linked to the alkynyl ligands through both σ and η^{2} interactions. ${ }^{8}$ It is not possible to describe the structure simply. In another recently reported polynuclear alkynylcopper compound, $\left[\mathrm{Cu}_{3}\left(\mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}\right)_{2}\left(\mathrm{C}_{2} \mathrm{Bu}^{\prime}\right)\right]$, the $\mathrm{C}_{2} \mathrm{Bu}^{\text {t }}$ ligand is linked to two metal atoms as in \mathbf{C} but there is a further π interaction with a third copper atom. ${ }^{9}$

In mixed copper-transition metal compounds, σ coordination of alkynyl bridges at the transition metal and η^{2} co-ordination at copper are favoured. Some structurally characterised compounds are $\left[\mathrm{RuCuCl}\left(\mathrm{C}_{2} \mathrm{Ph}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]{ }^{10}$ $\left[\mathrm{ReCu}\left(\mathrm{C}_{2} \mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{11}$ and $\left[\mathrm{Ir}_{2} \mathrm{Cu}_{4}\left(\mathrm{C}_{2} \mathrm{Ph}\right)_{8}-\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right],{ }^{12,13}$ all of which contain bridges of type A. Recently a number of examples of alkynyl bridges between silver and platinum have been reported. ${ }^{14-16}$

To our knowledge, there are no examples of copper atoms bonded to more than three alkynyl ligands either in copper compounds or in mixed copper-transition metal compounds. Here we report an example of a complex with two alkynyl
\dagger Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1993, Issue 1, pp. xxiii-xxviii.

A

B

C
ligands bridging a platinum and a copper atom of a well known structural type as previously found for $\left[\operatorname{ReCu}\left(\mathrm{C}_{2} \mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})_{3}\right.$ $\left(\mathrm{PPh}_{3}\right)_{2}{ }^{11}$ with bridges of type \mathbf{A}. We also report here an unprecedented complex containing a copper atom tetrahedrally co-ordinated by four alkynyl groups. To our knowledge copper compounds of the type $\left[\mathrm{Cu}\left(\eta^{2} \text {-alkyne }\right)_{4}\right]^{+}$have not been reported previously.

Results and Discussion

Syntheses.-Reactions of the complexes cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PMe}_{2}-\right.\right.$ $\left.\mathrm{Ph})_{2}\right]$ or $\left[\mathrm{PtCl}_{2}(\mathrm{dppe})\right]^{17}\left(\right.$ dppe $\left.=\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)$ with diethylamine and terminal alkynes $\left(\mathrm{RC}_{2} \mathrm{H}\right.$ where $\mathrm{R}=\mathrm{Ph}$ or Bu^{l}) in dichloromethane under reflux lead to the dialkynyl complexes trans $-\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{R}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right] \quad 1\left(\mathrm{R}=\mathrm{Bu}^{\prime}\right)$ and 2 $(\mathrm{R}=\mathrm{Ph})$ and $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{R}\right)_{2}(\mathrm{dppe})\right] 3(\mathrm{R}=\mathrm{Ph})$ of known type. ${ }^{18}$ However, if the reaction of cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ is carried out in the same way but in the presence of solid CuCl , the copper(I) chloride dissolves and mixed copper-platinum complexes are obtained. The nature of the product depends upon the amount of CuCl present. If a deficiency is used ($<0.35 \mathrm{~mol} \mathrm{CuCl}$ per mol Pt) then a low yield of a white crystalline complex is obtained which we characterised as $\left[\mathrm{PtCuCl}\left(\mathrm{C}_{2} \mathrm{R}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right] 4$ $\left(\mathrm{R}=\mathrm{Bu}^{\mathrm{I}}\right)$. Elemental analytical results were compatible with this formula. The ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{4}$ (Table 1) confirm that the tertiary phosphine ligands are cis, whereas the more stable form of $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{R}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ is trans. The ${ }^{13} \mathrm{C}$ - $\left\{{ }^{1} \mathbf{H}\right\}$ NMR spectrum shows C_{α} (alkynyl) signals with the ${ }^{31} \mathrm{P}$ couplings, 19.8 (cis) and 140.7 Hz (trans), consistent with a cis geometry at platinum. The methyl groups give a second-order multiplet which does not clearly identify the geometry.

Use of more $\mathrm{CuCl}(1 \mathrm{~mol}$ per mol Pt$)$ in the above reaction leads to trans- $\left[\mathrm{PtCu}_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{2} \mathrm{Bu}^{\mathrm{t}}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ 5. Evidence for

Table 1 Selected ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR and IR data ${ }^{a}$

Compound	${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ${ }^{\text {b }}$
1 trans $-\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{Bu}^{\prime}\right)_{2} \mathrm{~L}_{2}\right]$	-15.2[2474]
2 trans- $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{Ph}\right)_{2} \mathrm{~L}_{2}\right]$	d
$3\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{Ph}\right)_{2}(\mathrm{dppe})\right]$	40.1 [2280]
4 cis- $\left[\mathrm{PtCuCl}\left(\mathrm{C}_{2} \mathrm{Bu}^{1}\right)_{2} \mathrm{~L}_{2}\right]$	-21.6 [2496]
5 trans- $\left[\mathrm{PtCu}_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{2} \mathrm{Bu}^{\prime}\right)_{2} \mathrm{~L}_{2}\right]$	- 12.7 [2347]
$6\left[\mathrm{PtCuCl}\left(\mathrm{C}_{2} \mathrm{Ph}\right)_{2}(\mathrm{dppe})\right]$	38.8 [2289]
$7\left[\mathrm{PtCuCl}\left(\mathrm{C}_{2} \mathrm{Bu}^{\prime}\right)_{2}(\mathrm{dppe})\right]$	38.5 [2538]
$8\left[\mathrm{PtCu}(\mathrm{MeCN})\left(\mathrm{C}_{2} \mathrm{Ph}\right)_{2}(\mathrm{dppe})\right]\left[\mathrm{BF}_{4}\right]^{g}$	40.1 [2567]
$9\left[\mathrm{Pt}_{2} \mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{Ph}\right)_{4}(\mathrm{dppe})_{2}\right]\left[\mathrm{BF}_{4}\right]$	40.1 [2490]

