3093

The Preparation and Structure of $[VI_2(salen)] \cdot CH_2 CI_2$ [salen = N,N'-ethylenebis(salicylideneiminate)(2–)] and of Some Homologues of Related Schiff Bases[†]

David L. Hughes, Uwe Kleinkes, G. Jeffery Leigh,* Michael Maiwald, J. Roger Sanders, Claas Sudbrake and Jan Weisner

AFRC IPSR Nitrogen Fixation Laboratory, University of Sussex, Brighton BN1 9RQ, UK

The elusive $[VI_2(salen)]$ [salen = N,N'-ethylenebis(salicylideneiminate)(2–)] and some of its homologues have been successfully prepared. The structure of $[VI_2(salen)] \cdot CH_2CI_2$ has been determined by X-ray crystallography, and the conformation is *trans*-octahedral, as expected, with long V–I separations. The complex is air-stable in the solid state, but appears to be moisture-sensitive in solution, and undergoes autoredox reactions ($V^{IV} \longrightarrow V^{II}, I^{-} \longrightarrow I_2$) in ionising solvents.

We have been interested in developing nitrogen-fixing systems based upon vanadium but with ligand donor sets akin to the oxygen-containing nitrogen-fixing systems developed by Shilov and co-workers.¹ We chose to investigate Schiff-base ligands in moieties such as V(salen) [H₂salen = N,N'-ethyl-enebis(salicylideneimine)], hoping to synthesise [V^{II}(salen)] and also species such as [V(NHNH₂)(salen)] containing reduced dinitrogen residues. For this purpose we required compounds [VX₂(salen)] (X = Cl, Br or I) and specifically [VI₂(salen)] because iodide should be a particularly good leaving group in metathetical reactions. However, this compound has not been reported hitherto.

Results and Discussion

The compounds $[VX_2(salen)](X = Cl \text{ or } Br)$ are obtainable by a variety of methods.² For example, [VO(salen)] reacts with hydrogen chloride in acetonitrile to yield $[VCl_2(salen)]$ in a series of two protonations followed by loss of water and coordination of chloride. Alternatively, $SOCl_2$ or PCl_5 in benzene can effect the change.³ Similarly, PPh_3Br_2 and [VO(salen)]yield $[VBr_2(salen)]$.⁴

We attempted similar experiments to prepare the diiodide. However, reaction of [VO(salen)] with PPh₃I₂ gives [V(salen)-(OPPh₃)I]1.⁵ Direct reaction of [VO(salen)] with I₂ gives [V^{IV}(salen)OV^V(salen)O][I₅],⁶ the structure of which was ascertained by X-ray analysis. Finally, treatment of [VO(salen)] with HI in CH₂Cl₂ causes reduction of vanadium, and formation of I₂, and we have isolated and structurally characterised [{V^{III}(salen)OV^{IV}(salen)}₂][I₃].⁷

We finally obtained the desired compound in almost quantitative yield by reaction of [VO(salen)] with Me₃SiI (1:2) in CH₂Cl₂. The black crystalline material was isolated as a 1:1 solvate with CH₂Cl₂, and subsequently we obtained [VI₂-(salen)]·C₂H₄Cl₂. The complexes [VI₂(acac)₂] (acac = acetylacetonate) and [VI₂L'] [where H₂L' is the Schiff base N,N'-2,2-dimethyltrimethylenebis(salicylideneimine), N,N'-1,1-dimethylethylenebis(salicylideneimine) or N,N'-ethylenebis(α methylsalicylideneimine)] were obtained by similar reactions. These compounds are all paramagnetic, with appropriate spinonly magnetic moments at room temperature.

Comparable reactions of [VO(salen)] with Me₃SiBr or

Fig. 1 Representation of the structure of $[VI_2(salen)]$, showing the atomic numbering scheme

 Me_3SiCl yielded $[VBr_2(salen)]$ or $[VCl_2(salen)]$ in almost quantitative yields, but we observed no reaction of [VO(salen)] with Me_3SiN_3 under similar conditions.