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}^{\mathrm{c}}$		
C_{α}	C_{B}	$\mathrm{IR} / \mathrm{cm}^{-1}$ $\mathrm{~V}(\mathrm{C} \equiv \mathrm{C})$
$90.0(15.3)[941]$	$117.4[256]$	2112 m
$107.6(30.5)[963]$	$109.6(4.1)[264]$	2116 w
$104.3(15.3,146.3)[1123]$	$112.1(35.4)[307]$	2116 s
$71.3(19.8,140.7)[905]$	$123.0(15.3)[286]$	e
85.9	121.8^{f}	$1983 \mathrm{~m}, 1967 \mathrm{~m}$
$104.4(15.5,146.0)[1132]$	$112.0(34.9)[307]$	e
$70.1(12.0,134)$	$126.7(31.2)$	e
$82.0(127.6)$	$115.7(31.7)[290]$	$2082 \mathrm{w}, 2114 \mathrm{w}^{h}$
e	$115.9(33.0)[288]$	2082 w

${ }^{a} \mathrm{~L}=\mathrm{PMe}_{2} \mathrm{Ph}$. NMR data (δ, J in Hz) for solutions in CDCl_{3} unless stated otherwise; IR data for Nujol mulls. ${ }^{b} J(\mathrm{PtP})$ in square brackets. ${ }^{c} J(\mathrm{PC})$ in parentheses, $J(\mathrm{PtP})$ in square brackets. ${ }^{d}$ Not measured. ${ }^{\boldsymbol{e}}$ Not detected. ${ }^{f}$ Broad signals, couplings not resolved. ${ }^{\boldsymbol{g}}{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}: \delta 1.82\left(C \mathrm{H}_{3} \mathrm{CN}\right)$; $117.5\left(\mathrm{CH}_{3} \mathrm{CN}\right){ }^{h} v(\mathrm{CN}) 2308$ and $2282 \mathrm{~cm}^{-1}$.

the trans geometry comes from ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra. The methyl groups of the $\mathrm{PMe}_{2} \mathrm{Ph}$ ligands in CDCl_{3} solution give virtual triplets: ${ }^{1} \mathrm{H}$ NMR, $\delta 1.97(\mathrm{t})$, apparent $J(\mathrm{PH}) 3.8$ $\left[\left.0.5\right|^{2} J(\mathrm{PH})+{ }^{4} J(\mathrm{PH}) \mid\right], J(\mathrm{PtH}) 31.2 \mathrm{~Hz} ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR, δ $14.9(\mathrm{t})$, apparent $J(\mathrm{PC}) 20.2\left[\left.0.5\right|^{1} J(\mathrm{PC})+{ }^{3} J(\mathrm{PC}) \mid\right], J(\mathrm{PtC})$ 30.3 Hz . These data are characteristic of trans arrangements of the tertiary phosphines and may be compared with data for the parent compound trans- $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{Bu}^{\mathrm{t}}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]:{ }^{1} \mathrm{H} \mathrm{NMR}, \delta$ 2.09(t), apparent $J(\mathrm{PH}) 3.2, J(\mathrm{PtH}) 32.3 \mathrm{~Hz} ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}, \delta$ $14.8(\mathrm{t})$, apparent $J(\mathrm{PC}) 20.2, J(\mathrm{PtC}) 40.3 \mathrm{~Hz}$. However, the mode of bonding of the alkynyl ligands to copper and the complete structure are still uncertain. As expected, similar reactions with the dppe complex $\left[\mathrm{PtCl}_{2}(\mathrm{dppe})\right]$ give only the cis isomers of $\left[\mathrm{PtCuCl}\left(\mathrm{C}_{2} \mathrm{Ph}\right)_{2}(\mathrm{dppe})\right] 6$ and $[\mathrm{PtCuCl}-$ $\left(\mathrm{C}_{2} \mathrm{Bu}^{\prime}\right)_{2}$ (dppe)] 7.
Attempting to prepare cationic complexes related to 6 and 7 but with Cl replaced by a neutral ligand (MeCN), we treated $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{Ph}\right)_{2}\right.$ (dppe) 3 with $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right]\left[\mathrm{BF}_{4}\right]^{19}$ and obtained the expected complex $\left[\mathrm{PtCu}(\mathrm{MeCN})\left(\mathrm{C}_{2} \mathrm{Ph}\right)_{2}\right.$ (dppe) $]\left[\mathrm{BF}_{4}\right] 8$ which is probably analogous to the neutral chloro complex 6. In an attempt to grow crystals, a solution of compound 8 in acetonitrile-acetone was allowed to stand. However, the crystals deposited are characterised as $\left[\mathrm{Pt}_{2} \mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{Ph}\right)_{4}(\mathrm{dppe})_{2}\right]$ $\left[\mathrm{BF}_{4}\right]$ 9. We presume that a by-product of this conversion is $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right]\left[\mathrm{BF}_{4}\right]$, liberated from compound 8. The crystal structures of compounds 4 and 9 have been determined.

Structures of the Complexes.-The structure of compound 4 was confirmed by a single-crystal structure determination (Fig. 1). Selected bond lengths and angles are in Table 2, while Table 3 contains geometric details of the $\mu-\sigma: \eta^{2}$-alkynyl ligands

Table 2 Selected bond lengths (\AA) and angles (${ }^{\circ}$) for the compound $\left[\mathrm{PtCuCl}\left(\mathrm{C}_{2} \mathrm{Bu}^{\prime}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right] 4$