In order to confirm that we had indeed obtained $[VI_2(salen)]$, and because C,H,N analyses are not very informative, we undertook an X-ray crystal structure analysis. The structure is presented in Fig. 1, and selected bond lengths and angles are in Table 1 and atom coordinates are in Table 2. The molecule presents the hoped-for octahedral structure with trans iodides, and the salen constituting the equatorial plane. The salen itself is not exactly planar, but the vanadium atom lies within 0.013 Å of the good mean plane defined by the two oxygen and two nitrogen donors of the salen. The mean plane [O(1)-N(9)] of one salicylideneimine group, is almost parallel to the N_2O_2 plane, while the normal to the mean plane [N(12)-O(20)] of the other salicylideneimine group is $ca. 15^{\circ}$ to the normal of the N₂O₂ plane. Each benzo group has one neighbouring, overlapping, centrosymmetrically related ring at normal van der Waals stacking distances (3.4-3.6 Å); on the opposite side, in each case, there is a Cl atom of a solvent molecule lying above the ring, at distances of 3.65 and 3.76 Å. These intermolecular distances do not suggest strong packing interactions and the salen ligand retains a relatively flat conformation. The V-O and V–N separations [1.787(2), 1.811(2) Å and 2.070(3), 2.085(2) Å, respectively] are of the same magnitudes as those found in other V^{IV}(salen) compounds.⁸ However, the V-I separations present more of a problem.

To our knowledge, there are four literature reports of molecular structures in which V–I separations are quoted, and none is strictly comparable to ours. These are as follows: $[{V^{IV}I(C_5H_5)_2}_2{V(C_5H_5)(NO)}_2O_4]$, 2.653(2);⁹

[†] Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1993, Issue 1, pp. xxiii-xxviii.

Table 1 Molecular dimensions (bond lengths in Å, angles in °) in trans- $[VI_2(salen)]CH_2Cl_2$ with estimated standard deviations (e.s.d.s) inparentheses

(a) About the V ato	m		
V-I(1)	2.779(1)	V-N(9)	2.070(3)
V-I(2)	2.747(1)	V-N(12)	2.085(2)
V - O(1)	1.787(2)	V-O(20)	1.811(2)
			()
I(1) - V - I(2)	175.11(2)	O(1) - V - N(12)	163.0(1)
I(1) - V - O(1)	91.6(Ì)	N(9) - V - N(12)	77.7(1)
I(2) - V - O(1)	91.9(1)	I(1)-V-O(20)	91.4(1)
I(1) - V - N(9)	89.3(1)	I(2) - V - O(20)	90 4(1)
I(2) - V - N(9)	87 6(1)	O(1) - V - O(20)	111 4(1)
O(1) - V - N(9)	85 2(1)	N(9) - V - O(20)	163 3(1)
U(1) = V = I(1) I(1) = V = I(12)	88 3(1)	N(12) - V - O(20)	85 6(1)
I(1) = V = I(12) I(2) = V = I(12)	87 2(1)	14(12)-4-0(20)	85.0(1)
I(2) = V = IN(12)	07.2(1)		
(b) In the color ligar	ad		
(0) In the salen ligar	la		
O(1)-C(2)	1.330(3)	C(11)–N(12)	1.458(4)
C(2)-C(3)	1.400(4)	N(12)-C(13)	1.290(4)
C(2)-C(7)	1.391(4)	C(13)-C(14)	1.427(5)
C(3)-C(4)	1.387(4)	C(14)-C(15)	1.412(5)
C(4) - C(5)	1.390(5)	C(14)-C(19)	1.405(4)
C(5)-C(6)	1.376(5)	CÙŚ-CÙŚ	1.367(6)
C(0) - C(7)	1.407(4)	$\dot{C}(16) - \dot{C}(17)$	1.391(6)
C(7)-C(8)	1.417(4)	C(17) - C(18)	1.370(5)
C(8) - N(9)	1 292(4)	C(18) - C(19)	1 402(4)
N(9) - C(10)	1.272(1)	C(19) - O(20)	1 329(4)
C(10) - C(11)	1.472(4) 1.506(5)	0(1))-0(20)	1.52)(4)
C(10) $-C(11)$	1.500(5)		
\mathbf{V} $\mathbf{O}(1)$ $\mathbf{C}(2)$	140 7(2)	C(10) $C(11)$ $N(12)$	108 3(3)
V = O(1) = C(2)	140.7(2)	V N(12) C(11)	115 2(2)
O(1) - C(2) - C(3)	119.0(3)	V = N(12) = C(11)	115.5(2)
O(1) - O(2) - O(7)	119.2(3)	V = N(12) = C(13)	123.0(2)
C(3) - C(2) - C(7)	121.2(3)	C(11) = N(12) = C(13)	119.1(3)
C(2) = C(3) = C(4)	118.7(3)	N(12) - C(13) - C(14)	125.7(3)
C(3)-C(4)-C(5)	120.9(3)	C(13)-C(14)-C(15)	119.3(3)
C(4)-C(5)-C(6)	120.2(3)	C(13)-C(14)-C(19)	121.8(3)
C(5)-C(6)-C(7)	120.3(3)	C(15)-C(14)-C(19)	118.6(3)
C(2)-C(7)-C(6)	118.8(3)	C(14)-C(15)-C(16)	120.8(3)
C(2)-C(7)-C(8)	122.3(3)	C(15)-C(16)-C(17)	119.9(3)
C(6)-C(7)-C(8)	118.9(3)	C(16)-C(17)-C(18)	120.9(3)
C(7)-C(8)-N(9)	125.5(3)	C(17)-C(18)-C(19)	119.9(3)
V-N(9)-C(8)	126.9(2)	C(14)-C(19)-C(18)	119.8(3)
V-N(9)-C(10)	116.6(2)	C(14)-C(19)-O(20)	120.2(3)
C(8)-N(9)-C(10)	116.3(3)	C(18)-C(19)-O(20)	120.0(3)
N(9)-C(10)-C(11)	109.0(3)	V-O(20)-C(19)	137.2(2)
(c) Torsion angles in	n the salen lig	gand	
	۰ ۹۱	1.0(5)	
C(1) = C(2) = C(7) = C(7)	o) 0)	-1.9(3)	
C(2) - C(7) - C(8) - N(0)	9) 10)	-0.5(5)	
C(7) = C(8) = N(9) = C(10)	10)	-1/2.9(3)	
C(8) - N(9) - C(10) - C	(11)	- 158.4(3)	
N(9)-C(10)-C(11)-	N(12)	- 58.4(4)	
C(10)-C(11)-N(12)	-C(13)	- 143.8(3)	
C(11)-N(12)-C(13)	-C(14)	-173.5(3)	
N(12)-C(13)-C(14)	-C(19)	7.2(5)	
C(13)-C(14)-C(19)	-O(20)	-4.8(5)	
		_	
(d) In the dichloron	nethane mole	ecule	
C(30)-Cl(31)	1.739(C(30)-Cl(32)	1.761(5)
CI(31)-C(30)-CI(32) 112.4(3	s)	(-)
() -() -1(,	·	