$\mathrm{Pt} \ldots \mathrm{Cu}$	$3.129(2)$	$\mathrm{Cu}-\mathrm{C}(1)$	$2.14(1)$
$\mathrm{Pt}-\mathrm{P}(1)$	$2.300(3)$	$\mathrm{Cu}-\mathrm{C}(2)$	$2.27(1)$
$\mathrm{Pt}-\mathrm{P}(2)$	$2.300(3)$	$\mathrm{Cu}-\mathrm{C}(4)$	$2.18(1)$
$\mathrm{Pt}-\mathrm{C}(1)$	$2.03(1)$	$\mathrm{Cu}-\mathrm{C}(5)$	$2.29(1)$
$\mathrm{Pt}-\mathrm{C}(4)$	$2.022(9)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.22(2)$
$\mathrm{Cu}-\mathrm{Cl}$	$2.207(3)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.22(1)$
$\mathrm{P}(1)-\mathrm{Pt}-\mathrm{P}(2)$	$97.8(1)$		
$\mathrm{C}(1)-\mathrm{Pt}-\mathrm{P}(2)$	$88.3(3)$	$\mathrm{Pt}-\mathrm{C}(4)-\mathrm{C}(5)$	$174.0(9)$
$\mathrm{C}(4)-\mathrm{Pt}-\mathrm{P}(1)$	$89.3(3)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$165(1)$
$\mathrm{C}(1)-\mathrm{Pt}-\mathrm{C}(4)$	$84.6(4)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$166(1)$
$\mathrm{Pt}-\mathrm{C}(1)-\mathrm{C}(2)$	$174(1)$	$\mathrm{Pt}-\mathrm{Cu}-\mathrm{Cl}$	$165.9(1)$

bridging the Pt and Cu atoms, together with corresponding data for compound 9 (see later). Compound 4 contains a cis$\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{Bu}^{\mathrm{l}}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ group with a CuCl unit bonded to the two alkyne groups in a similar fashion to that in $\left[\mathrm{ReCu}\left(\mathrm{C}_{2} \mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ which contains a $\mathrm{Cu}\left(\mathrm{PPh}_{3}\right)$ group linked to two cis- $\mathrm{C}_{2} \mathrm{C}_{6} \mathrm{~F}_{5}$ ligands at rhenium. ${ }^{11}$ The platinum atom in 4 is four-co-ordinate with a square-planar geometry and the copper is three-co-ordinate with an essentially trigonal-planar geometry. The $\mathrm{Pt} \cdot \mathrm{Cu}$ distance of $3.129(2) \AA$ might be considered just short enough for there to be some direct bonding but we do not believe that there is any. Coordination of copper to the two alkynyl groups requires the metal atoms to approach each other this closely. The two $\mathrm{C}_{2} \mathrm{Bu}^{1}$ groups are σ bonded to Pt and the $\mathrm{Pt}-\mathrm{C}-\mathrm{C}$ angles are 174(1) and $174.0(9)^{\circ}$, fairly close to linear. The copper atoms, on the other hand, are best regarded as η^{2} co-ordinated to the alkynyl groups (see data in Table 3).

Ideally one would expect the Cu atom to lie in the platinum co-ordination plane, but Fig. 2 shows the displacement of the Cu atom (by $0.526 \AA$) out of the PtP_{2} plane. The constraints necessary to maintain a square-planar platinum geometry seem to force the Cu atom to one side of the platinum co-ordination plane and the tertiary butyl groups to the other. The centres of the $\mathrm{C}-\mathrm{C}$ bonds and the Cl atom define an approximately trigonal-planar geometry about Cu . The deviations of angles α and β from 180° (Table 3) ensure effective η^{2} co-ordination, carbon atoms $C(2)$ and $C(5)$ being slightly further from Cu [2.27(1) and 2.29(1) \AA] than $C(1)$ and $C(4)[2.14(1)$ and 2.18(1) \AA]. The complex is stable in solution and we have found no evidence for CuCl dissociation.

A more interesting structure is that of compound 9 which is shown in Fig. 3; selected bond lengths and angles are in Table 4. The two square-planar platinum co-ordination planes are approximately orthogonal (dihedral angle between the $\mathrm{PtP}_{2} \mathrm{C}_{2}$ planes $=80.8^{\circ}$). This arrangement allows the two pairs of cisalkynyl ligands to adopt bidentate co-ordination at copper. The

Fig. 1 Molecular structure of $\left[\mathrm{PtCuCl}\left(\mathrm{C}_{2} \mathrm{Bu}^{\mathrm{t}}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right] 4$

Table 3 Geometric features of the alkynyl bridges between platinum and copper atoms; bond lengths (\AA) and angles $\left(^{\circ}\right)$

		a	b	c	d	e	α	β
Compound								
4	$\mathrm{C}(1) \mathrm{C}(2) \mathrm{Bu}^{\mathrm{t}}$	$2.03(1)$	$1.22(2)$	$3.129(2)$	$2.14(1)$	$2.27(1)$	$174(1)$	$165(1)$
	$\mathrm{C}(4) \mathrm{C}(5) \mathrm{Bu}^{\mathrm{t}}$	$2.022(9)$	$1.22(1)$	$3.129(2)$	$2.18(1)$	$2.29(1)$	$174.0(9)$	$166(1)$
9	$\mathrm{C}(1) \mathrm{C}(2) \mathrm{Ph}$	$2.01(3)$	$1.21(5)$	$3.133(5)$	$2.19(3)$	$2.41(3)$	$179(2)$	$174(3)$
	$\mathrm{C}(3) \mathrm{C}(4) \mathrm{Ph}$	$2.05(3)$	$1.22(4)$	$3.133(5)$	$2.24(3)$	$2.41(3)$	$174(3)$	$169(3)$
	$\mathrm{C}(5) \mathrm{C}(6) \mathrm{Ph}$	$2.00(3)$	$1.28(5)$	$3.088(5)$	$2.28(3)$	$2.49(3)$	$174(2)$	$166(3)$
	$\mathrm{C}(7) \mathrm{C}(8) \mathrm{Ph}$	$2.02(3)$	$1.17(4)$	$3.088(5)$	$2.24(3)$	$2.39(4)$	$171(3)$	$167(4)$

Fig. 2 Projection of a molecule of compound 4 in the $\operatorname{PtP(1)P(2)~plane~}$ showing the displacement of the CuCl group out of the platinum coordination plane. The organic groups at $P(1)$ and $P(2)$ are omitted
complex could be considered to be $\left[\mathrm{Cu}\left(\eta^{2} \text {-alkyne }\right)_{4}\right]\left[\mathrm{BF}_{4}\right]$, a type which we believe to be unknown previously. Treatment of a solution of $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right]\left[\mathrm{BF}_{4}\right]$ with an excess of $\mathrm{PhC}_{2} \mathrm{H}$ in acetonitrile gave no reaction and the tetra(acetonitrile) compound was recovered. The particular nature of the bidentate diyne ligand, cis $-\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{Ph}\right)_{2}$ (dppe), ensures that the copper atom is well embedded within the ligands and highly protected. In this case, unlike compound 4 , the Cu atom lies more closely

Table 4 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for the compound $\left[\mathrm{Pt}_{2} \mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{Ph}\right)_{4}(\mathrm{dppe})_{2}\right]\left[\mathrm{BF}_{4}\right] 9$

$\mathrm{Pt}(1) \cdots \mathrm{Cu}$	$3.133(5)$	$\mathrm{Cu}-\mathrm{C}(2)$	$2.41(3)$
$\mathrm{Pt}(2) \cdots \mathrm{Cu}$	$3.088(5)$	$\mathrm{Cu}-\mathrm{C}(3)$	$2.24(3)$
$\mathrm{Pt}(1)-\mathrm{P}(1)$	$2.283(8)$	$\mathrm{Cu}-\mathrm{C}(4)$	$2.41(3)$
$\mathrm{Pt}(1)-\mathrm{P}(2)$	$2.275(9)$	$\mathrm{Cu}-\mathrm{C}(5)$	$2.28(3)$
$\mathrm{Pt}(2)-\mathrm{P}(3)$	$2.28(1)$	$\mathrm{Cu}-\mathrm{C}(6)$	$2.49(3)$
$\mathrm{Pt}(2)-\mathrm{P}(4)$	$2.275(8)$	$\mathrm{Cu}-\mathrm{C}(7)$	$2.24(3)$
$\mathrm{Pt}(1)-\mathrm{C}(1)$	$2.01(3)$	$\mathrm{Cu}-\mathrm{C}(8)$	$2.39(4)$
$\mathrm{Pt}(1)-\mathrm{C}(3)$	$2.05(3)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.21(5)$
$\mathrm{Pt}(2)-\mathrm{C}(5)$	$2.00(3)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.22(4)$
$\mathrm{Pt}(2)-\mathrm{C}(7)$	$2.02(3)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.28(5)$
$\mathrm{Cu}-\mathrm{C}(1)$	$2.19(3)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.17(4)$
$\mathrm{P}(1)-\mathrm{Pt}(1)-\mathrm{P}(2)$	$86.4(3)$	$\mathrm{P}(3)-\mathrm{Pt}(2)-\mathrm{P}(4)$	$87.1(3)$
$\mathrm{P}(1)-\mathrm{Pt}(1)-\mathrm{C}(1)$	$93.3(8)$	$\mathrm{P}(3)-\mathrm{Pt}(2)-\mathrm{C}(7)$	$90(1)$
$\mathrm{P}(2)-\mathrm{Pt}(1)-\mathrm{C}(3)$	$91.4(8)$	$\mathrm{P}(4)-\mathrm{Pt}(2)-\mathrm{C}(5)$	$89.2(8)$
$\mathrm{C}(1)-\mathrm{Pt}(1)-\mathrm{C}(3)$	$90(1)$	$\mathrm{C}(5)-\mathrm{Pt}(2)-\mathrm{C}(7)$	$94(1)$

in the PtP_{2} planes. It is $0.120 \AA$ out of the $\mathrm{Pt}(1) \mathrm{P}(2) \mathrm{P}(3)$ plane and $0.086 \AA$ out of the $\mathrm{Pt}(2) \mathrm{P}(3) \mathrm{P}(4)$ plane. The geometries of the $\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{Ph}\right) \mathrm{Cu}$ bridges are normal and similar to those in compound 4 (Table 3).

Fig. 3 Molecular structure of $\left[\mathrm{Pt}_{2} \mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{Ph}\right)_{4}(\mathrm{dppe})_{2}\right]^{+} 9$, determined as its tetrafluoroborate salt. The $\mathrm{Cu}-\mathrm{C}$ contacts are shown as broken lines for clarity

Experimental

 $(\mathrm{R}=\mathrm{Ph})^{18}$ and $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right]\left[\mathrm{BF}_{4}\right]^{19}$ were synthesised as reported previously for the corresponding hexafluorophosphate salt.