[{ $V^{IV}(C_5Me_5)I_2$ }_O], 2.618(2) and 2.614(1); ¹⁰ [$V^{III}I(C_9H_7)_2$], 2.794(1); ¹¹ and [$V^{IV}(C_5H_5)I_3$], 2.562(5), 2.601(5) and 2.5441(1) Å.^{12.*} In our vanadium(IV) compound, the V–I separations are 2.779(1) and 2.747(1) Å, considerably longer than in the other

Table 2 Final atomic coordinates (fractional $\times 10^4$) for *trans*-[VI₂(salen)]·CH₂Cl₂ with e.s.d.s in parentheses

Atom	x	у	z	
v	402.9(7)	2150.8(3)	-23.0(3)	
I(1)	3235.7(3)	1155.6(1)	143.6(2)	
I(2)	-2410.7(3)	3049.9(1)	- 309.0(1)	
Ô(1)	-623(3)	2264(1)	1117(1)	
C(2)	-1839(4)	1966(2)	1709(2)	
C(3)	-2327(4)	2307(2)	2569(2)	
C(4)	-3605(5)	1990(2)	3175(2)	
C(5)	-4396(5)	1349(2)	2936(2)	
C(6)	-3932(5)	1025(2)	2086(2)	
C(7)	-2639(4)	1332(2)	1456(2)	
C(8)	-2245(4)	1002(2)	582(2)	
N(9)	-1147(4)	1243(2)	-67(2)	
C(10)	-1106(6)	871(2)	-931(2)	
C(11)	663(6)	986(2)	-1557(2)	
N(12)	1111(4)	1755(2)	-1340(2)	
C(13)	1882(5)	2131(2)	-1955(2)	
C(14)	2560(4)	2854(2)	-1845(2)	
C(15)	3334(5)	3208(2)	-2581(2)	
C(16)	4114(5)	3873(2)	-2501(2)	
C(17)	4196(5)	4196(2)	-1690(3)	
C(18)	3472(5)	3867(2)	-963(2)	
C(19)	2626(4)	3195(2)	-1029(2)	
O(20)	1930(3)	2873(1)	-323(1)	
The dichloromethane solvent molecule				
C(30)	-13(8)	4297(3)	1319(3)	
Cl(31)	-1101(2)	4330.4(6)	2413.3(8)	
Cl(32)	1041(2)	5129.7(8)	1077.3(9)	