Syntheses.- $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{Ph}\right)_{2}(\mathrm{dppe})\right]$ 3. Phenylethyne $(0.65 \mathrm{~g})$ was added to a solution of the complex $\left[\mathrm{PtCl}_{2}(\mathrm{dppe})\right](2.00 \mathrm{~g})$ in dichloromethane $\left(50 \mathrm{~cm}^{3}\right)$ followed by addition of diethylamine $\left(6 \mathrm{~cm}^{3}\right)$ and copper(I) chloride $(0.0067 \mathrm{~g})$. The colourless solution with some suspended solid was refluxed for 4 h to give a clear pale yellow solution. The solvent was removed and the residue washed with water, dried in vacuo, and recrystallised from a dichloromethane-hexane mixture to give yellow needles of the product ($1.82 \mathrm{~g}, 76 \%$). IR spectrum (Nujol): $v(\mathrm{C}=\mathrm{C})$ $2116 \mathrm{~cm}^{-1}$
cis- $\left[\mathrm{PtCuCl}\left(\mathrm{C}_{2} \mathrm{Bu}^{\mathrm{t}}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right] 4$. A solution of the complex cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ (0.56 g) in dichloromethane was treated with diethylamine ($0.18-0.25 \mathrm{~g}, 2.46-3.40 \mathrm{~mol}$ per mol $\mathrm{Pt}), \mathrm{Bu}^{\mathrm{C}} \mathrm{C}_{2} \mathrm{H}(0.20-0.37 \mathrm{~g})$, and copper(I) chloride ($0.035 \mathrm{~g}, 0.34$ mol per mol Pt ; no more CuCl than this must be used to obtain the required cis product) in a sealed thick-walled glass Carius tube under vacuum at $70^{\circ} \mathrm{C}$ for 2 h . Longer reaction times gave considerably reduced yields. The tube was opened, the crystalline $\left[\mathrm{NH}_{2} \mathrm{Et}_{2}\right] \mathrm{Cl}$ filtered off on filter-paper, and the solution evaporated to dryness. The residual pale yellow oil was washed with water to remove any remaining salt and dried. A solution of this oil in a dichloromethane-hexane mixture was cooled at around $0^{\circ} \mathrm{C}$ overnight to give off-white needles of trans- $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{Bu}^{\mathrm{t}}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right] \quad(0.18-0.60 \mathrm{~g}, 27-87 \%)$ (characterising IR absorption at $2112 \mathrm{~cm}^{-1}$). After separating off these needles, hexane was added to the pale yellow solution which was then stored at $0^{\circ} \mathrm{C}$ for 1 d to give pale yellow crystals
of product $4(0.09-0.17 \mathrm{~g}, 12-21 \%)$ (Found: $\mathrm{C}, 46.05 ; \mathrm{H}, 5.75 ; \mathrm{Cl}$, 4.90. $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{ClCuP}_{2} \mathrm{Pt}$ requires $\mathrm{C}, 45.90 ; \mathrm{H}, 5.50 ; \mathrm{Cl}, 4.85 \%$). No acetylenic IR absorptions were observed in the region $1900-2100 \mathrm{~cm}^{-1}$.
trans- $\left[\mathrm{PtCu}_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{2} \mathrm{Bu}^{\mathrm{l}}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ 5. A mixture of cis$\left[\mathrm{PtCl}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right](0.65 \mathrm{~g})$, copper(I) chloride $(0.12 \mathrm{~g}, 1.0 \mathrm{~mol}$ per mol Pt), diethylamine ($0.18 \mathrm{~g}, 2 \mathrm{~mol}$ per mol Pt), and $\mathrm{Bu}^{1} \mathrm{C}_{2} \mathrm{H}$ $(0.40 \mathrm{~g})$ in dichloromethane $\left(50 \mathrm{~cm}^{3}\right)$ in a Carius tube was degassed and the tube sealed and heated at $70-80^{\circ} \mathrm{C}$ for 4 h . The tube was opened, the solvent removed, and the residue washed with water. After it had been dried, the residue was taken up in dichloromethane, hexane was added and the mixture cooled at $0{ }^{\circ} \mathrm{C}$ overnight to give compound 5 as offwhite crystals (43%) (Found: C, $40.30 ; \mathbf{H}, 4.70 ; \mathrm{Cl}, 8.55$. $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{Cl}_{2} \mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{Pt}$ requires $\mathrm{C}, 40.45 ; \mathrm{H}, 4.85 ; \mathrm{Cl}, 8.55 \%$). IR (Nujol): $v(\mathrm{C} \equiv \mathrm{C}) 1983 \mathrm{~m}$ and $1967 \mathrm{~m} \mathrm{~cm}^{-1}$.
$\left[\mathrm{PtCuCl}\left(\mathrm{C}_{2} \mathrm{Ph}\right)_{2}(\mathrm{dppe})\right]$ 6. A similar treatment of $\left[\mathrm{PtCl}_{2}-\right.$ (dppe)] $(0.54 \mathrm{~g}), \mathrm{PhC}_{2} \mathrm{H}(0.26 \mathrm{~g})$, diethylamine (0.25 g), and $\mathrm{CuCl}(0.090 \mathrm{~g})$ in dichloromethane at $70^{\circ} \mathrm{C}$ for 4 h followed by crystallisation from dichloromethane-acetone gave the product 6. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as pale orange crystals (41%) (Found: C, $52.90 ; \mathrm{H}$, 3.75 ; $\mathrm{Cl}, 11.20 . \mathrm{C}_{42} \mathrm{H}_{34} \mathrm{CuClP}{ }_{2} \mathrm{Pt}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ requires $\mathrm{C}, 52.70 ; \mathrm{H}$, $3.70 ; \mathrm{Cl}, 10.85 \%)$.
$\left[\mathrm{PtCuCl}\left(\mathrm{C}_{2} \mathrm{Bu}^{\mathrm{t}}\right)_{2}(\mathrm{dppe})\right]$ 7. A similar treatment of $\left[\mathrm{PtCl}_{2}-\right.$
 $\mathrm{CuCl}\left(0.075 \mathrm{~g}, 1 \mathrm{~mol}\right.$ per mol Pt) in dichloromethane at $70^{\circ} \mathrm{C}$ for 4 h followed by crystallisation from dichloromethaneacetone gave product 7 as off-white crystals (67%) (Found: C, $51.95 ; \mathrm{H}, 4.90 ; \mathrm{Cl}, 5.85 . \mathrm{C}_{38} \mathrm{H}_{42} \mathrm{CuClP}_{2} \mathrm{Pt} \cdot 0.25 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ requires $\mathrm{C}, 52.45 ; \mathrm{H}, 4.65 ; \mathrm{Cl}, 6.10 \%$).
$\left[\mathrm{PtCu}(\mathrm{MeCN})\left(\mathrm{C}_{2} \mathrm{Ph}\right)_{2}(\mathrm{dppe})\right]\left[\mathrm{BF}_{4}\right] 8$. A solution of the complex $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{Ph}\right)_{2}(\mathrm{dppe})\right](0.74 \mathrm{~g})$ in dichloromethane (50 cm^{3}) was mixed with an acetonitrile solution ($5 \mathrm{~cm}^{3}$) of

Table 5 Crystal data and details of the data collection, structure solution and refinement for $\left[\mathrm{PtCuCl}_{(}\left(\mathrm{C}_{2} \mathrm{Bu}^{\mathrm{t}}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right] 4$ and $\left[\mathrm{Pt}_{2} \mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{Ph}\right)_{4}(\text { dppe })_{2}\right]\left[\mathrm{BF}_{4}\right] 9^{a}$

Compound	4	9
Formula	$\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{ClCuP}_{2} \mathrm{Pt}$	$\mathrm{C}_{84} \mathrm{H}_{68} \mathrm{BCuF}_{4} \mathrm{P}_{4} \mathrm{Pt}_{2}$
M	732.70	1741.93
Size $/ \mathrm{mm}^{3}$	$0.28 \times 0.40 \times 0.48$	$0.46 \times 0.22 \times 0.35$
Space group	$P 2_{1} / n$	$P 2_{1} / c$
a / \AA	$11.640(5)$	$16.259(7)$
b / \AA	$15.465(6)$	$19.312(9)$
c / \AA	$17.51(1)$	$27.241(8)$
$\beta / /^{\circ}$	$93.40(4)$	$106.98(3)$
U / \AA^{3}	$3146(2)$	$8178(6)$
$D_{\mathrm{c}} / \mathrm{g} \mathrm{cm}^{-3}$	1.55	1.41
$\mu\left(\mathrm{Mo}^{-3}\right) / \mathrm{cm}^{-1}$	53.7	38.3
$F(000)$	1448	3432
No. of orientation reflections, 2θ range $/^{\circ}$	$25,10-24$	$20,10-23$
Scan mode	$\omega-2 \theta$	0
2θ range $/{ }^{\circ}$	$5-50$	$5-42$
$h k l$ range	$0,0,-21$ to $14,19,21$	$0,0,-28$ to $17,20,28$
Total data	6046	9174
Unique data	5522	8459
Rejection criterion	$I_{\mathrm{o}} \leqslant 2 \sigma\left(I_{\mathrm{o}}\right)$	$I_{\mathrm{o}} \leqslant 3 \sigma\left(I_{\mathrm{o}}\right)$
Reflections used	4143	4001
Parameters used	292	421
R	0.0536	0.0746
R^{\prime}	0.0578	0.0749
g in weighting scheme	0.00253	0.000895
Maximum shift/e.s.d.	0.016^{b}	0.13
Maximum difference peak $/ \mathrm{e} \AA \AA^{-3}$	2.49	1.16

${ }^{a}$ Common to both compounds: colourless crystals, monoclinic, $Z=4$, Nicolet R $3 \mathrm{v} / \mathrm{m}$ diffractometer, molybdenum radiation, $\lambda=0.71073 \AA$, data collection temperature $=23^{\circ} \mathrm{C}$, corrections for Lorentz and polarisation effects, empirical absorption corrections (ψ scans), direct-methods structure solutions, $R=\Sigma\left(\left|F_{\mathrm{o}}-\left|F_{\mathrm{c}}\right|\right) / \Sigma\left|F_{\mathrm{o}}\right|, R^{\prime}=\left[\Sigma w\left(\left|F_{\mathrm{o}}-\left|F_{\mathrm{c}}\right|\right)^{2} / \Sigma w\left|F_{\mathrm{o}}\right|^{2}\right]^{\frac{1}{2}}, w\right.\right.$ in weighting scheme $=1 /\left[\sigma^{2}(F)+g F^{2}\right]$. ${ }^{b} 0.15$ for disordered atoms of Bu^{\prime}.

Table 6 Fractional atomic coordinates $\left(\times 10^{4}\right)$ for $\left[\mathrm{PtCuCl}\left(\mathrm{C}_{2} \mathrm{Bu}^{t}\right)_{2^{-}}\right.$ $\left.\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right] 4$

Atom			
P			
Pt	$950(1)$	$8243(1)$	$1441(1)$
Cu	$3411(1)$	$7466(1)$	$1307(1)$
Cl	$5106(3)$	$6842(2)$	$1511(3)$
$\mathrm{P}(1)$	$332(2)$	$9483(2)$	$2015(2)$
$\mathrm{P}(2)$	$-813(2)$	$7582(2)$	$1247(2)$
$\mathrm{C}(11)$	$-170(12)$	$9343(9)$	$2973(6)$
$\mathrm{C}(12)$	$1421(10)$	$10296(8)$	$2181(7)$
$\mathrm{C}(13)$	$-798(9)$	$10084(7)$	$1472(6)$
$\mathrm{C}(14)$	$-1376(10)$	$10757(8)$	$1798(7)$
$\mathrm{C}(15)$	$-2178(11)$	$11234(9)$	$1374(9)$
$\mathrm{C}(16)$	$-2390(10)$	$11069(9)$	$604(8)$
$\mathrm{C}(17)$	$-1835(11)$	$10387(9)$	$279(7)$
$\mathrm{C}(18)$	$-1015(9)$	$9911(7)$	$711(6)$
$\mathrm{C}(21)$	$-1997(10)$	$7978(8)$	$1786(7)$
$\mathrm{C}(22)$	$-760(11)$	$6459(9)$	$1516(9)$
$\mathrm{C}(23)$	$-1368(9)$	$7571(7)$	$252(7)$
$\mathrm{C}(24)$	$-2536(11)$	$7381(9)$	$53(8)$
$\mathrm{C}(25)$	$-2923(13)$	$7348(9)$	$-698(10)$
$\mathrm{C}(26)$	$-2189(19)$	$7466(11)$	$-1278(10)$
$\mathrm{C}(27)$	$-1043(13)$	$7630(10)$	$-1103(9)$
$\mathrm{C}(28)$	$-645(11)$	$7686(8)$	$-340(7)$
$\mathrm{C}(1)$	$1662(8)$	$7213(8)$	$932(6)$
$\mathrm{C}(2)$	$2144(11)$	$6646(8)$	$592(7)$
$\mathrm{C}(3)$	$2416(15)$	$5890(10)$	$84(8)$
$\mathrm{C}(31)$	$3692(27)$	$6073(21)$	$-264(17)$
$\mathrm{C}(32)$	$2364(29)$	$5082(21)$	$609(18)$
$\mathrm{C}(33)$	$1463(30)$	$5854(22)$	$-589(20)$
$\mathrm{C}(34)$	$3273(42)$	$5265(31)$	$417(26)$
$\mathrm{C}(35)$	$1115(40)$	$5439(31)$	$-146(27)$
$\mathrm{C}(36)$	$2088(42)$	$6079(32)$	$-751(27)$
$\mathrm{C}(4)$	$2583(8)$	$8689(7)$	$1557(6)$
$\mathrm{C}(5)$	$3587(9)$	$8912(7)$	$1570(6)$
$\mathrm{C}(6)$	$4698(9)$	$9398(8)$	$1589(7)$
$\mathrm{C}(61)$	$5367(10)$	$9154(8)$	$905(7)$
$\mathrm{C}(62)$	$5389(10)$	$9180(11)$	$2327(7)$
$\mathrm{C}(63)$	$4420(11)$	$10389(8)$	$1550(10)$