vanadium(IV) compounds, and are of the same order as in the very different iodobis(indenyl)vanadium(III).¹¹ It might have been expected to be shorter. The sum of vanadium(IV) and iodine(-I) ionic radii is (0.60 + 2.16) = 2.76 Å. The V^{IV}-I covalent bond (a radius for V^{IV} was inferred from our structural data) should be 1.24 + 1.33 = 2.57Å.¹³ Consequently, the V-I separations in our compound imply a high degree of ionic character.

This situation is reminiscent of the complex $[FeI_2([16]ane-S_4)]$ ([16]aneS_4 = 1,5,9,13-tetrathiacyclohexadecane), which can, with equal justification, be formulated as $[Fe([16]aneS_4)]$ - I_2 .¹⁴ Like the iron compound, $[VI_2(salen)]$ possesses a far from negligible molar conductivity in MeNO₂ (≈ 30 ohm⁻¹ cm² mol⁻¹) even when we took every reasonable precaution to exclude air and moisture. A fully dissociated 1:1 electrolyte might be expected to have a conductivity *ca*. four times this value.¹⁵ In contrast, $[VCI_2(salen)]$ and $[VBr_2(salen)]$ are non-conductors in this solvent.

We conclude that the V–I bonds in $[VI_2(salen)]$ are substantially ionic in character and that iodide should be the good leaving group we have looked for. In such circumstances, one might expect that recrystallisation of $[VI_2(salen)]$ from tetrahydrofuran (thf) or MeCN (=L) should give new species $[VL_2(salen)]I_2$. In fact, the product obtained from thf appeared to be the known $[VI(thf)(salen)]^5$ on one occasion, though this was not reproducible. From MeCN we consistently obtained $[{V(salen)OV(salen)}_2][I_3]_2$ ·2MeCN. This was prepared by us in earlier work and unequivocally characterised by X-ray structure analysis.⁷ The identity of the product was confirmed by X-ray oscillation and zero-layer Weissenberg photographs.

It is evident from these observations that solutions of $[VI_2(salen)]$ are exceedingly sensitive to moisture and that when iodide and the V^{IV}(salen) moiety come together, then reduction to vanadium(III) occurs. This may well limit the value for synthetic purposes of $[VI_2(salen)]$ in ionising solvents.

We have obtained the EPR spectra of all the compounds $[VX_2(salen)]$ (X = Cl, Br or I) in solution in the non-ionising solvent dichloromethane at ambient temperature. The g and A

^{*} Note added at proof: There is now a further example, $[VI_2(MeOCH_2-CH_2OMe)_2]$, with mean V-I 2.808(2) Å (F. Calderazzo, G. E. de Benedetto, G. Pampalonc, C. M. Mössmer, J. Strähle and K. Wurst, J. Organomet. Chem., 1993, **451**, 73).

values we obtained in the characteristic eight-line spectra were: g = 1.952 (lit.,¹⁶ 1.950) and $A = 82 \times 10^{-4}$ cm⁻¹ (lit.,¹⁶ 76 × 10⁻⁴) (X = Cl), g = 1.968 (lit.,¹⁶ 1.955) and $A = 79 \times 10^{-4}$ cm⁻¹ (lit.,¹⁶ 80 × 10⁻⁴) (X = Br) and $g = 1.997 \pm 0.002$, $A = 71 \times 10^{-4}$ cm⁻¹ (X = I). These g values suggest increasing electron delocalisation in the sequence Cl < Br < I, and the A values greater unpaired electron density on the vanadium in the opposite sequence. These data are self-consistent, though this is no more than a qualitative analysis. It is not what one might expect were [VI₂(salen)] completely ionic.

Experimental

Reactions were generally carried out using standard Schlenk techniques in dried solvents under N_2 . The C,H,N analyses were undertaken by Mr. C. J. Macdonald of the Nitrogen Fixation Laboratory using a Perkin Elmer 2400 analyser and iodine analyses were by Butterworth Analytical Laboratories. Infrared spectra were obtained using a Perkin Elmer 883 spectrometer, as Nujol mulls. The EPR spectra at room temperature in solution in dichloromethane were obtained on a Bruker ESP 300 spectrometer, courtesy of Dr. D. J. Lowe. Conductivities were obtained using a Portland Electronics Bridge and magnetic moments in the solid state at 20 °C were determined by the Faraday method using Hg[Co(NCS)₄] as standard and making the usual diamagnetic corrections using Pascal's constants.

The new Schiff base N,N'-2,2-dimethyltrimethylenebis(salicylideneimine) and its V^{IV}O derivative were prepared as described below. Other Schiff bases and [VO(salen)] and its homologues were prepared analogously. Trimethylsilyl compounds and [VO(acac)₂] were purchased from Aldrich, and used without further purification.

Syntheses .---- N, N'-2, 2-Dimethyltrimethylenebis(salicylidene--

imine). Salicylaldehyde (9.76 g, 80 mmol) was added slowly to a solution of 2,2-dimethyl-1,3-diaminopropane (4.09 g, 40 mmol) in methanol (80 cm³) at the boiling point. Yellow crystals formed immediately; the solution was boiled for 10 min and then set aside to cool. After 1 d yellow crystals (10.8 g, 87%) were filtered off, washed with methanol and diethyl ether and dried in air (Found: C, 73.2; H, 6.2; N, 8.6. $C_{19}H_{22}N_2O_2$ requires C, 73.5; H, 7.1; N, 9.0%).

[N,N'-2,2-Dimethyltrimethylenebis(salicylideneiminato)]oxovanadium(IV). The complex [VO(acac)₂] (4.35 g, 16.4 mmol) was added to acetonitrile (150 cm³) and the mixture heated to reflux and filtered hot leaving a small residue. 2,2-Dimethylpropylene-N,N'-bis(salicylideneimine) (5.07 g, 16.4 mmol) was added to the hot filtrate using a Soxhlet extractor. The mixture was kept at reflux temperature for 30 min, then cooled. After 1 d orange-red crystals (3.28 g, 54%) were filtered off, washed with cold acetonitrile and diethyl ether, and dried *in vacuo* (Found: C, 60.4; H, 5.4; N, 7.5. C₁₉H₂₀N₂O₃V requires C, 60.8; H, 5.3; N, 7.4%. Magnetic moment = $1.87 \mu_{\rm B}$. [N,N'-Ethylenebis(salicylideneiminato)]diiodovanadium(IV)

[N,N'-Ethylenebis(salicylideneiminato)]diiodovanadium(1V) -dichloromethane (1/1). To a solution of [VO(salen)] (1.67 g, 5.0 mmol) in CH₂Cl₂ (100 cm³) was added by syringe Me₃SiI (1.4 cm³, 2.0 g, 10.0 mmol). The dark brown solution was set aside at -20 °C. After 6 d, black crystals (3.20 g, 97%) were filtered off, washed with CH₂Cl₂ and Et₂O and dried *in vacuo* (Found: C, 30.8; H, 2.00; I, 37.4; N, 3.90. C₁₇H₁₆Cl₂I₂N₂O₂V requires C, 31.1; H, 2.45; I, 38.7; N, 4.25%). Magneticmoment = 1.80 ± 0.05 $\mu_{\rm B}$. $\Lambda_{\rm M}$ = 30.6 ohm⁻¹ cm² mol⁻¹ (10⁻³ mol dm⁻³, MeNO₂).

Using a similar method, the 1/l solvate with $C_2H_4Cl_2$ -1,2 was also obtained (Found: C, 32.3; H, 2.3; N, 4.3. $C_{18}H_{18}$ - $Cl_2I_2N_2O_2V$ requires C, 32.3; H, 2.7; N, 4.2%). Yield $\approx 80\%$.

[N,N'-2,2-Dimethyltrimethylenebis(salicylideneiminato)]-

diiodovanadium. This was prepared in 75% yield from the appropriate oxovanadium(iv) compound and Me₃SiI in a

similar way (Found: C, 37.1; H, 3.3; I, 40.5; N, 4.7. $C_{19}H_{20}I_{2}$ -N₂O₂V requires C, 37.2; H, 3.3; I, 41.4; N, 4.6%). Magnetic moment = 1.75 μ_{B} . $\Lambda_{M} = 41.5$ ohm⁻¹ cm² mol⁻¹ (10⁻³ mol dm⁻³, MeNO₂).