$\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right]\left[\mathrm{BF}_{4}\right](0.30 \mathrm{~g})$ and the mixture stirred at room temperature for 30 min . Evaporation to dryness and recrystallisation of the residue by addition of diethyl ether to an acetonitrile solution gave a pale yellow solid ($0.88 \mathrm{~g}, 94 \%$) (Found: C, 52.80; H, 3.65. $\mathrm{C}_{44} \mathrm{H}_{37} \mathrm{BCuF}_{4} \mathrm{NP}_{2} \mathrm{Pt} \cdot 0.25 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ requires $\mathrm{C}, 52.70 ; \mathrm{H}, 3.75 \%$). Conductance ($1.0 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ in MeCN): $\Lambda_{\mathrm{M}}=115 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$, consistent with a $1: 1$ electrolyte. Dichloromethane solutions at room temperature decompose slowly, turning from yellow to orange and depositing a little green precipitate.
$\left[\mathrm{Pt}_{2} \mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{Ph}\right)_{4}(\mathrm{dppe})_{2}\right]\left[\mathrm{BF}_{4}\right]$ 9. A solution of compound 8 in a mixture of acetone and acetonitrile was slowly evaporated at room temperature to give a deposit of colourless crystals of compound 9 (Found: $\mathrm{C}, 57.25 ; \mathrm{H}, 3.90 . \mathrm{C}_{84} \mathrm{H}_{68} \mathrm{BCuF}_{4} \mathrm{P}_{4} \mathrm{Pt}_{2}$ requires $\mathrm{C}, 57.9 ; \mathrm{H}, 3.95 \%$). Conductance $\left(0.8 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in MeCN): $\Lambda_{\mathrm{M}}=104 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$, consistent with a $1: 1$ electrolyte.

Crystal Structure Determinations.-Crystal data and information on the intensity data collections, structure solutions and refinements for the two compounds are given in Table 5.
cis- $\left[\mathrm{PtCuCl}\left(\mathrm{C}_{2} \mathrm{Bu}^{1}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ 4. A colourless crystal was obtained from dichloromethane. All non-hydrogen atoms were refined anisotropically except for those of one of the Bu' groups, that centred on $\mathrm{C}(3)$, which was disordered. This group was best refined with one set of Me groups, $\mathrm{C}(31)-\mathrm{C}(33)$, with a population of 0.65 and another with a different orientation, $C(34)-C(36)$, with a population of 0.35 . The disordered atoms were refined with a common isotropic thermal parameter for each set of carbon atoms. Hydrogen atoms were not included in the disordered group but were placed in all other sites in idealised positions riding on the C atoms with the $\mathrm{C}-\mathrm{H}$ distance fixed at $0.96 \AA$ and an isotropic thermal parameter of $0.08 \AA^{3}$. Fractional atomic coordinates for 4 are given in Table 6.
$\left[\mathrm{Pt}_{2} \mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{Ph}\right)_{4}(\text { dppe })_{2}\right]\left[\mathrm{BF}_{4}\right]$ 9. A colourless crystal was formed over a period from a solution containing the complex $\left[\mathrm{PtCu}(\mathrm{MeCN})\left(\mathrm{C}_{2} \mathrm{Ph}\right)_{2}(\right.$ dppe $\left.)\right]\left[\mathrm{BF}_{4}\right]$ in acetone-acetonitrile.

Table 7 Fractional atomic coordinates $\left(\times 10^{4}\right)$ for $\left[\mathrm{Pt}_{2} \mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{Ph}\right)_{4}(\mathrm{dppe})_{2}\right]\left[\mathrm{BF}_{4}\right] 9$

Atom	x	y	z	Atom	x	y	z
$\mathrm{Pt}(1)$	1510(1)	422(1)	2400(1)	C(66)	3834(20)	3117(18)	-65(13)
$\mathrm{Pt}(2)$	2436(1)	2929(1)	1228(1)	C(71)	4642(17)	3144(13)	1359(11)
Cu	1983(3)	1671(2)	1799(2)	C(72)	4772(20)	3069(14)	1869(12)
$\mathrm{P}(1)$	955(6)	-665(4)	2208(3)	C(73)	5579(28)	2966(21)	2228(18)
$\mathrm{P}(2)$	1637(6)	158(4)	3233(3)	C(74)	6255(24)	3040(17)	2029(14)
$\mathrm{P}(3)$	3549(5)	3246(4)	927(3)	C(75)	6162(24)	3128(17)	1543(14)
$\mathrm{P}(4)$	1837(5)	3975(4)	950(3)	C(76)	5325(22)	3177(17)	1157(14)
C(1)	1291(18)	681(15)	1658(12)	C(81)	1933(19)	4609(17)	1448(12)
C(2)	1146(19)	831(15)	2208(13)	C(82)	1635(21)	4426(18)	1877(13)
C(3)	2152(16)	1338(14)	2609(10)	C(83)	1723(22)	4826(19)	2288(14)
C(4)	2588(18)	1861(14)	2709(10)	C(84)	2122(23)	5416(21)	2311(15)
C(5)	1373(19)	2673(15)	1416(11)	C(85)	2439(22)	5671(20)	1915(14)
C(6)	745(18)	2489(14)	1582(11)	C(86)	2364(19)	5217(16)	1491(12)
C(7)	3043(18)	2030(16)	1488(11)	C(91)	711(18)	4008(15)	602(11)
C(8)	3385(20)	1535(17)	1698(12)	C(92)	346(22)	3443(18)	317(12)
C(9)	1112(20)	-1143(15)	2823(11)	C(93)	- 570(25)	3429(22)	38(15)
C(10)	988(21)	-629(15)	3211(12)	C(94)	-1002(23)	3976(18)	93(13)
$\mathrm{C}(11)$	3411(16)	4155(13)	773(10)	C(95)	-691(24)	4518(20)	357(13)
C(12)	2430(18)	4309(16)	522(11)	C(96)	194(19)	4566(16)	617(11)
C(21)	1488(24)	-1250(22)	1848(14)	C(101)	874(31)	975(21)	651(17)
C(22)	1429(30)	-1919(27)	1853(18)	C(102)	1437(48)	899(31)	365(26)
C(23)	1863(32)	-2394(32)	1643(20)	C(103)	1021(44)	1131(30)	-191(25)
C(24)	2207(34)	-2079(32)	1382(21)	C(104)	321(47)	1230(31)	-318(28)
C(25)	2486(47)	-1466(41)	1340(26)	C(105)	-375(63)	$1110(41)$	-227(33)
C(26)	1973(43)	- 1026(43)	1566(26)	C(106)	17(42)	1057(28)	407(24)
C(31)	-172(21)	-695(17)	1879(12)	C(111)	3208(18)	2411(14)	2911(10)
C(32)	-596(22)	- 118(18)	1659(12)	C(112)	4007(18)	2270(16)	3210(11)
C(33)	- 1472(26)	-119(22)	1389(14)	C(113)	4615(21)	2822(16)	3366(12)
C(34)	-1908(27)	-763(21)	1361(15)	C(114)	4368(26)	3473(22)	3235(14)
C(35)	-1519(28)	-1317(24)	1575(15)	C(115)	3563(21)	3628(19)	2948(12)
C(36)	-655(22)	-1297(17)	1806(12)	C(116)	2982(18)	3115(14)	2767(11)
C(41)	2719(19)	21(15)	3663(12)	C(121)	-116(23)	2319(18)	1645(14)
C(42)	2861(24)	-300(17)	4148(13)	$\mathrm{C}(122)$	-850(22)	2476(17)	1259(14)
C(43)	3713(24)	-324(19)	4450(15)	C(123)	-1653(24)	2289(18)	1321(15)
C(44)	4368(28)	-93(20)	4291(16)	C(124)	-1601(27)	1988(19)	1774(15)
C(45)	4226(30)	182(21)	3840(17)	C(125)	-955(24)	1832(18)	2157(15)
C(46)	3382(22)	249(17)	3493(14)	C(126)	-130(23)	2002(17)	2095(14)
C(51)	1205(20)	804(16)	3549(12)	C(131)	3991(27)	975(21)	1943(16)
C(52)	334(25)	888(21)	3485(15)	C(132)	3631(53)	377(38)	1974(28)
C(53)	-66(30)	1423(22)	3661(15)	C(133)	4060(71)	-330(64)	2222(37)
C(54)	462(25)	1877(19)	3985(14)	C(134)	4765(41)	- 104(34)	2526(22)
C(55)	1340(25)	1817(19)	4081(14)	C(135)	5213(68)	364(48)	2476(35)
C(56)	1756(25)	1290(19)	3892(13)	C(136)	4508(56)	903(48)	2362(29)
C(61)	3557(18)	2771(15)	342(11)	B	3596(14)	6441(11)	716(7)
C(62)	3290(21)	2118(19)	270(14)	F(1)	3405(19)	5881(18)	583(12)
C(63)	3356(24)	1755(23)	-182(15)	F(2)	3041(24)	6813(19)	518(15)
C(64)	3657(22)	2104(21)	- 537(15)	F(3)	3730(26)	6477(20)	1156(15)
C(65)	3888(23)	2751(21)	-483(15)	F(4)	4208(24)	6596(18)	609(13)