Diiodo-[N,Ñ'-1,1-dimethylethylenebis(salicylideneiminato)]vanadium-dichloromethane (1/1). This was prepared as above in 70% yield (Found: C, 33.6; H, 2.7; I. 37.2; N, 4.0. $C_{19}H_{20}Cl_2I_2N_2O_2V$ requires C, 33.3; H, 2.95; I, 37.1; N, 4.1%). Magnetic moment = 1.72 μ_B . Λ_M = 30.2 ohm⁻¹ cm² mol⁻¹ (10⁻³ mol dm⁻³, MeNO₂).

[N,N'-Ethylenebis(α -methylsalicylideneiminato)]diiodovanadium. This was prepared as above in $\approx 80\%$ yield (Found: C, 36.2; H, 3.0; I, 38.6; N, 4.2. $C_{18}H_{18}I_2N_2O_2V$ requires C, 36.1; H, 3.0; I, 42.4; N, 4.7%). Magnetic moment = 1.87 μ_B . Λ_M = 37.2 ohm⁻¹ cm² mol⁻¹ (10⁻³ mol dm⁻³, MeNO₂).

The known compounds [VCl₂(salen)] and [VBr₂(salen)] were prepared similarly in *ca.* 95% yield from [VO(salen)] and Me₃SiCl or Me₃SiBr, respectively. The authenticity was confirmed by C,H,N analyses and by comparison of IR spectra with those of authentic samples (Found: C, 49.3; H, 3.20; N, 7.05. $C_{16}H_{14}Cl_2N_2O_2V$ requires C, 49.5; H, 3.65; N, 7.20. Found: C, 39.7; H, 2.65; N, 5.65. $C_{16}H_{14}Br_2N_2O_2V$ requires C, 40.3; H, 2.95; N, 5.85%).

Bis(acetylacetonato)diiodovanadium-dichloromethane (1/1). This was prepared in similar fashion in 80% yield from [VO(acac)₂] and Me₃SiI. It was recrystallised from CH₂Cl₂-Et₂O (Found: C, 22.4; H, 3.1; I, 46.7; N, 0.0. C₁₁H₁₆Cl₂I₂O₄V requires C, 22.4; H, 2.75; I, 43.2; N, 0.0%). $\Lambda_{\rm M}$ = 35.9 ohm⁻¹ cm² mol⁻¹ (10⁻³ mol dm⁻³, MeNO₂). The magnetic moment in the solid could not be determined because the sample loses weight on the magnetic balance, even under N₂.

Crystal Structure Determination of $[VI_2(salen)] \cdot CH_2Cl_2$.— Crystal data. $C_{16}H_{14}I_2N_2O_2V \cdot CH_2Cl_2$, M = 656.0, triclinic, space group AI (equivalent to no. 2; preferred to PI, conforming to photographic orientation), a = 7.6378(6), b = 17.731(2), c = 16.113(1) Å, $\alpha = 95.816(7)$, $\beta = 75.172(5)$, $\gamma = 85.960(8)^\circ$, U = 2088.0 Å³, Z = 4, $D_c = 2.087$ g cm⁻³, F(000) = 1244, μ (Mo-K α) = 36.6 cm⁻¹, λ (Mo-K $\overline{\alpha}$) = 0.710 69 Å.

The crystals were isolated directly from the dilute reaction solution. They were air-stable, black and opaque with a metallic shine. Most were single with many well-formed faces and edges, and ca. 0.5 mm long. One of the crystals (ca. 0.21 \times 0.33 \times 0.40 mm) was mounted on a glass fibre. Preliminary oscillation and Weissenberg photographs showed the crystal to diffract well and gave approximate unit-cell dimensions and the symmetry of the crystal.

After transferring the crystal to our Enraf-Nonius CAD4 diffractometer (with monochromated molybdenum radiation), accurate cell dimensions were determined using 25 strong reflections with $10 < \theta < 11^{\circ}$, each centred in four orientations. Diffraction intensities were measured to $\theta_{max} = 27^{\circ}$. Corrections were made for Lorentz-polarisation effects, slight deterioration (overall *ca.* 2.7%), absorption (by semi-empirical ψ -scan methods) and to ensure no negative intensities (by Bayesian statistics). The complete set of 4552 unique reflections was entered into the SHELX program system.¹⁷

The structure was determined using the heavy-atom method, based on the vanadium and two iodine atoms, which were found manually in a Patterson map. The remaining atoms were located from electron-density and Fourier difference maps. During refinement by full-matrix least-squares methods, all the nonhydrogen atoms were allowed anisotropic thermal parameters and the hydrogen atoms were included in idealised positions with independent isotropic thermal parameters. At convergence, R = 0.029, R' = 0.037, and goodness-of-fit = 2.44 for all 4552 reflections weighted $w = (\sigma_F^2 + 0.000 \ 36F^2)^{-1}$. In the final difference map the only peak of significance (*ca.* 1.0 e Å⁻³) lay close to the solvent molecule; no other peaks exceeded $0.4 \text{ e} Å^{-3}$. Scattering factors were taken from ref. 18. The computer programs which were used are listed in Table 4 of ref. 19 and were all run on the MicroVAX II machine in this Laboratory.

Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom coordinates and thermal parameters.

Acknowledgements

We gratefully acknowledge assistance under the EEC Erasmus exchange scheme for undergraduates to U. K., M. M., C. S. and J. W.

References

- 1 N. P. Luneva, L. A. Nikonova and A. E. Shilov, *Kinet. Catal.*, 1980, **21**, 1041.
- 2 J. A. Bonadies, W. M. Butler, V. L. Pecoraro and C. J. Carrano, Inorg. Chem., 1987, 26, 1218.
- 3 M. Pasquali, F. Marchetti and C. Floriani, *Inorg. Chem.*, 1979, 18, 2401.
- 4 K. P. Callahan and P. J. Durand, Inorg. Chem., 1980, 19, 3211.
- 5 A. Hills, D. L. Hughes, G. J. Leigh and J. R. Sanders, J. Chem. Soc., Dalton Trans., 1991, 325.
 6 A. Hills, D. L. Hughes, G. J. Leigh and J. R. Sanders, J. Chem. Soc.,
- Dalton Trans., 1991, 61. 7 D. L. Hughes, G. J. Leigh, M. Maiwald and J. R. Sanders,
- D. L. Hugnes, G. J. Leign, M. Maiwald and J. R. Sanders, unpublished work.

- See, for example, P. E. Riley, V. L. Pecoraro, C. J. Carrano, J. A. Bonadies and K. N. Raymond, *Inorg. Chem.*, 1986, 25, 154; M. Pasquali, F. Marchetti, C. Floriani and M. Cesari, *Inorg. Chem.*, 1980, 19, 1198; J. A. Bonadies, W. M. Butler, V. L. Pecoraro and C. J. Carrano, *Inorg. Chem.*, 1987, 26, 1218.
- 9 F. Bottomley, J. Darkwa and P. S. White, J. Chem. Soc., Dalton Trans., 1985, 1435.
- 10 F. Bottomley, J. Darkwa, L. Sutin and P. S. White, Organometallics, 1986, 2165.
- 11 J. R. Bocarsly, C. Floriani, A. Chiesi-Villa and C. Guastini, *Inorg. Chem.*, 1987, 26, 1871.
- 12 D. B. Morse, T. B. Rauchfuss and S. R. Wilson, *Inorg. Chem.*, 1991, 30, 775.
- 13 Lange's Handbook of Chemistry, 13th edn., ed. J. A. Dean, McGraw Hill, New York, 1985, pp. 3-121.
- 14 A. Hills, D. L. Hughes, M. Jimenez-Tenorio, G. J. Leigh, A. Houlton and J. Silver, J. Chem. Soc., Chem. Commun., 1989, 201; J. Chem. Soc., Dalton Trans., 1992, 2033.
- 15 See W. J. Geary, Coord. Chem. Rev., 1971, 7, 81.
- 16 A. Jezierski and J. B. Raynor, J. Chem. Soc., Dalton Trans., 1981, 1. 17 G. M. Sheldrick, SHELX-76, Program for crystal structure
- determination, University of Cambridge, 1976.
- 18 International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4, pp. 99 and 149.
- 19 S. N. Anderson, R. L. Richards and D. L. Hughes, J. Chem. Soc., Dalton Trans., 1986, 245.

Received 28th June 1993; Paper 3/03677C