The crystal was not very strongly diffracting. Only the Pt, Cu and P atoms were refined anisotropically. The H atoms were included in the model in idealised positions and allowed to ride on the carbon atoms with $\mathrm{C}-\mathrm{H}$ distances fixed at $0.96 \AA$ and isotropic thermal parameters at $0.08 \AA^{3}$. The $B-F$ distances were constrained to be equal within an idealised tetrahedron. Fractional atomic coordinates are given in Table 7.

All calculations were carried out using a MicroVax II computer running SHELXTL-PLUS. ${ }^{20}$

Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom coordinates, thermal parameters and remaining bond lengths and angles.

Acknowledgements

We thank the SERC for funds towards the purchase of the diffractometer and Dr. H. Tani of the Applied Instrumentation Centre of Chemical Analysis, Ehime University, for recording NMR spectra.

References
1 R. Nast, Coord. Chem. Rev., 1982,47, 89; E. Sappa, A. Tiripicchio and P. Braunstein, Chem. Rev., 1983, 83, 203.

2 A. Almenningen, L. Fernholt and A. Haaland, J. Organomet. Chem., 1978, 155, 245.
3 G. D. Stucky, A. M. McPherson, W. E. Rhine, J. J. Eisch and J. L. Considine, J. Am. Chem. Soc., 1974, 96, 1941.
4 A. J. Deeming, M. S. B. Felix, P. A. Bates and M. B. Hursthouse, J. Chem. Soc., Chem. Commun., 1987, 461.

5 A. J. Deeming, M. S. B. Felix and D. Nuel, Inorg. Chim. Acta, in the press.
6 A. J. Carty, N. J. Taylor and W. F. Smith, J. Chem. Soc., Chem. Commun., 1979, 750.
7 G. H. Posner, An Introduction to Synthesis using Organo Copper Reagents, Wiley-Interscience, New York, 1980
8 W. R. Corfield and M. M. H. Shearer, Acta Crystallogr., 1966, 21, 957.
9 D. M. Knotter, A. L. Spek, D. M. Grove and G. van Koten, Organometallics, 1992, 11, 4083
10 M. I. Bruce, O. M. Abu Salah, R. E. Davies and N. V. Raghavan, J. Organomet. Chem., 1974, 64, C48.

11 O. M. Abu Salah, M. I. Bruce and A. D. Redhouse, J. Chem. Soc., Chem. Commun., 1974, 855.

12 O. M. Abu Salah, M. I. Bruce, M. R. Churchill and S. A. Bezman, J. Chem. Soc., Chem. Commun., 1972, 858

13 M. R. Churchill and S. A. Bezman, Inorg. Chem., 1974, 14, 1418.
14 P. Espinet, J. Forniés, F. Martínez, M. Tomas, E. Lalinde, M. T. Moreno, A. Ruiz and A. J. Welch, J. Chem. Soc., Dalton Trans., 1990, 791.

15 P. Espinet, J. Forniés, F. Martínez, M. Sotes, E. Lalinde, M. T. Moreno, A. Ruizand A.J. Welch, J. Organomet. Chem., 1991,403, 253.
16 J. Forniés, M. A. Gómez-Saso, F. Martínez, E. Lalinde, M. T. Moreno and A. J. Welch, New J. Chem., 1992, 16, 483.
17 H. Yasufuku, H. Honda and H. Yamazaki, Inorg. Chem., 1989,26, 370.

18 M. Hacket and G. M. Whitesides, J. Am. Chem. Soc., 1988, 110, 1449; R. Nast, J. Voss and R. Kramolowsky, Chem. Ber., 1975, 108, 1511; D. G. Cooper and J. Powell, Inorg. Chem., 1977, 16, 142 S. Yamazaki, Polyhedron, 1992, 11, 1983; K. Sonogashira, T. Yatake, Y. Tohda, S. Takahashi and N. Hagihara, J. Chem. Soc., Chem. Commun., 1977, 291.
19 P. J. Kuhba, Inorg. Chem., 1990, 28, 78.
20 G. M. Sheldrick, University of Göttingen, 1986.

